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cascaded face regression

Romuald Perrota, Pascal Bourdona, David Helberta

aXLIM-ASALI University of Poitiers, UMR CNRS 7252

Abstract

Automatic face landmarking has received a lot of attention in the past decades.
It is now mature enough to be implemented in fully autonomous video systems.
As cascade-of-regression based algorithms have become state of the art in such
systems, two major (and still relevant) sources of interest have slowly faded
away: the need for semantic-driven learning beyond ground truth annotation,
and full video chain performance i.e. tracking efficiency, which in the case of said
methods strongly relates to their robustness towards shape initialization before
fitting. In this paper, we investigate how data sampling using face priors can
affect their performance in terms of convergence and robustness. We propose
new strategies based on said priors to overcome inconsistencies observed during
cascade-of-regression learning on purely random sampling-based stages. We will
show that simple choices can be easily integrated within regression-based face
tracking systems to increase accuracy and robustness.

Keywords: Face Landmarking, Regression, Sampling, Data augmentation

1. Introduction

Face tracking or face landmarking is an active topic and also a key tool for
image and video analysis: authentification, emotion detection or face transfer
are some of the applications relying on face landmarking.

The model used in cascaded face landmarking is a tree built with a random
process. Nodes of the tree are created upon a set of features, which is inherently
a limited set. As a result, a sampling scheme should again be employed to define
this set. Like data augmentation, authors only rely on uniform sampling and the
resulting trained models may not be optimal, with final step decisions leading
to regression directions cancelling one another out, as we will illustrate later on.
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Our contributions in this paper concern the study of sampling strategies
used during two steps of the regression learning scheme: data augmentation
and feature sampling. For both steps, we investigate several sampling methods
found in literature as well as new propositions and investigate their impact
on face fitting quality. Readers should keep in mind that while our field of
investigation is primarily cascade-of-regression alignment, most other methods
can or already benefit from such sampling strategies. In details, we propose:

1. Four sampling schemes for data augmentation, taking into account com-
mon knowledge about face geometry and dynamics ;

2. Two sampling schemes for features generation, with two opposite direc-
tions: better space coverage and landmark importance ;

3. An analysis of semantic-driven sampling strategies compared to conven-
tional blind sampling.

The paper is structured as follows. Section 2 discusses previous work on fea-
ture sampling and data augmentation for face landmarking. Section 3 presents
regression-based methods. In section 4 we expose various sampling schemes
for building augmented sets of groundtruth shapes. Section 5 details sampling
schemes for building feature sets. In section 6 we study the results of each sam-
pling scheme in the context of face landmarking, and set a performance bench-
mark of our algorithm using a challenging faces-in-the-wild dataset, namely the
300W competition test-set [8, 9]. Finally section 7 concludes the paper.

2. Related work

In this section we only reference papers that are fundamental to understand
our work. A full survey of face landmarking is beyond the scope of this paper.
Readers can refer to recent surveys such as [10] or [11] for a detailed overview.

2.1. Face alignment
Historically, authors categorize face landmarking into three main methods:

Active Shape and Active Appearance Models (ASM/AAM) [12, 13], Constrained
Local Models (CLM) [14] and regression models [15]. AAM conjointly learn
global texture and shape models, with face fitting consisting in minimizing the
difference between a target face image and a deformable parametric texture
model. Unfortunately, the idea of a global texture model is a major issue since
it tends to drive the fitting process as a whole, turning common occurrences such
as occlusion or light changes into a threat to result quality. To increase robust-
ness against occlusions, CLMmethods employ a local texture model around each
landmark. While some CLM implementations allow interactive frame rate [16],
they are usually computationally expensive and require high-performance hard-
ware.

