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We use X-ray tomography to investigate the translational and rotational dynamical heterogeneities
of a three dimensional hard ellipsoids granular packing driven by oscillatory shear. We find that
particles which translate quickly form clusters with a size distribution given by a power-law with
an exponent that is independent of the strain amplitude. Identical behavior is found for particles
that are translating slowly, rotating quickly, or rotating slowly. The geometrical properties of these
four different types of clusters are the same as those of random clusters. Different cluster types are
considerably correlated/anticorrelated, indicating a significant coupling between translational and
rotational degrees of freedom. Surprisingly these clusters are formed already at time scales that are
much shorter than the α−relaxation time, in stark contrast to the behavior found in glass-forming
systems.

The relaxation dynamics of most disordered materials,
such as glass-forming liquids, polymers, foams, granular
materials, differs significantly from the Debye behavior
found in simple liquids in that it shows a marked non-
exponential time dependence [1, 2]. Although several
mechanisms can give rise to this itype of time depen-
dence, e.g. for polymeric systems it is the chain con-
nectivity, it is often the local disorder of the particle
arrangement that is the origin for this behavior [3–5],
i.e. the fact that each particle has a different local en-
vironment makes that the relaxation dynamics depends
strongly on the particle considered. Previous studies have
shown that the slowly (or quickly) relaxing particles are
not distributed uniformly in space but instead form clus-
ters. This effect, usually named “dynamical heterogene-
ity” (DH) is nowadays believed to be a key ingredient
to understand the α−process of glass-forming systems,
and hence the phenomenon of the glass-transition. As
a consequence, many studies have been carried out to
study the nature of the DH, in particular how the size of
the clusters depends on temperature (or density) of the
system [3–11].

Usually DH are associated with the translational de-
grees of freedom (TDOF) of the particles. The particles
in molecular systems and granular materials have, how-
ever, also rotational degrees of freedom (RDOF). Since
these are coupled with the TDOF it is evident that they
will be important for the relaxation dynamics of the sys-
tem as well [12–16]. However, in practice it is difficult
to probe the RDOF in molecular systems since experi-
ments do not allow to track directly the orientation of
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individual particles. As a consequence only indirect ex-
perimental probing of the RDOF has been been possible
so far [7, 12] and most of our current knowledge of them
comes from computer simulations [17–19]. The situation
is not much better for the case of granular materials since
these are usually opaque and hence it is very challeng-
ing to probe in three dimensions (3d) the displacement
and reorientation of the particles [20–26]. Because of
the non-spherical shape of the particles and the presence
of friction, there is often a strong coupling between the
TDOF and RDOF, making the experimental study of the
DH for both TDOF and RDOF indispensible for a thor-
ough understanding of the relaxation dynamics [27]. In
the present work we thus use X-ray tomography to in-
vestigate these DH in a 3d granular packing driven by
oscillatory shear, making it to the best of our knowledge
the first experimental investigation to probe simultane-
ously both types of DH.

Our system consists of 4100 hard prolate ellipsoids
made of polyvinyl chloride with an aspect ratio of 1.5
(polydispersity 0.9%), i.e. a shape that makes the crys-
tallization of the system difficult [28] and allows for a
rather strong T-R coupling. The dimension of the minor
axis of the particles is 2b=12.7mm and in the following
we will use b as the unit of length. The particles are in
a rectangular box of dimension 40.2b × 43b × 22.6b that
can be sheared in the y−direction. More details of the
setup are given in [29]. We drive the system to a steady
state by cycling it many times at all strain amplitude γ
investigated (γ = 0.26, 0.19, 0.10, and 0.07, see SI for
details). Subsequently the position and orientation of
all particles are determined by X-ray tomography scans.
Scans were made after each complete cycle, thus giving a
stroboscopic view of the dynamics with the time unit of
one shear cycle, and in the SI we show the mean squared

ar
X

iv
:1

80
3.

10
92

9v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  2

9 
M

ar
 2

01
8

mailto:walter.kob@umontpellier.fr
mailto:yujiewang@sjtu.edu.cn


2

FIG. 1. Snapshots showing the fast translating (FT, blue)
and fast rotating (FR, yellow) particles (γ = 0.10(L), t =
1000). Also shown are the particles that are FT as well as FR
(FB, green). Note that both type of particles form clusters
and that these clusters overlap significantly. Panels (a) and
(b) are for the filter time tf = 50 and tf = 200, respectively.

displacement for the TDOF and the RDOF which allows
to get an idea on the relavant time and length scales in
the system.

