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ABSTRACT
Luminous tracers of large-scale structure are not entirely representative of the distribution of
mass in our Universe. As they arise from the highest peaks in the matter density field, the
spatial distribution of luminous objects is biased towards those peaks. On large scales, where
density fluctuations are mild, this bias simply amounts to a constant offset in the clustering
amplitude of the tracer, known as linear bias. In this work we focus on the relative bias
between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic
voids, extended regions of relatively low density in the large-scale structure of the Universe.
With the help of mock data we verify that the relation between galaxy and cluster overdensity
around voids remains linear. Hence, the void-centric density profiles of different tracers can
be linked by a single multiplicative constant. This amounts to the same value as the relative
linear bias between tracers for the largest voids in the sample. For voids of small sizes, which
typically arise in higher density regions, this constant has a higher value, possibly showing an
environmental dependence similar to that observed for the linear bias itself. We confirm our
findings by analysing data obtained during the first year of observations by the Dark Energy
Survey. As a side product, we present the first catalogue of three-dimensional voids extracted
from a photometric survey with a controlled photo-z uncertainty. Our results will be relevant
in forthcoming analyses that attempt to use voids as cosmological probes.

Key words: galaxies: clusters: general – large-scale structure of Universe – cosmology: ob-
servations.

1 IN T RO D U C T I O N

Most of the mass content in our Universe is composed of cold dark
matter (CDM), currently described as a non-relativistic collisionless

� E-mail: giorgia.pollina@gmail.com

fluid which is responsible for the formation of haloes, gravitationally
bound clumps of dark matter that provide the potential wells in
which baryons can cool and collapse to give birth to the galaxies we
observe in the sky (Peebles 1980). While the quest for the nature
of dark matter remains unresolved, currently the only way to infer
its properties is indirect, via the gravitational interaction it exerts
on the luminous constituents of the cosmos. To map the CDM one
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can therefore rely on the distribution of luminous tracers, such as
galaxies and clusters of galaxies. Unfortunately, these objects are
located only in the highest peaks of the underlying matter density
field, therefore their clustering properties do not exactly mirror
those of the CDM: galaxies and clusters of galaxies are biased
tracers of the total mass distribution (Kaiser 1984). On small scales,
where highly non-linear effects are important, this bias constitutes
an unknown function of space and time. But on large scales, where
density fluctuations remain within the linear regime, it can be
modelled as a multiplicative offset in the clustering amplitude. The
latter is known as linear bias and depends on a number of properties
of the tracer population, one of the most important being the mass
of its host haloes: tracers residing in more massive haloes exhibit a
higher clustering bias (for a comprehensive review, see Desjacques,
Jeong & Schmidt 2018).

Typically, bias has been studied via the correlation function or
the power spectrum of all tracers as a whole, regardless of their
cosmic-web environment (see e.g. Smith, Scoccimarro & Sheth
2007; Cacciato et al. 2012; Dvornik et al. 2018; Springel et al.
2018; Simon & Hilbert 2018, and references therein). In a recent
paper, however, Pollina et al. (2017) investigated the properties of
bias focusing on tracers located in the vicinity of cosmic voids,
large and relatively empty regions of large-scale structure. Voids,
among all other structure types, are the largest in the Universe and
make up the dominant fraction of its space. In Pollina et al. (2017)
simulations were analysed to determine the absolute clustering bias
of various tracers with respect to the total mass distribution. In
order to mimic an observational approach, voids were identified
in the distribution of tracers to define void catalogues. Then, both
the density of dark matter particles and the density of the tracers
themselves were investigated as a function, the distance r to the
centres of these voids. In particular, it was found that the void-tracer
cross-correlation function ξ vt(r) exhibits a linear relation with the
corresponding void-matter cross-correlation function ξ vm(r), with a
proportionality constant bslope,

ξvt(r) = bslope ξvm(r). (1)

