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ABSTRACT
We present here the new INPOP lunar ephemeris, INPOP17a. This ephemeris is obtained
through the numerical integration of the equations of motion and of rotation of the Moon,
fitted over 48 yr of lunar laser ranging (LLR) data. We also include the 2 yr of infrared LLR
data acquired at the Grasse station between 2015 and 2017. Tests of the universality of free-fall
are performed. We find no violation of the principle of equivalence at the (−3.8 ± 7.1) × 10−14

level. A new interpretation in the frame of dilaton theories is also proposed.

Key words: gravitation – ephemerides – Moon.

1 IN T RO D U C T I O N

The Earth–Moon system is an ideal tool for carrying out tests of
general relativity (GR) and more particularly the test of the univer-
sality of free-fall (UFF; Nordtvedt 1968a; Anderson et al. 1996).
Since 1969, the lunar laser ranging (LLR) observations are obtained
on a regular basis by a network of laser ranging stations Faller et al.
(1969); Bender et al. (1973), and currently with a millimetre-level
accuracy Samain et al. (1998); Murphy (2013). Thanks to this level
of accuracy at the Solar system scale, the principle of the UFF
can in theory be tested. However, at these accuracies (of 1 cm or
below), the tidal interactions between the Earth and the Moon are
complex to model, especially when considering that the inner struc-
ture of the Moon is poorly known Wieczorek (2007); Williams &
Boggs (2015). This explains why the UFF test is only possible after
an improvement of the dynamical modelling of the Earth–Moon
interactions.

Recently, thanks to the GRAIL mission, an unprecedented de-
scription of the shape of the lunar gravity field and its variations
were obtained for the 6 months of the duration of the mission
Konopliv et al. (2014); Lemoine et al. (2014). This information
is crucial for a better understanding of the dissipation mechanism
over longer time span Matsumoto et al. (2015); Williams & Boggs
(2015); Matsuyama et al. (2016). Furthermore, since 2015, the
Grasse station, which produces more than 50 per cent of the LLR
data, has installed a new detection path at 1064 nm (IR) ranging
wavelength leading to a significant increase of the number of ob-
servations and of the signal-to-noise ratio Courde et al. (2017).

� E-mail: viswanat@geoazur.unice.fr (VV); fienga@geoazur.unice.fr (AF)

Together with these new instrumental and GRAIL developments,
the Moon modelling of the INPOP planetary ephemeris was im-
proved. Since 2006, INPOP has become a reference in the field
of the dynamics of the Solar system objects and in fundamental
physics Fienga et al. (2011, 2017).

The INPOP17a version presented here also benefits some of the
planetary improvements brought by the use of updated Cassini-
deduced positions of Saturn. The planetary and lunar Chebyshev
polynomials built from INPOP17a have been made available on the
INPOP website1 together with a detailed technical documentation
Viswanathan et al. (2017).

Since 2010, thanks to the millimetre-level accuracy of the LLR
measurements and the developments in the dynamical modelling
of the Earth–Moon tidal interactions, differences in acceleration
of Earth and Moon in free-fall towards the direction of the Sun
could reach an accuracy of the order of 10−14 Merkowitz (2010);
Williams, Turyshev & Boggs (2012). With the improvement brought
by GRAIL, addition of IR LLR observations, and the recent improve-
ment of the dynamical modelling of INPOP17a, one can expect to
confirm or improve this limit.

In this paper, we first present (see Section 2.1) the statistics re-
lated to the IR data set obtained at the Grasse station since 2015.
In Section 2.2, we introduce the updated dynamical model of the
Moon as implemented in the INPOP planetary ephemeris including
contributions from the shape of the fluid core. In Section 2.4, we
explain how we use the IR data to fit the lunar dynamical model
parameters with the GRAIL gravity field coefficients as a supple-
mentary constraint for the fluid core description.

1 Available at: http://www.imcce.fr/inpop
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1878 V. Viswanathan et al.

Figure 1. Histogram of annual frequency of LLR data with relative contribution from each LRR array including Grasse IR (1064 nm) observations. Points
indicate the annual mean of post-fit residuals (in cm) obtained with INPOP17a. The dominance of range observations to A15 is evident. A change can be
noticed after 2014 due to the contribution from IR at Grasse. The values in percentage indicate the LLR data contribution from each participating station.

Figure 2. Histogram of synodic distribution of normal points obtained at Apache Point (c), at the Grasse station from 2012 from 2014 at 542 nm (b) and from
2014 to 2016 at 1064 nm (a). Q indicates the quarter Moon phase.

Finally in Section 3, we describe how we test the UFF and give
new constraints. In addition, we present a generalization of the
interpretation in terms of gravitational-to-inertial mass ratios of
UFF constraints, based on recent developments in dilaton theories
Hees & Minazzoli (2015); Minazzoli & Hees (2016). Hinged on this
generalization, we deduce that from a pure phenomenological point
of view, one cannot interpret UFF violation tests in the Earth–Moon
system as tests of the difference between gravitational and inertial
masses only.

2 LU NA R E P H E M E R I D E S

The new INPOP planetary ephemeride INPOP17a (Viswanathan
et al. 2017) is fitted to LLR observations from 1969 to 2017, in-
cluding the new IR LLR data obtained at the Grasse station.

2.1 Lunar laser ranging

The principle of the LLR observations is well documented (Murphy
et al. 2012; Murphy 2013). Besides the lunar applications, the laser

ranging technique is still intensively used for tracking Earth orbiting
satellites, especially for very accurate orbital (Peron 2013; Lucchesi
et al. 2015) and geophysical studies (Jeon et al. 2011; Matsuo et al.
2013).

Non-uniform distributions in the data set are one contributor to
correlations between solution parameters (Williams, Turyshev &
Boggs 2009). Like one can see in Figs 1–3, about 70 per cent of the
data are obtained after reflection on A15 reflector and on an average
40 per cent of the data are acquired within 30◦ of the quarter Moons.

In this study, we show how the IR LLR observations acquired
at the Grasse station between 2015 and 2017 (corresponding to 7
per cent of the total LLR observations obtained between 1969 and
2017 from all known ILRS ground stations) can help to reduce the
presence of such heterogeneity.

2.1.1 Spatial distribution

Statistics drawn from the historical LLR data set (1969–2015) show
an observer bias to range to the larger Apollo reflector arrays (mainly
Apollo 15). This trend (see Figs 1 and 3) is also present on statistics
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INPOP17a and fundamental physics tests 1879

Figure 3. Grasse LLR data retroreflector distribution at 532 and 1064 nm
from 2015 to 2017. A and L indicate Apollo and Lunokhod retroreflectors,
numbered by their respective lunar missions.

taken during time periods after the re-discovery of Lunokhod 1 (L1)
by Murphy et al. (2011). This is due to the higher return rate and
thermal stability over a lunar day on the Apollo reflectors, thereby
contributing to the higher likelihood of success.

With the installation of the 1064 nm detection path (see Fig. 3), as
explained in Courde et al. (2017), the detection of photon reflected
on all reflectors is facilitated, especially for Lunokhod 2 (L2): about
17 per cent of IR data are obtained with L2 when only 2 per cent
were detected at 532 nm.

Owing to the spatial distribution of the reflectors on the Moon,
Apollo 11 and 14 give sensitivity to longitude librations, Apollo
15 gives sensitivity to latitude librations, and the Lunokhod re-
flectors give sensitivity both in the latitude and longitude libra-
tion of the Moon. The heterogeneity in the reflector distribution
of LLR data affects then the sensitivity of the lunar modelling
adjustment Viswanathan et al. (2016). By acquiring a better uni-
formity in the reflector sampling, IR contributes to improve the
adjustment of the Moon dynamical and rotational modelling (see
Section 2.5).