To probe the DH we have tracked the particles for a
“filter time” tf and determined the distribution of their
T-and R-displacements (see SI). Fast (slow) translation
particles are defined as the 10% fastest (slowest) particles
in this distribution and we denote these particles as FT
and ST. The same was done for the RDOF, thus allowing
to define the fast (slow) rotating particles, FR and SR.
We have verified that the results presented below do not
depend in a significant manner on these definitions.

In Fig. 1 we show typical snapshots of the FT and FR
particles (blue and yellow, respectively) for two values of
the filter time tf . One recognizes that both populations
form clusters which shows that the T and R dynamics
are spatially very heterogeneous. A significant part of
the FT particles are also FR (FB, marked in green), in-
dicating that the translational and rotational motion are
significantly coupled. Similar conclusions are reached for
the slowly moving particles, i.e. the ST and SR (see SI).
In the following we will make a quantitative characteri-
zation of these DHs.

To determine the cluster size distribution P (s) of the
four populations of particles we define two particles to be
neighbors if their Voronoi cells have a common face and
use this to construct connected clusters. Figure 2a shows
P (s) for the four populations at different strain ampli-
tudes γ and one recognizes that within the accuracy of
the data the curves for different γ coincide, i.e. P (s) is in-
dependent of γ. This somewhat surprising result is likely
related to the fact that for granular systems the details
of the relaxation dynamics are universal and independent
of γ due to the particular manner such systems explore
their phase space [29].

Also included in Fig. 2a is a fit to the data with a
power-law, a dependence that has been observed in pre-

FIG. 2. Cluster size distribution P (s) for FT, FR, ST, and
SR. (The first three sets have been shifted vertically.) The
solid black lines are the distributions obtained by randomly
picking particles in the system. The dashed red lines are fits
to the data with a power-law with exponents stated next to
these lines. (a) Different strain amplitude γ. (b) Different
filter times tf .

vious experiments probing the DH [30]. The exponent is
small for the FT clusters and larger for the SR ones (see
legend) which shows that the particles with a slow dy-
namics belong on average to smaller clusters that the FT
particles. (The average cluster size are 3.92, 3.16, 2.46,
and 2.04 for FT, FR, ST, and SR, respectively.) In the
SI we show that the average volume of the Voronoi cell
of slow particles is smaller than the one of the fast par-
ticles, i.e. the ST and SR clusters are a bit more densly
packed than the ones for FT and FR. This shows that
fast particles prefer to form extended loose clusters which
will allow for cooperative fast motion, similar to the case
of glass-forming liquids [10]. Also included in the fig-
ure are the P (s) obtained if one picks 10% of particles
in a random manner, i.e. one does not select fast/slow
ones. The so obtained average cluster size is 1.94 and
the corresponding P (s), solid black lines, shows at inter-
mediate and large s the expected exponential decay, i.e. a
s−dependence that is very different from the power-law
that we find for the most/least mobile particles [31].

In Fig. 2b we show P (s) for γ = 0.26 and different
values for the filter time tf and it is clear that the dis-
tribution is also independent of tf . Therefore Fig. 2
demonstrates that the DH are independent of the time
scale considered, i.e. tf , and of the manner the system is
driven, γ. This is in contrast to the findings for thermal
glass-forming systems in which the DH are usually found
to depend on the time scale considered and also on the
temperature, i.e. a parameter that is somewhat analogous
to our driving strength γ. The surprising fact that clus-
ters are present already at very small tf , also confirmed
by the observation that the non-Gaussian parameter is
basically independent of t (Fig. SI-13), shows that the
DH are not related to the α−relaxation process, in con-
trast to the findings for thermal glass-formers [10, 19].
Instead, as argued below, we conjecture that it is the
surface roughness of the particles that is the source of
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FIG. 3. Radius of gyration of the FT clusters vs s for
different values of γ. Black dots are the average at fixed s.
The solid lines are a guide to the eye with slope 0.5. For the
sake of clarity the data for γ < 0.2 have been shifted to the
right by 10, 102, and 103.

FIG. 4. Probability that a particle that was fast/slow at t =
0 is still fast/slow at time t. Black solid lines are exponential
fits to the data at short times. Panels (a) and (b) are for the
TDOF and RDOF, respectively. The data for SR is fitted
with a power-law (black dashed line). The FR and FR data
has been shifted vertically.

disorder which leads to the DH, i.e. the same mechanism
that gives rise to the universal relaxation dynamics ob-
served in Ref. [29].

