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ABSTRACT
We present an analysis of Spitzer/Infrared Array Camera primary transit and secondary eclipse
light curves measured for HD 209458b, using Gaussian process models to marginalize over
the intrapixel sensitivity variations in the 3.6 and 4.5 μm channels and the ramp effect in
the 5.8 and 8.0 μm channels. The main advantage of this approach is that we can account
for a broad range of degeneracies between the planet signal and systematics without actually
having to specify a deterministic functional form for the latter. Our results do not confirm a
previous claim of water absorption in transmission. Instead, our results are more consistent
with a featureless transmission spectrum, possibly due to a cloud deck obscuring molecular
absorption bands. For the emission data, our values are not consistent with the thermal inversion
in the dayside atmosphere that was originally inferred from these data. Instead, we agree
with another re-analysis of these same data, which concluded a non-inverted atmosphere
provides a better fit. We find that a solar-abundance clear-atmosphere model without a thermal
inversion underpredicts the measured emission in the 4.5 μm channel, which may suggest the
atmosphere is depleted in carbon monoxide. An acceptable fit to the emission data can be
achieved by assuming that the planet radiates as an isothermal blackbody with a temperature
of 1484 ± 18 K.

Key words: methods: data analysis – planets and satellites: atmospheres – planets and satel-
lites: general – stars: individual: HD 209458.

1 IN T RO D U C T I O N

Over the past decade, the Spitzer Space Telescope has proven to be a
productive facility for characterizing the atmospheres of transiting
exoplanets (e.g. Charbonneau et al. 2005; Deming et al. 2006; Knut-
son et al. 2007a; Désert et al. 2009; Crossfield et al. 2012; Lewis et al.
2013; Todorov et al. 2014). The ability of its instruments to probe
the ∼3–25 μm wavelength range has provided constraints on the
thermal emission of numerous exoplanets, as well as atmospheric
transmission in a region dominated by absorption from molecu-
lar species such as water, methane, carbon monoxide, and carbon
dioxide. Hot Jupiters have offered especially favourable targets for
such observations, given their large atmospheric scaleheights and
relatively strong emission at these wavelengths.

This paper focuses on observations made with the Infrared Ar-
ray Camera (IRAC), which has been the most widely used Spitzer
instrument for observing exoplanets. Specifically, we analyse 10

� E-mail: tevans@astro.ex.ac.uk

transits and 11 eclipses that have been measured for HD 209458b,
most of which have already been published (Knutson et al. 2008;
Beaulieu et al. 2010; Diamond-Lowe et al. 2014; Zellem et al.
2014). By providing a uniform analysis of these data sets, we aim to
re-evaluate a number of claims that have been made in the literature.
In particular, Beaulieu et al. (2010) measured significantly larger
effective radii for the planet in the 5.8 and 8.0 μm channels relative
to the 3.6 and 4.5 μm channels in transmission, and interpreted this
as evidence for water absorption. However, Deming et al. (2013)
have since resolved the water absorption band centred at 1.4 μm
using the Hubble Space Telescope (HST) Wide Field Camera 3
(WFC3), and found that it has a much lower amplitude than would
be expected based on the results of Beaulieu et al (2010). We also
seek to address the claim of a thermal inversion in the dayside
atmosphere, which was first postulated by Knutson et al. (2008)
based on the deeper eclipses those authors measured for the 4.5
and 5.8 μm channels relative to the 3.6 μm channel. The former
channels coincide with absorption features due to water and carbon
monoxide; therefore, seeing these features in emission would sug-
gest an increasing temperature profile with decreasing pressure.
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Table 1. HD209458 data sets analysed for this study.

Channels ( µm)
Programme P.I. Type 3.6 4.5 5.8 8.0 Referencesa

20523 D. Charbonneau Eclipse Yes Yes Yes Yes Kn08, DL14
40280 H. Knutson Half-phase – – – Yes DL14
461 G. Tinetti Transit Yes Yes Yes Yes Be10
60021 H. Knutson Full-phase Yes Yes – – Ze14, DL14

Notes. aBe10 (Beaulieu et al. 2010), DL14 (Diamond-Lowe et al. 2014), Kn08 (Knutson et al.
2008), Ze14 (Zellem et al. 2014).

Diamond-Lowe et al. (2014) have challenged this picture by
presenting revised eclipse depths that are suggestive of a non-
inverted pressure-temperature (PT) profile. Furthermore, Hansen,
Schwartz & Cowan (2014) have suggested that the emission data
for HD 209458b are consistent with radiation from an isothermal
blackbody.

The conflicting results obtained by different authors analysing
the same data sets is likely due to the various methods that have
been used to account for the instrumental systematics that dominate
IRAC light curves. The main contribution of the current study is
to apply the machinery of Gaussian processes (GPs) to the task of
treating these systematics. This work follows similar applications of
GP models to transit light curves published by Gibson et al. (2012b,
2013a,b), Evans et al. (2013), and Gibson (2014). One of the pri-
mary advantages of GP models is that they allow us to naturally
handle correlations in the data that may be poorly understood from
a first principles standpoint, by specifying only high-level proper-
ties of the covariance. This relaxes the assumptions built into our
model, by removing the need to associate the systematics with a de-
terministic functional form. The resulting model is less restrictive,
allowing us to capture a broad range of systematics behaviours with
a relatively small number of tunable parameters. Furthermore, GPs
are Bayesian models in the sense that uncertainty is treated trans-
parently using self-consistent rules of probability. Each unknown
in our model is associated with a probability distribution that re-
flects our uncertainty in its value, and it is possible to write down
an expression for the likelihood of the observed data given specific
values for the model parameters, i.e. the model posterior distribu-
tion. We can then optimize the model posterior with respect to the
unknown parameters, or marginalize over the parameter space us-
ing a method such as Markov chain Monte Carlo (MCMC). These
properties make GP models suitable for inferring planet parame-
ters from transit light curves affected by systematics that are not
especially well understood, such as those obtained with IRAC.

The paper is arranged as follows. Section 2 describes the light-
curve observations analysed for this study and Section 3 describes
how we produced light curves from the raw data frames. IRAC in-
strumental systematics are described in Section 4, with an overview
of methods that have been used to correct for them previously in
the literature. Section 5 outlines the GP methodology that we adopt
in the current study, and Section 6 describes the light-curve fitting.
The results are presented in Section 7 and discussed in Section 8,
with a focus on the implications for the planet atmosphere. Our
conclusions are summarized in Section 9.

2 O BSERVATIONS

We have analysed 10 primary transits and 11 secondary eclipses for
HD209458b, made across all four IRAC channels. Details of the
relevant Spitzer observing programmes are given in Table 1, along

with references to previously published analyses. More specific
information for the individual light curves is given in Table 2. For
this study, we did not model the complete half- and full-phase data
sets acquired for Programmes 30825, 40280, and 60021. Instead,
for these light curves only ∼5 h subsections centred on the transits
and eclipses were analysed.

Most observations were made in stare mode. The only exceptions
were those made as part of Programme 20523, which have been
published in Knutson et al. (2008). For the latter, four sets of 64
frames were acquired in a given channel before the telescope was
repointed to be centred on the next channel, and another four sets
of 64 frames were taken. This process was cycled through each of
the four channels, and repeated for the duration of the observations.
Knutson et al. (2008) discarded the first set of 64 frames in each set
of four, as the star was still drifting significantly during this time
following the repointing. In addition, those authors discarded the
first 10 frames and the 58th frame from each set of 64 for the 5.8 and
8.0 μm channels, as these exhibited count levels consistently below
the median. We performed two separate analyses for these light
curves: one with this culling applied, and one without. However,
we obtained consistent results in both cases, and only present results
for the unculled data set below.

3 DATA R E D U C T I O N

The Basic Calibrated Data (BCD) frames for each light curve were
reduced using a custom pipeline written in the PYTHON programming
language.1 The first step performed by the pipeline is to calculate
the background level and locate the stellar centroid in each BCD
frame. The background was estimated by taking the median pixel
value from the four 8 × 8 pixel subarrays at the corners of each
frame, and then subtracted from each pixel in the array. The cen-
troid coordinates were then determined by taking the flux-weighted
mean of a 7 × 7 pixel subarray centred on the approximate location
of the star. An initial guess was provided for the stellar centroid
coordinates in the first frame, and coordinates determined for the
previous frame were used as the initial guess in subsequent frames.
Mid-times were computed for each exposure in Barycentric Julian
Date Coordinated Universal Time (BJDUTC) using the BMJD_OBS
and FRAMTIME header entries. Bad frames were flagged by identi-
fying those with outlying centroid coordinates or pixel counts. This
was done by comparing against the median and standard deviation
of the 30 frames immediately preceding and following each frame. If
the centroid coordinates or any pixel counts within a subarray span-
ning the photometric aperture centred at the stellar centroid differed
from the median by >5σ , the frame was discarded from the analy-
sis. This process was iterated twice, resulting in 0.2–4.4 per cent of
the frames being discarded depending on the data set (Table 2).