Regression-based methods have been claimed to enable both high-performance
and high-robustness in face landmarking, even on limited hardware such as
smart devices. Dollar et al. [15] introduce the cascaded pose regression method,
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where a shape is progressively refined to a target shape. Cao et al. [1] enhance
regression using a new shape indexation scheme and a boosted two-level cascade
of regression. Kazemi et al. [2] provide a high-performance regression system
with a simplified initialization stage and gradient boosted cascade building. At
the same time, Ren et al. [3] announce three times speed-up using customized
local binary features. While impressive performances are reported, almost every
method suffers from the same issues. Yang et al. [17] show that such methods
are highly sensitive to prior face detection performance, said detection being a
mandatory step for initialization. As a result, despite solution proposals such
as combined detection/regression [18], the issue of robustness towards initial-
ization is still considered an open issue.

2.2. Features sampling
Most studies on features used in face landmarking have been done with ro-

bustness against face transformations in mind (mainly rotation and perspective
transformation). Cao el al. [1] use shape-indexation, Burgos et al. [21] introduce
interpolated shape features, which is later enhanced by Cao [22] using barycen-
tric coordinates. Unfortunately, feature pool selection has not been well inves-
tigated. Dollar et al. [15], use uniform sampling; reference methods [1, 21, 2, 3]
are based on Dollar’s work thus use the same sampling strategy. To our concern,
the only reference method that employs another method is the work of Cao et
al. [22] where a Gaussian distribution over the unit square is used, although no
specific justification or comparison with uniform sampling is provided by the
authors. Kazemi et al. [2] observed that feature selection using distance pri-
ors leads to better fitting performance but feature generation is still based on
uniform sampling.

2.3. Data augmentation sampling
Some authors have studied the impact of data augmentation on classifica-

tion performance [23]. As an example, Krizhevsky et al. [24] perform Principal
Component Analysis (PCA) on Red-Green-Blue (RGB) pixel values in a deep
learning architecture to achieve the best results (at the time of publication)
on the famous ImageNet classification challenge. De Vries et al. [25] also used
data space to perform data augmentation. To our knowledge, such complex
data-space augmentation methods have not been applied to regression-based
face landmarking, and only blind, uniform selection of shapes is used during
data augmentation. As an example, as PCA modelling has been criticized as
the cause of ASM/AAM/CLM’s failure to fit in-the-wild face shapes, anything
PCA-related has been seemingly discarded from cascade-of-regression landmark-
ing, including their use for data augmentation documented in [13, 26].

It is interesting to note that in the context of deep learning, where the
number of training samples is often much higher, some works [27, 28] have been
conducted in the opposite direction: sampling the training set to generate a
smaller set that leads to the same fitting/classification error. The main aim is
to reduce computational training cost.
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In this paper, we propose new strategies for both data augmentation and
feature sampling, where face semantic integration is induced implicitly by priors
regarding data representation models and space partitioning. We show that
these new strategies result in better fitting performance. We also show how
rigid transformation strategies applied to data augmentation help increasing
robustness to poor initialization, hence limiting the dependency and sensibility
to face poor detection outputs.

3. Regression based face landmarking

In this section, we review the regression method used for face landmarking.

3.1. Random tree model
Regression-based face landmarking relies on supervised machine learning,

using a random tree model [29] most of the time. Random trees are decision
trees built using a random process. Internal nodes contain decisions that split
samples into two disjoint subsets, and leaves containing a displacement vector.
Usually, the depth of one tree is set and remains constant for all trees. Our
method uses true random trees (i.e. each node has its own splitting decision).

A splitting function indicates, for a node, to which subtree a sample should
belong. For any given sample xi, we define k = φ(xi) as the result of the
splitting decision, where k ∈ [l, r] ; l and r respectively for the left and right
subtree. Function φ(.) behaves as a similarity measure between two descriptions
(i.e. features) F1 and F2 using a threshold κ. It is defined as:

φ(x) =
{
l if d(F1,F2) > κ

r else.

where d(.) is a similarity distance operator e.g. subtraction, Euclidean norm,
etc. Note that any feature description could be used, in face fitting or detec-
tion advanced features such as LBP [30, 31] or SIFT [32] where employed. In
cascaded face regression, simple pixel intensity difference is used for efficiency
reasons and we will keep this strategy throughout the paper.