Furthermore, Pollina et al. (2017) investigated the dependence of
bslope on void size. It was found that the best-fitting value for bslope

decreases monotonically towards larger voids, and saturates to a
constant number for the largest voids. This number was shown to
coincide with the linear tracer bias bt, which can be either calculated
from theory, or determined using the common bias estimators.
Hence, bslope in equation (1) can be expressed as follows:

bslope(rv)

{
> bt , for rv < r+

v
= bt , for rv ≥ r+

v ,
(2)

where rv is the average, and r+
v the critical effective void radius of

the sample. In other words, equation (1) linearly relates tracer and
matter densities around voids in all cases, but bslope coincides with
the linear bias bt only when voids of size rv > r+

v are considered
in the measurement (for visualization please refer to fig. 4 of
Pollina et al. 2017). The precise value of r+

v depends on various
properties of the tracer distribution itself, such as its sparsity and
bias. Nevertheless, equation (1) provides a very simple guideline of
how to infer the distribution of mass around voids in the tracer
distribution.1 The aim of this paper is to show that the same

1Note that Nadathur & Percival (2019) find a residual from the linearity of
equation (1) when bslope is fixed to the linear bias bt, while Pollina et al.
(2017) and this paper treats it as a free parameter.

applies when relating different types of tracers around voids, both
in simulations, and for the first time in observational data as well.

The importance of the result summarized in the previous para-
graph can be better understood if we consider how building a
coherent framework within void-cosmology has been so far a very
complicated task. For example, obtaining accurate predictions on
the most basic statistic, the void number counts, has always been
particularly difficult. This has to do with the fact that the definition
criteria for voids and their associated assumptions are not unique
and typically differ between theory and practice. It is generally
agreed that voids are vast regions of large-scale structure with
a density below the average density of the Universe. However,
due to the multiscale nature of cosmic web, it is unclear how to
divide local underdensities of different shape with multiple levels
of nested substructure into a unique set of distinct objects. In a
pioneering theoretical study, Sheth & van de Weygaert (2004) define
voids as spherically symmetric underdensities that undergo shell
crossing at their boundaries. Their initial density profile is assumed
to have an inverted top-hat form, and spherical evolution is adopted
to predict the final void abundance following the excursion-set
formalism (see also Jennings, Li & Hu 2013; Chan, Hamaus &
Desjacques 2014; Falck & Neyrinck 2015; Nadathur & Hotchkiss
2015). In practice, however, these assumptions are hardly ever
justified. Two general directions have been pursued to overcome
this problem. One is to modify or relax specific assumptions in
the theory of Sheth & van de Weygaert (2004), such as demanding
volume conservation for the entire void sample (Jennings et al.
2013), or allowing the critical density threshold for void formation
to vary as a free parameter (Pisani et al. 2015). The other option
is a modification of void catalogues via selection cuts, which
guarantee the assumptions in Sheth & van de Weygaert (2004)
to be satisfied (Ronconi & Marulli 2017). Both approaches show
promising results and will likely play a role in future analyses that
attempt to extract cosmological signals from voids.

However, theoretical calculations rely on a smooth matter-density
field to define voids, while observations can only provide a discrete
distribution of tracers in three dimensions. A number of different
methods have recently been developed to quantitatively extract
void catalogues from observations (see e.g. Padilla, Ceccarelli &
Lambas 2005; Neyrinck 2008; Sutter et al. 2015), but their full
connection to theory remains an open problem. Given the large
number of observational void catalogues already published(Pan
et al. 2012; Sutter et al. 2012a; Ceccarelli et al. 2013; Nadathur
2016; Mao et al. 2017), and expected to become available with
future surveys (e.g. LSST, EUCLID, DESI, see Ivezic et al. 2008;
Laureijs et al. 2011; DESI Collaboration 2016, respectively), it is
important to address this issue. The results of Pollina et al. (2017)
provide a first step to connect theory with practice, as equation (1)
allows us to bridge the gap between the matter- and tracer-density
profiles around observationally defined voids. In fact, these results
have already been employed to this end by Ronconi & Marulli
(2017), who extended their theoretical void size function to voids
traced in haloes thanks to equation (1).