1 Publicly available at www.github.com/tomevans
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Table 2. Light-curve details.

Programme Type Channel Date Modea Flaggedb Nc
b ηd

b �temed r
f
ap

( µm) (UT) (per cent) (s) (pix)

20523 Eclipse 3.6 2005 Nov 28 sub, 0.1 0.36 1115 32 4.5 4.0
Eclipse 4.5 2005 Nov 28 sub, 0.1 0.21 1115 32 4.5 3.0
Eclipse 5.8 2005 Nov 28 sub, 0.1 0.32 1115 32 4.5 2.5
Eclipse 8.0 2005 Nov 28 sub, 0.1 0.55 1115 32 4.5 3.0

40280 Transit 8.0 2007 Dec 25 sub, 0.4 1.11 1577 32 13.5 3.5
Eclipse 8.0 2007 Dec 24 sub, 0.4 1.12 1577 32 13.5 4.0

461 Transit 3.6 2007 Dec 31 full, 0.4 1.68 1427 2 16.8 2.5
Transit 3.6 2008 Jul 19 full, 0.4 2.03 1428 2 16.8 2.5
Transit 4.5 2008 Jul 22 full, 0.4 1.67 1288 2 16.8 2.5
Transit 5.8 2007 Dec 31 full, 2.0 3.78 1425 2 16.8 3.5
Transit 5.8 2008 Jul 19 full, 2.0 3.81 1425 2 16.8 3.0
Transit 8.0 2008 Jul 22 full, 2.0 4.42 1286 2 16.8 4.0

60021 Eclipse (1st) 3.6 2011 Jan 12 sub, 0.1 0.25 1285 128 16.8 2.5
Transit 3.6 2011 Jan 14 sub, 0.1 0.25 1286 128 16.8 2.5

Eclipse (2nd) 3.6 2011 Jan 16 sub, 0.1 0.29 1286 128 16.8 3.0
Eclipse (1st) 3.6 2014 Feb 13 sub, 0.1 0.23 1286 128 16.8 3.0

Transit 3.6 2014 Feb 15 sub, 0.1 0.23 1286 128 16.8 3.0
Eclipse (2nd) 3.6 2014 Feb 17 sub, 0.1 0.18 1285 128 16.8 2.5
Eclipse (1st) 4.5 2010 Jan 18 sub, 0.4 0.62 1577 32 13.6 2.5

Transit 4.5 2010 Jan 19 sub, 0.4 0.73 1575 32 13.6 3.0
Eclipse (2nd) 4.5 2010 Jan 21 sub, 0.4 0.62 1577 32 13.6 2.5

Notes. aReadout mode and frame time in seconds.
bFraction of frames flagged as bad.
cNumber of frames in the binned data set used for the GP light-curve fit.
dNumber of consecutive frames per bin.
eMedian cadence of binned frames.
fPhotometric aperture radius.

Photometry was performed for each remaining frame by sum-
ming the pixel counts within circular apertures. Separate reductions
were obtained for different aperture radii, ranging between 2–6 pixel
in increments of 0.5 pixel. Due to the undersampled nature of the
IRAC point spread function (PSF), we linearly interpolated the na-
tive pixel array on to a 10 × 10 supersampled grid, as has been done
by others previously (e.g. Stevenson et al. 2010). These interpolated
subpixels were counted towards the aperture sum if their centres fell
within the aperture radius. The resulting light curves are shown in
Fig. 1.

4 INSTRUMENTA L SYSTEMATICS

The raw light curves are affected by instrumental systematics that
are characteristic of IRAC and have been documented extensively
in the literature (e.g. Charbonneau et al. 2005; Agol et al. 2010;
Seager & Deming 2010; Stevenson et al. 2012). The systematics
divide into two broad categories: intrapixel sensitivity variations in
the 3.6 and 4.5 μm channels, and the ramp effect in the 5.8 and
8.0 μm channels.

4.1 3.6 and 4.5 μm channels

In the 3.6 and 4.5 μm channels, which employ InSb detectors, the
measured flux correlates with the position of the stellar PSF on the
detector array. As noted in the IRAC instrument handbook,2 this ef-
fect is believed to be caused by variations in the quantum efficiency

2 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac

across individual pixels. Pointing drift during observations, com-
bined with the undersampled PSF, therefore results in variations in
the measured flux at the level of a few per cent.

Traditionally, intrapixel sensitivity variations have been treated
in IRAC data by decorrelating the light curve against a low-order
polynomial in the xy centroid coordinates of the stellar PSF, which
can either be removed prior to fitting the planet signal or fit si-
multaneously with the planet signal (e.g. Charbonneau et al. 2008;
Knutson et al. 2008; Désert et al. 2009). The main issue with this
method is that a low-order polynomial may not have the flexibility
to fully capture the underlying correlations in the data if there is
fine-scale structure present. This could be addressed to some extent
by continuing to add higher order terms to the polynomial decor-
relation; however, such an approach runs the risk of overfitting and
increases the dimensionality of the parameter space that must be
marginalized over using a method such as MCMC.

An alternative decorrelation method has been suggested by
Ballard et al. (2010), which uses a 2D Gaussian convolution to
construct a smoothed pixel sensitivity map from the flux measure-
ments. Using this approach, the authors identified a high-frequency
corrugation structure in the xy sensitivity for a 4.5 μm light curve
that would not have been captured by a low-order polynomial decor-
relation. Along similar lines, Stevenson et al. (2012) have proposed
the use of bilinear interpolation of the measured fluxes to map in-
trapixel sensitivity variations, which is sensitive to spatial scales
corresponding to the grid of knots used. Knutson et al. (2012) and
Lewis et al. (2013) have also identified a correlation between the
noise pixel parameter β of a given data frame – which is inversely
proportional to the PSF sharpness parameter, described in Muller &
Buffington (1974) – and the measured flux. This can be treated by
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HD 209458b IRAC light curves with GP models 683

Figure 1. Raw light curves obtained for the 10 transits (left-hand column) and 11 eclipses (right-hand column) analysed in this study. Red lines show
best-fitting GP models, which are described in Section 5. The light curves shown in this plot have been binned in time, which was done to make the GP model
fitting computationally tractable (Section 5.3). The plotted GP models have been further binned into 1 min bins and vertical offsets have been applied to each
light curve for clarity.
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either using variable photometric apertures for each frame that scale
with β, or including β as a decorrelation variable in the systematics
treatment. More recently, Deming et al. (2014) have presented a
pixel-level decorrelation (PLD) method, which works by linearly
decorrelating the measured fluxes against the individual pixel counts
within a subarray centred on the PSF, rather than using the centroid
coordinates directly.

4.2 5.8 and 8.0 μm channels

In the 5.8 and 8.0 μm channels, which employ Si:As detectors, the
measured flux smoothly increases or decreases before levelling off.
As with the intrapixel sensitivity variations, the amplitude of this
effect is usually a few per cent, with the steepest change in flux
occurring during the initial ∼1 h of observations. The ramp can be
attributed to the sensitivity of individual pixels varying as a function
of time, where the rate of change depends on the illumination level
of the pixel (e.g. Knutson et al. 2007a).

It has been suggested that the ramp is caused by electrons getting
caught in charge traps within the detector (e.g. Deming et al. 2007;
Agol et al. 2010; Seager & Deming 2010). As more photons arrive,
the charge traps fill up, resulting in less electrons getting trapped
and a higher flux being measured. However, Seager & Deming
(2010) acknowledge that the physics of the detectors are poorly
understood and this simple picture may be incomplete or wrong.
For instance, light curves measured in the 5.8 μm channel exhibit
a ramp-down behaviour (Fig. 1), which is not obviously explained
by charge trapping.

Standard practice has been to fit 5.8 and 8.0 μm light curves by
multiplying the transit signal by a parametric model that provides
a good approximation to the ramp. One approach is to remove the
initial steep section of the light curve and fit the remainder with
a linear or quadratic polynomial in time (e.g. Deming et al. 2007;
Beaulieu et al. 2010). However, a more common approach is to
model the full baseline with a low-order polynomial in logarithmic
time (e.g. Charbonneau et al. 2008; Knutson et al. 2008; Désert
et al. 2009; Machalek et al. 2010) or exponential time (e.g. Agol
et al. 2010).

