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ABSTRACT

Context. Based on recent observations of the cosmic microwave background (CMB), claims of statistical anomalies in the properties
of the CMB fluctuations have been made. Although the statistical significance of the anomalies remains only at the ∼2−3σ signifi-
cance level, the fact that there are many different anomalies, several of which support a possible deviation from statistical isotropy,
has motivated a search for models that provide a common mechanism to generate them.
Aims. The goal of this paper is to investigate whether these anomalies could originate from non-Gaussian cosmological models, and
to determine what properties these models should have.
Methods. We present a simple isotropic, non-Gaussian class of toy models that can reproduce six of the most extensively studied
anomalies. We compare the presence of anomalies found in simulated maps generated from the toy models and from a standard model
with Gaussian fluctuations.
Results. We show that the following anomalies, as found in the Planck data, commonly occur in the toy model maps: (1) large-scale
hemispherical asymmetry (large-scale dipolar modulation), (2) small-scale hemispherical asymmetry (alignment of the spatial distri-
bution of CMB power over all scales ` = [2, 1500]), (3) a strongly non-Gaussian hot or cold spot, (4) a low power spectrum amplitude
for ` < 30, including specifically (5) a low quadrupole and an unusual alignment between the quadrupole and the octopole, and (6)
parity asymmetry of the lowest multipoles. We note that this class of toy model resembles models of primordial non-Gaussianity
characterised by strongly scale-dependent gNL-like trispectra.

Key words. cosmic background radiation – cosmology: observations – inflation

1. Introduction

Studies of the cosmic microwave background (CMB) have
helped to define the current cosmological standard model to
high precision; however, the earliest large angular scale maps of
the CMB from the COsmic Background Explorer (COBE) Dif-
ferential Microwave Radiometer (DMR) were extensively anal-
ysed to search for departures from such a model (Ferreira et al.
1998; Pando et al. 1998), and then to refute them (Banday et al.
2000; Komatsu et al. 2002). Interest in such departures, con-
tinued with studies of the Wilkinson Microwave Anisotropy
Probe (WMAP; Bennett et al. 2003) CMB measurements, result-
ing in several claims of unexpected statistical properties (or
anomalies) of the CMB fluctuations, confirmed in subsequent
studies of the Planck data (Planck Collaboration XXIII 2014;
Planck Collaboration XVI 2016). While many of these anoma-
lies are significant only at the 2−3σ level, and could easily be
the result of statistical flukes, it is still interesting to speculate
whether they may share a common physical cosmological ori-
gin. Here, we investigate whether non-Gaussianity alone may be

the origin of these anomalies, including apparent deviations from
statistical isotropy and features in the power spectrum. We focus
on six issues:
(A1) An asymmetry of power between the two hemi-

spheres on the sky was indicated by local estimates
of the angular power spectrum in the WMAP first-year
data (Eriksen et al. 2004; Hansen et al. 2004; see also
Akrami et al. 2014). This hemispherical asymmetry has
subsequently been modelled by a dipolar modulation of
an isotropic sky (Eriksen et al. 2007; Hoftuft et al. 2009),
and detected at the 2−3σ level for scales ` < 60 in
Planck Collaboration XVI (2016).

(A2) While the dipolar modulation is detected only on large
scales, the spatial distribution of power on the sky has
been shown to be correlated over a much wider range
of multipoles (Hansen et al. 2009; Axelsson et al. 2013;
Planck Collaboration XVI 2016). By estimating the power
spectrum in local patches of the sky for a given multi-
pole range, we can create a map of the corresponding
power distribution. Even for an isotropic and Gaussian
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sky, such a map always exhibits a random dipole com-
ponent. However, it has been shown that the directions of
these dipole components from multipoles between ` = 2
to ` = 1500 are significantly more aligned in the Planck
data than in random Gaussian simulations. The directions
of these dipoles are close to the direction of the best fit
large-scale dipolar modulation in A1, but we note that A1
and A2 are two very distinct anomalies. A1 is present at
large scales as an anomalously large dipolar modulation
amplitude; instead, A2 is present at smaller scales where
the amplitude of the observed dipolar modulation is con-
sistent with that expected in the random Gaussian simu-
lations, yet the preferred directions of the dipolar power
distribution are aligned between multipoles.

(A3) In Vielva et al. (2004), it was shown that the wavelet coef-
ficients for angular scales of about ∼10◦ on the sky have an
excess kurtosis, while the skewness is consistent with zero.
The excess kurtosis was shown to originate from a cold
spot in the southern Galactic hemisphere. However, when
the spot was masked with a disc of 5◦ radius, the kurtosis
of the map was found to be consistent with Gaussian sim-
ulations. The position of the cold spot on the sky lies in the
hemisphere where the dipolar modulation in A1 is positive.
It should also be noted that the cold spot is surrounded by
a symmetric hot ring (see Planck Collaboration XVI 2016,
and references therein).