The cluster size distribution P (s) is only related to
the number of particles in a cluster but contains no
information about its geometry. Therefore we determine
the radius of gyration Rg of a cluster via

R2
g =

1

s

s∑
i=1

(ri −R)2 , (1)

where ri is the position of particle i and R is the center
of the cluster. In Fig. 3 we show how Rg for the FT
clusters depends on the cluster size s and one sees that
this dependence is described well by a power-law with an
exponent of 0.5, i.e. a mass fractal exponent of 2.0 [32].
This value is independent of the type of particle we con-
sider (FT, FR, ...), see SI, indicating that the geometry
of the clusters is independent of the type of motion con-
sidered, in contrast to thermal glass-forming systems for

which one finds that the clusters with FT are more open
than the ones for ST [33]. Figure 3 also demonstrates
that these values are again independent of γ. If we select
the particles randomly the resulting mass fractal expo-
nent is around 1.9, i.e. a value that is very close to the
one we find for the DH clusters. Hence we conclude that
the geometry of the DH clusters is very similar to the
one of a random cluster, but that they have an enhanced
probability to be large.

The nature of the particles, FT, FR,..., will change
with time and hence it is of interest to probe how long
a particle keeps this property since this time can be ex-
pected to related to the life time of the clusters. There-
fore we define the quantity σα(t) as the probability that
a particle which at time t = 0 had a property α ∈ {FT,
ST, FR, SR} has the same property at time t. In Fig. 4
we show the t−dependence of σα for the different par-
ticles. One recognizes that the curves for the different
strain amplitudes fall on top of each other, i.e. the per-
sistence σα(t) is independent of γ. This result is surpris-
ing since naively one might have expected that a larger
strain would lead to a faster loss of memory because for
a given fixed time t the mean squared displacements of
the particles increases quickly with γ (see Fig. SI-9) [34].
The figure also demonstrates that the master curve does
not depend on the filter time tf if one plots the data as
a function of the reduced time t/tf . This independence
shows that the details of the relaxation dynamics do not
depend on the time scale considered, i.e. there is a scale
invariance of the dynamics in the time window we probe,
suggesting that the configuration space explored by the
system has a fractal-like nature.

FIG. 5. Probability that a particle is undergoing a FT as well
as FR (ST and FR) as a function of the filter time tf . The
different symbols correspond to different strain amplitudes.
The dashed line shows the probability at long times.

Also included in the figure are fits with an exponen-
tial function (black solid lines). These fits describe the
data well for t/tf ≤ 1 indicating that at short times the
particle changes its nature via a simple stochastic escape
process. However, for longer times one observes a slower
decay: For FR and SR we find a power-law with an expo-
nent around 0.6 whereas for FT and ST the data seems
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to go to a finite value given by 0.13 and 0.12, respectively,
i.e. the memory does not vanish within the time scale of
our experiment. The persistence of this memory regard-
ing the population type of the particle is likely related to
the result discussed in Ref. [29] where it was found that
the TDOF do show a noticeable memory effect in their
motion [35]. From panel (b) we recognize that σα(t) for
the RDOF shows at intermediate time a power-law with
an exponent around 0.6, i.e. there is no plateau, a re-
sult that is coherent with the findings that the RDOF
show only a rather weak memory in their dynamics [36].
From a physical point of view the absence of a plateau is
reasonable since the cycling motion and the presence of
friction will always lead to a slow rotation of the particles
thus permitting them to change their nature (FR or SR).