Subtle differences between the various ramp functions used to
model 5.8 and 8.0 μm light curves can potentially bias the inferred
planet parameters. For example, polynomials in exponential time
tend to retain slightly more curvature than polynomials in loga-
rithmic time after the initial steep gradient. This can result in an
underestimated transit depth if the ramp is decreasing, or vice versa
if the ramp is increasing. To try avoid effects such as these, the light-
curve analysis is often performed separately for a number of differ-
ent ramp functions, and the one that minimizes the model residuals
or maximizes an approximation to the Bayesian model evidence,
such as the negative Bayesian information criterion (Schwarz 1978),
is retained (e.g. Stevenson et al. 2012).

5 G P S F O R IR AC SY S T E M AT I C S

In this paper, we present an alternative method for treating intrapixel
sensitivity variations and the ramp effect in IRAC light curves based
on GPs. The first application of GP models to transit light curves
was made by Gibson et al. (2012a), with subsequent applications
in Gibson et al. (2012b, 2013a,b), Evans et al. (2013), and Gibson
(2014), to which the reader is referred for further details.

Formally, a GP is defined as a collection of data points, any
subset of which has a multivariate normal distribution (e.g. Ras-
mussen & Williams 2006). Indeed, this assumption is regularly
made for transit light-curve analyses published in the literature,

even if it is not stated explicitly. It is equivalent to assuming that
what we measure is some underlying signal, which is the combina-
tion of the astrophysical signal of interest and additional systematic
terms, plus uncorrelated Gaussian noise. If we are in possession of
a model μ that describes the underlying signal, the probability of
measuring a specific data set d = {d1, d2, . . . , dN } with Gaussian
error bars σw = {σw,1, σw,2, . . . , σw,N } for a set of model parameters
α = {α1, α2, . . . , αM} is given by

p(d|α) =
N∏

i=1

1

σw,i

√
2π

exp

[
− (di − μi)2

2σ 2
w,i

]
= N (μ, �) , (1)

where N denotes a multivariate normal distribution and � =
diag[σw] is the diagonal covariance matrix. For fixed error bars,
optimizing the log likelihood is therefore identical to the familiar
practice of minimizing the χ2 statistic, since

lnN (μ, �) = −1

2
χ2 − 1

2

N∑
i=1

ln σw,i − 1

2
N ln 2π. (2)

Note, however, that equation (2) requires us to build all of our in-
formation about the underlying signal into the deterministic mean
function μ. This is not desirable if the systematics are poorly un-
derstood from first principles and an explicit functional form is not
available to describe them.

An alternative option is to incorporate the systematics into our
model by allowing for non-zero off-diagonal entries in the covari-
ance matrix of the likelihood function, such that

ln p(d|α, γ ) = lnN (μ, K + �) , (3)

where Kij gives the covariance between the ith and jth data points,
and γ are the parameters that control the behaviour of the covari-
ance. Although we no longer have to provide an explicit functional
form for the systematics contribution, we must now specify a kernel
function to populate the entries of the covariance matrix K . How-
ever, by modelling the statistical covariance between data points
rather than the deterministic systematics signal directly, it is possi-
ble to capture a broad range of behaviours with relatively few free
parameters. Thus, GP models are simultaneously parsimonious and
flexible.

Before proceeding to describe the specific mean functions and
covariance kernels adopted in the current study in Sections 5.1
and 5.2, it is worth also pointing out the fact that GPs have the
desirable property of automatically implementing the principle of
Occam’s razor. This can be seen if we expand equation (3) into its
constituent terms

ln p(d|α, γ ) = −1

2
rT (K + �)−1 r − 1

2
ln |K + �| − 1

2
N ln 2π,

(4)

where r is a vector containing the model residuals, with ith term
given by ri = di − μi. The first term on the right-hand side,
− 1

2 rT(K + �)−1r , serves as a goodness-of-fit term. For a given
covariance matrix, it increases as the residuals become smaller, re-
warding mean functions μ that match the data well. The second
term, − 1

2 ln |K + �|, can be thought of as a complexity penalty.
This is because increasing the complexity of a model is equiva-
lent to assigning similar probabilities to an increasing diversity of
functions. In other words, as the model complexity increases, the
likelihood function becomes less sharply peaked near the mean
μ and the probability mass of the model becomes more diffusely
spread throughout the function space. This is precisely what happens
as the term − 1

2 ln |K + �| decreases, in effect penalizing model
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Table 3. Non-linear limb darkening coefficients.

Channels (µm)
3.6 4.5 5.8 8.0

c1 0.5564 0.4614 0.4531 0.4354
c2 − 0.5462 − 0.4277 − 0.5119 − 0.6067
c3 0.4315 0.3362 0.4335 0.5421
c4 − 0.1368 − 0.1074 − 0.1431 − 0.1816

complexity. Finally, the third term, − 1
2 N ln 2π, remains constant

for a given data set. The balance between the first two terms of
equation (4) therefore ensures that the probability mass of the model
is distributed over the parameter space in a manner that optimizes
the trade-off between goodness of fit and model complexity.

5.1 Mean functions

The mean function μ defines the model for the astrophysical signal
with well-understood form; namely, a primary transit or secondary
eclipse. For this purpose, we adopt the analytic transit functions
of Mandel & Agol (2002). We set the orbital eccentricity to zero,
consistent with observational evidence (e.g. Pont et al. 2011). We
fix the orbital period to P = 3.524 748 59 d (Knutson et al. 2007b).

For the primary transits, the mean function parameters that are
allowed to vary are the radius ratio Rp/R�, normalized semimajor
axis a/R�, impact parameter b = acos i/R�, and transit mid-time
Tmid, such that α = {Rp/R�, a/R�, b, Tmid} in equation (4). Stellar
limb darkening is treated using the non-linear law of Claret (2004),
with coefficients fixed to those provided by Hayek et al. (2012)
which were obtained specifically for the IRAC bandpasses using a
3D stellar model for HD 209458 (Table 3).

For the secondary eclipses, only the eclipse depth Fp/F�

and eclipse mid-time Tmid are allowed to vary, such that α =
{Fp/F�, Tmid}. The remaining mean function parameters are fixed
to the values published by Torres, Winn & Holman (2008), namely,
Rp/R� = 0.121, a/R� = 8.76 and b = 0.507.

5.2 Covariance kernels

Entries of the covariance matrix K are constructed using a kernel
function, such that Kij = k(vi , vj ), where vi and vj are vectors of
inputs associated with the ith and jth data points, respectively. By
inputs, we refer to variables that correlate with the measured signal –
these are typically the same variables that would be used for stan-
dard polynomial systematics decorrelations. Further discussion of
common GP kernels, such as the squared exponential and Matérn
kernels, can be found in Gibson et al. (2012a).

In this study, we parametrize the entries of the covariance matrix
K for the 3.6 and 4.5 μm channels as the sum of two kernels;
a squared exponential kernel with the centroid xy coordinates as
inputs and a Matérn ν = 3/2 kernel with time t as the input. Writing
this out explicitly, the combined kernel is given by

k( v i , v j ) = kxy + kt , (5)

where

kxy = A2
xy exp

[
−

(
xi − xj

Lx

)2

−
(

yi − yj

Ly

)2
]

, (6)

kt = A2
t

[
1 + ti − tj

Lt

√
3

]
exp

[
−

(
ti − tj

Lt

) √
3

]
, (7)

such that γ = { Axy , Lx , Ly , At , Lt } in the notation of equation
(4). The squared exponential component of this kernel accounts

for the smooth spatial variations in pixel sensitivities that dominate
the systematics of the 3.6 and 4.5 μm channels, while the Matérn
component accounts for any residual correlated noise in the light
curve.