(A4) The Planck and WMAP power spectra of CMB temper-
ature anisotropy at large scales (` < 30) appear to trend
significantly below the values predicted by the best fit cos-
mological model with a significance at the 2−3σ level. In
particular, the quadrupole is low, and a dip in the spectrum
is observed around ` ∼ 21. These features could be statisti-
cal fluctuations on these scales where the cosmic variance
is large.

(A5) The quadrupole and octopole appear to be aligned,
and dominated by their respective high-m components
(Tegmark et al. 2003).

(A6) On large angular scales, the C` values for the even mul-
tipoles have been found to be consistently lower than
those for odd multipoles. The significance of this par-
ity anomaly has been reported to be at the 2−3σ level
(Planck Collaboration XVI 2016).

The correlations between some of these anomalies have been
studied in Muir et al. (2018) and shown to be largely statisti-
cally independent. Recent attempts in the literature to propose
theoretical explanations for anomalies have tended to focus
on only one or two examples of such behaviour, and treated
them independently, with a general emphasis on the large-scale
power asymmetry. Examples of primordial non-Gaussianity
models that have been used to explain the large-scale hemi-
spherical asymmetry can be found in Schmidt & Huai (2013),
Byrnes & Tarrant (2015), Byrnes et al. (2016), Adhikari et al.
(2016) and Ashoorioon & Koivisto (2016). These models
are based on earlier proposals by Gordon et al. (2005),
Erickcek et al. (2008) and Dvorkin et al. (2008) that the proper-
ties of the observed CMB sky could be modelled by the presence
of a long-wavelength fluctuation field that modulates otherwise
isotropic and Gaussian fluctuations. Later related studies
include Erickcek et al. (2009), Dai et al. (2013), Lyth (2013),
Kanno et al. (2013), Wang & Mazumdar (2013), D’Amico et al.
(2013), McDonald (2013a,b, 2014), Liddle & Cortês (2013),
Mazumdar & Wang (2013), Namjoo et al. (2013, 2014),
Namjoo (2014), Jazayeri et al. (2014), Firouzjahi et al. (2014),
Kohri et al. (2014), Assadullahi et al. (2015), Kobayashi et al.

(2015), Agullo (2015), Lyth (2015), Zarei (2015) and Zhu et al.
(2018).

In particular, Adhikari et al. (2016) have undertaken a sys-
tematic and general study of the power asymmetry expected
in the CMB if the primordial perturbations are non-Gaussian
and exist on scales larger than we can observe. Their analy-
sis focuses both on local and non-local models of primordial
non-Gaussianity and the method developed is quite general for
describing deviations from statistical isotropy in a finite sub-
volume of an otherwise isotropic (but non-Gaussian) large vol-
ume. When local non-Gaussianity is invoked, the observed scale
dependence of the power asymmetry anomaly can be recovered
by the introduction of two bispectral indices describing, on the
one hand, the scale dependence in our observable volume, and
on the other hand, a coupling to the long-wavelength fluctuation
modes (Schmidt & Huai 2013). In Byrnes et al. (2016), previous
calculations restricted to one- or two-source scenarios have been
extended. They compute the response of the two-point function
to a long-wavelength perturbation in models characterised by a
near-local bispectrum. However, in all of these works only the
effects of the second-order terms ( fNL) in the primordial non-
Gaussianity have been studied in detail, and the main focus
has been on the large-scale power asymmetry. Only recently,
in Adhikari et al. (2018), was it shown that large-scale power
asymmetry may arise in models with local trispectra with strong
scale dependent τNL amplitudes. However, in this case it is not
possible to reproduce all the observed CMB anomalies. Typi-
cally, a τNL trispectrum arises from the modulation of the pri-
mordial curvature perturbation by a second uncorrelated field
(see e.g. Byrnes et al. 2006; Planck Collaboration XXIV 2014).
As we show, this in general fails to achieve the enhancement of
and correlations to the linear Gaussian field that are necessary
ingredients to reproduce anomalies other than the large-scale
power symmetry. However, these features are included in our
toy model.

Alternative inflationary models have been proposed to
explain CMB anomalies such as the lack of power on large
angular scales. In this case, the models rely on deviations from
the usual slow-roll phase in a period immediately before the
observable 60 e-folds. The anomalies on the largest scales could
provide hints about the conditions that led to the inflationary
dynamics (in the observable window) given that they appear
on the largest scales that will ever be observable (see e.g.
Planck Collaboration XX 2016; Contaldi et al. 2003; Liu et al.
2013; Gruppuso et al. 2016, 2018).

However, the majority of the inflationary models proposed
to date to explain the CMB anomalies have encountered dif-
ficulties (Planck Collaboration XX 2016; Byrnes et al. 2016;
Contreras et al. 2018). Therefore, in this paper, we prefer to con-
sider that the anomalous features have a common cosmological
origin, and look for toy models that can naturally reproduce all
of the above anomalies. In particular, inspired by the additional
(non-linear) terms in the primordial gravitational potential that
appear in models of inflation, we search for isotropic but non-
Gaussian models, where the non-Gaussianity is the origin of the
apparent deviations from statistical isotropy seen in the data. We
note that the focus of this work is not to find physical models that
fit the data, but to determine phenomenologically those proper-
ties that a physical model should exhibit.