While the first models for void evolution (Hausman, Olson &
Roth 1983; Bertschinger 1985) have been developed soon after their
earliest observations (Gregory, Thompson & Tifft 1978; Kirshner
et al. 1981), the previous decade has witnessed an increasing number
of publications unveiling the potential of various void properties to
provide new insights into cosmology. For example, their average
density profile has been shown to follow a universal shape across
void size, redshift, and tracer type that can be described by a narrow
family of empirical functions (e.g. Ricciardelli, Quilis & Planelles
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2013; Hamaus, Sutter & Wandelt 2014c; Ricciardelli, Quilis &
Varela 2014; Sutter et al. 2014a). Based on the cosmological
principle, voids represent a population of statistically isotropic
spheres distributed at different redshifts, allowing us to probe
the expansion history of the Universe by means of the Alcock–
Paczynski (AP) test (Alcock & Paczynski 1979; Lavaux & Wandelt
2012; Sutter et al. 2012b, 2014b; Hamaus et al. 2014a, 2016; Mao
et al. 2017). It has been investigated whether the observed Cold Spot
in the cosmic microwave background (CMB) could be explained
as Integrated Sachs–Wolfe (ISW) imprint caused by very large
voids along the line of sight (e.g. Rees, Sciama & Stobbs 1968;
Finelli et al. 2014; Kovač et al. 2014; Nadathur et al. 2014; Kovács
2018), and a final conclusion on this topic is yet to be reached;
the potential of the ISW by voids is nevertheless important and
still being actively investigated (e.g. Granett, Neyrinck & Szapudi
2008; Cai et al. 2014; Nadathur & Crittenden 2016; Kovács et al.
2017). It has further been argued that void number counts have
the potential to improve on dark energy constraints (Pisani et al.
2015) and that together with their average density profile can
discriminate modify gravity (Li 2011; Clampitt, Cai & Li 2013;
Barreira et al. 2015; Zivick et al. 2015; Cai et al. 2016), coupled
dark energy (Pollina et al. 2016), and massive neutrino (Massara
et al. 2015) cosmologies from �CDM. These probes could also
be sensitive to possible degeneracies between warm dark matter
and modifications of gravity (Baldi & Villaescusa-Navarro 2016).
Most recently, redshift-space distortions (RSD) around voids have
been identified as a promising source of additional cosmological
information (Hamaus et al. 2015, 2016; Cai et al. 2016; Achitouv
2017; Achitouv et al. 2017; Chuang et al. 2017; Hamaus et al.
2017; Hawken et al. 2017). In order to fully exploit the associated
signal, a reliable model for tracer bias in void environments is
indispensable, which is the subject of Pollina et al. (2017) and
this work.

Despite the fact that equation (1) has a number of interesting
consequences and applications, it is challenging to test experimen-
tally, as the dark matter density cannot be observed directly in
all three dimensions. However, voids can also be used as weak
gravitational (anti)lenses to infer their projected surface mass
density (Krause et al. 2013; Melchior et al. 2014; Clampitt &
Jain 2015; Sánchez et al. 2017). Either a deprojection of the void
lensing profiles to 3D, or a projection of tracer density profiles
to 2D then allows us to constrain the bias relation in voids (Fang
et al., in preparation). Another possibility is to apply equation (1)
to different tracers of the matter distribution. As long as every
individual tracer obeys a linear clustering bias with respect to the
dark matter, the relative clustering bias between the tracers should
remain linear as well. In this analysis we will make use of galaxies
and galaxy clusters as two distinct tracer types. These are the most
commonly available and abundant tracers in current surveys, and at
the same time exhibit very different clustering properties. We will
use the distribution of galaxy clusters to define our void sample,
due to their higher fidelity in providing photometric redshifts and
thus accurate distance estimates. The relative bias relation between
galaxies and galaxy clusters will be thoroughly investigated in the
vicinity of those voids. In order to provide a controlled set-up,
we first develop our analysis techniques based on state-of-the-
art hydrodynamical simulations (MAGNETICUM). Our methods are
then applied to the REDMAGIC galaxy– and REDMAPPER galaxy
cluster catalogues originating from the first year of observations by
the DES collaboration. Realistic mock catalogues provided by the
MICE 2 project that have been constructed to specifically mimic the
observations, which will be used to validate our conclusions.