The persistent rotational motion will induce also a
translational motion of the neighboring particles because
of steric effects and hence we do expect that friction leads
to an enhancement of the rotational-translational cou-
pling [27] which in turn might lead to correlations be-
tween the DH of the TDOF with the ones of the TDOF.
To study this correlation we determine the overlap be-
tween the different clusters, i.e. the probability that a
particle simultaneously belongs to two different popula-
tions, e.g. FT and FR. In Fig. 5 we show this probability
for the combinations FT-FR and ST-FR as a function of
tf . (Since the definition of the population depends on
tf , it is clear that the overlap will depend on tf as well.)
We see that for small and intermediate tf the overlap for
FT-FR is around 0.27, i.e. by a factor of 2.7 above the
trivial value of 0.1 expected for random clusters, and that
this enhancement is independent of γ. This implies that
there is a significant probability that a particle which is
translating quickly is also rotating quickly. For tf larger
than around 102 the overlap starts to decay. From the
mean squared angular displacement (see Fig. SI-9) one
recognizes that this time scale is related to the onset of
a significant rotational dynamics, i.e. the particles have
rotated far enough that the nature of their rotational dy-
namics has been randomized, thus leading to a decrease
of the overlap. For the case of the ST-FR we see that
the overlap is lowered by a factor of two with respect to
the trivial value, i.e. slowly translating particles have a
significantly reduced probability to rotate quickly, a re-
sult that is of course very reasonable. This overlap starts
to approach the equilibrium value 0.1 for times that are
again on the order of 102 cycles, i.e. when the particle
has rotated by a significant amount (about 0.5 rad2, see
Fig. SI-9). In the SI we show, Fig. SI-12, that also the
pair ST-SR has an enhanced overlap and the FT-SR has
a decreased overlap. None of these overlaps depend on
γ if tf is not too small and only the decay to the triv-
ial value depends on the driving strength indicating that
the decay is indeed related to the randomization of the
RDOF.

The presented results show that our granular system

has DH for the TDOF that are qualitatively similar to
the ones found in simple glass-forming liquids. Having
access for the first time to the RDOF in a 3d experimental
system we have probed also the dynamics of the RDOF
and we find that also they do show DH with cluster sizes
that are just a bit smaller than the ones for the TDOF.
The cluster size distribution of all four populations of
particles can be described well by a power-law, thus a
distribution that is very different from the one of random
clusters. Remarkably these distributions are independent
of the strain amplitude, indicating that the dynamics is
system universal, in qualitative agreement with earlier
findings about the van Hove function [29]. The strong
correlation and anti-correlation between different types
of clusters shows that in this system the translational
and rotational degrees of freedom are strongly coupled.
This coupling is likely not only caused by the aspect ratio
of the particles but also by the presence of friction, an
effect that is absent in molecular system.

In Ref. [29] we argued that 3d granular systems show
a relaxation dynamics that is very different from the one
of thermal glass-formers (e.g. there is no cage effect). Al-
though we now find that the DH are qualitatively similar
to the ones of thermal glass-formers, we emphasize that
the DH we observe here occur on the time scale that is
significantly shorter than the α−relaxation time, i.e. the
time scale at which the particles leave their neighbor-
hood. This surprising observation shows that the energy
landscape of granular materials has a structure that is
very different from the one of thermal glass-formers since
it has a roughness on a length scale that is much smaller
than the size of the particles. It can be expected that
it is this particle inherent disorder that gives rise to the
DH, in contrast to the case of thermal systems in which
the variations of the local packing are the cause for the
DH. We expect that it is this roughness which makes the
properties of the DH to be independent of the driving
amplitude and the time scale considered.

In summary we conclude that the presence of DH is
not a feature that is unique to thermal glass-formers but
instead can be found in other disordered systems as well
and hence is more universal than expected. The mecha-
nisms leading to these DH are, however, strongly depen-
dent on the system considered.

ACKNOWLEDGMENTS

Some of the preliminary experiments were carried out
at BL13W1 beamline of Shanghai Synchrotron Radiation
Facility. The work is supported by the National Natural
Science Foundation of China (No. 11175121, 11675110
and U1432111), Specialized Research Fund for the Doc-
toral Program of Higher Education of China (Grant No.
20110073120073), and ANR-15-CE30-0003-02.



5

[1] K. Binder and W. Kob, Glassy materials and disordered
solids (World Scientific, Singapore, 2011).

[2] A. Cavagna, Phys. Rep., 476, 51 (2009).
[3] M. D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
[4] R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
[5] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and

W. van Saarloos, Dynamical Heterogeneities in Glasses,
Colloids, and Granular Media, Oxford University Press,
Oxford, (2011).

[6] M. M. Hurley and P. Harrowell, Phys. Rev. E 52 1694
(1995).

[7] M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, J.
Chem. Phys. 102, 471 (1995).

[8] W. K. Kegel and A. van Blaaderen, Science 287, 290
(2000).

[9] E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield and
D.A. Weitz, Science 287, 627 (2000).

[10] C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H.
Poole, and S.C. Glotzer, Phys. Rev. Lett. 80, 2338
(1998).

