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ABSTRACT
This short paper investigates the influence of the image processing
pipeline (IPP) on the cover-source mismatch (CSM) for the popu-
lar JPHide steganographic scheme. We propose to deal with CSM
by combining a forensics and a steganalysis approach. A multi-
classifier is first trained to identify the IPP, and secondly a specific
training set is designed to train a targeted classifier for steganal-
ysis purposes. We show that the forensic step is immune to the
steganographic embedding. The proposed IPP-informed steganaly-
sis outperforms classical strategies based on training on a mixture
of sources and we show that it can provide results close to a detector
specifically trained on the appropriate source.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation;Malware and its mitigation;
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1 INTRODUCTION
For digital images, machine learning based steganalysis is currently
the methodology that achieves the best performances in a con-
trolled environment, i.e. whenever the steganographic scheme, the
payload size and the image source are known. However if one of
these three parameters remains unknown, the performance of the
steganalysis scheme can be jeopardized. The problem of Cover-
Source Mismatch (CSM) occurs when the analyzed image sources
are unknown. To the best of our knowledge, it has been identified
in 2008 by the pioneering works of Cancelli et al. [5] and confirmed
during the BOSS contest [2]. It states that a mismatch can occur and
consequently degrades the classification performances if the source
of the testing set is different from the source of the training set. As
an example, during the BOSS contest and when applying the de-
tectors optimized on BossBase (processed in a specific manner), to

Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

"real-world" images, it was noted that the performance dramatically
drops.

Note that the CSM effect may be particularly observable when
the training set comes from BossBase images. Indeed, if this data-
base enables to compare steganographic and steganalysis results,
its development pipeline is however extremely formatted: RAW
images are first transformed into spatial (ppm) images using the
free software DCraw with specific parameters. The images are
then rescaled such that the largest dimension was 512 pixels and
converted to greyscale, and for JPEG steganalysis the ppm images
are compressed using standard quantization tables. All operations
are performed using the ’convert’ Unix command, which is very
restrictive.

If the CSM can easily be observed, accurate characterization of
the source in the literature is not straightforward. The term ’source’
has been coined in 2011 [2, 6] and became an important topic in
steganalysis research from 2012 onwards (e.g. [7–9, 11, 13, 14, 16]),
definitions of a source are diverse and stay informal.

Ker and Pevny characterize a source as an actor [9], i.e. one
user uploading a set of images on his social network account. The
authors provide options to mitigate the CSM by normalizing in-
dependently the features of each user. Pasquet [16] et al. consider
a source as a cluster of features, and they combine unsupervised
and supervised training to conduct steganalysis. Finally, Kodovsky
et al. [13] proposed to deal with different sources (here cameras)
by training on a mixture of images coming from different sources
and Lubenko and Ker [14] proposed to adopt a similar strategy on
millions of images using a simple on-line classifier.

Recently Giboulot et al. [7] conducted an investigation to char-
acterize the set of parameters that specify a ’source’. This paper
considered the case were RAW images were acquired using var-
ious cameras and developed to JPEG images using photographic
development softwares. The impact of the choice of camera, the
acquisition parameters and the image processing pipeline (IPP)
were considered. The paper showed that the acquisition parameters
(including the camera type) have only a minor impact, but that the
image processing parameters as well was the quantization table
have the largest impact. The investigated processing parameters
were sharpening, denoising, color adjustments and the choice of
the development software.

The current paper follows the same methodology as [7] while
investigating some complementary development pipelines such as
white-balancing and demosaicing. It focuses on the popular JPHide
embedding scheme. This scheme has been selected because the
embedding is fast, and its detectability has already been analyzed
within the CSM paradigm by Ker and Pevny [9]. Moreover, this

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Dirk Borghys, Patrick Bas, and Helena Bruyninckx

Scene
Landscape

Portrait
Orientation
Illumination

...

Device
Sensor
Lens

Acquisition
Apperture

ISO Sensitivity
Exposure time

Time of capture

Developing
Demosaicing 

Downsampling
Gamma correction

Lossy coding
...