3.2. Training set
A training set T is required to serve as a reference for landmarking perfor-

mance and to build the model. Such a set is composed of images and their
ground truth annotations (i.e. shapes). Creating a training set is usually a
manual and long process where one has to indicate on each image where fiducial
points or landmarks composing the shape are. There are some publicly avail-
able datasets using a various number of landmarks per images. Our method
can work on any of them [9, 33, 34], as long as the number and order of the
landmarks are consistent across all images within the dataset.

Let xi = (Ii,yi) be the i-th sample of a training set, with Ii the image and
yi the ground truth annotation. On top of a training set T , an augmented set
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T ′ = {x′i} is built using synthesized perturbations of annotations y′i. We define
the residual ri of sample xi with respect to an augmented sample x′i = (I,y′i)
as the difference between ground truth and noisy annotations:

ri = yi − y′i.

3.3. Face alignment
The key idea of face landmarking using regression is to iteratively refine a

shape St to an optimal target shape accordingly with an input image I, a single
regression model Rt, and a previous state St−1. This process can be written as
follows:

St ← St−1 +Rt(I,St−1).

The complete regression model R is the accumulation of all single regression
models. With an abuse of mathematical notation, it can be written as:

R =
T∑
t=1
Rt.

Note that all single regression models Rt can differ from one another. In
our case, a single regression model is a tree: given an input image and shape, it
will compute an increment for the refinement process.

Current regression approaches rely on cascades of regressions. It is a two-
level variation of the regression method: a single cascade ci is composed of
K trees tij (with j ∈ [1;K]), where all trees within this same cascade share a
common set of P features (see Figure 1). Hence, given T cascades, the total
number of iterations in the regression process equals T ×K.

Regression starts with an initial shape S0 which can be, as suggested by
Kazemi [2], the mean shape of the training set. This mean shape should be
computed using a Generalized Procrustes Analysis [35] in order to compensate
the rotational and scaling factors of the training samples.

While our fitting process could be combined using a coarse to fine approach
such as the one proposed by Zhu et al [36], we decide in our implementation to
keep fitting process as close as possible to the Kazemi work, since it makes our
contributions more interpretable without any side effect.

3.4. Training process
The key to success with regression methods is precise and robust tree model

building. The gradient boosting approach described in this section is the one
proposed by Kazemi et al. [2]. It is simple to understand, easy to implement
and very efficient. Each tree in the cascade is built using a recursive top-down
approach using estimation residuals to drive construction phases.
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ti1 ti2 ti3 tiK
. . .

Figure 1: Regression Cascade. A cascade ci is a sequence of regression trees tij .

3.4.1. Node training
Given a set of splitting criteria Φ, the goal is to find the best φopt that divides

the training set into two subsets Tl and Tr such that residuals of samples be-
longing to the same subtree leads to a unique value. Intuitively, this means that
samples sharing similar face characteristics should belong to the same subtree.
This corresponds to minimizing the following energy:

E(φ, T ′) =
∑
i

∑
k∈{l,r}

∑
φ∈Φ
‖ri − µφ,k‖2

where µφ,k is the mean value of residuals for all samples i belonging to the
same subtree k:

µφ,k = 1
|K|

∑
i∈K

ri with K = {i/φ(xi) = k}.

A straightforward implementation can be done as follows: pick R splitting
criteria φj ∈ Φ, then select the one that minimizes energy E:

φopt = arg min
φj

E(φj , T ′).

When a splitting criterion is selected, the training set is split into two disjoint
sets. Each subtree of a newly built node is trained using the same optimization
process with its corresponding subset.

3.4.2. Leaf value:
Tree construction ends when a maximum depth criterion is met. In that case,

a leaf is created and its value is the mean of residuals for samples reaching that
leaf. Authors usually employ a shrinking approach in order to avoid overfitting
issues and reduce the influence of noisy data. In that case, the value of leaf Lk
is computed as:

Lk = β

|K|
∑
i∈K

ri
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where β is a shrinking factor which can be either defined as a constant [2] or
computed for normalization and stability purposes [1].