This paper is organized as follows: in Section 2 we present all
the data employed in our study; in Section 3 we describe the void
finding algorithm, as well as all the methods employed to estimate
the relative bias of tracers; in Section 4 we present the results of our
analysis; finally we discuss our conclusions in Section 5.

2 DATA A N D M O C K S

2.1 Dark Energy Survey data

The Dark Energy Survey (DES, see The Dark Energy Survey
Collaboration 2005) is an ongoing 5 yr observational campaign
supported by an international collaborative effort. It employs the
570 megapixel Dark Energy Camera (DECam, see Honscheid,
DePoy & for the DES Collaboration 2008; Flaugher et al. 2015)
mounted on the Blanco telescope at the Cerro Tololo Inter-American
Observatory (CTIO). At the end of its operations, DES will have
mapped approximately 300 million galaxies and tens of thousands
of clusters over a 5000 square degree footprint in the southern
hemisphere. DES provides photometric data using five filters (grizY)
to the limiting magnitude of 24th i band (Kessler et al. 2015),
although the relevant limiting magnitude for this study is 22.5
in i band, as it constrains the observations of galaxies (Drlica-
Wagner et al. 2018). In this work we employ data obtained during
the first year of observation (Y1) taken between 2013 August
31 and 2014 February 9, that have already shown their potential
in constraining cosmology (Abbott et al. 2018a). DES Y1 wide-
field observations scanned a large region extending approximately
between −60

◦
< δ < −40

◦
overlapping the South Pole Telescope

(SPT) survey footprint, screening an area of 1321 deg2 (A1). A
much smaller area overlapping the ‘Stripe 82’ of the Sloan Digital
Sky Survey (SDSS) was also mapped by DES, but this region will
not be included in our analysis. From the Gold catalogues (Drlica-
Wagner et al. 2018), 26 million galaxies were selected for the weak
lensing sample. Recently the first 3 yr of the observational campaign
were made public with the first DES data release (Abbott et al.
2018b).

2.1.1 Galaxy clusters

We make use of red-sequence Matched-filter Probabilistic Perco-
lation (REDMAPPER) Y1A1 clusters (McClintock et al. 2019), both
to use them as tracers of the large-scale structure, and to identify
cosmic voids in the latter. The photometric red-sequence cluster
finder REDMAPPER is specifically developed for large photometric
surveys. It identifies galaxy clusters by searching for a bulk of its
population to be made up of old, red galaxies with a prominent
4000 Å break. Focusing on this specific galaxy population the
algorithm increases the contrast between cluster and background
galaxies in colour space, and it enables accurate and precise photo-
metric redshift estimates, with a scatter of σ z/(1 + z) = 0.01 level for
z < 0.7 (Rykoff et al. 2016), which includes the redshift window
employed for data analysis in this paper. The associated cluster
richness estimator, λ, is the sum of the membership probability of
every galaxy in the cluster field, and has been optimized to reduce
the scatter in the richness–mass relation (Rozo et al. 2009, 2011;
Rykoff et al. 2012). For a more detailed description of the algorithm
we refer to Rykoff et al. (2016). In this work we will employ cluster
samples with λ > 5, which corresponds to a minimum mean mass
of about ∼1013 h−1 M� following the mass–richness relation of
McClintock et al. (2019). This low richness cut does not guarantee
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the purest cluster selection. In this paper, however, we are not
interested in the detailed properties of individual clusters. Rather,
we desire the selected sample to be used as a tracer of large-scale
structure, regardless of whether some of its objects are true clusters
or not. The resulting full catalogue contains 103 423 clusters and
has proven to be optimal for the task of void identification, owing
to its relatively high cluster density of about 10−4 h3 Mpc−3.