Cover image

RAW 
domain

Developed 
domain

Figure 1: Pipeline of the cover image generation process which can be decomposed into four main steps (scene, device, acqui-
sition, developing) representing parameters of the whole process.

work enables to highlight complementary conclusions with respect
to [7].

A strategy to mitigate the impact of the CSM due to the image
processing pipeline is also proposed. This strategy consists first
of a forensics analysis by using steganalysis features to identify a
processing pipeline similar to the one applied on the test image.
Similarly to [7, 15], we show that the best detection results are
obtained when the training is performed on an image database
coming from a source similar to the one generating the test images.

1.1 The Image Processing Pipeline
A source can be defined w.r.t. the image generation process de-
picted in Figure 1 which shows that the creation of a cover image
is linked to the succession of different parameters represented by
(1) the scene that is captured, (2) the device which is used, (3) the
acquisition settings used during the capture and (4) the developing
step.

Each parameter is linked with a set of sub-parameters. The scene
fluctuates according to the subject, but also according to the illu-
mination or the orientation of the camera. The device is composed
mainly of two elements: the sensor (which can be CMOS, CCD;
color or monochrome) and the lens.

The acquisition phase relies on three parameters originating from
the device: the lens aperture, the ISO sensitivity and the exposure
time and one parameter which is the time of capture.

Finally, the developing step which is studied in this paper, con-
tains a lot of processing steps and we list here the most important
ones:

- the white-balance is a color transform needed to adjust to
human perception of color under different illuminations,

- Gamma correction is a sample-wise transform which maps to
a different tone,

- the demosaicing or Color Filter Array (CFA) interpolation step
predicts two missing color components for each pixel from neigh-
boring photo-site values,

- and the user can also apply other image processing operations
such as denoising or sharpening.

2 METHODOLOGY
The methodology explored in this paper for reducing the CSM (cf.
Figure 2) consists in first determining the image processing pipeline
(IPP) that was applied to an image, and then exploiting that infor-
mation for building an adequate training set that is used to train the

Test image

Identification of the 
IPP process

Training set design

Feature extraction 
and training

Classification

Raw database

Developments

Cover and Stego sets

Figure 2: Schematic overview of the examinedmethodology.

steganalysis detectors. First, a multi-classifier is trained to identify
the closest development process among a set of predefined ones.
This operation is possible by extracting features from databases
specifically developed from a database of RAW images. Secondly,
the closest database of cover images is used as a training database
for steganalysis by generating a corresponding set of stego images.
Finally, a classical steganalysis methodology is applied by extract-
ing features and training a classifier which is afterward used on
the test image. Note that such a methodology is an example of
forensics-aided steganalysis which was already briefly explored by
Barni et al. [1] for distinguishing camera images from computer
generated images before performing steganalysis.

3 EXPERIMENTAL SETUP
We chose to study a specific camera (the Leica M9) and in order
to have a complete control of the image processing pipeline, the
RAW images available in the BossBase are used in our experiments.
In the original BossBase 2758 RAW images of the Leica M9 are
available. These are used for creating test images corresponding to
different choices of the processing parameters. After processing,
the 2758 images are cropped into non-overlapping 512x512 images,
resulting in a total of over 160000 images. This procedure thus
allows an artificial increase of the image database. The selected
cropping method results in a very high variation in scene content
between different sub-images but the local statistics caused by the
processing pipeline are the same as for the full-sized images.
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Three photographic development tools were used in the experi-
ment: the open-source software DCraw v9.25 (denoted "DC" in this
paper) and RawTherapee v4.1.0 (http://rawtherapee.com/) ("RT")
and the commercial software Adobe Lightroom© v6.0 ("LR6").

The three softwares were used for converting the RAW images
into color JPEG images with a standard quantization table with
quality factor 100 (STD100) for DCraw and RawTherapee and the
Adobe Level 12 quantization table (Adobe12) for Lightroom. A 4:2:2
color sub-sampling was used in the JPEG conversion.