2.1.2 Temporal distribution

The full and new Moon periods are the most favourable for testing
gravity, as the gravitational and tidal effects are maximum. This
was partially demonstrated by Nordtvedt (1998). In Fig. 2 are plot-
ted the distributions of normal points relative to the synodic angle
for APOLLO (in capitals, abbreviation for Apache Point Obser-
vatory Lunar Laser-ranging Operation, while Apollo refers to the
US manned lunar missions) and Grasse station obtained at 532 and
1064 nm. About 25 per cent of the APOLLO data sample and al-
most 45 per cent of the Grasse 532 nm data sample are obtained
within 30◦ of the quarter Moons. This can be explained by two
factors.

(i) New Moon phase. As the pointing of the telescope on to the
reflectors is calibrated with respect to a nearby topographical feature
on the surface of the Moon, the pointing itself becomes a challenge
when the reference points lie in the unlit areas of the Moon. Also,

as the new Moon phase occurs in the daylight sky, the noise floor
increases and the detector electronics become vulnerable due to
ranging at a very close angle to the Sun Williams et al. (2009);
Courde et al. (2017).

(ii) Full Moon phase. During this phase, thermal distortions re-
main as the primary challenge, arising due to the overhead Sun
heating of the retroreflector arrays. This induces refractive index
gradients within each corner cube causing a spread in the return
beam, which makes detection more difficult. The proportion of
this effect is partially linked to the thermal stability of the arrays.
Since the A11, A14, and A15 arrays have a better thermal stability
compared to the L1 and L2 arrays Murphy et al. (2014), obser-
vations to the latter become sparse during the full Moon phase
(where A and L indicate Apollo and Lunokhod retroreflectors,
respectively).

Despite these challenges, LLR observations during the above-
mentioned phases of the Moon have been acquired with the IR
detection.

After the first 2 yr of 1064 nm detection path at the Grasse station,
the observations obtained within the 30◦ of the quarter Moons are
reduced to 32 per cent, effectively increasing by around 10 per cent
the portion of data sample close from the most favourable periods
(new and full Moon) for tides and UFF studies.

This is primarily achieved due to the improved signal-to-noise ra-
tio resulting from an improved transmission efficiency of the atmo-
sphere at the IR wavelength of 1064 nm. In addition, high-precision
data have also been acquired on the two Lunokhod reflector arrays
during full Moon phase.

In Section 3, we will see how the IR LLR data help to improve
the results related to the UFF tests.

2.1.3 Observational accuracy of the LLR observations

APOLLO observations are obtained with a 3.5 m telescope
(under time sharing) at the Apache Point Observatory, while
Grasse observations are obtained with a 1.5 m telescope
dedicated for Satellite Laser Ranging (SLR) and LLR. A
larger aperture is beneficial for statistically reducing the un-
certainty of the observation Murphy (2013), which translates
to millimetre-level accuracies for APOLLO. One can notice in
Fig. 4 that the current lunar ephemerides have a post-fit residual
scatter (rms) of about 1–2 cm for the recent observations while the
LLR normal point accuracy is given to be at least two times smaller.
This calls for an improvement of the Earth–Moon dynamical mod-
els within highly accurate numerically integrated ephemerides (see
Section 2.5).

2.2 Lunar dynamical model

2.2.1 Lunar orbit interactions

In our model, we include the following accelerations perturbing the
Moon’s orbit.

(i) Point mass mutual relativistic interactions, in the parametrized
post-Newtonian (pN) formalism, from the Sun, planets, and aster-
oids through Folkner et al. (2014, equation 27).

(ii) Extended bodies’ mutual interactions, through Folkner et al.
(2014, equation 28), which include

(a) the interaction of the zonal harmonics of the Earth through
degree 6;
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Figure 4. APOLLO and Grasse LLR observations in terms of (i) obser-
vational accuracy as given by the annual mean of normal point uncertainty
[converted from ps to one-way light time (LT) in cm] and (ii) annual weighted
root mean square of post-fit residuals (one-way LT in cm) obtained with
INPOP17a.

(b) the interaction between zonal, sectoral, and tesseral harmon-
ics of the Moon through degree 6 and the point mass Earth, Sun,
Jupiter, Saturn, Venus, and Mars;

(c) the interaction of degree 2 zonal harmonic of the Sun.

(iii) Interaction from the Earth tides, through Folkner et al. (2014,
equation 32).

The tidal accelerations from the tides due to the Moon and the
Sun are separated into three frequency bands (zonal, diurnal, and
semi-diurnal). Each band is represented by a potential Love number
k2m, E with a matching pair of time delays τXm, E (where subscript
X is either associated with the daily Earth rotation τRm, E or orbital
motion τOm, E) to account for frequency-dependent phase shifts from
an anelastic Earth with oceans. Here the time delay represents the
phase lag induced by the tidal components. Although the time delay
method inherently assumes that the imaginary component of k2m, E

varies linearly with frequency, it reduces the complexity of the
dynamical model. The diurnal τR1, E and semi-diurnal τR2, E are
included as solution parameters in the LLR analysis, while model
values for potential Love numbers for a solid Earth are fixed to
that from Petit & Luzum (2010, table 6.3) followed by corrections
from the ocean model FES2004 Lyard et al. (2006). A detailed
explanation about the most influential tides relevant to the Earth–
Moon orbit integration can be found in Williams & Boggs (2016,
table 6).

2.2.2 Lunar orientation and inertia tensor

(i) Lunar frame and orientation. The mantle coordinate system
is defined by the principal axes of the undistorted mantle, whose
moments of inertia matrix are diagonal. The time-varying mantle
Euler angles (φm(t),θm(t),ψm(t)) define the orientation of the princi-
pal axis frame with respect to the inertial ICRF2 frame (see Folkner
et al. 2014 for details). The time derivatives of the Euler angles are
defined through Folkner et al. (2014, equation 14).

(ii) Lunar moment of inertia tensor. The undistorted total moment
of inertia of the Moon ĨT is given by

ĨT = C̃T

mMR2
M

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

+
⎡
⎣ C̃2,0,M − 2C̃2,2,M 0 0

0 C̃2,0,M + 2C̃2,2,M 0
0 0 0

⎤
⎦, (1)

where C̃n, m, M is the unnormalized degree n, order m of the Stokes
coefficient Cn, m for the spherical harmonic model of the undistorted
Moon and C̃T is the undistorted polar moment of inertia of the
Moon normalized by its mass mM and radius squared R2

M. Through
equation (1), we are able to directly use the undistorted value of C22

Manche (2011) from GRAIL-derived spherical harmonic model of
Konopliv et al. (2013).
The moment of inertia of the fluid core Ic is given by

Ic = αcC̃T

⎡
⎣ 1 − fc 0 0

0 1 − fc 0
0 0 1

⎤
⎦ =

⎡
⎣ Ac 0 0

0 Bc 0
0 0 Cc

⎤
⎦, (2a)

where αc is the ratio of the fluid core polar moment of inertia Cc

to the undistorted polar moment of inertia of the Moon CT, fc is
the fluid core polar flattening, and Ac and Bc are the equatorial
moments of the fluid core. This study assumes an axisymmetric
fluid core with Ac = Bc.
The moment of inertia of the mantle Im has a rigid-body contribution
Ĩm and two time-varying contributions due to the tidal distortion
of the Earth and spin distortion as given in Folkner et al. (2014,
equation 41). The single time delay model (characterized by τM)
allows for dissipation when flexing the Moon Standish & Williams
(1992); Williams et al. (2001); Folkner et al. (2014),