2. Phenomenological models

Inflationary models may have second-order ( fNL-like) and third-
order (gNL-like) terms in the primordial gravitational potential.
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In the local version, these can be written as (Gangui et al.
1994; Verde et al. 2000; Wang & Kamionkowski 2000;
Komatsu & Spergel 2001; Okamoto & Hu 2002)

Φ(x) = ΦG(x) + fNL(Φ2
G(x) − 〈Φ2

G(x)〉) + gNLΦ3
G(x) , (1)

where ΦG(x) is the linear Gaussian part of the primordial gravi-
tational potential. Clearly, models with a second-order fNL term
would result in excess skewness, and not (at lowest order) the
excess kurtosis seen in the cold spot. In order to reproduce the
latter, we will therefore focus on gNL-like models. The value of
the local (scale-independent) gNL term has already been con-
strained (at the 68% confidence level) to be gNL = (−9.0 ±
7.7) × 104 (Planck Collaboration XVII 2016). Here, we instead
consider gNL-like models with a strong scale dependence, for
which there are no current observational constraints. However,
an indication of the level of scale-dependent gNL in the data may
be found through the diagonal of the trispectrum. We compare
the kurtosis of our models at different scales with current obser-
vational constraints.

To motivate the construction of our toy model, we begin by
considering two related anomalies: the dipolar modulation of
power at large scales (A1) and the correlations between ran-
domly oriented power dipoles over a large number of angu-
lar scales (A2). We consider the modulation of an isotropic
Gaussian CMB map,

T (θ, φ) = TG(θ, φ)(1 + βTMOD(θ, φ)), (2)

where TG(θ, φ) is an isotropic Gaussian CMB temperature real-
isation, β is the modulation amplitude, and TMOD(θ, φ) is the
modulation field. If the modulation field were a pure dipole, as
considered in Eriksen et al. (2007), we would only reproduce
anomaly A1. However, if we consider a modulation field that
corresponds to the original isotropic CMB map filtered such that
only the largest scales, ` < 30, remain (hereafter TF(θ, φ)), then
the CMB sky will have the following features:
1. All scales will be correlated with the largest scales; in par-

ticular, the random dipolar distribution of power on the sky
for the larger scales will be imprinted on the smaller scales
giving rise to anomaly A2.

2. The random dipolar distribution of power on the sky for the
larger angular scales will be enhanced, thereby mimicking a
dipolar modulation of these scales and giving rise to anomaly
A1. This effect is only achieved if the modulation field ampli-
fies both the positive and negative fluctuations. This requires
TMOD(θ, φ) to be related to the absolute value of the filtered
original map, most simply achieved by setting the modula-
tion field equal to T 2

F(θ, φ).
3. A model with such a modulation field will also amplify the

hottest and coldest spots on the map. These hot and cold
spots will correspond to the points on the map where the
non-Gaussianity introduced by the modulation is most easily
measured. As the non-Gaussian term corresponds to the third
power of a Gaussian field, it will give rise to excess kurtosis
in these spots, thus reproducing anomaly A3. We note that
no skewness can arise from a third-order term.

This mechanism is illustrated in Fig. 1. The upper row shows a
Gaussian CMB temperature realisation TG(θ, φ); the correspond-
ing low-pass filtered map TF(θ, φ); and the square of this filtered
map, the modulation field. The second row shows what happens
when the modulation field is multiplied by the Gaussian field -
strong large-scale fluctuations are enhanced and the remaining
fluctuations suppressed.

We see by eye that this Gaussian realisation contains more
large-scale fluctuations in the southern hemisphere than in the
northern hemisphere (indicated by the orange oval). Such a ran-
dom dipolar distribution of power is common to all Gaussian
realisations. Since the direction of such a dipolar distribution is
random, no evidence of this behaviour is seen when the mean
is taken over many simulations. The large-scale fluctuations in
the southern hemisphere are then enhanced, as shown in the
second row of the figure. In the third row, the non-Gaussian
term obtained in the second row is added to the Gaussian map,
thereby enhancing the large-scale fluctuations in the southern
hemisphere and giving rise to a dipolar modulation on large
scales. We also note the non-Gaussian hot-spot created by the
non-Gaussian term, as highlighted by the blue circle. For this
specific realisation, the non-Gaussian feature is a hot spot since
the largest fluctuation on the sky is positive. For realisations
where the largest fluctuation is negative, a non-Gaussian cold
spot will arise. However, since the hot spot is necessarily created
on top of a hot fluctuation, a corresponding cold spot would be
created on top of a cold fluctuation and the observed feature of
a hot ring surrounding the cold spot (see anomaly A3 above)
will not be created in this simplified model. Below (Eq. (3))
we describe a more sophisticated model that can reproduce all
anomalies A1 to A6.