[11] S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M.
Ciccotti, J.-M. Fromental, E. Pashkovski, A. Lips, D.
Sessoms, V. Trappe, and L. Cipelletti, Soft Matter 6,
5514 (2010).

[12] I. Chang and H. Sillescou, J. Phys. Chem. B, 101, 8794
(1997).

[13] C. K. Mishra and R. Ganapathy, Phys. Rev. Lett. 114,
198302 (2015)

[14] S. Vivek and E. R. Weeks, J. Chem. Phys. 147, 134502
(2017).

[15] S. H. Chong and W. Kob, Phys. Rev. Lett. 102, 025702
(2009).

[16] Z. Zheng, R. Ni, F. Wang, M. Dijkstra, Y. Wang, and Y.
Han, Nat. Comm. 5, 3829 (2014).

[17] S. Kämmerer, W. Kob, and R. Schilling, Phys. Rev. E
58, 2141 (1998).

[18] J. Qian, R. Hentschke, and A. Heuer, J. Chem. Phys.
111, 10177 (1999).

[19] M. G. Mazza, N. Giovambattista, H. E. Stanley, and F.
W. Starr, Phys. Rev. E 76, 031203 (2007).

[20] D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J.
Eng, S. R. Nagel, and H. M. Jaeger, Nature 406, 385
(2000).

[21] P. Richard, P. Philippe, F. Barbe, S. Bourlès, X.
Thibault, and D. Bideau, Phys. Rev. E 68, 020301(R)
(2003).
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Supplementary Information

Experimental details

The prolate ellipsoid particles are made of polyvinyl
chloride and the 4100 particles, with a total weight of
8.3kg, were poured into the shear cell. A plate that is
constrained to move only in the vertical direction was
placed on top of the particles. This top plate, with weight
of 16kg, provided an extra constant normal pressure of
2.3kPa on the top surface of the packing and thus makes
that the pressure gradient in the vertical direction is sig-
nificantly reduced. During an oscillatory shear cycle, the
shear cell will deform to a designed shear strain, then
in the opposite direction to the same shear strain and fi-
nally return to the origin position. The strain rate for the
preparation of the sample and the subsequent measure-
ments is around 1.7 ·10−2s−1 so that the inertial number
I = 2γ̇b/

√
P/ρ is about 1.4·10−4, i.e. the experiment can

be considered as quasi-static [37]. (Here P is the pressure
and ρ the mass density.) Before starting the computa-
tional tomography (CT) scans we drove the system into
a steady state by making hundreds of shear cycles. The
number of cycles for the preparation and the subsequent
measurements are given in Supplementary Table 1.

Using a medical CT scanner (SOMATOM Perspective,
Siemens, Germany), we obtained the complete three-
dimensional structural information of the packing with
a spatial resolution of 0.6mm. Following similar imaging
processing steps as in previous studies, Refs. [29, 38], we
determined the position and orientation of each ellipsoid
by a marker-based watershed image segmentation tech-
nique. We estimated the precision of the position ri and
the orientational vector ei of a particle i by making two
consecutive tomography scans of the same static pack-
ing and comparing the difference, which gave 5.3 · 10−3b
and 8.4 · 10−3rad, respectively. To avoid the influence of
boundary effects, we excluded all particles that have a
distance less than 5b from the cell boundary so that we
only considered about 1300 central particles for analysis.
See Ref. [29] for more details.

To determine the dynamic properties of the system we
took a tomography scan after each cycle for the first 10
cycles and then a scan every 5 cycles. For γ = 0.10
we made a second experiment in which we scanned only
every 50 cycles allowing thus to reach larger times. The
so obtained results are labeled as “0.10(L)”.

From the positions and orientations of the particles
we calculated their translational displacement as dj(t) =
rj(t) − rj(0) while the rotational displacement was ob-
tained from the time integral of the angular increment of

each cycle, θj(t) =
∫ t
0
ωj(t

′)dt′, where the modulus and

direction of ωj(t) are given by cos−1[ej(t) ·ej(t+ 1)] and
the vector ej(t)× ej(t+ 1), respectively.

Shear strain
(y-direction)

Number of cycles
to prepare initial
state

Number of cycles
for measurements

0.26 300 615
0.19 550 125
0.10 1500 125
0.10 (L) 1500 1850
0.07 2400 125

TABLE I. Experimental protocol used to prepare the system
and to make the measurements of its properties.