Ĩm = ĨT − Ic. (2b)

(iii) Lunar angular momentum and torques. The time derivative
of the angular momentum vector is equal to the sum of torques
(N) acting on the body. In the rotating mantle frame, the angular
momentum differential equation for the mantle is given by

d

dt
Imωm + ωm × Imωm = N, (2c)

where N is the sum of torques on the lunar mantle from the point
mass body A (NM, figM-pmA), figure–figure interaction between the
Moon and the Earth [NM, figM-figE, using Folkner et al. (2014, equation
44)] and the viscous interaction between the fluid core and the
mantle (NCMB).
The motion of the uniform fluid core is controlled by the mantle
interior, with the fluid core moment of inertia (Ic) constant in the
frame of the mantle. The angular momentum differential equation
of the fluid core in the mantle frame is then given by

d

dt
Icωc + ωm × Icωc = −NCMB, (2d)

NCMB = kv

(
ωc − ωm

)
+

(
Cc − Ac

)(
ẑm · ωc

)(
ẑm × ωc

)
, (2e)

where kv is the coefficient of viscous friction at the core-mantle
boundary (CMB) and ẑm is a unit vector aligned with the polar
axis of the mantle frame. The second part on the right-hand side of
equation (2e) is the inertial torque on the axisymmetric fluid core.
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INPOP17a and fundamental physics tests 1881

Table 1. Comparison of post-fit residuals of LLR observations from ground stations with corresponding time span, number of normal points available,
and number of normal points used in each solution after a 3σ rejection filter. The WRMS (in cm) is obtained with solutions INPOP13c (1969–2013) and
INPOP17a (1969–2017). INPOP13c statistics are drawn from Fienga et al. (2014).

INPOP13c INPOP17a
Code Station Time span Available Used WRMS Used WRMS

(cm) (cm)

70610 APOLLO, NM, USA (group A) 2006–2010 941 940 4.92 929 1.27
70610 APOLLO, NM, USA (group B) 2010–2012 506 414 6.61 486 1.95
70610 APOLLO, NM, USA (group C) 2012–2013 361 359 7.62 345 1.52
70610 APOLLO, NM, USA (group D) 2013–2016 832 – – 800 1.15
01910 Grasse, FR 1984–1986 1187 1161 16.02 1161 14.01
01910 Grasse, FR 1987–1995 3443 3411 6.58 3407 4.11
01910 Grasse, FR 1995–2006 4881 4845 3.97 4754 2.86
01910 Grasse, FR 2009–2013 999 990 6.08 982 1.41
01910 Grasse, FR 2013–2017 3351 – – 3320 1.51
56610 Haleakala, HI, USA 1984–1990 770 739 8.63 728 4.80
07941 Matera, IT 2003–2013 83 70 7.62 37 2.37
07941 Matera, IT 2013–2015 30 – – 28 2.93
71110 McDonald, TX, USA 1969–1983 3410 3302 31.86 3246 18.87
71110 McDonald, TX, USA 1983–1986 194 182 20.60 148 16.77
71111 MLRS1, TX, USA 1983–1984 44 44 29.43 44 32.73
71111 MLRS1, TX, USA 1984–1985 368 358 77.25 356 62.58
71111 MLRS1, TX, USA 1985–1988 219 207 7.79 202 11.07
71112 MLRS2, TX, USA 1988–1996 1199 1166 5.36 1162 3.81
71112 MLRS2, TX, USA 1996–2012 2454 1972 5.81 1939 3.72
71112 MLRS2, TX, USA 2012–2015 17 – – 15 2.59

TOTAL 1969–2017 25 289 20 160 24 089

2.3 Reduction model

The reduction model for the LLR data analysis has been imple-
mented within a precise orbit determination and geodetic software:
GINS Marty et al. (2011); Viswanathan et al. (2015) maintained by
space geodesy teams at GRGS/OCA/CNES and written in FOR-
TRAN90. The subroutines for the LLR data reduction within GINS are
vetted through a step-wise comparison study conducted among the
LLR analysis teams in OCA-Nice (this study), IMCCE-Paris, and
IfE-Hannover, by using simulated LLR data and DE421 Folkner,
Williams & Boggs (2009) as the planetary and lunar ephemeris.
The modelling follows the recommendations of IERS 2010 Petit &
Luzum (2010). To avoid any systematics in the reduction model,
the upper limit on the discrepancy between the teams was fixed to
1 mm in one-way light time.

From each normal point, the emission time (in UTC) and the
round-trip time (in seconds) are used to iteratively solve for the
reflection time in the light-time equations. A detailed description is
available in Moyer (2003, sections 8 and 11) for a precise round-trip
light-time computation.

A detailed description of the reduction model used for this study
is provided in Manche (2011).

2.4 Fitting procedure

For APOLLO station observations, scaling the uncertainties of
the normal points depending on the change of equipments, or a
change in the normal point computation algorithm, is advised (see
http://physics.ucsd.edu/˜tmurphy/apollo/151201_notes.txt). Unre-
alistic uncertainties present in observations from Grasse, McDonald
MLRS2, and Matera between time periods 1998–1999, 1996, and
2010–2012, respectively, are rescaled.

During the fitting procedure, bounds are used Stark & Parker
(1995) for limiting the variability of the estimated parameters, while

considering the parameter correlation and variance within the nor-
mal matrix. For the gravity field coefficients (including C2, 0, M and
C2, 2, M), the bounds are placed using the uncertainties provided by
GRAIL [after scaling the formal uncertainties by a factor of 40, fol-
lowing the recommendation by Konopliv et al. (2013)] with their
values centred on the GRAIL gravity field estimates.

Additional details of the weighting scheme and the fitting proce-
dure used for the construction of INPOP17a solution can be found
in Viswanathan et al. (2017). A filtering scheme is enforced during
the iterative fit of the parameters. At each iteration, the residuals are
passed through a 3σ filter (where σ is recomputed at each iteration).

2.4.1 Biases

Changes in the ground station introduce biases in the residuals.
These biases correspond either with a known technical develop-
ment at the station (new equipment, change of optical fibre cables)
or systematics. Any estimated bias can be correlated with a cor-
responding change in the ground station, provided the incidents
have been logged. A list of known and detected biases is given in
Viswanathan et al. (2017).

2.5 Results

Table 1 gives the comparison of post-fit residuals of LLR obser-
vations from different ground stations, obtained with the previous
solution INPOP13c and the new solution INPOP17a. Table 2 and
3 show the improvement brought by the IR LLR observations on
the post-fit residuals of Grasse and APOLLO stations, respectively.
Table 4 provides a list of the fixed parameters while Table 5 gives
the list of the adjusted parameters related to the lunar interior. The
fitted coordinates of the Moon reflectors and of the LLR stations can
be found in Viswanathan et al. (2017). As the LLR observations are
not included in the construction of the ITRF Altamimi et al. (2016),
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Table 2. Grasse LLR data retroreflector statistics computed using post-fit
residuals obtained with INPOPG and INPOPG + IR, within the fit intervals
01/01/2015 to 01/01/2017 (with a 3σ filter), with the WRMS in m (rms
weighted by the number of normal points from each reflector).