2.1.2 Galaxies

We also employ red-sequence Matched-filter Galaxy Catalog
(REDMAGIC) Y1A1 galaxies (Elvin-Poole et al. 2018) as tracers
of large-scale structure. The REDMAGIC algorithm (Rozo et al.
2016) is automated for selecting Luminous Red Galaxies (LRGs)
and was specifically designed to minimize photometric redshift
uncertainties in photometric large-scale structure studies, resulting
in a photo-z bias zspec − zphoto better than 0.005 and in a scatter
σ z/(1 + z) of 0.017. REDMAGIC achieves this goal by self-training
the colour cuts necessary to produce a luminosity-thresholded
LRG sample of constant comoving density. In this work we will
distinguish among three different REDMAGIC samples, denoted as
high density (brighter than 0.5 L∗ and density 10−3 h3 Mpc−3), high
luminosity (brighter than 1 L∗ and density 4 × 10−4 h3 Mpc−3),
and higher luminosity (brighter than 1.5 L∗ and density
10−4 h3 Mpc−3).

2.2 DES mocks

In order to validate our results, we make use of mock catalogues
extracted from the MICE 2 project. MICE 2, based on the original
MICE (MareNostrum - Instituto de Ciencias del Espacio) project
(Crocce et al. 2015; Fosalba et al. 2015), is a suite of large high-
resolution N-body simulations that have been run with the GADGET

2 code (Springel 2005). Including 40963 particles in a box size
of 3.072 h−1 Gpc, MICE 2 resolves haloes with even lower mass
resolution (2.93 × 1010 h−1 M�) than MICE, making this particular
simulation a perfect tool in providing mocks for deep and sensitive
surveys such as DES. FoF halo catalogues extracted from the
simulations are populated by galaxies using a Halo Occupation
Distribution (HOD), which assigns luminosities to the central
and satellite galaxies so that their observed luminosity function
is preserved. The MICE 2 galaxy catalogue is forced to match
luminosity, colours, and clustering properties of DES at redshift
z = 0.1, from where a light-cone is then extrapolated by replicating
and translating the simulation box, allowing one to build an output
with negligible repetition up to redshift z = 1.4. In this work we are
going to employ the largest available light-cone, which reproduces
a full octant of the sky with the same properties as the DES
Y1 observations, such as photometry. More specifically, we will
employ the REDMAGIC galaxy and REDMAPPER cluster catalogues
extracted from MICE 2 to assess the impact of photometric redshift
uncertainty on our results.

3 ME T H O D S

3.1 Void finder

We employ the Void IDentification and Examination toolkit VIDE

(Sutter et al. 2015) to construct our void catalogues. VIDE im-
plements an enhanced version of ZOBOV (ZOnes Bordering On
Voidness, Neyrinck 2008), an algorithm that identifies density

depressions in a three-dimensional set of points. The void finding
procedure consists of three steps. First, the finder reads in the
tracer positions and associates with each tracer a cell of volume
that is closer to it than to any other tracer. This procedure is
unique and referred to as Voronoi tessellation, the resulting cells are
denoted Voronoi cells. By assuming equal weights for all particles
it is straightforward to associate a density to each Voronoi cell:
it is simply obtained as the inverse of the Voronoi cell volume.
In this manner every point inside the tracer distribution can be
associated with a density, hence a well-defined density field is
obtained. As a second step, local density minima are found and their
surrounding basins identified. A local density minimum is a Voronoi
cell of given volume whose neighbouring cells all have smaller
volumes, respectively higher densities, than the central cell. Starting
from these density minima, surrounding Voronoi cells are merged
consecutively if their individual density is above the one of the
previously merged cell. Once a cell of lower density is encountered,
the process of merging is stopped. Thus, this procedure delineates
local density basins, denoted as zones, with their surrounding ridges
in the tracer distribution.