Finally, in the lowest row of Fig. 1, we present maps fil-
tered to contain the angular scales for ` = 100−200 only, before
and after adding the non-Gaussian term. The large-scale struc-
ture in the southern hemisphere in the Gaussian map has been
imprinted on these smaller scales (as seen in the middle plot).
Adding this small-scale structure tilts the random dipolar distri-
bution of power on the sky for these scales towards the south, as
in anomaly A2. This happens for all scales.

We thus propose an initial toy model, written as

T (θ, φ) = TG(θ, φ) + βTG(θ, φ)T 2
F(θ, φ)

to reproduce anomalies A1, A2, and A3. This model would leave
a strong imprint of anomalies on all scales. In order to avoid
anomaly A2 becoming too pronounced, and to obtain a map that
is consistent with the observed CMB sky, the final term must
itself be filtered. We therefore modify the above model as

T (θ, φ) = TG(θ, φ) + β
[
TG(θ, φ)T 2

F(θ, φ)
]Filtered

, (3)

= TG(θ, φ) + β
∑
`m

glY`m(θ, φ)
∫

dΩ′Y∗`m(θ′, φ′) × (4)

TG(θ′, φ′)T 2
F(θ′, φ′),

where

TF(θ′, φ′) =
∑
`m

wlY`m(θ, φ)
∫

dΩ′Y∗`m(θ′, φ′)TG(θ′, φ′) (5)

The filters w` and g`, and the amplitude β are then adjusted to
test whether the anomalies can be reproduced. In addition to this
model, we also tested a variant with similar behaviour,

T (θ, φ) = TG(θ, φ) + β
[
TG(θ, φ)

{
T 2

G(θ, φ)
}

F

]Filtered
(6)

The difference to the original model should be noted: the Gaus-
sian field is squared before the filter w` is applied. In this paper
results will always be based on the model specified by Eq. (3),
unless we explicitly refer to the alternative Eq. (6).

Figure 2 presents the filters w` and g`, shown as solid black
lines, used for the majority of results in this paper. They corre-
spond to one representative example of a huge variety of filters
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Fig. 1. First row: Gaussian CMB realisation (left), the filtered version (middle), and the square of the filtered map (right). The orange ellipse
denotes the random dipole direction observed on large angular scales. For the squared map, dark blue corresponds to zero temperature, while for
all other maps dark red and dark blue correspond to the largest negative and positive fluctuations in the map. Second row: product of the Gaussian
map (left) and the squared filtered map (middle) generates the non-Gaussian contribution (right) that enhances the dipole in the power distribution.
Third row: combination of the original Gaussian map (left) and the non-Gaussian term (middle) scaled by the factor βdimensionless = 1.77 × 108

yielding a non-Gaussian map (right) with enhanced dipole modulation and a hot spot with excess kurtosis shown in the blue circle. Last row: as in
the third row, but for scales ` = 100−200 only. The value of β is exaggerated here in order to make the effect visible by eye.
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Fig. 2. Filter functions w` (left) and g` (right) used in our toy model. For g`, all filters except the blue filter have g` = −8 for ` = 2, which is not
shown in order to make the filters more visible for all other multipoles. The black lines show the filters that form the basis for the majority of
results presented in the paper. The coloured filters are equal to the black filter for multipoles where the coloured filters are not visible. Red line: a
smoother version of the main filter; green line: similar to the black filter but slightly simpler with no change of sign in g`; blue dashed line: highly
simplified w`; red dashed line: the alternative model which filters the squared Gaussian map; blue line: filter used for the model with Gaussian
white noise maps.

that, to different extents, can reproduce properties of the anoma-
lies. Some other filters, commented on below, are also shown.
The black filters are adjusted to the form shown in Fig. 2 in order
to reproduce the shape of the power spectrum on large scales,
specifically to reproduce anomalies A4 and A6, and to ensure
that anomaly A2 is present on smaller scales.

The shape defined for the black filters in Fig. 2 can be under-
stood as follows. The oscillations in the lowest multipoles of w`

give rise to the observed parity asymmetry, and were adjusted to
reproduce the observed power spectrum oscillations for ` < 10.
We did not attempt to reproduce the parity asymmetry at higher
multipoles here, but given the strong correlations between w` and
the shape of the power spectrum, a model with wiggles in this
filter could give rise to odd-even features in the spectrum also at
other multipoles in the same way as we have shown for ` < 10.
The filter w` then rises incrementally to a plateau around ` = 21,
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after which it drops to zero at ` = 28. This allows the model to
reproduce the large trough at ` ∼ 21. For ` > 27 the observed
power spectrum no longer lies systematically below the model
spectrum, thus w` can be zero for higher multipoles. We note
that the purpose of the features of w` shown by the black line
is to reproduce the particular features in the power spectrum. A
completely flat w` filter which is zero for ` > 27 (as shown by
the blue dashed line) can still give rise to all anomalies except
parity asymmetry (A6) and quadrupole-octopole alignment (A5)
for which a higher value of w` at ` = 2 and ` = 3 is necessary.