Grasse
LRRR INPOPG INPOPG + IR per cent change NPTs

A15 0.0183 0.0181 1.1 1018
A14 0.0203 0.0177 12.8 172
A11 0.0267 0.0239 10.5 215
L1 0.0215 0.0166 22.8 265
L2 0.0246 0.0215 12.6 256
WRMS 0.0207 0.0189 9.5 1926

small corrections to the LLR station coordinates help for the im-
provement of LLR residuals during the construction of the lunar
ephemerides. The Earth orientation parameters and the modelling
of the Earth rotation are however kept fixed to the IERS convention
(see Section 2.3).

The solution INPOPG with an axisymmetric core fitted to LLR
observations serves as a validation of our lunar model and analysis
procedure, against the DE430 Jet Propulsion Laboratory planetary
and lunar ephemeris analysis described in Folkner et al. (2014) and
Ephemeris of Planets and the Moon (EPM) Institute of Applied
Astronomy Russian Academy of Sciences ephemeris in Pavlov,
Williams & Suvorkin (2016). Only 532 nm wavelength LLR data are
used for matching with the DE430 and EPM ephemeris. In Folkner
et al. (2014), Pavlov et al. (2016), and INPOPG, gravity field coef-
ficients up to degree and order 6 are used for the Moon (GL0660b
from Konopliv et al. 2013) and the Earth [GGM05C from Ries et al.
(2016) for INPOP17a ephemeris and EGM2008 from Pavlis et al.
(2012, 2013) for DE/EPM ephemerides]. Coefficients C32, S32, and
C33 are then included in the fit parameters as they improve the
overall post-fit residuals. For INPOPG, the improvement of the for-
mal uncertainty compared to Pavlov et al. (2016), especially in the
estimation of parameter kv/CT, indicates a strong dissipation mech-
anism within the Moon, through viscous torques at the fluid core–
mantle boundary. Overall, INPOP uncertainties are consistent with
EPM Pavlov et al. (2016) published values. DE Williams, Boggs
& Folkner (2013); Folkner et al. (2014) uncertainties are greater
than INPOP and EPM, and should therefore be considered as more
realistic.

Differences between GL0660b values and fitted C32, S32, and C33

from Folkner et al. (2014), Pavlov et al. (2016), or in INPOPG are
several orders of magnitude greater than the mean GRAIL uncer-
tainties (see Konopliv et al. 2013). These results suggest that some
significant effects impacting the LLR observations are absorbed by
the adjustment of the degree 3 of the full Moon gravity field.

The solution INPOPG + IR refers to the addition of 2 yr of IR LLR
observations Courde et al. (2017) described in Section 2.1 and built
in following the same specification as of INPOPG.

This data set is weighted at the same level as the APOLLO station
normal points within the estimation procedure (see Section 2.4).

The first outcome from the introduction of the IR data sets is the
improvement of the post-fit residuals obtained for L1 reflector as
one can see in Tables 2 and 3 and in Figs 5–8. This is due to the
increase of normal points obtained for this reflector as discussed in
Section 2.1.1.

The second conclusion is that because of only 2 yr on data, the
improvement brought by the addition of IR data on the estimated
parameters characterizing the Moon and its inner structure is sig-
nificant, especially for those quantifying the dissipation mechanism

Table 3. APOLLO LLR data retroreflector statistics computed using post-
fit residuals obtained with INPOPG and INPOPG + IR, within the fit intervals
01/01/2015 to 01/01/2017 (with a 3σ filter), with the WRMS in m (rms
weighted by the number of normal points from each reflector).

APOLLO
LRRR INPOPG INPOPG + IR per cent change NPTs

A15 0.0127 0.0127 0.2 344
A14 0.0192 0.0177 7.8 176
A11 0.0185 0.0169 8.7 164
L1 0.0186 0.0157 15.6 89
L2 0.0136 0.0137 −0.7 64
WRMS 0.0159 0.0149 6.7 837

Table 4. Fixed parameters for the Earth–Moon system.

Parameter Units INPOP DE430 EPM

(EMRATa − 81.300 570) × 106 1.87 −0.92 −0.92c

(RE − 6378.1366) × 104 km 0.0 −3 0.0
(J̇2E − 2.6 × 10−11) yr−1 0.0 0.0 0.0
(k20, E − 0.335) 0.0 0.0 0.0
(k21, E − 0.32) 0.0 0.0 0.0
(k22, E − 0.301 02) −0.019 02 0.018 98 −0.019 02
(τO0, E − 7.8 × 10−2) × 102 d 0.0 −1.4 0.0
(τO1, E + 4.4 × 10−2) d 0.0 0.0b 0.0
τO2, E + 1.13 × 10−1) × 101 d 0.0 0.13 0.0
(RM − 1738.0) km 0.0 0.0 0.0
(αC − 7.0 × 10−4) 0.0 0.0 0.0
(k2, M − 0.024 059) 0.0 0.0 0.0
(l2 − 0.0107) 0.0 0.0 0.0

Notes. a EMRAT is fitted during the joint analysis between the lunar and
planetary part.
bτO1, E in Folkner et al. (2014) given as −0.0044 is a typographical error.
cEMRAT in the EPM solution Pavlov et al., 2016, is fixed to a value obtained
from DE430

such as Q27.212 and τM with a decreasing uncertainty or kv
CT

and fc

with a significant change in the fitted value (see Table 5).
A significant global improvement is noticeable when one com-

pares post-fit residuals obtained with INPOPG and with INPOPG + IR

with those obtained with INPOP13c as presented in Fienga et al.
(2014) or in Tables 2 and 3. Finally, one should notice in Table 1
the 1.15 cm obtained for the post-fit weighted rms obtained for the
3 yr of the last period of the APOLLO data (group D) as well as
that for the IR Grasse station.

3 T E S T O F T H E E QU I VA L E N C E P R I N C I P L E

3.1 Context

Among all possibilities to test GR, the tests of the motion of massive
bodies as well as the propagation of light in the Solar system were
historically the first ones, and still provide the highest accuracies
for several aspects of gravity tests (see Berti et al. 2015; Joyce
et al. 2015; Yunes, Yagi & Pretorius 2016 for recent overviews
of constraints on alternative theories from many different types of
observations). This is in part due to the fact that the dynamics of the
Solar system is well understood and supported by a long history of
observational data.

In GR, not only do test particles with different compositions
fall equally in a given gravitational field, but also extended bodies
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INPOP17a and fundamental physics tests 1883

Figure 5. Post-fit residuals in (cm) versus time (year) obtained with INPOPG + IR specification (Section 2.5) for McDonald, MLRS1, MLRS2, Haleakala, and
Matera stations.

Figure 6. Post-fit residuals in (cm) versus time (year) obtained with INPOPG + IR specification (Section 2.5) for Grasse station with the green wavelength.

Figure 7. Post-fit residuals in (cm) versus time (year) obtained with INPOPG + IR specification (Section 2.5) for Grasse station with the IR wavelength.

with different gravitational self-energies. While a deviation from
the former case would indicate a violation of the weak equivalence
principle (WEP), a deviation from the latter case would be a sign
of a violation of the strong equivalence principle (SEP; Will 2014).
Violations of the equivalence principles are predicted by a number
of modifications of GR, often intending to suggest a solution for
the problems of dark energy and dark matter (Capozziello & de
Laurentis 2011; Berti et al. 2015; Joyce et al. 2015) and/or to put
gravity in the context of quantum field theory (Kostelecký 2004;
Woodard 2009; Donoghue 2017). The UFF, an important part of the
equivalence principle, is currently tested at a level of about 10−13

with torsion balances Adelberger et al. (2003) and LLR analyses
Williams et al. (2012).