3.4.3. Cascade training:
Training of the regression cascade is simply a sequence of tree trainings with

an update on residuals before computing a next tree. Every training sample x′i
is updated such that:

y′i ← y′i +Rt(Ii,y′i).
In this section, we have reviewed how regression model is built. We identify

two source of randomness: (i) the generation of the augmented data set T ′
(section 3.2), (ii) how features φj are producted to elaborate the feature set Φ.
In the remaining of the paper, we propose various strategies for both problems.

4. Augmented shape sampling

In this section, we detail the sampling strategies used to generate augmented
samples y′i. We assume that the training set has n elements.

Ground truth data augmentation strategies can be divided into two com-
plementary sampling schemes: nonrigid face-space sampling and rigid position-
space sampling. The first one tries to increase the generalization of the facial
expressions while the second one tries to increase the robustness to incorrect
bounding box initializations.

4.1. Non rigid face-space sampling (N-Rig)
4.1.1. Uniform sampling

A first strategy used in literature is to randomly select a shape within the
training set as the noisy shape using a uniform distribution law:

y′i ← yξ, ξ ∈ [1;n], ξ 6= i.

4.1.2. Linear interpolation (LI)
As noted by Cao et al. [1], the output of a trained regressor lies in a linear

interpolation of all training shapes as long as the initial shape belongs to the
training set. We propose a new data augmentation scheme based on that idea.
We extend the sampling space through the introduction of new shapes which,
despite not being part of the training set, can be considered face like never-
theless. This strategy consists in linearly interpolating two randomly selected
training shapes yξp and yξq with a random interpolation factor α:

yi′ ← (1− α)yξp + αyξq ,

with α ∈ [0; 1], (ξp, ξq) ∈ [0;n]2 and p 6= q.
We argue that coherent, natural-looking face shapes can be obtained this

way, thus reducing the risk of over-generalization during the training process.
This can be observed on Figure 2 which presents some examples of faces gener-
ated using such an interpolation.
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Figure 2: Example of shapes generated using linear interpolation sampling.

4.1.3. Flipping of shapes (FL)
Image flipping for data augmentation is a common practice in classification

or indexation-related deep learning frameworks [37, 38, 39], where invariance
towards global orientation is often sought after. It also sounds natural to extend
this idea to faces, as an example to synthesize left eye winking out of right eye
winking:

yi′ ← M(yi),

whereM is the mirror operation (with respect to the y axis)

4.1.4. Model-Free Noise (MFN)
The classical freeform, random pertubation of landmark positions using sim-

ple Gaussian noise is studied as well. Let L(y, k) be function which returns the
k-th landmark position from any given shape y, new augmented data can be
written as:

L(yi′, k),← L(yi, k) + δu

where δu is a centered random vector which variance is defined with respect to
a metric on the shape (ex: 5% of the shape size).

Note that this sampling strategy does not ensure realistic face outputs (see
Figure 3). Facial expressions remain unchanged for the most part, while land-
marks positions are being altered on an individual basis. The aim is to deal with
small variations on the training set annotations which could arise from faulty
manual annotations as an example.
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Figure 3: Shapes generated using perturbation of 50% of the landmarks with maximum
magnitude of 5% of the shape size.

4.1.5. Model Noise (MN)
This approach is a simplified version of DeVries’ strategy et al.[25], where

a recurrent deep network is used to augment data. They propose a two step
strategy:

1. First, build a feature space representation of the training set using an
autoencoder ;

2. Second, compute an augmented sample by projecting a sample into the
feature space, apply perturbation in the feature space, then project the
augmented sample back into the primal space.

Instead of relying on a complex, deep learning network architecture, we build
the feature space using PCA. This results in a simpler implementation one can
relate to either Krizhevsky’s use of PCA for texture modeling [24] or previous
works on face alignment using Cootes’ ASM or AAM [12, 13].