The steganographic method used in the current investigation is
JPHide.

As mentioned in Giboulot et al.[7] the IPP in general modifies the
content details of a picture and, hence, the resulting number of non-
zero AC coefficients (nzac). In order to perform a fair comparison
between the photographic developments performed by different
IPPs, the payload size should remain constant over the different
developments. Contrary to [7], note that we did not use the same
message length for all images. The image contents of the different
crops is so diverse that we decided to fix the message length for each
of the crops but to keep it constant over the different developments
applied to each cropped image. The message length is set to 10% of
the nzac in the images developed by a specific processing chain (i.e.
DCraw using a bilinear CFA interpolation). However, we believe
that using a constant payload through all images and developments
or using a constant payload only through developments should
lead to similar conclusions.

For each of the investigated processing parameters, stego/cover
pairs were created for the 160000 cropped images.

The used steganalytic detector is the Ensemble Classifier (EC)
[12] based on the CC-JRM feature set [10] and used in a clairvoyant
scenario, i.e. both the steganographic method and the embedding
rate are known to the steganalyst. The false alarm, missed-detection
and total error probabilities, (Pf a , Pmd and PE = (Pf a + Pmd )/2)
were considered as performance metrics. In order to estimate these
performance metrics, 10000 cover/stego image pairs were randomly
selected from the set of 160000 images for training the detector.
Another (disjoint) set of 10000 image pairs was used for validation.
This was repeated five times in order to obtain an average value and
a standard deviation for the performance metrics. For compactness,
the paper reports only the average values for PE .

4 IMPACT OF IMAGE PROCESSING
PARAMETERS

Because Giboulot et al. [7] already investigated many image pro-
cessing parameters, the current paper focuses on parameters not
yet examined in that paper. These include white balancing, gamma
correction, CFA demosaicing and the choice of the development soft-
ware. For investigating the impact of white balancing and gamma
correction, DCraw was used.

4.1 Impact of white balancing
The choice of the white balancing method influences the color
appearance of an image. By default, DCraw uses a fixed white
balance based on a color chart illuminated with a standard D65
lamp (cf. user manual of DCraw), which roughly corresponds to
the average midday light in Northern/Western Europe.

Besides this default white balancing (WBdef) method, DCraw
also allows to select two other types of white balance: camera
(WBcam) and average (WBave). In WBcam the white balance is
defined by the camera. In practice the photographer can choose
between automatic white balancing (AWB) or a number of preset
values depending on the lighting conditions (e.g. sunset, clear sky,
clouded sky, ...). Each choice determines a color temperature applied
in the white balancing [4].

In WBave the white balance is calculated by averaging over the
complete image.

The white balance is thus partly defined by the camera dur-
ing image acquisition, but can be overridden by the development
software.

In the current experiment DCraw is used with all of its param-
eters set to their default value. Only the white balancing method
is varied. The three available white balancing methods are applied
and compared.

Figure 3 shows the results obtained for PE for a steganalysis
detector trained on images created by one of the three white bal-
ancing modes of DCraw (shown on the left of the table) and applied
to images created by each of the three methods (top of the table). A
colormap is assigned to the values for an easier visualization of the
mismatch. The values on the diagonal correspond to the matched
case and represent the "intrinsic difficulty" of the considered source
[7].

The figure shows that the largest mismatch if found when train-
ing on WBdef and applying the trained detector to any of the two
other methods. Training on WBdef and applying to the two other
modes results in a more than tenfold increase of PE . The mismatch
between the two other modes is much milder.

WBdef
WBcam

WBave

WBdef

WBcam

WBave

0.37 3.7 3.61

1.2 0.25 1.0

1.78 0.91 0.34 0.0
0.8
1.6
2.4
3.2
4.0

Figure 3: Influence of white balancing (PE in %).

4.2 Impact of gamma correction
While [7] examines a range of manual tone adjustments in their
investigation of the dependence on color adjustment, the current
paper focuses on the more automatic process of gamma correction
(GC).