Static quantities

FIG. 6.

Radius of gyration of the clusters as a function of cluster size
s for different values of γ. (a): ST, (b) FR, and (c) SR. The
solid lines are a guide to the eye with slope 0.5. Black dots

are the average at fixed s. For the sake of clarity the data for
γ < 0.2 have been shifted to the right by 10, 102, and 103.
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In Fig. SI-6 we show the relationship between radius
of gyration Rg and cluster size s for the ST (panel a),
FR (panel b) and SR cluster (panel c), which gives an
s−dependence that is very similar to the one of the FT
cluster as presented in Fig. 3 of the main text, i.e. a
power-law with an exponent close to 2.0. Thus we can
conclude that the geometric shape of the clusters is in-
dependent of the nature of the particles considered.

In Fig. SI-7 we show the tf -dependence of the local vol-
ume fraction Φlocal for different types of particles. Φlocal

is obtained by calculating for each particle in the pop-
ulation considered Φlocal,i = Vpart/VVor,i, where Vpart is
the volume of a particle and VVor,i is the volume of the
Voronoi cell of particle i, and then taking the average
of this ratio over the particles. The graphs show that
for γ = 0.26, panel (a), particles with FT and FR have a
Φlocal that is about 1% smaller than the average, whereas
the ST and SR particles have a Φlocal that is about 1%
higher. Qualitatively the same result is obtained for the
strain amplitude γ = 0.1(L), panel (b), but now the de-
pendence on the type of particle is somewhat weaker.
We also note that in both cases the tf -dependence is
relatively weak, thus showing that, for fixed γ, the filter
time does not strongly influence the local packing density
of the selected particles.

FIG. 7.

The average local volume fraction Φlocal for particles that
are FT, FR, ST, and ST as a function of the filter time tf .
Also included is the sample averaged local volume fraction

(curve labeled “All”). Panels (a) and (b) correspond to
γ = 0.26 and γ = 0.1(L), respectively.

In Fig. 3 of the main text we have shown the radius
of gyration of the FT clusters and in Fig. SI-6 the Rg
for the other types of clusters. In Fig. SI-8 we show
the corresponding distributions for selected values of the
cluster size s. For very small clusters, s = 2 in panel
(a), we see that the distribution has a broad peak with a
shape that is directly related to the manner the two par-
ticles touch each other (see cartoons of the configurations
in the figure). No significant dependence on the cluster
type is seen, but a comparison with the distribution of
the random clusters (black line) shows that the latter has
a slightly more pronounced tail at large Rg, i.e. config-
urations in which the particles touch each other at their

tips. That the DH clusters have a less pronounced tail is
likely related to the fact that in that geometry (see car-
toon) the neighboring particles barely touch and hence
friction is not able to couple their motion.

For the case s = 3, panel (b), we find a double peak
structure in the distribution. A closer inspection of the
configurations reveals that the peak at smaller distance
corresponds to an arrangement in which all three parti-
cles touch other two whereas the peak at larger distance
to the case in which only two particles touch a central
one (see cartoons in the figure). Comparing the distribu-
tions for the different cluster types clearly shows that the
random cluster has a significantly smaller probability of
having three particles touching each other, a result that is
very reasonable from the combinatorial point of view and
the fact that a tight packing increases the dynamic cou-
pling between the particles. Thus we can conclude that
for this cluster size the non-random clusters are more
compact than the random ones.

For clusters sizes that are equal or larger than s = 4
the shape of the distribution changes significantly in that
it becomes Gaussian like (panels (c) and (d)). We see
that also in these cases the random distribution peaks
at slightly larger values of Rg, i.e. the DH clusters are
slightly more compact than the random ones. It is also
interesting to note that within the accuracy of our data
the distribution for the four types of clusters is indepen-
dent of the mobility of the particles, a result that is con-
sistent with the ones presented in Fig. 3 of the main text
and Fig. SI-6.

FIG. 8. Probability distribution function of Rg of FT, ST,
FR, SR, and random clusters, for different cluster sizes s: (a):
s = 2; (b) s = 3; (c) s = 4 (d) 10 ≤ s ≤ 20.

Dynamical quantities

To comprehend how far the particles translate and ro-
tate within the time scale of our experiment we show
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in Fig. SI-9 (a) and (b) the mean squared displacement
of the particles for the TDOF and RDOF, respectively.
The data is the same as the one shown in Ref. [29]. Note
that the RDOF reach the diffusive limit significantly ear-
lier than the TDOF, i.e. the former are faster than the
latter. We also recognize a strong γ−dependence of the
data, making the γ−independence of the results shown
in the main text rather surprising.