Assuming PCA vector bases are sorted according to their eigenvalues, we
perform a classical dimension reduction scheme for the PCA by keeping only the
first m vectors of the PCA basis as feature (i.e. projection) space. Augmented
samples are drawn by generating a random vector u = (ξ1, ξ2, ..., ξm) in the
feature space, then projecting it back to the original space. With an abuse of
notation, augmented samples could be generated as:

y′i ← ȳ + PCA-1(u)

where PCA is the PCA projection of the training set, PCA-1 is the back pro-
jection function, and ȳ is the mean shape.
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Figure 4: Example of shapes generated using PCA sampling

Because this strategy is based on the training set, it will generate faces that
are coherent with respect to the training set. Unlike the linear interpolation
that tends to generate faces that are near the mean face, we think this strat-
egy generate faces that are more general and with more variation. Figure 4
shows some example of PCA sampled faces, note that mouth variation seems to
highlight more variation than with linear interpolation.

4.2. Rigid transformation sampling
A major threat to regression-based face landmark alignment is its need

for coarse yet rather precise face position, scale and orientation initializations.
Rough bounding box estimations or different face detection algorithms have a
strong influence on robustness [17].

In order to deal with approximative bounding box detections, we define a
4-parameters sampling scheme that simulates rigid transformation on the shape.
Let parameters ξs, ξx, ξy, ξθ be respectively a random scale, random displace-
ment on x and y, as well as a random rotation of angle θ. We define the rigid
augmentation strategy as:

y′i ← ξsRξθyj + (ξx, ξy)

where yj is a shape. Note that this strategy is used in combination with the
face space sampling, in that case, yj is the result of any facial-sampling scheme
previously presented.
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5. Feature sampling

In this section, we present several strategies used for feature sampling within
cascade trees. Features are 2d positions in the image plane and P is the number
of features sampled within each cascade. We define Fi as the position of the
i-th feature .

In common regression-based face landmarking implementations, samples are
drawn uniformly inside the bounding box of the mean shape. We define this
box using parameters (x0, y0), w and h, respectively the top left corner of the
bounding box, its width and height. Note that we use a coordinate system
where ~y axis is pointing down.

For uniform sampling schemes, features are drawn as:

Fi ← (x0, y0) + (ξ1 · w, ξ2 · h)

where ξ1 and ξ2 are random real values taken within the range [0; 1].
A slightly modified version of this algorithm relies on an extended bound-

ing box, in order to make sure samples can be generated in every landmark
surrounding.

5.1. Analysis of trained cascades
We train a regression model using P = 500 features with T = 10 and K =

500, then we extract the position of the features in all trees and finally we
compute density of the tree feature positions. Figure 5 shows the resulting
density.

Figure 5: Density of trained features using uniform sampling.

The first observation we can make is that the position of the features is not
uniform over the sampling space. Some areas present high densities, especially
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in the upper cheeks. Other areas have surprisingly low densities (e.g. in the
center of the mouth). Note that features are mainly located inside the convex
hull of the face; this would suggest that extended bounding box sampling (as
discussed at the end of the preceding section) may not be necessary.

We now analyse the position of features with respect to the depth of the
features inside the tree. All features located at depth=0 are extracted, then
those at depth=1 and so on. Figure 6 shows the density for each depth ranging
from 0 to 4.

Figure 6: Density of the features with respect to the depth of the tree. From left to right,
density at depth from 0 to 4

We can observe that the density of features located at the top of the trees
presents a large horizontal symmetry, while features located lower in the trees
seem to be more specialized, with very low-density areas such as the nose area.

In order to make sure that sample distribution is not biased by the random
generator being used, we first derive a sampling scheme that ensures a better
spatial distribution of features over the sample space. Then we analyze the
resulting feature densities with respect to this new sampling scheme.

5.2. Stratified sampling
In blind uniform sampling, especially with a small number of samples P , the

sampling space may be under-sampled. This can result in parts of the sampling
space where no features are drawn (Figure 7). We suspect this may have an
impact on regression quality, since large parts of the sampling space are omitted.
To overcome this issue, we propose to use stratified sampling (also known as
stratified-jittered or jittered sampling). In this strategy, the sampling space is
divided in a regular grid of size m×m, with:

m = b
√
P c

where bxc is the floor function:

bxc = max {m ∈ Z|m ≤ x}

In each cell of the grid, a sample is drawn using uniform sampling (Figure 7b)
To be consistent with the other methods, where the number of samples

equals P , the remaining samples m′ = P −m2 samples are drawn using uniform
sampling over the whole sampling space.
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(a) (b)

Figure 7: Sampling schemes for 100 points. (a) Uniform sampling (b) Stratified sampling.