As the Earth and the Moon both fall in the gravitational field of
the Sun – and because they neither have the same compositions nor
the same gravitational self-energies – the Earth–Moon system is an
ideal probe of both the WEP and the SEP, while torsion balance
Adelberger et al. (2003) or MICROSCOPE Liorzou et al. (2014) is
only sensitive to violations of the WEP.

In this paper, we implemented the equations given in Williams
et al. (2012) and introduce in the INPOP fit the differences between
the accelerations of the Moon and the Earth.

The aim of this work is first to give the most general constraint in
terms of acceleration differences without assuming metric theories
or other types of alternative theories (Section 3.3). In a second step
(Section 3.4), we propose two interpretations: one following the
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Figure 8. Post-fit residuals in (cm) versus time (year) obtained with INPOPG + IR specification (Section 2.5) for APOLLO station.

Table 5. Extended body parameters for the Earth and the Moon. Uncertainties for INPOPG and INPOPG + IR (1σ ) are obtained from a 5 per cent jackknife,
while other solutions (DE430 and EPM) are assumed as (1σ ) formal uncertainties.

Parameter Units INPOPG INPOPG + IR DE430 EPM

(GMEMB − 8.997 011 400 × 10−10) × 1019 au3/d2 4 ± 2 4 ± 2 −10 10 ± 5
(τR1, E − 7.3 × 10−3) × 105 d 0 ± 4 6 ± 3 6 ± 30 57 ± 5
(τR2, E − 2.8 × 10−3) × 105 d 9.2 ± 0.4 8.7 ± 0.3 − 27 ± 2 5.5 ± 0.4
(CT/(mMR2) − 0.393 140) × 106 6.9 ± 0.2 8.2 ± 0.2 2a 2a

(C32 − 4.840 4981 × 10−6b) × 109 4.1 ± 0.3 3.9 ± 0.3 4.4 4.4 ± 0.1
(S32 − 1.666 1414 × 10−6b) × 108 1.707 ± 0.006 1.666 ± 0.006 1.84 1.84 ± 0.02
(C33 − 1.711 6596 × 10−6b) × 108 − 1.19 ± 0.04 − 2.40 ± 0.04 −3.6 − 4.2 ± 0.2
(τM − 9 × 10−2) × 104 d − 14 ± 5 − 35 ± 3 58.0 ± 100 60 ± 10
( kv
CT

− 1.6 × 10−8) × 1010 d−1 12.7 ± 0.4 15.3 ± 0.5 4.0 ± 10.0 3.0 ± 2.0
(fc − 2.1 × 10−4) × 106 37 ± 3 42 ± 3 36 ± 28 37 ± 4
(h2 − 3.71 × 10−2c) × 103 6.3 ± 0.2 6.8 ± 0.2 11.0 ± 6 6 ± 1
Q27.212 − 45 (derived) 3.9 ± 0.5 5.0 ± 0.2 0 ± 5 0 ± 1

Notes. aDerived quantity.
bC32, S32, and C33 are reference values from the GRAIL analysis by Konopliv et al. (2013).
ch2 reference value from LRO-LOLA analysis by Mazarico et al. (2014).

usual formalism proposed by Nordtvedt (see e.g. Nordtvedt 2014
and references therein), and the other following the dilaton theory
Damour & Polyakov (1994); Hees & Minazzoli (2015); Minazzoli
& Hees (2016).

3.2 Method

In order to test possible violations of GR in terms of UFF, a sup-
plementary acceleration is introduced in the geocentric equation
of motion of the Moon, such that the UFF violation-related differ-
ence between the Moon and the Earth accelerations reads Nordtvedt
(1968b)


aUFF ≡ (aM − aE)UFF = aE
ESM. (3)


ESM is estimated in the LLR adjustment together with the other
parameters of the lunar ephemerides given in Table 5. In what fol-
lows, we shall name 
ESM ‘UFF violation parameter’. ESM stands
for the three bodies involved, namely the Earth, the Sun, and the
Moon, respectively. As we shall see in Section 3.4.2, some theoreti-
cal models induce a dependence of the UFF violation parameter on
the composition of the Sun, in addition to the ‘more usual’ depen-
dence on the compositions and on the gravitational binding energies
of the Moon and the Earth.

In order to estimate 
ESM with the appropriate accuracy, one
should correct for supplementary effects such as the solar radiation
pressure and thermal expansion of the retroreflectors Vokrouhlický
(1997); Williams et al. (2012). An empirical correction on the radial

perturbation (
rEM) induced by the UFF test has to be applied. For
instance, with some simplifying approximations (Nordtvedt 2014),
one can show that the UFF additional acceleration would indeed
lead to an additional radial perturbation (
rEM) of the Moon’s orbit
towards the direction of the Sun given by


rEM = S
ESM cos D, (4)

where S is a scaling factor of about −3 × 1010 m Williams et al.
(2012) and D is the synodic angle. A correction 
r = 3.0 ± 0.5 mm
Vokrouhlický (1997); Williams et al. (2012) is then applied in order
to correct for solar radiation pressure and thermal radiation of the
retroreflectors, and a new corrected value of 
ESM is then deduced
(see Table 6).

3.3 Results

Fits were performed including in addition to the previous fitted pa-
rameters presented in Table 5 the UFF violation parameter 
ESM

given in equation (3). Two different fits were considered includ-
ing 532 and 1064 nm data sets (solution labelled INPOPG + IR), or
just the 532 nm data sets (solution labelled INPOPG). A supple-
mentary adjustment was also performed for a better comparison to
the previous determination from other LLR analysis groups, which
were limited to a data sample up to 2011 (labelled as limited data).
Results are given in Table 6.

The additional acceleration of the Moon orbit in the direction of
the Sun correlates with a coefficient of 0.95 and 0.90 with GMEMB
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Table 6. Comparison of results for the value of 
ESM (column 4) estimated with the solution INPOP17A fitted to LLR data set between (1) 1969–2011
(for comparison with Müller et al. 2012; Williams et al. 2012); (2) 1969–2017 with data obtained only in green wavelength, (3) 1969–2017 with data
obtained with both green and IR wavelength. Column 5 empirically corrects the radial perturbation from effects related to solar radiation pressure and
thermal expansion of retroreflectors using equation (4), with a value 
r = 3.0 ± 0.5 mm Williams et al. (2012). Column 6 contains the value of 
ESM after
applying the corrections of column 5. Column 7 contains the parameter η obtained using equation (13). See discussion in Section 4.