For the 5.8 and 8.0 μm channel light curves, we used a squared
exponential kernel to model the dominant ramp effect, with form
given by

kτ = A2
τ exp

[
−

(
τi − τj

Lτ

)2
]

, (8)

where τ = ln (t + h) is logarithmic time t, and h is a parameter
that can be inferred from the data (see below). Parameterizing the
covariance with kτ allows us to capture the dominant behaviour
of the ramp effect; namely, a steep initial gradient followed by a
levelling off of the measured flux (Fig. 1). However, we stress that
by Parameterizing the covariance between data points according to
equation (8), we are not constraining the systematics to be monoton-
ically increasing or decreasing in time. This is a valuable property of
GPs given that the ramp effect is not necessarily strictly monotonic,
with an overshoot effect identified in a number of data sets (e.g.
Knutson et al. 2012). As with the other channels, we also include
a time-dependent Matérn ν = 3/2 kernel kt to account for residual
correlations in the light curve that may not be related to the ramp.
Therefore, the final kernel is given by

k
(
v i , v j

) = kτ + kt , (9)

with covariance parameters γ = {Aτ , Lτ , h, At , Lt }.
The covariance kernels outlined above allow for systematics treat-

ments that are at least as versatile as others used in the literature.
For instance, the kxy component of equation (5) is similar in concept
to the 2D Gaussian correction developed by Ballard et al. (2010,
Section 4.1). Similarly, the kτ component of equation (9) is remi-
niscent of the logarithmic time polynomials used in other published
studies (Section 4.2). However, as it is only the covariance between
data points that is parametrized in terms of logarithmic time, the
underlying signal itself need not be monotonically increasing or de-
creasing. Furthermore, by parameterizing the covariance rather than
systematics signal directly, the GP model is capable of marginal-
izing over a broader range of function space with relatively few
tunable parameters.

Before proceeding, we highlight the fact that the covariance ker-
nels given by equations (5)–(9) assume that the input variables are
noise-free. While this is a reasonable assumption for time t, it is not
necessarily the case for the centroid coordinates x and y. Indeed,
the undersampled nature of the IRAC PSF makes the centroid es-
timates particularly susceptible to shot noise of individual pixels.
However, due to the fact that this noise is white, and because in
practice a small patch of a single pixel is densely sampled by the
PSF over the course of a few hours, we expect its effect to be aver-
aged out. For this reason, and in line with other analyses of IRAC
light curves, we do not explicitly account for the noise of x and y. In
future work, however, it may be worth considering a more explicit
treatment of noisy inputs (e.g. Goldberg, Williams & Bishop 1998;
Mchutchon & Rasmussen 2011), or simply smoothing noisy inputs
before feeding them to the GP (e.g. Gibson et al. 2012a).

5.3 Light-curve binning

GP models become computationally intractable for data sets with
N � 103 data points. This is due to the need to factorize the N × N
covariance matrix when evaluating the − 1

2 rT(K + �)−1r term and
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computing the determinant − 1
2 ln |K + �| for each log likelihood

evaluation (equation 4). Our code implements this using Cholesky
factorization, which has a computational cost scaling as O (

N3
)
.

To apply GPs to IRAC data sets, most of which consist of N > 104

data points, we bin the fluxes and centroid xy coordinates in time
prior to fitting. Binning factors were chosen according to the format
of individual light curves, such that the time interval between suc-
cessive binned points was �15 s and the number of binned points
per light curve was Nb = 1000–1500. Light curves obtained in full
array mode for Programme 461 were binned by a factor of 2, giving
a median cadence of about 17 s; light curves obtained in subarray
mode for Programmes 40280 and 60021 with frame times of 0.4 s
were binned by a factor of 32, giving a median cadence of about
14 s; light curves obtained in subarray mode for Programme 60021
with frame times of 0.1 s were binned by a factor of 128, giving
a median cadence of about 17 s; light curves obtained in subarray
mode for Programme 20523 with frame times of 0.1 s were only
binned by a factor of 32, due to the sparser sampling of the light
curve as the telescope was constantly repointed during the observa-
tions, resulting in a median cadence of about 5 s. Details are given
in Table 2.

The obvious drawback of binning the light curves in time is
that we lose information on the time-scales of our bin sizes. For
instance, the xy centroid coordinates can vary coherently over time-
scales �15 s (e.g. Stevenson et al. 2012). However, this should
not affect our results significantly, as none of the astrophysical
quantities of interest vary over the bin time-scales, nor does the
information content of the transit light curve degrade significantly
as we reduce the time resolution to �15 s. Furthermore, high-
frequency systematics should mostly average out given the large
number of binned data points for each tunable model parameter.
Any correlations that remain will be accounted for by the time-
dependent Matérn ν = 3/2 kernel kt in our model (equations 5
and 9).

6 LI G H T- C U RV E F I T T I N G

Light curves were fit individually by marginalizing over the model
posterior distribution using MCMC, in order to quantify the de-
generacies between the astrophysical parameters of interest and
instrumental systematics. Following Bayes theorem, the model pos-
terior distribution is given by p(α, γ |d) ∝ p(d|α, γ ) p(α) p(γ ),
where p(d|α, γ ) is the GP likelihood given by equation (4), and
p(α) and p(γ ) are the priors on the mean function and covari-
ance parameters, respectively. We adopted uniform priors for the
mean function parameters α and covariance length-scales Li. For
the covariance amplitudes Ai, Gamma distribution priors of the
form p(Ai) = Gam(1, 100) ∝ exp[−100Ai] for i = {t, xy, τ} were
adopted. The latter give decreasing probability to increasing co-
variance amplitudes, encouraging the GP to reduce the covariance
amplitude unless justified by the data. The white noise level σ w

was included as a free parameter in each model, with a uniform
prior. The ability to inflate the statistical error bars above the formal
shot noise floor provides the models with some additional flexibil-
ity for dealing with high-frequency noise that may be present in the
data, without having to reduce the correlation length-scales Li of
the covariance kernels to unreasonably small values.

With the posterior distributions defined, the model fitting for
each light curve proceeds as follows. Values for the model param-
eters were drawn randomly from the model prior, i.e. p(α) p(γ ).
With this as a starting point, equation (4) was optimized using the

Nelder–Mead simplex algorithm (Nelder & Mead 1965) to obtain
maximum likelihood estimates (MLEs) for the parameters. A short
Metropolis–Hastings MCMC chain (Metropolis et al. 1953; Hast-
ings 1970) chain of 1000 steps was initiated at the MLE, with step
sizes pre-tuned to give acceptance rates of 20–40 per cent. The me-
dian chain values were then used as the starting location for a second
MLE optimization. In practice, the randomness introduced by the
short MCMC chains helped prevent the MLE optimizations getting
trapped at local maxima of the likelihood surface, thus increasing
the chance of locating the global likelihood maximum. To further
increase this probability, the entire process was repeated 10 times,
each time from a different random starting point. This was done
separately for each lightcurve produced using the different photo-
metric aperture sizes (Section 3). The photometric reduction giving
the lowest scatter in the residuals was then selected for the remaining
analysis.

Before commencing the final MCMC chains, the covariance pa-
rameters were fixed to their MLE values, which are reported in
Table A1. This approach – which is often referred to as ‘type-
II maximum likelihood’ (for further discussion see Gibson et al.
2012a) – allows the expensive O (

N3
)

covariance matrix factor-
ization required for the GP likelihood evaluation (equation 4) to
be performed only once at the beginning of the chain. Subsequent
steps only costO (

N2
)
, resulting in much faster computations. The

disadvantage is that by fixing the covariance parameters γ , they are
not marginalized over. In effect, this imposes an artificial restriction
on the range of systematics functions that are explored by the GP
model. Consequently, there may be degeneracies between the planet
signal and systematics that are not fully incorporated into the final
uncertainties for the planet parameters α presented here. For ex-
ample, in their re-analysis of the HST Near Infrared Camera and
Multi-Object Spectrometer (NICMOS) transmission spectrum for
HD 189733b, Gibson et al. (2012a) found uncertainties that were
up to ∼1.5 larger when the covariance parameters were allowed
to vary in the marginalization compared to when they were fixed
to their MLE values. Therefore, the uncertainties we report in this
study should be considered lower limits to the true uncertainties.

It should be emphasized, however, that fixing the covariance pa-
rameters is quite different to fixing the parameters of an explicit
functional model for the systematics. Instead, fixing the covariance
parameters is somewhat analogous to selecting a family of para-
metric models for the systematics, as they control the high-level
properties of the function space spanned by the GP model. Rather
than selecting from a handful of distinct parametric models, the
GP model offers access to a continuum of possible functions. By
using covariance parameters that optimize the GP likelihood, this
continuum is narrowed in a principled manner. To compare with the
bilinear interpolation method for pixel mapping used by Steven-
son et al. (2012) for instance, optimizing the covariance length-
scales Lx and Ly is similar to choosing the optimal grid spacing
for the interpolation knots. Treating our data set as a GP, we have
the advantage of being able to do this in the context of a self-
consistent probabilistic model, by maximizing the likelihood func-
tion with respect to the unknown parameters using a numerical
optimizer.