5.3. Importance sampling
In [1] Cao et al. mention future works about clever sampling strategies that

could exploit salient parts of faces (eye, mouth, ...), without providing more
details. Here we extend this idea through a sampling scheme that facilitates
Region-Of-Interest (ROI) sampling. We first analyze the density of features
trained with stratified sampling on Figure 8.

Figure 8: Density of the selected features using stratified sampling.

We can observe on Figure 8 how features are still locating around specific
areas, yet how density distribution is now different compared to uniform sam-
pling. Especially, we can notice that areas close to the eyes and nose have more
importance in stratified sampling than they have in uniform sampling. We argue
that this could be a hint on how samples should be drawn. Stratified sampling

13



appears to force samples to be selected near areas where salient information can
be found (eyes and nose). This will drive our final sampling scheme.

In this scheme, we draw more samples next to fiducial points, since they are
by definition points of importance. We use a sampling grid that is similar to
the one used in stratified sampling, only with a fixed number of cells which does
not dependent on the number of samples.

Figure 9: Sampling scheme using importance sampling and grid sampling. For each cell, the
number of samples is directly tied to the number of landmarks (the darker, the higher). Note
that this partition is not the actual subdivision, it is just an illustration.

Assuming a grid is composed of cells Cj , the sampling process is a two-phase
one. In a first step, importance is computed using the mean shape: for each cell,
importance is increased given the number of landmarks it contains (Figure 9).
In a second step, samples are selected given cell importance: the more important
a cell is, the more samples are drawn. Samples within a cell are generated using
uniform sampling, as they were in stratified sampling.

Formally, inside a cell Ci, the number of samples ni is equal to:

ni = ki
m

where ki is the number of landmarks that fall into the cell Ci, and m is the total
number of landmarks.

6. Experimental results

This section analyzes the sampling strategies proposed in this paper, namely
data augmentation and feature sampling. We also provide experimental results
for comparison with other face landmarking methods.
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6.1. Methodology
Sampling strategy performance assessment is made using two well-known

face datasets to generate the training set: LFW [40] and FaceWarehouse [41].
While LFW is made of in the wild situations, FaceWarehouse present controlled
strict face acquisitions. The training set is composed of 6400 random samples
taken from the two sets. The testing set is obtained in a similar fashion using
1600 samples in the remaining set of images (i.e. no overlap between the training
and testing sets). We use the publicly available databases provided by Cao et
al. (http://gaps-zju.org/DDE/)

Landmark position errors are computed as the median distances between
fitted shapes and their ground truth counterparts. To limit the impact of spa-
tial resolution differences between testing samples, all results are normalized
with respect to the intra-ocular distance, as literature usually suggests. Dur-
ing training, the bounding box used for initialization is the minimal one that
encompasses ground truth shapes i.e. it is not the result of a face detection
algorithm.

In order to evaluate the performance of our algorithm not just within the
realm of cascade-of-regression-based methods but also with regard to current
state-of-art face landmarking methods, at the end of this section we provide
additional results obtained on the challenging test-set of 300W competition
[8, 9] in terms of cumulative error curves, Area-Under-Curve (AUC) values,
failure rate and computational time.

6.2. Data augmentation
In this section, we review the performance of the data augmentation strate-

gies. We explore all combinations using all sampling schemes presented in the
previous sections, resulting in 31 different situations. We also test two initial-
ization strategies: the theoretical one, using ground truth bounding boxes, and
a more realistic one, using random perturbations of said theoretical bounding
boxes. While the former method can be used to benchmark the fitting power
of the model, the later is headed towards real field application and robustness
analysis. This leads to a total of 62 combinations. In all graphics, "Non Rig"
means regression model with only non-rigid sampling scheme, "Non Rig+Rig"
means nonrigid data augmentation followed by rigid sampling, and "ξinit" means
initial bounding box perturbed. Note that initial bounding box perturbation
consists in random deformations of ±25% in scale and random ±25% move in
translation.