Reference Data Uncertainty Estimated Corrected Corrected Parameter
time span �ESM cos D �ESM ηc

(Year) (× 10−14) (mm) (× 10−14) (× 10−4)

Williams et al. (2009)a 1969–2004 N/A 3.0 ± 14.2 2.8 ± 4.1 −9.6 ± 14.2 2.24 ± 3.14
Williams et al. (2012) 1969–2011 N/A 0.3 ± 12.8 2.9 ± 3.8 −9.9 ± 12.9 2.25 ± 2.90
Müller et al. (2012)a, b 1969–2011 3σ −14 ± 16 – – –
INPOP17A (limited data) 1969–2011 3σ −3.3 ± 17.7 4.0 ± 5.2 −13.5 ± 17.8 3.03 ± 4.00
Hofmann & Müller (2016)a 1969–2016 3σ – – −3.0 ± 6.6 0.67 ± 1.48
INPOP17A (green only) 1969–2017 3σ 5.2 ± 8.7 1.5 ± 2.6 −5.0 ± 8.9 1.12 ± 2.00
INPOP17A (green and IR) 1969–2017 3σ 6.4 ± 6.9 1.1 ± 2.1 −3.8 ± 7.1 0.85 ± 1.59

Notes. aThermal expansion correction not applied.
bSRP correction not applied.
cDerived using |�E|

mEc2 − |�M|
mMc2 = −4.45× 10−10 (Williams et al. 2012, equation 6).

and the Earth–Moon mass ratio (EMRAT), respectively. In all the
solutions w.r.t. LLR EP estimation, the gravitational mass of the
Earth–Moon barycentre (GMEMB) remains as a fit parameter due
its high correlation with the EP parameter (
ESM). EMRAT was
estimated from a joint planetary solution and kept fixed during
LLR EP tests (for all INPOP solutions in Table 6) due to its weak
determination from LLR.

A test solution that fitted EMRAT, with GMEMB as a fixed param-
eter, gives an estimate of 
ESM = (8 ± 7.0) × 10−14. However, the
value of EMRAT estimated from an LLR-only solution has an un-
certainty of one order of magnitude greater than that obtained from
the joint planetary fit. This is also consistent with a similar result
by Williams et al. (2009). As a result, EMRAT was not included as
a fit parameter for the estimates provided in Table 6, as it resulted
in a degraded fit of the overall solution.

Williams et al. (2012) show that including annual nutation com-
ponents of the Earth pole direction in space, to the list of fit-
ted parameters during the estimation of LLR EP solution, in-
creases the uncertainty of the estimated UFF violation parame-
ter (
ESM) by 2.5 times. Moreover, it is to be noted that within
Table 6, the solutions by Williams, Turyshev & Boggs (2009,
2012) and Müller, Hofmann & Biskupek (2012) use the IERS
2003 McCarthy & Petit (2004) recommendations within the re-
duction model, while all INPOP17 solutions use IERS 2010 Pe-
tit & Luzum (2010) recommendations. The notable difference be-
tween the two IERS models impacting the LLR EP estimation is
expected to be from the precession nutation of the celestial in-
termediate pole within the ITRS–GCRS transformation (Petit &
Luzum 2010, p. 8).

Equation (4) shows the dependence of 
ESM w.r.t. the cosine of
the lunar orbit synodic angle, synonymous with the illumination
cycle of the lunar phases. Due to the difficulties involved with
ranging to the Moon during the lunar phases with the extreme values
of cos D (new and full Moon) as described in Section 2.1.2, the LLR
observations during these phases remain scarce. The availability of
IR LLR observations from Grasse contributes to the improvement of
this situation, as shown in Fig. 2. This is reflected in the improvement
of the uncertainty of the estimated value of 
ESM by 14 per cent,
with solutions including the IR LLR data.

Using both IR and green wavelength data, and empirically cor-
recting for the radial perturbation for effects related to solar radi-
ation pressure and thermal expansion, our final result on the UFF

violation parameter is given by (see also, Table 6)


ESM = (−3.8 ± 7.1) × 10−14. (5)

The continuation of the IR observational sessions at Grasse will
help to continue the improvement in the 
ESM estimations.

An observable bias in the differential radial perturbation of the
lunar orbit w.r.t. the Earth, towards the direction of the Sun, if sig-
nificant and not accounted for within the dynamical model, would
result in a false indication of the violation of the principle of equiv-
alence estimated with the LLR observations. Oberst et al. (2012)
show the distribution of meteoroid impacts with the lunar phase.
Peaks within the histogram in Oberst et al. (2012, p. 186) indicate a
non-uniform temporal distribution with a non-negligible increase in
both small and large impacts during the new and full Moon phase.
Future improvements to the LLR EP estimation must consider the
impact of such a bias that could potentially be absorbed during the
fit by the LLR UFF violation parameter 
ESM.

3.4 Theoretical interpretations

3.4.1 Nordtvedt’s interpretation: gravitational versus inertial
masses

Although equations of motion are developed at the pN level in
INPOP Moyer (2003), violations of the UFF can be cast entirely
in the Newtonian equation of motion with sufficient accuracy. As
described by Nordtvedt (1968b), a difference of the inertial (mI)
and gravitational (mG) masses would lead to an alteration of body
trajectories in celestial mechanics according to the following equa-
tion:

aT = −
(

mG

mI

)
T

∑
A�=T

GmG
A

r3
AT

rAT , (6)

where rAT = xT − xA and G is the constant of Newton.
Following Williams et al. (2012), the relative acceleration at the

Newtonian level between the Earth and the Moon due to the attrac-
tion of the Sun reads

aM − aE = −Gμ

r3
EM

rEM + GmG
S

[
rSE

r3
SE

− rSM

r3
SM

]

+ GmG
S

[
rSE

r3
SE

((
mG

mI

)
E

− 1

)
− rSM

r3
SM

((
mG

mI

)
M

− 1

)]
, (7)
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with μ ≡ mG
M + mG

E +
((

mG

mI

)
E

− 1
)

mG
M +

((
mG

mI

)
M

− 1
)

mG
E .(

mG

mI

)
E

and
(

mG

mI

)
M

are the ratios between the gravitational and

the inertial masses of the Earth and Moon, respectively.
With ephemerides, the first term of equation (7) does not lead

to a sensitive test of the UFF, because it is absorbed in the fit of
the parameter mG

M + mG
E (e.g. Williams et al. 2012), while the last

term does. At leading order, one can approximate both distances
appearing in this last term as being approximately equal. One gets


aUFF ≡ (aM − aE)UFF

≈ GmG
S

[
rSE

r3
SE

((
mG

mI

)
E

− 1

)
− rSM

r3
SM

((
mG

mI

)
M

− 1

)]

≈ aE

[((
mG

mI

)
E

− 1

)
−

((
mG

mI

)
M

− 1

)]

≡ aE
ESM (8)

with


ESM =
[(

mG

mI

)
E

−
(

mG

mI

)
M

]
. (9)

One recovers equation (3). Therefore, in this context, constraints
on 
ESM can be interpreted as constraints on the difference of
the gravitational-to-inertial mass ratios between the Earth and the
Moon.

Furthermore, the LLR test of UFF captures a combined effect
of the SEP, from the differences in the gravitational self-energies,
and the WEP due to compositional differences, of the Earth–Moon
system. In general, one has


ESM = 
WEP
ESM + 
SEP

ESM. (10)

In order to separate the effects of WEP, we rely on results from
laboratory experiments that simulate the composition of the core
and the mantle materials of the Earth–Moon system. One such
estimate is provided by Adelberger (2001), which translates to the
following mass ratio difference:


WEP
ESM =

[(
mG

mI

)
E

−
(

mG

mI

)
M

]
WEP

(11)

= (1.0 ± 1.4) × 10−13. (12)

It is also possible to deduce the Nordtvedt parameter (η) defined as


SEP
ESM = ηSEP

[( |�|
mc2

)
E

−
( |�|

mc2

)
M

]
(13)

≈ ηSEP × (−4.45 × 10−10), (14)

where � and mc2 are the gravitational binding and rest mass en-
ergies, respectively, for the Earth and the Moon (subscripts E and
M, respectively). The value of −4.45 × 10−10 is obtained from
Williams et al. (2009, equation 7).