Having fixed the covariance parameters, an initial chain of 105

steps was run with the planet parameters allowed to vary and step
sizes again pre-tuned to ensure acceptance rates of 20–40 per cent.
The first 5 × 104 steps were discarded as burn-in. An additional four
chains were then run for 105 steps each, with starting parameter
values drawn randomly from normal distributions centred on the
mean values of the first chain. The width of the normal distributions

MNRAS 451, 680–694 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/451/1/680/1357462 by guest on 28 January 2022



HD 209458b IRAC light curves with GP models 687

Table 4. Results of MCMC primary transit light-curve analyses. Quoted values are the chain medians, with
uncertainties corresponding to the ranges either side of the medians that contain 34 per cent of the chain samples.
Orbital inclination values i are derived from the corresponding impact parameter b = a cos i/R� and normalized
semimajor axis a/R� values. Brightness temperatures Tb are derived from the measured eclipse depths Fp/F�

assuming an ATLAS stellar model (Kurucz 1979, 1993) for HD 209458 and integrating over the IRAC bandpasses.

Transits
Channel Date Tmid Rp/R� a/R� b i

(µm) (BJDUTC − 2450000) (◦)

3.6 2007 Dec 31 4465.63711+0.00027
−0.00027 0.12077+0.00085

−0.00084 8.72+0.26
−0.23 0.527+0.035

−0.044 86.54+0.39
−0.33

2008 Jul 19 4666.54742+0.00021
−0.00021 0.12220+0.00062

−0.00062 8.89+0.33
−0.26 0.482+0.044

−0.062 86.89+0.50
−0.39

2011 Jan 14 5575.93102+0.00030
−0.00030 0.11354+0.00085

−0.00087 8.77+0.33
−0.33 0.525+0.048

−0.056 86.57+0.48
−0.46

2014 Feb 15 6703.85250+0.00011
−0.00011 0.11919+0.00032

−0.00032 8.13+0.10
−0.10 0.590+0.013

−0.014 85.84+0.14
−0.14

4.5 2008 Jul 22 4670.07290+0.00029
−0.00029 0.12199+0.00094

−0.00091 9.31+0.35
−0.30 0.423+0.057

−0.079 87.39+0.56
−0.45

2010 Jan 19 5216.40564+0.00007
−0.00007 0.12099+0.00029

−0.00029 8.89+0.06
−0.07 0.493+0.011

−0.010 86.82+0.08
−0.10

5.8 2007 Dec 31 4465.63663+0.00032
−0.00031 0.12007+0.00248

−0.00265 9.20+0.36
−0.35 0.435+0.066

−0.082 87.29+0.59
−0.53

2008 Jul 19 4666.54744+0.00033
−0.00033 0.11880+0.00284

−0.00272 9.27+0.38
−0.37 0.427+0.071

−0.091 87.36+0.64
−0.56

8.0 2007 Dec 24 4458.58730+0.00013
−0.00013 0.12007+0.00114

−0.00114 8.78+0.11
−0.11 0.513+0.017

−0.019 86.65+0.16
−0.15

2008 Jul 22 4670.07243+0.00022
−0.00022 0.11991+0.00073

−0.00073 8.67+0.20
−0.18 0.527+0.027

−0.032 86.52+0.28
−0.26

Eclipses
Channel Date Tmid Fp/F� Tb

(μm) (BJDUTC − 2450000) (per cent) (K)
3.6 2005 Nov 28 3702.52741+0.00476

−0.00457 0.093+0.033
−0.034 1447+163

−165

2011 Jan 12 5574.16955+0.00173
−0.00190 0.122+0.011

−0.011 1591+49
−49

2011 Jan 16 5577.69695+0.00204
−0.00193 0.124+0.014

−0.014 1599+65
−65

2014 Feb 13 6702.09332+0.00397
−0.00400 0.112+0.016

−0.017 1545+76
−80

2014 Feb 17 6705.61556+0.00136
−0.00128 0.106+0.007

−0.008 1515+34
−37

4.5 2005 Nov 28 3702.52942+0.00169
−0.00191 0.145+0.018

−0.017 1474+72
−69

2010 Jan 18 5214.64693+0.00085
−0.00079 0.140+0.014

−0.014 1455+57
−56

2010 Jan 21 5218.16915+0.00147
−0.00138 0.133+0.011

−0.011 1426+47
−48

5.8 2005 Nov 28 3702.53033+0.00457
−0.00664 0.142+0.059

−0.058 1297+225
−220

8.0 2005 Nov 28 3702.53461+0.00322
−0.00344 0.225+0.064

−0.063 1433+219
−216

2007 Dec 25 4460.35170+0.00100
−0.00107 0.215+0.012

−0.012 1397+41
−43

were taken to be five times the standard deviation of the first chain,
to ensure the starting locations were well-dispersed in parameter
space. After discarding the first 5 × 104 burn-in steps of these chains,
the Gelman–Rubin statistics for each parameter were calculated
(Gelman & Rubin 1992). For all light curves, these were found
to be well within 1 per cent of unity, consistent with the chains
having reached stable states. Finally, the five independent chains
were combined into a single chain, giving 2.5 × 105 samples from
the posterior distribution.

7 R ESULTS

Results of the primary transit and secondary eclipse MCMC anal-
yses are given in Table 4. Best-fitting models are overplotted on
the raw light curves in Fig. 1 and the corrected light curves with
residuals are shown in Fig. 2.

7.1 Transmission (Rp/R�)

We find good agreement in the inferred parameters across epochs
for the majority of the transit light curves. The only exceptions to

this are the 2011 Jan 14 and 2014 Feb 15 transits measured in the
3.6 μm channel. For the 2011 light curve, we obtain a value for
Rp/R� that is >6σ discrepant relative to those obtained for the 2007
Dec 31 and 2008 Jul 19 3.6 μm light curves. This light curve has
been classified as a failed observation by the Spitzer Science Center
due to the presence of high-frequency noise of unknown origin
during the second half of the transit. For the 2014 light curve, we
obtain values for a/R� and b that are both ∼2σ discrepant relative
to the values inferred for the 2007 and 2008 light curves, while
the value inferred for Rp/R� is >4σ discrepant. The source of this
disagreement is not clear. We also performed the light-curve fitting
using polynomial xy decorrelations and the PLD method of Deming
et al. (2014), but these analyses gave similarly discrepant results.
We therefore suspect that there is either an issue with the data itself
or our photometric reduction for this particular light curve. For
these reasons, we do not consider the 2011 and 2014 3.6 μm transit
light curves any further in this paper. However, we consider our
analyses for the eclipses in these light curves to be more robust,
as they gave results that are consistent with those obtained at other
epochs.
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688 T. M. Evans et al.

Figure 2. Corrected primary transit (top) and secondary eclipse (bottom) light curves obtained by dividing the raw lightcurves by the systematics components
of the best-fitting GP models. Model residuals are shown in the rightmost column, with grey shaded regions indicating the inferred white noise values σw.

For the remaining eight transit light curves, inferred values for
Rp/R� are shown in Fig. 3, along with values previously pub-
lished in the literature. In the 3.6 μm channel, we find Rp/R� =
0.120 77+0.000 85

−0.000 84 for the 2007 Dec 31 light curve, which is in agree-
ment with the value of Rp/R� = 0.120 835 ± 0.000 54 reported
by Beaulieu et al. (2010). We obtain a somewhat higher value of
Rp/R� = 0.122 20+0.000 62

−0.000 62 for the 2008 Jul 19 light curve, com-

pared with the value of Rp/R� = 0.120 387 ± 0.000 53 obtained by
Beaulieu et al (2010).

Our results for the 4.5 μm light curves are in good agreement
both with each other and with the values previously published by
Beaulieu et al. (2010) and Zellem et al. (2014).

For the 5.8 μm 2007 Dec 31 and 2008 Jul 19 light curves,
we find Rp/R� = 0.120 07+0.002 48

−0.002 65 and Rp/R� = 0.118 80+0.002 84
−0.002 72,
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Figure 3. Comparison of transmission Rp/R� (top) and emission Fp/F� (bottom) results obtained in the present study with those published in the literature.
Wavelength channels are indicated in the top-left corner of each axis. Independent analyses of the same data set are linked by solid black lines: filled symbols
show the values obtained in the current study and unfilled symbols show values obtained by other authors. The latter are labelled using the same abbreviations
adopted in Table 1.

respectively. Although these values are consistent with each
other, they are 1.7σ and 1.9σ lower, respectively, than the
corresponding values of Rp/R� = 0.1246 ± 0.000 95 and
Rp/R� = 0.1244 ± 0.000 59 obtained by Beaulieu et al. (2010).
In particular, our uncertainties are ∼2.5–3 times larger than those
of Beaulieu et al (2010). This is most likely due to the flexibility
of the GP models allowing broader ranges of function space to be
marginalized over, which in turn maps out broader degeneracies
between the transit parameters and the systematics contributions.