Each regressor is trained using T = 10 cascades, K = 500 trees per cascade,
P = 500 features per cascade, S = 300 augmented samples, and the splitting set
Φ is composed of R = 50 functions at each node building stage. We empirically
chose the first 6 vectors of the PCA base when building the PCA sampling
space, which corresponds to the vectors holding most of the variation among all
faces. When more than one sampling scheme is used, the number of augmented
samples drawn for each scheme is S/n, with n the number of splitting schemes.
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Figure 10: Comparison of data augmentation sampling schemes

Figure 10 presents the results obtained by comparing all methods. We can
note that uniform selection leads to the best performance with the exact bound-
ing box, while Model Noise augmentation gives the best performance with an
initially perturbed bounding box. Regression models trained with rigid and non-
rigid augmentation get consistent results with or without initialization noise,
while regressors trained with only non-rigid sampling perform poorly with noisy
initializations.

Several observations can be made about these experiments. The first one is
about theoretical versus real-life contexts: if we have a precise, learned regressor-
friendly position of the initial bounding box, data augmentation with non-rigid
transformation performs always better than non-rigid combined with rigid. This
can be explained by high variations in the augmented set increasing the risk of
over-generalization (i.e. producing training samples that are unlikely to be en-
countered in the fitting context). In real-field situations i.e. when adding noise
to the initial face bounding box, data augmentation with rigid transformations
largely outperforms augmentation with only non-rigid transformations: it al-
most completely fixes poor initial bounding box positioning.

Another observation is that the random perturbation of landmarks doesn’t
affect or reduce testing errors. It is actually almost always the worst strategy. As
discussed earlier, this can be explained by the fact that a freeform perturbation
model is likely to generate sample shapes that do not look like faces, hence
increasing the risk of over-generalization.

Overall, Model Noise (PCA sampling) appears to produce the best results.
To highlight this, we produce a histogram of the occurrence of a sampling scheme
in the best score (Figure 11). Model Noise, uniform selection and linear inter-
polation give best performance either globally (i.e. taking all possible combina-
tions) or locally (i.e. counting with sampling is best using 1, 2, ..., 5 combina-
tions). These results are confirmed by the mean rank of each sampling scheme,
as exposed in Figure 12. In this figure, we determine the rank of each combina-

16



US LI FL MN MFN
Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
oc

cu
re

nc
e

Occurences in global optimum (higher is better)

US LI FL MN MFN
Method

0

2

4

6

8

10

12

14

16

N
um

be
r

of
oc

cu
re

nc
e

Occurences in optimum (higher is better)

Figure 11: Comparison of the data augmentation methods. (a) Global optimum (b) Per
number of combination optimum.

tion and compute the mean of the ranks where a specific sampling occurs. As
suggested, Model Noise-based data augmentation has the lowest rank in almost
all situations.
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Figure 12: Mean rank of each sampling scheme for every configuration. Non Rig : Non rigid
sampling scheme only, Non Rig+Rig : Non rigid and rigid sampling scheme ; ξinit : Random
perturbation of the initial bounding box.

The only situation where it is not the best solution is using nonrigid per-
turbation only for training and testing with a perturbed initial bounding box.
Because this situation is unrealistic, it may be discarded from the interpreta-
tion of the results. With that consideration, rank ordering is consistent across
all methods. This gives the following top-3 rank (from the best strategy to the
worst one): Model Noise (MN), Linear Interpolation (LI) and Uniform Selection
(US).
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6.3. Feature sampling
In this experiment, we study the influence of feature sampling within tree

cascades, based on median regression errors, for the three strategies presented
in section 5: purely random sampling, stratified sampling and importance sam-
pling. Regression models are built using T = 10, K = 500, S = 300, R = 50.
For each method, we study the importance of the strategy regarding the number
of features per cascade P . Data augmentation is made using uniform selection
only and regression is performed with ground truth initial bounding box.