Finally, zones are merged to become voids by means of the so-
called watershed algorithm (e.g. Platen, van de Weygaert & Jones
2007). To this end a density threshold is raised starting from each
zone’s local density minimum. In analogy to a rising water level
on a two-dimensional terrain, water flows into adjacent zones when
the separating ridges are overflown. As long as shallower zones are
added to the original zone, the final void consists of all such merged
zones, which are still recorded as its subvoids. When a deeper zone
is encountered, the process is stopped. Therefore, the watershed
algorithm naturally constructs a hierarchical structure of nested
voids. Optionally, in order to prevent including very overdense
structures inside voids, a density threshold for ridge densities can be
set. It is typically chosen to be 20 per cent of the mean tracer density.

In this work we will employ the most general void catalogue
produced by VIDE, without applying any further selection cuts on
density or hierarchy levels of voids. We define the void centre as the
volume-weighted barycentre �X of the N Voronoi cells that define
each void,

�X =
N∑

i=1

�xi · Vi

/ N∑
i=1

Vi , (3)

where �xi are the coordinates of the i-th tracer of that void, and Vi the
volumes of their associated Voronoi cells. The effective void radius
rv is calculated from the total volume of the void Vv. It is defined as
the radius of a sphere with the same volume,

Vv ≡
N∑

i=1

Vi = 4π

3
r3

v . (4)

3.2 Correlation functions

In order to explore the clustering statistics around voids we will
employ correlation functions. The two-point correlation function
ξt1t2 (r) between a tracer t1 and a tracer t2 is defined via the ensemble
average

ξt1t2 (r) ≡ 〈δt1 (�x)δt2 (�x + �r)〉 , (5)

where the spatial density fluctuation of a tracer around its average
density 〈nt〉 is given by δt(�x) = nt(�x)/〈nt〉 − 1. In the case where
t1 = t2, this statistic is referred to as autocorrelation function, and for
t1 �= t2 as cross-correlation function. The cross-correlation function

MNRAS 487, 2836–2852 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/2/2836/5509591 by guest on 08 July 2022



2840 DES Collaboration

between void centres and tracers ξ vt(r) is of particular relevance for
this work. It can be shown to be equivalent to the average (or stacked)
tracer-density profile of voids, nvt(r)/〈nt〉 − 1 (see Hamaus et al.
2015). In simulations that incorporate periodic boundary conditions
it is straightforward to calculate; one simply histograms the number
of tracers in spherical shells of width δr around each void centre,

nvt(r) =
∑

i

	(| �X − �xi | − r)

δV (r)
, (6)

and then averages it over all voids. Here 	 represents a step function
with

	(x) =
{

1 , for − δr/2 < x < δr/2
0 , otherwise .

(7)

In order to suppress discreteness noise, we choose to keep the radial
shell bins fixed in units of the void radius rv of each void, and
normalize by the constant shell volumes

δV (r) = 4π

3

[
(r + δr/2)3 − (r − δr/2)3

]
(r̄v/rv)3 (8)

after averaging over the tracer counts around all voids. The mean
effective radius r̄v of the void sample is used to rescale from
dimensionless to physical units of volume.

However, in real observations we are observing tracers inside
irregular boundaries of a survey mask on the past light-cone. In that
situation it is helpful to employ a catalogue of randoms to isolate
true from fake correlations in the data. To this end the Landy–Szalay
estimator (Landy & Szalay 1993) provides a way to calculate the
void-tracer cross-correlation function from data catalogues D and
random catalogues R for each tracer and void sample,

ξvt(r) = 〈DvDt〉 − 〈DvRt〉 − 〈DtRv〉 + 〈RvRt〉
〈RvRt〉 , (9)

where angled brackets symbolize pair counts at separation r in units
of rv, each pair count is normalized by the total number of objects.
They can be calculated as histograms in analogy to equation (6).