The black filter g` in Fig. 2 is negative up to ` = 27 where it
suddenly becomes positive and then gradually decreases towards
zero at high `. For large scales, g` is negative in order to subtract
power for ` < 27 making the power spectrum low for this mul-
tipole range, a positive g` here instead would yield a large-scale
power spectrum with high amplitude. Then, in order to repro-
duce anomaly A2 on small scales, g` needs to be non-zero up
to ` ∼ 1500 (but can be positive, negative, or oscillate between
the two). The filter g` needs to decrease slowly to zero towards
` ∼ 1500 in order to limit A2. The strong negative value for
` = 2 in g` is in order to ensure a small quadrupole, but will
also strongly influence the original quadrupole generating corre-
lations with the octopole as in anomaly A5.

The black filters in Fig. 2 are constructed from a combina-
tion of step functions in order to obtain the general properties
described above. A physical model would more naturally have
a smoother scale dependence, but the purpose of this paper is to
describe a toy model that presents the general features of scale
dependences that can give rise to the CMB anomalies. We do
not attempt to derive a model that can be fitted to the data here,
since the number of degrees of freedom is too large, and a the-
oretical model would be needed that naturally gives rise to this
scale dependence for a minimum number of additional parame-
ters. Such models will be explored in future work (Bartolo et al.,
in prep.).

Figure 2 presents some additional representative examples
of filters that can reproduce most or all of the anomalies. The
red lines show a smoother version of the black filter giving very
similar results. The filter shown in green differs from the black
filter in that it is negative for all multipoles, again reproducing
all anomalies. The blue dashed filter is much simpler; since w`
is flat, the odd-even oscillations in the power spectrum for low
multipoles are not reproduced (thus anomaly A6 disappears) and
the trough at ` = 21 is not visible. Even with this simple filter,
several anomalies are present. The red dashed lines represent the
filters that are used for the alternative model in Eq. (6). The blue
filter is used for Gaussian maps replaced by white noise maps as
described below. Due to limitations in available CPU hours, only
the maps based on the black filters were studied in detail using
3000 simulations, with 1000 maps simulated for the other filters.

In Fig. 3 we show the non-Gaussian term for a simulated
map generated using the black filters in Fig. 2. The figure shows
one of the maps from our simulation pipeline described below
where a dimensionless1 amplitude βdimensionless = 4.4 × 106 is
used. For this realisation, the northern hemisphere of the Gaus-
sian map has more large-scale power, which is then enhanced
in the non-Gaussian map. The negative (or possibly oscillating)
g` for larger scales makes the non-Gaussian term more compli-
cated and less intuitive than the simplified illustration in Fig. 1.
In this case, fluctuations on some scales are enhanced and others
are suppressed. In particular, strong cold fluctuations can now

1 Dimensionless β refers to the amplitude determined when the maps
are made dimensionless after dividing by 2.73 K in Eq. (3).

Fig. 3. Top: original simulated Gaussian map. The circle indicates the
hemisphere with the most large-scale power. Middle: additional term
used in our non-Gaussian model scaled by βdimensionless = 4.4 × 106, as
used for the simulated model. Bottom: non-Gaussian map created by the
addition of the second map to the Gaussian map. The circle highlights
a cold spot surrounded by a hot ring.

appear superposed on larger hot fluctuations and vice versa. In
this way, a cold spot can be found with a hot surrounding ring
as observed in the Planck data (see anomaly A3 above). This is
clearly seen in Fig. 4 which shows a zoomed-in image of the
cold spot from the simulated map in the lower panel of Fig. 3.

Comparing the toy model in Eq. (3) to the theoretical gNL-
model in Eq. (1), some similarities are apparent, but clearly a
scale-dependent gNL model is required where the scale depen-
dence defines the shape of the filters w` and g`. Unlike physical
gNL models, we note that a full CMB map with radiative transfer
is included in all three fields in the non-Gaussian term in Eq. (3).
As is discussed later, the spectrum used for the Gaussian map
is actually unimportant. The anomalies can be adequately repro-
duced using either a pure Sachs-Wolfe or a white noise spectrum
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Fig. 4. Cold spot with the hot ring from the simulation shown in Fig. 3.

to generate the Gaussian map used as an input for creating the
non-Gaussian term.

The term T 2
F(θ, φ) has a dipole (` = 1) component by con-

struction, even if TF(θ, φ) has a zero dipole. This directly induces
a modulation in the final map, as in Eq. (2), which is much larger
than observed in the data. A physical model must therefore have
an additional filter that effectively reduces this dipolar term (or,
by coincidence, this dipole is small in the actual Universe). In
the test simulations used here, this dipole is set to zero by hand,
except for the alternative model given by Eq. (6) where it is
resolved if w` is low or zero for ` = 1. We further note that in
order for the final map to have a small-scale power spectrum that
matches the data, the total amplitude of the original map must be
adjusted slightly. This corresponds to a cosmological model with
a slightly lower amplitude of primordial fluctuations.