6.3.1. Stratified sampling
In a first step, we study the impact of stratified sampling to drive the gener-

ation of the P features. Figure 13 shows the difference between purely random
sampling and stratified sampling. Interestingly, stratified sampling results in
lesser errors with higher values of P . This can be explained by a better distri-
bution of samples over space. Nevertheless, difference is not significant : less
than 2% at maximum, as seen on Figure 13.
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Fitting error
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Figure 13: Difference between pure random sampling and stratified importance sampling of
the P features. Blue line is the random sampling scheme, red is the stratified one.

6.3.2. Importance sampling
In this scheme, we first divide the sampling space into a 10 × 10 partition

grid. Then, given landmark positions over the mean shape, we compute the
importance of grid cells as explained in section 5.3. Finally we draw the feature
using a two step approach: a cell is selected using importance sampling, then
we uniformly sample a new feature within this selected cell. Figure 14 shows
the difference between this strategy and the uniform one.

This strategy results in better results than pure random sampling or even
stratified sampling ; in our experiments, only one result has a lower error with
pure random sampling. This performance can by explained by the fact that
importance sampling tends to introduce priors about face semantics i.e. fiducial
points. As a result, whenever the last sets of cascade tree nodes start struggling
between specialization and generalization over the full feature space, higher
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Figure 14: Difference between pure random sampling and importance sampling. Blue :
random sampling. Red : importance sampling.

probability to focus on relevant areas such as eyes or mouths ensures feature
reliability.

We lead further investigation in this analysis by claiming that importance
sampling accelerates regression model convergence. In order to prove this, we
study landmark displacement increments within tree leaves on trained regres-
sors. Figure 15 presents mean 2D displacement values using random sampling
and using importance sampling.
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Figure 15: Mean landmark displacement over regression tree leaves using (a) random sampling
and (b) importance sampling.

Several observations can be made from this figure. First, importance sam-
pling starts with a mean displacement that is higher than random sampling
(1.75 compared to 1.4). Next, importance sampling displacement tends to con-
verge nicely into a minimum when a number of about 4000 to 5000 cascades has
been reached, while random sampling cascades seem to be locked into a periodic
loop. We interpret this as non-convergence of the regression model.
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Figure 16: Comparison of the mean displacement of the leaves using random sampling and
importance sampling. Using (a) all cascades ; (b) the last cascade.

The regression model with importance sampling has progressively less dis-
placement compared to pure random sampling. This can be underlined by
overlapping the displacement in the same plot. In figure 16 we overlap mean
displacements of the two methods using all cascades and zooming over the last
one. This last cascade clearly shows that landmark position increments are
much higher with random sampling than they are with importance sampling.
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Figure 17: Variance of the mean displacement contained in the trees of the last cascade.

Variance is also highly reduced as shown in figure 17. Even at the end of
the last cascade, variance values with importance sampling equal about half
the values observed on random sampling. Thus confirming that convergence is
better with importance sampling.

7. Conclusion

In this paper, we have investigated data sampling within state of art, cascade-
of-regression based automatic face landmarking algorithms, and how semantic-
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driven (e.g. basic knowledge about face geometry and dynamics) data modelling
strategies can affect such systems in terms of convergence and robustness. We
have proposed new sampling schemes in that respect to build augmented data
sets before the learning phase, as well as sampling schemes for features genera-
tion in cascaded regression trees.

We have provided experimental results showing that simple data augmenta-
tion strategies, such as the proposed (PCA) model-based alteration of groundtruth
face shapes, can increase the performance of the regression model. We have also
demonstrated that the use of semantic priors during features generation has a
significant positive effect on convergence, paving the way for another proposal
called importance sampling which also improves face regression quality.

So far we have only studied shape-related sampling strategies. An additional
study should be done in future works, where texture sampling is investigated as
well for data augmentation. We expect to achieve better robustness to illumi-
nation and occlusion with this new study.
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