FIG. 9. Time dependence of the TMSD and RMSD for
different strain amplitudes γ. Adapted from Ref. [29].

FIG. 10. Self part of the van Hove function for the TDOF
and RDOF (panel (a) and (b), respectively) for γ = 0.26. The
different symbols are for different times t and the distance
shown on the abscissa is normalized by the corresponding
square root of the mean squared displacement. The black
solid line corresponds to a Gaussian distribution.

In Fig. SI-10 (a) and (b) we show the self-part of
the van Hove function for the TDOF, Gs(r, t) (see

Ref. [29] for its definition), and RDOF, G
(R)
s (θ, t), re-

spectively. Here G
(R)
s (θ, t) is defined as G

(R)
s (θ, t) =

N−1
∑N
j=1〈δ(θ−|θj(t)−θj(0)|)〉, where N is the number

of particles and δ is the Dirac δ−function. The differ-
ent symbols correspond to different times t. Note that
the abscissa is scaled by the square root of the mean
squared displacement at the selected times which makes
that the distribution functions fall onto a master curve,
a non-trivial result that is discussed in detail in Ref. [29].
Also included in the figures are Gaussians with identical
means as the real data (black solid lines). The Gaussians

cross the data at around ξ =1.65(T) and 1.75(R). Thus it
is reasonable to define those particles as “fast” that have
displacements larger than ξ. If one integrates the area
under the data from ξ to infinity one gets values between
7.3 and 9.6% i.e. values that are close to the one used in
our definition for fast particles, i.e. the top 10% of the
distribution. (We mention that we have also repeated the
analysis of the cluster size etc. by defining the fast/slow
particles as the top/bottom 7% of the distribution and
found no significant difference to the results presented in
the main text.)

FIG. 11. Snapshots showing the slow translating (ST, violet)
and slow rotating (SR, orange) particles for γ = 0.10(L) at
t = 1000. Also shown are the particles that are ST as well as
SR (SB, green). Note that both type of particles are forming
clusters and that these clusters overlap significantly. Panels
(a) and (b) are for the filter time tf = 50 and tf = 200,
respectively.

In Fig. SI-11 we show a typical snapshot of the ST and
SR particles. (The parameters are the same as the ones
of Fig. 1 of the main text.) We see that, as discussed in
the main text, also the slowly translating/rotating par-
ticles form clusters, i.e. DH, and that these two types of
clusters do indeed overlap significantly. This is demon-
strated quantitatively in Fig. SI-12 where we show the tf
dependence of the overlap between ST and SR clusters
as well as FT and SR clusters. The former overlap is
about 1.5 higher than the trivial values 0.1 whereas the
latter is about 50% less than the trivial value. Hence
we can conclude that these clusters are clearly corre-
lated/anticorrelated, in agreement with the results from
Fig. 5.

Finally we show in Fig. SI-13 the time dependence of
the non-Gaussian parameter of the van Hove function for
the TDOF, i.e.

α
(T )
2 (t) =

3〈r4(t)〉
5〈r2(t)〉2

− 1 , (2)

with an analogous definition for the RDOF. (For the
RDOF the factor 3/5 has to be replaced by 1/2 since
the rotational motion is two-dimensional.) We see, panel

(a), that for the TDOF α
(T )
2 (t) differs significantly from

zero already at t = 1, i.e. the distribution function of the
displacements is not a Gaussian, in agreement with the
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FIG. 12. Probability that a particle is making a ST as well
as a SR (FT and SR) as a function of the filter time tf . The
different lines correspond to different strain amplitudes. The
dashed horizontal line shows the random value, i.e. the case
that clusters are uncorrelated.

results from Ref. [29]. For larger times α
(T )
2 (t) increases

slightly, but the t−dependence remains weak. We also

note that this quantity is independent of the strain am-
plitude, also this in qualitative agreement with the results

presented in Ref. [29]. For the RDOF, we find that α
(R
2 )

is qualitatively similar to α
(T )
2 except that the data is

more noisy, see panel (b).

FIG. 13.

Time dependence of the non-Gaussian parameter α2(t) for
the TDOF, (a), and the RDOF, (b), for different strain

amplitudes γ.
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