3. Simulations and comparison with data

In order to compare the probability of finding the observed
anomalies in toy model simulations to that in Gaussian sim-
ulations, we used a set of 3000 simulated Gaussian Planck
maps (Planck Collaboration XII 2016) which were propagated
through the SMICA foreground cleaning pipeline in order to com-
pare them with the data cleaned with SMICA foreground subtrac-
tion method (Planck Collaboration IX 2016). The simulations
were divided into three sets of 1000 simulations. Set 1 was used
to calibrate the probabilities used to find p-values for the anoma-
lies, set 2 was used to create the non-Gaussian simulations, and
set 3 was used to compare Gaussian with non-Gaussian simula-
tions.

We use anomaly A1 as an example of how these three sets
were used:
1. The dipole modulation amplitudes (corresponding to β in

Eq. (2) with a dipole as the modulation field) were estimated
for all three sets of simulations for a given maximum multi-
pole `max.

2. The dipole modulation amplitude of one selected simulation
in set 3 (Gaussian) was compared to all 1000 Gaussian sim-
ulations in set 1 in order to find the fraction of maps in set 1
with a larger amplitude than the selected simulation from set
3. This fraction is the p-value for this given set 3 simulation.

10 20 30 40 50
0

500

1000

1500

2000

2500

10 20 30 40 50
Multipole l

0

500

1000

1500

2000

2500

C
l l

 (
l+

1)
 / 

2 
π 

  (
µK

) 
2

Fig. 5. Angular power spectrum: estimated C` from Planck data (black;
Planck Collaboration XI 2016); mean C` of 1000 non-Gaussian sim-
ulations (green); and C` of the theoretical best fit ΛCDM model of
Planck Collaboration XIII (2016; red). The shaded area presents 2σ
error bars from Planck Collaboration XI (2016).

3. This procedure was repeated for all 1000 simulations in set
3 to determine 1000 p-values for a given `max.

4. Points 2 and 3 were repeated using set 2 in place of set 3: in
this way we compared the dipole modulation amplitudes of
all 1000 non-Gaussian simulations in set 2 to set 1.

In Fig. 5 we show the mean power spectrum of these simulated
maps compared to the Planck best fit theoretical ΛCDM model
(Planck Collaboration XIII 2016) and the estimated Planck
power spectrum. We clearly see, as expected from the construc-
tion of the filters, that the new model is in better agreement with
the data for low multipoles. In particular the low power spec-
trum (anomaly A4) and the even-odd asymmetry (anomaly A6)
are evident for some multipoles. For ` > 50 the mean of the sim-
ulated spectra and the best fit model are almost identical and are
not shown.

In Fig. 6, we show the probability of the dipole modula-
tion amplitude in a given map as a function of multipole. In
order to make the analysis of dipolar modulation computation-
ally feasible, the simulations for this anomaly were analysed
without using a mask. However, since the first set of 1000 sim-
ulations used to calibrate the p-values is treated in the same
way, we do not expect the results to be biased. We note that
the calculations were performed following the description in
Planck Collaboration XVI (2016), but without the mask. For all
other analyses in this paper, we performed the analysis for the
data and simulations with the same pipeline and, as shown in the
figure, obtain results consistent with previous papers.

Figure 6 corresponds to Fig. 30 in Planck Collaboration XVI
(2016). The green and red areas show the 68% and 95% intervals
from Gaussian simulations (left panel) and our toy model simu-
lations (right panel). The black line corresponds to the Planck
result from Planck Collaboration XVI (2016). The left panel
shows that the p-values for the data are outside the 68% interval
for almost all multipoles ` < 200 compared to Gaussian simula-
tions. In addition there are several dips outside the 95% interval.
Conversely, the Planck data points seem consistent with our toy
model, as shown in the right panel. The clear dip of the 68%
green range for ` < 100 indicates that a strong dipolar modula-
tion is expected on large angular scales in this model.

In Fig. 7 we show the probability of alignment of the power
distribution dipoles up to a certain multipole (compare Fig. 36
in Planck Collaboration XVI 2016). The green and red areas
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Fig. 6. p-values for dipolar modulation, to be compared with Fig. 30 in Planck Collaboration XVI (2016). Green and red bands show the 1σ and
2σ spread of p-values measured in 1000 Gaussian simulations (left plot) and 1000 non-Gaussian model simulations (right plot). In both plots,
the black line shows the p-values for Planck data taken from Fig. 30 in Planck Collaboration XVI (2016). These p-values show the percentage of
Gaussian simulations having larger dipolar modulation up to the given multipole than the Planck data (calibrated with 1000 Gaussian simulations).

show the 68% and 95% intervals from Gaussian simulations (left
panel) and our toy model simulations (right panel). The black
line shows the results determined from the Planck data and has
been taken from Fig. 36 in Planck Collaboration XVI (2016). In
the left panel, it can be seen that the data, as compared to Gaus-
sian simulations, always lie outside the 95% interval for ` > 200.
The right panel demonstrates that the behaviour of the data is
consistent with the non-Gaussian toy model.