Void density profiles have been studied in detail in the recent
literature (e.g. Colberg et al. 2005; Ricciardelli et al. 2013, 2014;
Hamaus et al. 2014c; Sutter et al. 2014a). They typically exhibit
a few very characteristic features: a deep underdense core in the
very centre, and an overdense ridge (compensation wall) close to
the effective radius rv. The following empirical function was shown
to capture these features accurately (Hamaus et al. 2014c),

nvt(r)

〈nt〉 − 1 = δc

1 − (r/rs)α

1 + (r/rv)β
, (10)

where δc is the central density contrast at r = 0, rs a scale radius at
which the density equals the average density of tracers 〈nt〉, and α,
β describe the inner and outer slopes of the profile.

3.3 Bias estimation

In simulations the clustering bias of any tracer can directly be
calculated, because the dark matter particle locations are available.
Therefore, it is simply given by the ratio of tracer and matter
correlation functions,

bt =
√

ξtt(r)

ξmm(r)

 ξtm(r)

ξmm(r)
. (11)

The second equality only holds on large scales in the linear regime,
where bt is a constant number. In a similar manner we can define

the relative bias between a tracer t1 and a tracer t2 as

brel ≡ bt1

bt2

=
√

ξt1t1 (r)

ξt2t2 (r)

 ξt1t2 (r)

ξt2t2 (r)
, (12)

where, without loss of generality, we may choose tracer t1 to be the
more highly biased one, such that brel > 1. In this analysis we will
associate the highly biased tracer with galaxy clusters, and the less
biased tracer with galaxies.

In observational data, where we do not have direct access to the
mass distribution, the absolute clustering bias of tracers can only
be determined indirectly. We follow the approach of Paech et al.
(2017) and calculate the angular power spectra between tracer t1

and tracer t2 using the public code CLASS2 (Blas, Lesgourgues &
Tram 2011) and its extension CLASSgal (Di Dio et al. 2013),

C
t1t2
� = 4π

∫
dk

k
Pini(k)
t1

� (k)
t2
� (k) . (13)

Here, Pini(k) is the dimensionless primordial power spectrum at
wavenumber k and


t
�(k) =

∫
dz bt

dNt(z)

dz
j� [k r(z)] D(z)T (k) , (14)

where dNt(z)/dz is the redshift distribution and r(z) the comoving
distance of tracer t, j� the spherical Bessel function, D(z) the growth
factor, and T(k) the transfer function. Assuming a fiducial flat
�CDM cosmology with the parameters h = 0.678, �b = 0.048,
�m = 0.308, σ 8 = 0.826, zre = 11.3, and ns = 0.96 (Planck
Collaboration XVI 2014), we can then infer the effective values
of bt1 , bt2 , and their ratio (averaged within the considered redshift
range) from the angular autopower spectra of the two tracers.
The angular power spectra are determined using the public code
POLSPICE3 (Szapudi et al. 2001; Chon et al. 2004) from a pixelated
map of the projected tracer-density contrast on the sky. As in Paech
et al. (2017), we treat the shot noise contribution to the angular
power spectra as a free parameter, and consider a multipole range
of 20 <�< 500. The covariance of the C�’s is estimated via applying
a jack-knife sampling of the map, splitting up the map area into 100
contiguous regions of equal size.

4 A NA LY SIS

In this section we present the results of our analysis applied
to MICE 2 mocks and DES data. We emphasize that all void
catalogues employed in this paper are identified in the cluster
samples at hand,4 regardless of the nature of the data set analysed.
If needed, we refer to those voids as cluster-voids, to distinguish
them from voids identified in a different tracer population. Before
applying our pipeline to realistic data sets from a large-scale
structure survey, where special care has to be taken in order to
address the impact of light-cone, mask, and photometric uncertainty,
we decided to test our analysis on a much simpler set-up. We
employed a controlled framework provided by the hydrodynamical
MAGNETICUM pathfinder5 simulations to investigate whether it is