For the 8.0 μm channel, we find good agreement between our in-
ferred parameters for the 2007 Dec 24 and 2008 Jul 22 light curves,
with Rp/R� = 0.120 07+0.001 14

−0.001 14 and Rp/R� = 0.119 91+0.000 73
−0.000 73, re-

spectively. For the 2008 light curve, our value is 4.7σ lower than the

value of Rp/R� = 0.1240 ± 0.000 46 published by Beaulieu et al.
(2010).

7.2 Emission (Fp/F�)

As with the transmission measurements, we find consistent results
across epochs and wavelength channels for the inferred emission
values (Fig. 3). Our results are mostly in agreement with values pre-
viously published in the literature, but with typically larger uncer-
tainties. There are two notable exceptions. First, for the 4.5 μm 2005
Nov 28 light curve, we obtain Fp/F� = 0.145+0.018

−0.017 per cent, which
is 2.9σ lower than the value of Fp/F� = 0.213 ± 0.015 per cent pub-
lished by Knutson et al. (2008), but in agreement with the value of
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Fp/F� = 0.134 ± 0.035 per cent published by Diamond-Lowe et al.
(2014) for the same light curve. Our revision brings the value into
good agreement with those obtained in the same wavelength chan-
nel at different epochs, both in the current study and by Zellem et al.
(2014). Secondly, for the 2005 Nov 28 5.8 μm light curve, we obtain
Fp/F� = 0.142+0.059

−0.058 per cent, which is 2.3σ lower than the value of
Fp/F� = 0.310 ± 0.043 per cent published by Knutson et al. (2008),
but in agreement with the value of Fp/F� = 0.134 ± 0.035 per cent
published by Diamond-Lowe et al. (2014). Finally, we note that
unlike Diamond-Lowe et al. (2014), who obtained Fp/F� values for
the 2005 Nov 28 and 2007 Dec 25 8.0 μm light curves that con-
flicted at the 3.6σ level, our values are in good agreement with each
other due to the relatively large uncertainty we obtain for the 2005
Nov 28 eclipse depth. We therefore favour the more conservative
uncertainty estimate provided by our GP analysis in this case.

7.3 Orbital parameters (a/R�, b)

The normalized semimajor axis a/R� and orbital inclination i val-
ues recovered from the primary light-curve analyses are plotted
in Fig. 4. Note the clear correlation between both parameters, i.e.
higher values of a/R� are associated with higher values of i, and
vice versa. This reflects the fact that these parameters exert opposing
influences on the transit duration.

Figure 4. Normalized semimajor axis a/R� and orbital inclination values
obtained from the MCMC analyses. Light-curve epochs are labelled along
the horizontal axis, with different marker symbols for each wavelength
channel: purple squares for 3.6 µm, green circles for 4.5 µm, blue triangles
for 5.8 µm and red diamonds for 8.0 µm. Weighted mean values are labelled
on each axis, and shown as horizontal black lines with grey shaded regions
indicating the corresponding 1σ uncertainties.

We expect a/R� and i remain constant in time across the differ-
ent wavelength channels. Computing the weighted arithmetic mean
across epochs, we obtain a/R� = 8.87 ± 0.05, b = 0.499 ± 0.008
and i = 86.◦78 ± 0.◦07. We caution that the quoted uncertainties for
the weighted means are likely to be underestimated, as they are cal-
culated by combining multiple measurements under the assumption
that the error bars are normally distributed, which is not necessarily
true. None the less, these values are consistent at the ∼1σ level with
the values of a/R� = 8.◦77 ± 0.◦07 and i = 86.◦76 ± 0.◦10 obtained by
Beaulieu et al. (2010), and a/R� = 8.◦810+0.064

−0.069 and i = 86.◦69+0.09
−0.10

obtained by Zellem et al. (2014).
Indeed, the values obtained for a/R� and b = a/R�cos i in the

present study are overall more consistent across wavelengths and
epochs than previously published values. For instance, the a/R� and
i values reported by Beaulieu et al. (2010) for the 8.0 μm channel
differ from most of the values they obtain in the other channels
by 3σ–5σ . The relative consistency of the orbit parameters derived
in the current study therefore offers further evidence that the GP
modelling approach is doing a good job of accounting for the light-
curve systematics and providing realistic parameter uncertainties.

7.4 Ephemeris

Using the transit and eclipse mid-times listed in Table 4, we com-
puted the ephemeris assuming a constant orbital period P, with the
linear relation T0 = Tmid(n) + nP , where n is the number of orbital
periods since the reference epoch T0. Eclipse mid-times were treated
as occurring precisely 0.5P after the immediately preceding transit.
Before performing the fit, we converted the BJD timestamps from
Coordinated Universal Time (UTC) to the Barycentric Dynami-
cal Time (TDB) standard, as recommended by Eastman, Siverd &
Gaudi (2010). To do this, we added the appropriate number of leap
seconds to the UTC timestamps, namely: 64.184 s for the 2005 light
curves; 65.184 sec for the 2007–2008 light curves; 66.184 s for the
2010–2011 light curves; and 67.184 s for the 2014 light curves. We
report the results in Table 5.

When all of the mid-times are included in the fit, we ob-
tain T0 = 2454 560.805 67 ± 8 × 10−5 BJDTDB and P =
3.524 7361 ± 6 × 10−7 d, with a reduced χ2 = 7.0 in-
dicating a poor overall fit to the data. However, we found
that when we exclude the 2010 Jan 19 transit mid-time,
we obtain T0 = 2454 560.805 88 ± 8 × 10−5 BJDTDB and
P = 3.524 750 ± 1 × 10−6 d, with a much improved reduced
χ2 = 1.0. It is not clear why our 2010 Jan 19 transit fails to fit a
linear ephemeris, although we note that our measured mid-time for
this lightcurve is in excellent agreement at the 0.01σ level with the
value obtained by Zellem et al. (2014). A full investigation into the
cause of this discrepancy is beyond the scope of the current paper.
However, given that the other 18 mid-times are well fitted by a linear
ephemeris, we conclude that the data is consistent with a constant
orbital period.

8 D I SCUSSI ON

The results outlined in Section 7 demonstrate the effectiveness of
the GP modelling approach for handling systematics in IRAC light
curves. Compared with those previously published in the litera-
ture, the planet properties inferred from the GP analyses are overall
more consistent across different epochs and, for the wavelength-
independent properties, across the different wavelength channels.
In many cases, this is due to the GP analyses giving uncertainty
estimates that are up to ∼4 times larger than those reported by other
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Table 5. Results of the ephemeris fit to transit and eclipse mid-times assuming a constant orbital period and zero eccentricity. As
discussed in Section 7.4, fits were performed both with and without the 2010 Jan 19 transit mid-time. As discussed in the text, we favour
the ephemeris obtained with the 2010 Jan. 19 transit excluded from the fit.

O − C residual (min)
Date Signal Channel (µm) Including 2010 transit Excluding 2010 transit

2005 Nov 28 Eclipse 3.6 − 6.6 ± 6.7 − 1.8 ± 6.7
4.5 − 3.7 ± 2.6 1.1 ± 2.7
5.8 − 2.4 ± 8.1 2.4 ± 8.1
8.0 3.8 ± 4.8 8.6 ± 4.8

2007 Dec 24 Eclipse 8.0 − 0.5 ± 0.2 − 0.1 ± 0.2
2007 Dec 25 Transit 8.0 2.4 ± 1.5 2.8 ± 1.5
2007 Dec 31 Transit 3.6 − 0.1 ± 0.4 0.3 ± 0.4

5.8 − 0.7 ± 0.5 − 0.4 ± 0.5
2008 Jul 19 Transit 3.6 0.5 ± 0.3 − 0.3 ± 0.3

5.8 0.6 ± 0.5 − 0.2 ± 0.5
2008 Jul 22 Transit 4.5 1.6 ± 0.4 0.8 ± 0.4

8.0 0.9 ± 0.3 0.1 ± 0.3
2010 Jan 18 Eclipse 4.5 5.1 ± 1.2 1.1 ± 1.3
2010 Jan 19 Transit 4.5 − 0.2 ± 0.2 − 4.7 ± 0.5
2010 Jan 21 Eclipse 4.5 1.5 ± 2.1 − 2.5 ± 2.1
2011 Jan 12 Eclipse 3.6 4.6 ± 2.6 − 1.5 ± 2.7
2011 Jan 16 Eclipse 3.6 8.4 ± 2.9 2.3 ± 3.0
2014 Feb 13 Eclipse 3.6 16.2 ± 5.8 3.7 ± 5.9
2014 Feb 17 Eclipse 3.6 12.6 ± 2.0 0.1 ± 2.3

Period (d) 3.524 7361 ± 6 × 10−7 3.524 750 ± 1 × 10−6

T0 (BJDTDB) 2454 560.80567 ± 8 × 10−5 2454 560.805 88 ± 8 × 10−5

authors. For the reasons given in Section 5, we argue that the GP
uncertainties provide a more realistic reflection of our ignorance.
This is primarily because the GP models offer greater flexibility for
handling systematics that do not have a well-understood functional
form, compared with the simple parametric approximations used
widely in the literature. Marginalization of the GP model posterior
distributions therefore allows us to more exhaustively explore pos-
sible degeneracies between the planet signal and systematics, and
incorporate these into the uncertainties associated with the inferred
planet properties. However, recall from Section 6 that we fixed the
covariance parameters to their MLE values before marginalizing
over the planet parameters with MCMC, which means the uncer-
tainties quoted in Table 4 should in fact be regarded as lower limits
to the true uncertainties.