Figure 8 shows the kurtosis for wavelet coefficients using
spherical Mexican Hat wavelets and the same wavelet scales as
in Vielva et al. (2004). The left panel shows the kurtosis com-
pared to Gaussian simulations (green and red shaded bands).
For scales 7–9 the Planck data show excess kurtosis outside the
95% confidence region. In the toy model (right panel), we see
a clearly enhanced probability for an excess kurtosis at exactly
these scales. The data points for scales 7–9 are now within the
68% confidence region. The scale-dependent kurtosis of wavelet
coefficients also put limits on a possible scale-dependence of a
gNL non-Gaussianity. The plot shows that our model predicts
a level of kurtosis consistent with current observational con-
straints.

Vielva et al. (2004) have shown that the excess observed kur-
tosis disappears after masking the highest temperature outlier in
the map. This is shown in Fig. 8 where the grey crosses repre-
sent the kurtosis values computed from the data after masking,
and the grey lines indicate the 2σ confidence interval after mask-
ing the simulations. For the toy models, there is a clear drop in
kurtosis after masking the brightest spot showing that the excess
kurtosis in the toy model simulations is indeed mainly associated
with one strong hot or cold spot, as for the observational data.

Figure 9 shows how the angular separation between the
quadrupole and octopole preferred directions are distributed in
Gaussian simulations (left panel) and toy model simulations
(right panel). The vertical black line represents this angle for
the Planck data. The left panel indicates that the probability falls
for smaller angles. For toy model simulations, the distribution is
somewhat flatter, therefore the quadrupole-octopole alignment
seen in the data can be considered less anomalous.

Finally, the direction of dipolar modulation, the cold spot and
the directions of the alignment asymmetry all seem to be con-
verging. In particular, the angular distance between the direction
of dipolar modulation and the cold spot is 32◦ in the Planck data.
In Fig. 10 we show the distribution of angular distances between
the dipolar modulation and the cold/hot spot in Gaussian

simulations (left panel) or toy model simulations (right panel).
The position of the cold/hot spot is clearly strongly correlated
with the dipolar modulation direction in the toy model sim-
ulations and in excellent agreement with the data. A similar
correlation of direction with the small-scale hemispherical asym-
metry is seen in toy model simulations with a strong alignment
asymmetry.

4. Discussion and conclusions

In this paper we have shown that the CMB anomalies, including
apparent deviations from statistical isotropy and features in the
power spectrum can arise from non-Gaussianity. In particular, in
the analyses of simulated toy model maps using a gNL-like non-
Gaussian term of the form given in Eq. (3) or (6), all of the most
commonly discussed anomalies are reproduced. To what extent
the different anomalies are present depends on the filters w` and
g` (which would correspond to specific scale dependences of the
primordial non-Gaussianity trispectrum gNL). Even very simple
forms of these filters give rise to several anomalies in our phe-
nomenological model, but a physical model would be required to
predict their shape with a minimum number of free parameters.

Figure 5 demonstrates how such a toy model results in low
power on large angular scales, including the quadrupole, and par-
ity asymmetry for the first few multipoles. Then, in Figs. 6–9, we
see evidence that various features of the data, characterised as
2–3σ outliers when compared to Gaussian simulations, are more
consistent with the expectations of these toy model simulations.

It should be noted that the filter functions selected here,
which effectively define scale dependence, are simple. Further
work is needed to assess whether these functions are realistic in
the context of a primordial underlying model or otherwise. How-
ever, it may be that a physical model could give rise to more
complex filters and still reproduce the anomalies if it essentially
mimics the main features displayed by the phenomenological
model focused on in this work.

We have focused on gNL models here. While fNL and
τNL models may reproduce some of the anomalies, they can-
not easily reproduce all of them, whereas gNL models appear
to. Anomaly A1 and possibly A2 could arise in τNL models
(Adhikari et al. 2018), but these models would not generally give
a non-Gaussian hot or cold spot. For this an enhancement of the
original Gaussian fluctuations would be necessary, which is not
easily achieved in a τNL model where the non-Gaussian term is
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Fig. 7. p-values for alignment of the spatial power distribution dipoles up to a given multipole. This is the equivalent plot to Fig. 36 in
Planck Collaboration XVI (2016). The green and red bands indicate the 1σ and 2σ spread of p-values measured in 1000 Gaussian simulat ions
(left panel) and 1000 non-Gaussian model simulations (right panel). The black line corresponds to the p-values for Planck data taken from Fig. 36
in Planck Collaboration XVI (2016). These p-values show the percentage of Gaussian simulations with a larger alignment of the spatial power
distribution up to the given multipole (calibrated with 1000 Gaussian simulations).
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Fig. 8. Kurtosis of wavelet coefficients for the wavelet scales defined in Vielva et al. (2004). Green and red bands show the 1σ and 2σ spread of
kurtosis values in 1000 Gaussian simulations (left panel) and 1000 non-Gaussian model simulations (right panel). The black crosses indicate the
kurtosis values computed from the Planck data; the grey crosses show the values derived after masking the brightest spot for the given wavelet
scale. The grey lines show the 2σ limits after masking the brightest spot for the given scale. The masking is performed with a disc of radius 5
degrees.

strongly influenced by an independent field. For the same reason,
they also would not easily give quadrupole-octopole alignment,
where the non-Gaussian term also needs to be strongly correlated
with the Gaussian term.