In DCraw four gamma correction methods are available: BT-709,
Adobe, ProPhoto and sRGB. BT709 is the default GCmethod in both
DCraw and RawTherapee. Details on the various gamma correction
methods and their parameters can be found in [18, 19]. The impact
of gamma correction on the CSM is illustrated in figure 4. The
largest mismatch is found between the default GC (GCdef) and the
three other methods. Training on GCdef and applying the trained
detector to the images created using the other three GC methods
leads again to amore than tenfold increase of PE w.r.t. the respective
fully-matched cases. Between the three other methods the relative
increase in PE is between 1.3 (for training on GCsrgb images and
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Figure 4: Influence of gamma correction (PE in %).

testing on GCprophoto) and 4.1 (for training on GCprophoto and
testing on GCsrgb). GCprophoto exhibits a higher intrinsic difficulty
(i.e. the value on the diagonal corresponding to the fully-matched
case) than the three other methods.

4.3 Impact of CFA interpolation and
development software

For the conversion from RAW image to JPEG in this paper three
development softwares are used: DCraw (DC), RawTherapee (RT)
and Adobe Lightroom 6.0 (LR6). The first step in the conversion
from RAW is the CFA interpolation (demosaicing). In this section
the combined effect of the CFA interpolation and the choice of de-
velopment software is investigated. Eleven IPPs were defined and
examined. The results of the mismatch between them is presented
in figure 5. Details about the eleven IPPs are given below. DCraw
and RawTherapee were used with all parameters set to their de-
fault values. Only the demosaicing method was varied. For DCraw
the (bi)linear, AHD, VNG and PPG interpolations were used (resp.
denoted DClin, DCahd, DCvng, DCppg on the figure’s axes). For
RawTherapee AHD, Amaze and IGV were applied (RTahd, RTamaze
and RTigv).

LR6 uses a proprietary demosaicingmethod forwhich no detailed
documentation is available. For LR6 we considered four processing
pipelines. In LR6Def all parameters were left to their default value.
LR6 uses its own quantization tables (QTs) and in particular the
QT at highest quality (level 12) differs from the standard table at
quality factor QF=100. Therefore we also created LR6 images with
the standard QT at QF=100 (LR6Std), consistent with the one used
in the two other softwares. The LR6Std images were created using
LR6 with all parameters set to their default value, but by exporting
TIFF images instead of JPEG. The TIFF images are then converted
to JPEG using the Python PIL library. The only difference between
LR6Def en LR6Std is thus the QT.

LR6 performs several operations by default (denoising, sharpen-
ing, etc.). The default sharpening in LR6 is set to "level 25". For LR6
we also applied two other sharpening methods: a rather extreme
sharpening in the development module at "level 125" (LR6DS125)
and the "standard screen" (LR6SScr) method in the export module.

Figure 5 shows the results of the study of the mismatch between
the various demosaicing methods and choice of the development
softwares.

The figure clearly exhibits a block structure corresponding to
the three softwares. The largest mismatch is thus obtained between
different development softwares. Note that in [7] the development
software was found to have only moderate impact. The different
result we observe here is probably due to the different choice of the

feature set; DCTR in [7] versus CC-JRM in the current paper. We
intend to examine this further.

The difference in QT seems to be an important factor in the
mismatch found between LR6 and DCraw. LR6Std shows indeed a
much smaller mismatch w.r.t. DCraw than LR6Def.

The intrinsic difficulty of a source is lowest for images processed
by DCraw and much higher for images processed by RT and LR6.
The LR6DS125 images have the highest intrinsic difficulty. The
authors think this is caused by the highly non-linear character of
the sharpening applied in LR6 which leads to a high variability
within the corresponding training set.

The largest relative increase of PE due to a mismatch in demo-
saicing method (within the same development software) is between
2.2 (for training on RTigv and testing on RTamaze) and 4.8 (for
training on DCvng and testing on DClin).