Further verification of the reliability of GP models for inferring
planet parameters from IRAC light curves could be obtained by
systematically applying the method to synthetic data sets, similar to
what was done by Gibson (2014). This would allow us to directly
compare inferred values for the planet parameters with their known
values. The challenge with such an approach, of course, is that it
requires a realistic simulation of the IRAC systematics, for which
we do not possess a functional form. With this caveat in mind,
however, such an investigation would be useful in the future.

8.1 Atmosphere implications

The IRAC data analysed in the current study address two fundamen-
tal hypotheses concerning the nature of HD 209458b’s atmosphere.
The first of these is the claimed detection of water absorption in
transmission made by Beaulieu et al. (2010), based on the larger
values for Rp/R� that those authors measured for the 5.8 and 8.0 μm
channels relative to the 3.6 and 4.5 μm channels. The second is the
inference of a thermal inversion in the atmosphere, based on the
measurement of deeper eclipses in the 4.5 and 5.8 μm channels
relative to the 3.6 μm channel by Knutson et al. (2008).

Fig. 5 shows the transmission and emission measurements made
in the current study with overplotted model spectra computed us-
ing the 1D radiative transfer code ATMO (Amundsen et al. 2014;
Tremblin et al. 2015), assuming solar-abundances and radiative-
convective equilibrium. Models were generated for two cases of
day-to-night heat redistribution efficiency: namely, uniform redis-
tribution and zero redistribution (respectively, ω = 0.5 and 1 in
Fig. 5). Number fractions as a function of atmospheric pressure are
given for the major molecules in the lower-left panel of Fig. 5 and
the corresponding PT profiles are shown in the lower-right panel of
Fig. 5.

Our transmission results are in poor agreement with the clear-
atmosphere model predictions. In particular, we do not see any en-
hancement in the opacity at 4.5 μm relative to 3.6 μm due to water
and carbon monoxide absorption. As was mentioned in Section 7.1,
our transmission results are also in conflict with those originally
presented by Beaulieu et al. (2010). Specifically, Beaulieu et al.
(2010) measured larger effective radii for the planet in the 5.8 and
8.0 μm channels, which coincide with a water absorption band,
relative to the 3.6 and 4.5 μm channels. We, however, obtain sig-
nificantly larger uncertainties in the 5.8 μm channel and find that the
effective radius is constant, or possibly decreasing modestly, across
the 3.6–8.0 μm IRAC wavelength range. The difference between
the results obtained in the current study and those of Beaulieu et al.
(2010) are likely due to the two approaches used for treating the
ramp systematics. For the 5.8 μm channel, Beaulieu et al. (2010)
truncated the first section of the light curve and fit a linear trend
in time to the remainder, and for the 8.0 μm channel they decor-
related the ramp using a quadratic polynomial in logarithmic time.
The GP model adopted in the current study should be capable of
replicating both these explicit functional forms, and indeed, allows
marginalization over an even broader function space (Section 5).
We also confirmed that consistent results were obtained with the
GP model when sections of varying duration were truncated from
the start of the light curve. Based on our revised estimates of the
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Figure 5. Top panels show the transmission Rp/R� (left) and emission Fp/F� (right) measurements obtained in the current study for HD 209458b, with
colours indicating wavelength channels. IRAC bandpasses are indicated at the bottom of both axes as solid black lines. For measurements obtained in the
same wavelength channel, small horizontal offsets have been applied for clarity. Both panels show 1D ATMO models assuming solar abundances and chemical
equilibrium. Corresponding chemical abundances are shown in the lower-left panel and PT profiles are shown in the lower-right panel. For the abundances,
solid lines correspond to uniform heat redistribution from the dayside to the nightside (i.e. ω = 0.5), while dashed lines correspond to zero heat redistribution
(i.e. ω = 1). For the transmission, the light blue line shows the clear atmosphere obtained assuming ω = 0.5, while the grey line shows a simple model
corresponding to an opaque cloud deck at Rp/R� = 0.1210, based on fitting a simple cloud model to the data as described in Section 8.1. For the emission,
clear-atmosphere models are shown for ω = 0.5 and 1, both with and without TiO/VO in the atmosphere. For those models including TiO/VO, the species were
assumed to be mixed uniformly throughout the atmosphere, as shown by the brown line in the lower-left panel. The inclusion of TiO/VO results in inverted
temperature-pressure profiles, as shown in the lower-right panel. Also shown in the upper-right panel is the emission spectrum obtained using an ATLAS stellar
model for HD 209458 and assuming the planet radiates as a blackbody with a temperature of 1484 K. In the top panels, square symbols give the model values
integrated over the corresponding IRAC bandpasses.

planet’s effective radii, we conclude that there is no evidence for
water absorption in transmission over the IRAC bandpasses. In-
deed, Deming et al. (2013) have measured a muted water feature
at 1.4 μm using WFC3, and interpreted this as evidence for haze in
the atmosphere of HD 209458b. Our results do not contradict this
picture, and could suggest that the effect of the opacity inferred by
Deming et al. (2013) at 1.4 μm remains significant out to the IRAC
wavelengths.

We also modified the clear-atmosphere transmission model by
fitting for an opaque cloud deck to simulate a grey opacity source
across the IRAC wavelength range. This was done by allowing
the clear-atmosphere model to shift vertically while simultaneously
setting the absorption to be constant at the cloud deck altitude. Thus
our simple model had two tunable parameters: the overall vertical

shift of the clear-atmosphere model and the cloud deck altitude. Our
best fit to the data gives a reduced χ2 of 1.4, with an opaque cloud
deck at Rp/R� = 0.1210 ± 0.003. As can be seen in the top-left panel
of Fig. 5, the resulting ‘cloudy’ model is simply a horizontal line,
implying that the IRAC data show no evidence for even reduced-
amplitude absorption features extending above a cloud deck. If we
instead fit a simple flat-line model to the data, where the only free
parameter is the vertical level of the opaque cloud deck, the number
of degrees of freedom increases from six to seven, and the reduced
χ2 improves to 1.2. Due to the size of our uncertainties, however,
we cannot rule out muted absorption features of similar amplitude
to the H2O feature measured by Deming et al. (2013) at 1.4 μm
with WFC3. Furthermore, we note that our result is consistent at
the ∼1σ level with the cloud deck altitude implied by the WFC3
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transmission spectrum. Such a comparison should be treated with
caution, however, as Deming et al. (2013) fixed a/R� = 8.95 and
i = 86.◦93 in their light-curve fits (taken from Knutson et al. 2007b),
which would introduce an offset in the absolute level those authors
derive for Rp/R� relative to our study.

For the emission, we produced models both with and without
inverted PT profiles (lower-right panel of Fig. 5). To produce thermal
inversions in the former models, we artificially included titanium
oxide (TiO) and vanadium oxide (VO) with a constant abundance
throughout the atmosphere (lower-left panel of Fig. 5). Our emission
results reinforce those of Diamond-Lowe et al. (2014), who argued
that there is no evidence for a thermal inversion in the atmosphere of
HD 209458b based on the revised estimates for the 4.5 and 5.8 μm
eclipse depths. This can be seen in Fig. 5, where the models with a
thermal inversion are shown to provide a very poor match to the data.
For the models without a thermal inversion, the match is better, but
still poor. In particular, the latter models underpredict the emission
in the 4.5 μm channel, where an absorption feature due to carbon
monoxide is expected to block radiation emitted from the planetary
atmosphere. The fact that we do not detect this absorption is in line
with the recent non-detection of carbon monoxide in the dayside
hemisphere made by Schwarz et al. (2015) using high-resolution
spectroscopy.