Similarly, it would be difficult for an fNL model to give large-
scalepowerdeficit andquadrupole-octopolealignment, since for a
second-order term positive fluctuations would be enhanced, while
negative fluctuations would be erased. An excess kurtosis would
also not arise from a second-order term (at lowest order in the per-
turbations).Aswehaveseenin thispaper, thereasonwhygNL mod-
els can generate all of the anomalies originates from the way in
which the non-Gaussian term correlates to the Gaussian term.

In our toy model (Eq. (3)), we have used CMB maps that
include the effects of radiative transfer as the basis of the
non-Gaussian term. Inspection of Eq. (1) indicates that, for an
inflationary model, it is the non-Gaussian third-order term in
the gravitational potential (with an overall amplitude gNL) that
would be transferred to the CMB anisotropies via the CMB radi-
ation transfer function. In order to be more consistent with this
scenario, we generated Gaussian maps with (1) a pure Sachs-
Wolfe spectrum and (2) a pure white noise spectrum (C` =
const). We then generated the non-Gaussian term based on these
Gaussian maps, and then applied radiative transfer by changing

the variance of the a`m coefficients of the final maps in order to
obtain a spectrum consistent with Planck best fit. In both cases,
after modifying g` and w` accordingly, all anomalies are again
reproduced.

It should be noted that we set the filter w` to zero for ` > 27
in order to minimise the impact on the power spectrum for larger
multipoles. The Planck data indicates that the power spectrum is
low up to ` = 27. Nevertheless, we tested the effect of (i) set-
ting w` to zero for ` > 15 and (ii) setting w` to zero for ` > 50
with a non-zero filter extending to ` = 50. In both cases the
spectrum was modified to be low in the range where w` is non-
zero, thereby reducing the consistency with the Planck power
spectrum. Furthermore, the scales of the cold or hot spot and
the dipolar modulation were both altered, in general resulting in
worse agreement with the data. We interpret this as an indication
of correlation between the angular scales where the power spec-
trum is low and the angular scales of dipolar modulation (A1)
and the cold spot (A3). A similar correlation is seen in that the
filters that cause quadrupole-octopole alignment (A5) also give
a low quadrupole. We note, however, that there is considerable
freedom in the way that the filters can be adjusted; therefore,
we restricted our investigations to simple extensions of the toy
model used here.
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Fig. 9. Angular separation between the quadrupole and octopole preferred directions. Left panel: distribution of this angular distance for 1000
Gaussian simulations, right panel: corresponding distribution for 1000 non-Gaussian simulations. The vertical black line represents the angular
distance observed in the Planck data.
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Fig. 10. Angular distance between hot or cold spot and direction of max dipolar modulation. The distribution of the angular distance is shown
for 1000 Gaussian simulations (left panel) and 1000 non-Gaussian simulations (rights panel). The vertical black line corresponds to the angular
distance for the Planck data.

In Figs. 6–9, we show how the anomalies are easily repro-
duced by the toy model simulations. However, in general, not all
anomalies will be present in a given simulation; there is consid-
erable variation in terms of which anomalies are seen from real-
isation to realisation, and some simulations do not show clear
signs of any anomalous behaviour. Furthermore, as shown in
Fig. 3, the non-Gaussianity, and thereby the anomalies, may only
be visible in localised parts of the sky that are either partially or
fully rejected from further analysis by the application of a suit-
able Galactic mask. These issues make it difficult to predict what
we should expect for polarisation data in our toy model. If we
assume that the non-Gaussian polarisation term can be obtained
through a similar mechanism, then–given that the signal is only
partially correlated with the temperature realisation–we would
not necessarily expect the same anomalies to appear, either with
the same amplitude or a similar direction. Indeed, without a the-
oretical model, we cannot make clear predictions for what to
expect in polarisation.

Finally, we reiterate that the scope of this paper was to guide
theoretical research by proposing a general form for a non-
Gaussian term that might be the origin of all of the observed
CMB anomalies. The next step must then be to determine
whether an inflationary model exists that can reproduce the main
features of the phenomenological model proposed in this paper.
An actual physical model could take a slightly different form
with different filters and still reproduce the anomalies. Then,
only when a physically motivated model is found can a com-
plete comparison to data be undertaken, and predictions made

for other anomalies and possible features in the CMB polar-
isation signal. This should help to alleviate the “multiplicity
of tests” arguments (Dvorkin et al. 2008; Contreras et al. 2017)
made against claims of anomalies in the data.
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