However, all metric theories lead to a violation of the SEP only.
Therefore, for metric theories, it is irrelevant to try to separate
violation effects of the WEP and SEP, as the WEP is intrinsically
respected.

3.4.2 Dilaton theory and a generalization of the Nordtvedt
interpretation

Starting from a general dilaton theory, a more general equation
governing celestial mechanics than equation (6) has been found to

be Hees & Minazzoli (2015); Minazzoli & Hees (2016)

aT = −
∑
A�=T

GmG
A

r3
AT

rAT (1 + δT + δAT ) . (15)

The coefficients δT and δAT parametrize the violation of the
UFF. In this expression, the inertial mass mI

A writes in terms
of the gravitational mass mG

A as mG
A = (1 + δA)mI

A Hees & Mi-
nazzoli (2015); Minazzoli & Hees (2016). Of course, since
mG

A/mI
A = 1 + δA, one recovers equation (6) when δAB = 0 for

all A and B. From equation (15), one can check that the gravi-
tational force in this context still satisfies Newton’s third law of
motion:

mI
AaA = GmI

AmI
B

r3
AB

rAB (1 + δA + δB + δAB ) = −mI
B aB. (16)

In the dilaton theory, the δ coefficients are functions of ‘dila-
tonic charges’ and of the fundamental parameters of the theory
Damour & Donoghue (2010); Hees & Minazzoli (2015); Minazzoli
& Hees (2016). However, in what follows, we will consider the
phenomenology based on the δ parameters independently of its the-
oretical origin, as a similar phenomenology may occur in a different
theoretical framework.

In general, δT can be decomposed into two contributions:
one from a violation of the WEP and one from a violation of
the SEP:

δT = δWEP
T + δSEP

T , with δSEP
T = η

|�T|
mTc2

. (17)

The quantity δSEP
T depends only on the gravitational energy content

of the body T. On the other hand, δWEP
T depends on the composition

of the falling body T (Damour & Donoghue 2010; Hees & Minazzoli
2015; Minazzoli & Hees 2016). In some theoretical situations (see
e.g. Damour & Donoghue 2010), if δWEP

T �= 0, then δWEP
T � δSEP

T ,
such that one can have either a clean WEP violation or a clean SEP
violation.

Like the parameter δWEP
T , δAT depends on the composition of

the falling bodies. However, unlike δWEP
T , it also depends on the

composition of the body A that is the source of the gravita-
tional field in which the body T is falling (Hees & Minazzoli
2015; Minazzoli & Hees 2016). As a consequence, the relative
acceleration of two test particles with different compositions can-
not be related to the ratios between their gravitational-to-inertial
masses in general (i.e. mG

A/mI
A = 1 + δA). This contrasts with

the usual interpretation (see for instance Williams et al. 2012).
However, with some theoretical models, δWEP

T is much greater
than δAT (Damour & Donoghue 2010; Hees & Minazzoli 2015;
Minazzoli & Hees 2016).

At the Newtonian level, the relative acceleration between the
Earth and the Moon reads

aM − aE = −Gμ

r3
EM

rEM + GmG
S

[
rSE

r3
SE

− rSM

r3
SM

]

+ GmG
S

[
rSE

r3
SE

(δE + δSE) − rSM

r3
SM

(δM + δSM)

]
, (18)

with μ ≡ mG
M + mG

E + (δE + δEM)mG
M + (δM + δEM)mG

E . As dis-
cussed already in the previous subsection, the first term of equation
(18) does not lead to a sensitive test of the UFF, because it can
be absorbed in the fit of the parameter mG

M + mG
E (e.g. Williams

et al. 2012), while the last term does. At leading order, one can
approximate both distances appearing in this last term as being
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approximately equal. One therefore has


aUFF ≡ (aM − aE)UFF

≈ GmG
S

[
rSE

r3
SE

(δE + δSE) − rSM

r3
SM

(δM + δSM)

]

≈ aE [(δE + δSE) − (δM + δSM)]

≡ aE
ESM, (19)

where 
aUFF is the part of the relative acceleration between the
Earth and the Moon that violates the UFF. Once again, one recovers
equation (3) – although its theoretical interpretation is different
compared to the previous subsection.

When δSM = δSE, and especially when δSM = δSE = 0, one
recovers the usual equation (9). But it is not the case in general
because the composition of the Sun may affect the dynamics in
some cases as well. Therefore, in a more general context than in
Section 3.4.1, constraints on 
ESM cannot be uniquely interpreted
as constraints on the difference of the gravitational-to-inertial mass
ratios between the Earth and the Moon.

As a consequence, from a pure phenomenological point of view
– or, equivalently, from an agnostic point of view – one should not
interpret 
ESM in terms of gravitational-to-inertial mass ratios only.
Indeed, a more general expression of the UFF violating parameter
is given by


ESM = [(δE + δSE) − (δM + δSM)] , (20)

where one can see that the Sun’s composition may affect the
dynamics as well, through the coefficients δSE and δSM.

Otherwise, see a discussion on how to decorrelate the dilaton
parameters from planetary ephemeris in Minazzoli et al. (2017).

4 DISCUSSION

As emphasized in Section 3.4.1, metric theories lead to a violation
of the SEP only. Hence, it is tempting to use equation (13) in order
to convert the result on 
ESM in equation (5) into a constraint on
the Nordtvedt parameter ηSEP – when considering a metric theory
prior.

However, such a conversion would not give a clean constraint
on the actual Nordtvedt parameter ηSEP. The reason is that, since
ηSEP depends on the pN parameters, one should also fit the extra
pN parameters in the Einstein–Infeld–Hoffmann (EIH) equations
of motion, at the same time in both the lunar and the planetary
ephemeris – because the latter is used in the derivation of the former.
Hence, unless a global fit of the various pN parameters and 
ESM

is done at the same time for the whole Solar system solution, the
conversion of 
ESM into ηSEP through equation (13) does not give
a constraint on the actual Nordtvedt parameter ηSEP, but on another
parameter that we shall call η instead – and that is simply defined
by equation (13).

Despite this fact, the result on 
ESM that is given in equation (5)
can nevertheless be interpreted in terms of fundamental physics,
because a whole subset of theories predict a large domination of the
WEP over the SEP in 
ESM Damour & Donoghue (2010); Minazzoli
& Hees (2016) – meaning that one would have a violation of the
UFF while the pN parameters would be either equal to their value
in GR or their difference with respect to their value in GR would be
negligible at the present level of experimental accuracy.

However, in order to separate the SEP and WEP contributions to

ESM in a general case – or to determine the Nordtvedt parameter
ηSEP when considering a metric theory prior – one would need
to consider the whole Solar system simultaneously in a consistent

parametrized pN framework. This interesting study is left for a
future work.

Nevertheless, an internal test on the impact of the extra pN pa-
rameters γ and β in the EIH equations under their known limits
[taken from Bertotti, Iess & Tortora (2003) and Fienga et al. (2015),
respectively] shows no significant impact on our results, due to
the little sensitivity of these parameters to the LLR data. Hence, η

represents a good quantitative approximation of the Nordtvedt pa-
rameter ηSEP, as deduced from testing the UFF with LLR data only.
Moreover, since UFF constraints are often reported in terms of η,
this quantity can still be used in order to compare the sensitivity
of the various lunar ephemeris solutions with respect to testing the
UFF. The estimates of η are reported in Table 6.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present an improvement in the lunar dynamical
model of INPOP ephemeris (version 17a) compared to the previous
release (version 13c). The model is fitted to the LLR observations
between 1969 and 2017, following the model recommendations
from IERS 2010 Petit & Luzum (2010). The lunar parameter esti-
mates obtained with the new solution are provided in Table 5 with
comparisons to that obtained by other LLR analysis groups. The
improvement brought by the new IR LLR data from Grasse station
on the parameter estimates is characterized. The post-fit LLR resid-
uals obtained with INPOP17a are between 1.15 and 1.95 cm over
10 yr of APOLLO data and 1.47 cm over 2 yr of the new IR LLR
data from Grasse Viswanathan et al. (2017). Our solution benefits
also the better spatial and temporal distribution of the IR Grasse
data with an improvement of 14 per cent of the UFF tests and better
estimations of the Moon dissipation parameters.