We also fit the emission data with a model that assumes the
planet radiates as an isothermal blackbody. To generate this model,
an ATLAS spectrum (Kurucz 1979, 1993) computed specifically
for HD 209458 was used for the stellar emission3 and the radius
ratio was fixed to Rp/R� = 0.121. Assuming a Planck spectrum
for the planet, a temperature of 1484 ± 18 K was found to give
the best fit to the data, with a reduced χ2 of 1.5. Indeed, Hansen
et al. (2014) have recently put forward the case that blackbody
radiation can explain the majority of IRAC emission data that has
been published for exoplanets to date, largely due to underestimated
uncertainties for the eclipse depths. The acceptable fit provided by
the isothermal blackbody for our data supports this hypothesis in the
case of HD 209458b, especially considering the reduced χ2 could
be even lower if we marginalized over the covariance parameters
and obtained larger uncertainties (Section 6).

One possibility is that the emission measurements are probing an
isothermal layer of the atmosphere above a cloud deck that extends
across the dayside hemisphere. This could simultaneously explain
the lack of absorption features detected in the IRAC transmission
data, and the muted H2O feature detected in the WFC3 transmission
data, discussed above. We stress, however, that this is a speculative
scenario, poorly constrained by the existing observations.

9 C O N C L U S I O N

We have presented an analysis of IRAC transit and eclipse
lightcurves for HD 209458b. By binning the light curves in time, it
was possible to perform the light-curve analyses using GP models.
GPs allow transit light-curve models to be elegantly defined within
a rigorous Bayesian framework. They provide a natural mecha-
nism for handling poorly understood systematics in the data that
are unrelated to the astrophysical signal of interest. Uncertainty is
propagated through all levels of the model in a clear and trans-
parent manner, and Occam’s razor is automatically implemented,
mitigating against overfitting.

We have made a number of significant revisions to previously
published results, and in many cases the uncertainties for inferred

3 http://kurucz.harvard.edu/stars/hd209458

planet parameters have been increased by factors of ∼1–4. This can
largely be attributed to the flexibility of the GP models, which al-
low complex correlations to be handled with a small number of free
parameters. The latter point is important, as it means that marginal-
ization over the model parameter space remains computationally
tractable, allowing uncertainties that realistically quantify the de-
generacies between the planet signal and instrumental systematics
to be derived.

We obtain an overall improvement in consistency for the normal-
ized semimajor axes a/R� and orbital inclinations i across different
epochs and wavelength channels, compared to results that have been
previously published for these data sets. This provides evidence that
the GP models are effectively accounting for the systematics, and
typically less prone to underestimating uncertainties, compared with
other light-curve fitting approaches used in the literature.

The revised GP analyses presented here draw into question a
number of claims that have previously been made regarding the
atmosphere of HD 209458b, including the detection of water ab-
sorption in transmission and the inference of an inverted PT profile
for the dayside hemisphere. Instead, our transmission measurements
are consistent with a featureless spectrum, and our emission mea-
surements are fit reasonably well assuming the planet radiates as an
isothermal blackbody with a temperature of 1484 ± 18 K.

Taken together, our results illustrate how sensitive IRAC analy-
ses are to the systematics treatment. GP analyses have been shown
to produce results that are generally more stable, and with uncer-
tainties that are relatively conservative, compared to those obtained
using other common approaches. However, we do tend to find good
agreement with results obtained using pixel-mapping techniques in
the 3.6 and 4.5 μm channels, which is unsurprising given that GPs
are in essence quite similar to pixel-mapping. None the less, many
results have been published using simpler xy polynomial decor-
relations and parametric ramp models, which may not always be
adequate. Combined with the lack of spectral resolution afforded
by the broad bandpasses, our results suggest that statements made
previously in the literature about exoplanet atmospheres relying
heavily on the interpretation of IRAC data should be regarded with
caution.

AC K N OW L E D G E M E N T S

The authors are grateful to Robert Zellem, Frédéric Pont and David
Sing for useful discussions. This work is partly supported by the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/20072013 Grant Agreement no.
247060) and by the Leverhulme Trust (Research Project grant RPG-
2012-661). J.K.B. acknowledges support from the UK Science and
Technology Facilities Council.

R E F E R E N C E S

Agol E., Cowan N. B., Knutson H. A., Deming D., Steffen J. H., Henry G.
W., Charbonneau D., 2010, ApJ, 721, 1861

Amundsen D. S., Baraffe I., Tremblin P., Manners J., Hayek W., Mayne N.
J., Acreman D. M., 2014, A&A, 564, A59

Ballard S. et al., 2010, PASP, 122, 1341
Beaulieu J. P. et al., 2010, MNRAS, 409, 963
Charbonneau D. et al., 2005, ApJ, 626, 523
Charbonneau D., Knutson H. A., Barman T., Allen L. E., Mayor M., Megeath

S. T., Queloz D., Udry S., 2008, ApJ, 686, 1341
Claret A., 2004, A&A, 428, 1001
Crossfield I. J. M., Knutson H., Fortney J., Showman A. P., Cowan N. B.,

Deming D., 2012, ApJ, 752, 81
Deming D., Harrington J., Seager S., Richardson L. J., 2006, ApJ, 644, 560

MNRAS 451, 680–694 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/451/1/680/1357462 by guest on 28 January 2022

http://kurucz.harvard.edu/stars/hd209458


694 T. M. Evans et al.

Deming D., Harrington J., Laughlin G., Seager S., Navarro S. B., Bowman
W. C., Horning K., 2007, ApJ, 667, L199

Deming D. et al., 2013, ApJ, 774, 95
Deming D. et al., 2014, preprint (arXiv:1411.7404)
Désert J.-M., Lecavelier des Etangs A., Hébrard G., Sing D. K., Ehrenreich
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Table A1 reports the MLEs for the GP covariance parameters that were fixed for the MCMC analyses, as described in Section 6.

Table A1. MLEs for the GP covariance parameters. These are the values that were fixed for the MCMC analyses described in Section 6.

Channel Date Signal Axy Lx Ly At Lt σw

(µm) (per cent) (pix) (pix) (per cent) (min) (ppm)

3.6 2005 Nov 28 Eclipse 2.0552 0.642 0.528 0.0444 37.117 1541
2007 Dec 31 Transit 0.4874 0.169 0.187 0.0216 20.708 2185
2008 Jul 19 Transit 0.3089 0.138 0.136 0.0677 0.319 2066
2011 Jan 12 Eclipse (1st) 1.0988 0.176 0.091 0.0261 5.471 499
2011 Jan 14 Transit 0.6342 0.127 0.145 0.1754 0.322 344
2011 Jan 16 Eclipse (2nd) 1.8569 0.235 0.233 0.0331 6.710 541
2014 Feb 13 Eclipse (1st) 1.5366 0.167 0.135 0.0398 5.574 553
2014 Feb 15 Transit 1.6826 0.195 0.196 0.0488 0.553 660
2014 Feb 17 Eclipse (2nd) 1.2590 0.151 0.118 0.0234 3.089 453

4.5 2005 Nov 28 Eclipse 0.8656 0.238 0.254 0.8796 2386.526 1391
2008 Jul 22 Transit 0.0001 143.003 109.329 0.0302 5.887 3148
2010 Jan 18 Eclipse (1st) 0.2467 0.067 0.090 0.0211 25.212 578
2010 Jan 19 Transit 0.8769 0.255 0.231 0.0086 24.042 569
2010 Jan 21 Eclipse (2nd) 0.8468 0.235 0.270 0.0182 15.931 566

Channel Date Signal Aτ Lτ h At Lt σw

(μm) (per cent) (log[min]) (min) (per cent) (min) (ppm)
5.8 2005 Nov 28 Eclipse 0.0732 6.187 2796.4 0.0575 195.8 3956

2007 Dec 31 Transit 0.3080 6.127 489.8 0.0000 67.9 3037
2008 Jul 19 Transit 0.7993 12.986 0.1 0.0000 >104 2986

8.0 2005 Nov 28 Eclipse 0.2781 6.277 1142.0 0.0000 >104 3749
2007 Dec 24 Transit 0.0000 357.352 291 853.4 0.2427 1221.2 1163
2007 Dec 25 Eclipse 0.0163 5.887 12 729.4 0.0000 >104 1215
2008 Jul 22 Transit 1.8164 9.791 1.0 0.0000 >104 2213
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