5 IMAGE PROCESSING PIPELINE (IPP)
CLASSIFIER

The fact that steganalysis results depend on the IPP suggests that
the used steganalysis feature set is sensitive to this IPP. We have
therefore investigated whether it is possible to use the same feature
set for detecting the IPP. Several papers have been published show-
ing the usefulness of steganalysis features for digital image forensics
and in particular for detecting image manipulations [3, 17].

The ensemble classifier (EC) yielding excellent results for ste-
ganalysis using large feature sets, in the current paper the EC is
also used for constructing a supervised classifier of the IPP.

For assigning one of the N examined IPPs to a given test image an
N-class classifier is needed. For constructing this classifier from the
binary ECs, an aggregation of one-to-one EC classifiers is applied:
each EC is trained to distinguish between two IPPs. This is done
for all pairs of IPPs, leading to N (N − 1)/2 binary classifiers each
voting for one of the IPPs in its pair. For assigning an IPP to an
image under test, these N (N − 1)/2 classifiers are applied and the
final decision is the IPP that receives the majority of the votes.

For training the IPP-classifier we considered only the 11 IPPs
discussed in section 4.3.

Figure 6 shows the results of the classification obtained after
training and validation on 10000 cover images of each processing
pipeline. The figure shows the confusion matrix of the classification.
The value in row i , column j is the probability that an image created
by the IPP noted on row i is classified as being created by the IPP
in column j. For the sake of clarity, zero values are omitted.

The results show that the classifier is capable to identify the
different IPPs with a very high accuracy. In particular, it is possible
to distinguish between the different types of CFA interpolation.
Note also that, except for the LR6Std there is no confusion between
the LR6 generated images and those from DC or RT.

Interestingly, when applying the IPP-classifier trained on the
cover images for classifying the IPP of the stego images, a very
similar classification accuracy Acc 1 is obtained. The obtained Acc
is 96.1% and 95.9% for resp. the cover and stego images. This means
that, while steganalysis performance is highly dependent on the
processing chain, the detection of the processing chain suffers

1Acc=ratio of correctly classified items to the total number of classified items; expressed
as a percentage
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Figure 5: Influence of demosaicing and development software (PE in %).

only a minor influence of the presence of steganography (for the
experiments conducted in this paper).

6 MITIGATION OF THE CSM - THE
IPP-INFORMED DETECTOR

The results of the IPP-classifier can be used for selecting the detector
that was trained on the closest (and possibly same) source, i.e. an
IPP-informed detector. For each tested image, the IPP-classifier
discussed in section 5 is applied. In the second step the steganalysis
detector that was trained on the detected IPP is applied for deciding
whether the test image is cover or stego. This is done for 10000
randomly picked images for each of the considered IPPs.

In this test we also include images developed with DCraw/ AHD/
GC=Prophoto (DCCGPP) and DCraw /AHD/ WB= Camera (DCW-
Bcam). Note that neither of these two processing pipelines were
used for training the IPP-classifier or for training the steganalysis
detectors.

In the test we also included 10000 JPEG images collected from
Flickr. The selected images correspond to images acquired with
the Leica M9 camera and with quantization table corresponding to
Adobe level 12. The images were center-cropped to a size of 512×512
in a way that preserves the DCT structure. The corresponding stego-
images were created with an embedding rate of 0.1 bpnac.

Figure 7 compares steganalysis results obtained by four different
detection strategies:

• ’Fully matched’ case: training and test images come from
the same source. This is the baseline for the comparison. It
represents the best results that can be obtained using the
chosen feature set and the EC classifier.

• ’Class Boss’: training on the classical BossBase, i.e. resized
(spatially interpolated) images developed with DCraw using
PPG demosaicing as explained in the introduction of the
paper,

• ’Mixed training’: the results of training the EC on a mix of
the 11 sources (consisting of 1000 images from each source)
as proposed in [13],

• ’IPP informed’: the results of the proposed IPP-informed
steganalyzer.