We take advantage of the lunar ephemeris improvements to per-
form new tests of the UFF. A general constraint is obtained using
INPOP, in terms of the differences in the acceleration of the Earth
and the Moon towards the Sun. In addition to the Nordtvedt inter-
pretation Nordtvedt (1968b, provided in Section 3.4.1), we propose
an alternative interpretation and a generalization of the usual inter-
pretation from the point of view of the dilaton theory (Damour &
Polyakov 1994; Hees & Minazzoli 2015; Minazzoli & Hees 2016),
provided in Section 3.4.2. We obtain an estimate of the UFF violat-
ing parameter 
ESM = (− 3.8 ± 7.1) × 10−14, showing no violation
of the principle of equivalence at this level. Future work may further
allow us to separate between the SEP and the WEP contributions to

ESM by studying the whole Solar system simultaneously in a con-
sistent parametrized pN framework – see discussion in Section 4.

Thermal expansion of the retroreflectors and solar radiation pres-
sure are currently employed as empirical corrections following
Vokrouhlický (1997) and Williams et al. (2009). Future LLR anal-
ysis will consider an implementation of these effects within the
reduction procedure, so as to improve the uncertainty of the EP test.
Oberst et al. (2012) show the distribution of meteoroid impacts with
the lunar phase, indicating a non-uniform temporal distribution dur-
ing the new and full Moon phase that could impact the test of EP.
The impact of this effect needs to be characterized during the EP
test, to be considered as negligible at the present LLR accuracy.

The use of a strictly GRAIL-derived gravity field model Konopliv
et al. (2013) highlights longitude libration signatures well above the
LLR noise floor, arising from unmodelled effects in lunar ephemeris
Viswanathan (2017). Other LLR analysis groups Folkner et al.
(2009, 2014); Pavlov et al. (2016) prefer to fit the degree-3 com-
ponents away from GRAIL-derived gravity field coefficients. Extra
periodic terms on the longitude libration present in the DE430 lunar
model are not considered within this paper. Instead, a work is in
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progress to further improve the lunar dynamical model and to iden-
tify the cause of the low-degree spacecraft-derived lunar gravity
field inconsistency with that from the analysis of LLR data.
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Kostelecký V. A., 2004, Phys. Rev. D, 69, 105009
Lemoine F. G. et al., 2014, Geophys. Res. Lett., 41, 3382
Liorzou F., Boulanger D., Rodrigues M., Touboul P., Selig H., 2014, Adv.

Space Res., 54, 1119
Lucchesi D. M., Anselmo L., Bassan M., Pardini C., Peron R., Pucacco G.,

Visco M., 2015, Class. Quantum Grav., 32, 155012
Lyard F., Lefevre F., Letellier T., Francis O., 2006, Ocean Dyn., 56, 394
McCarthy D. D., Petit G., 2004, IERS Technical Note No. 32, IERS Con-

ventions
Manche H., 2011, PhD dissertation, Observatoire de Paris. Available at:

https://tel.archives-ouvertes.fr/tel-00689852
Marty J. et al., 2011, 3rd International Colloquium Scientific and Fun-

damental Aspects of the Galileo Programme, ESA Proc. WPP326,
vol. 31. Available at http://hpiers.obspm.fr/combinaison/documentation/
articles/GINS_Marty.pdf

Matsumoto K., Yamada R., Kikuchi F., Kamata S., Ishihara Y., Iwata T.,
Hanada H., Sasaki S., 2015, Geophys. Res. Lett., 42, 7351

Matsuo K., Chao B. F., Otsubo T., Heki K., 2013, Geophys. Res. Lett., 40,
4662

Matsuyama I., Nimmo F., Keane J. T., Chan N. H., Taylor G. J., Wieczorek
M. A., Kiefer W. S., Williams J. G., 2016, Geophys. Res. Lett., 43, 8365

Mazarico E., Barker M. K., Neumann G. A., Zuber M. T., Smith D. E., 2014,
Geophys. Res. Lett., 41, 2282

Merkowitz S. M., 2010, Living Rev. Relativ., 13, 7
Minazzoli O., Hees A., 2016, Phys. Rev. D, 94, 064038
Minazzoli O., Bernus L., Fienga A., Hees A., Laskar J., Viswanathan V.,

2017, preprint (arXiv:1705.05244)
Moyer T. D., 2003, Formulation for Observed and Computed Values of Deep

Space Network Data Types for Navigation. Vol. 2, John Wiley & Sons,
Inc., Hoboken, NJ, USA

Müller J., Hofmann F., Biskupek L., 2012, Class. Quantum Grav., 29, 184006
Murphy T. W., 2013, Rep. Prog. Phys., 76, 076901
Murphy T. W. et al., 2011, Icarus, 211, 1103
Murphy T. W., Adelberger E. G., Battat J. B. R., Hoyle C. D., Johnson N.

H., McMillan R. J., Stubbs C. W., Swanson H. E., 2012, Class. Quantum
Grav., 29, 184005

Murphy T. W., McMillan R. J., Johnson N. H., Goodrow S. D., 2014, Icarus,
231, 183

Nordtvedt K., 1968a, Phys. Rev., 169, 1017
Nordtvedt K., 1968b, Phys. Rev., 170, 1186
Nordtvedt K., 1998, Class. Quantum Grav., 15, 3363
Nordtvedt K., 2014, Scholarpedia, 9, 32141
Oberst J. et al., 2012, Planet. Space Sci., 74, 179
Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K., 2012, J. Geophys.

Res.: Solid Earth, 117, B04406
Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K., 2013, J. Geophys.

Res.: Solid Earth, 118, 2633
Pavlov D. A., Williams J. G., Suvorkin V. V., 2016, Celest. Mech. Dyn.

Astron., 126, 61
Peron R., 2013, MNRAS, 432, 2591
Petit G., Luzum B., 2010, IERS Technical Note No. 36, IERS Conventions
Ries J. et al., 2016, GFZ Data Services. Center for Space Research, The

Univ. Texas at Austin
Samain E. et al., 1998, A&AS, 130, 235
Standish E. M., Williams J. G., 1992, Orbital ephemerides of the Sun, Moon,

and planets. University Science Books Mill Valley, CA, p. 279
Stark P., Parker R., 1995, Comput. Stat., 10, 129
Viswanathan V., 2017, PhD dissertation (submitted), Observatoire de Paris
Viswanathan V., Fienga A., Laskar J., Manche H., Torre J.-M., Courde C.,

Exertier P., 2015, IAU General Assembly, 22, 2228567
Viswanathan V. et al., 2016, EGU General Assembly Conference Abstracts,

Vol. 18, p. EPSC2016-13995
Viswanathan V., Fienga A., Gastineau M., Laskar J., 2017, Notes Scien-

tifiques et Techniques de l’Institut de Mécanique Céleste, 108
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