For DCGCPP and DCWBcam the values of the ’Fully matched’
case in figure 7 are extracted from figures 3 and 4. For the images
downloaded from Flickr the presented values for the ’Fully matched’

case are the average results over five 5000/5000 random splits of the
available images. For the ’Mixed training’ of the Flickr images, we
decided to use only images from LR6Def, LR6DS125 and LR6SScr
for training (3400 of each IPP).

Figure 7 shows that the ’Class Boss’ method clearly suffers the
most of the CSM. The ’Mixed training’ considerably reduces the
impact of the CSM compared to the ’Class Boss’ approach, except
for the case where the latter is almost fully-matched (DCppg and
DCahd). The ’IPP informed’ method proposed in the current paper
results in the smallest increase of PE with respect to the fully-
matched detector.

The proposed method also behaves better than ’Mixed training’
for the two processing pipelines that were not used for training the
IPP-classifier or the steganalysis detectors. Note that the increase of
PE w.r.t. the fully matched case is the highest for DCWBcam. How-
ever, the increase for both DCWBcam and DCGCPP is much smaller
than the mismatch found in respectively figure 3 and 4 between
WBdef/WBcam and GCdef/GCprophoto. The type of approach as
presented in this paper thus also provides some robustness with
respect to unknown IPPs. For the Flickr images the IPP-informed
and the mixed training detectors obtain similar results. The large
difference w.r.t. the ’Fully matched’ case suggests that the LR6
developments used for training our models should be expanded,
particularly w.r.t. the down-sampling operations that are present
in the Flickr database. We also noted that the IPP-classifier classes
99.7% of the Flickr images as one of the three LR6 developments.
The remainder is classified as RT developments.

7 CONCLUSIONS AND FURTHERWORKS
The paper investigates the influence of the image processing pipeline
on the cover-source mismatch for JPHide. It also proposes a simple
classifier of the IPP and shows how it can be exploited for reducing
the CSM due to the IPP. We show that within this setup, the pro-
posed IPP-informed steganalysis outperforms approaches based on
mixed training over the examined sources. Partitioning the image
data prior to steganalysis thus seems a promising approach for
mitigating the CSM (see also [16]).

According to [7], the impact of the image processing pipeline on
the CSM is more important than the choice of camera or the im-
age acquisition parameters. The current paper additionally shows
that the CSM can be significantly reduced by combining IPP clas-
sification with training set design. For the latter the RAW images



Conference’17, July 2017, Washington, DC, USA Dirk Borghys, Patrick Bas, and Helena Bruyninckx

DClin DCppg
DCvng

DCahd
RTahd

RTamaze
RTigv

LR6Def
LR6Std

LR6DS125
LR6Sscr

DClin

DCppg

DCvng

DCahd

RTahd

RTamaze

RTigv

LR6Def

LR6Std

LR6DS125

LR6Sscr

99.43 0.27 0.17 0.05 0.02 0.02 0.01

0.13 98.61 0.25 0.86 0.04 0.01 0.02 0.04

0.06 0.14 99.64 0.04 0.02 0.01 0.02 0.04

0.19 1.05 0.16 98.40 0.04 0.01 0.13

0.01 0.13 0.01 99.08 0.74 0.01

0.01 0.13 0.96 98.83 0.05 0.01

0.12 0.01 0.1 99.77

85.50 0.59 13.8

0.01 0.04 0.11 0.10 0.00 0.03 99.69

0.42 98.19 1.38

19.0 1.06 79.92

0

20

40

60

80

100

Figure 6: Confusion matrix for the supervised classification of the image processing pipeline (IPP).
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Figure 7: Comparison of PE (in %) for the four detection strategies.

of BossBase can be used for generating training databases that
match or are close to the IPP of the images under investigation.
The authors expect that for mitigating the impact of image acqui-
sition a similar approach could be followed, based on a carefully
designed expansion of the BossBase, i.e. spanning a larger variation
of acquisition parameter settings.

Futureworkwill assess the currentmethodology on other stegano-
graphic schemes in the pixel or JPEG domain.
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