2http://class-code.net.
3http://www2.iap.fr/users/hivon/software/PolSpice.
4The procedure can also be inverted, i.e. it is possible define voids in the
galaxy sample and then use those voids to measure the density of galaxies
and clusters around them. For consistency with the approach in Pollina et al.
(2017), and for the advantage that will be presented in Section 4.1.1, we use
the more highly biased tracer to identify voids.
5http://www.magneticum.org.
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possible to use a similar approach to that presented by Pollina et al.
(2017), albeit only considering clusters and galaxies as tracers. The
idea is to use void catalogues that are defined in the most highly
biased population available and then compute the average tracer-
density profiles around voids of similar size using clusters and
galaxies separately. The latter are hence exclusively used to compute
galaxy-density profiles around cluster-voids. More specifically, in
analogy to equation (1), we expect cluster-density profile ξ vc(r) to
be related to the corresponding galaxy-density profile ξ vg(r) of the
same cluster-voids following the equation:

ξvc(r) = bslopeξvg(r) + coffset , (15)

where bslope and coffset are two free parameters. As in this paper we
are comparing the density profiles of two different tracers against
each other, we expect bslope to converge towards the ratio of the
linear bias parameters of both tracers, the linear relative bias brel.
Our analysis on MAGNETICUM confirms that such a linear relation is
in place and verifies that bslope is a parameter sensitive to relative bias
between the galaxy- and cluster-samples under study. The properties
of the samples extracted from MAGNETICUM are very different from
those observed by DES, consequently we expect to find results
only in qualitative agreement to those that we are about to present
for DES. Nevertheless, we see a consistent relative effect for all
cases under study. The interested reader can find the full analysis
on MAGNETICUM in Appendix A1.

4.1 DES mocks

Having confirmed a linear relationship between the densities of
luminous tracers in void environments using the MAGNETICUM

simulation, we now want to move to more realistic data. The next
step is to test our pipeline on DES mocks (MICE 2, see Section 2.2),
to evaluate the impact of the light-cone and photometric redshift
uncertainty. The latter has so far been considered as an insurmount-
able obstacle for the identification of three-dimensional voids, as
the typical photo-z scatter of a single galaxy corresponds to line-
of-sight distance errors that are comparable to the extent of most
voids. This limitation lead to other innovative ideas on how to
investigate the potential of voids for cosmology, which explored
underdense regions of large-scale structure in two-dimensional
projections on the sky (Gruen et al. 2016; Sánchez et al. 2017). It
has been demonstrated how this approach opens up complementary
ways to constrain cosmology (Barreira et al. 2015; Cautun et al.
2018; Friedrich et al. 2018; Gruen et al. 2018). Nevertheless, as the
properties of three-dimensional voids have already been extensively
studied in simulations and spectroscopic surveys (see references
in the introduction), it is worth testing a similar method with
photometric data.

4.1.1 Redshift uncertainty and void finding

To evaluate the impact of photometric redshift uncertainty on void
finding we run VIDE on the REDMAGIC and REDMAPPER samples
of the MICE 2 mocks twice: once using the spectroscopic redshift
(spec-z), and once the photometric (photo-z) redshift estimate of
each object. The photo-z scatter inherent in the latter affects the
distance estimation and causes the distribution of objects to be
smeared out along the line of sight.

In Fig. 1 we present the void size function (i.e. the spatial number
density of voids as a function of their effective radius) in the MICE 2
mocks, extracted using VIDE on both spectroscopic and photometric

Figure 1. The abundance of voids identified in the galaxy and cluster
samples of the MICE 2 mocks, as a function of their effective radius. Both
photometric and spectroscopic redshifts have been used in each case, as indi-
cated in the figure legend. The cluster-void size function is not significantly
affected by photo-z uncertainty. In fact, clusters provide the most accurate
photometric redshift measurements and cluster-voids are the largest voids,
further reducing the relative impact of photo-z scatter on void finding.

samples of galaxies and clusters. While the abundance of galaxy-
voids (solid and dashed red) is heavily skewed by photo-z scatter,
cluster-voids (dotted and dash–dotted blue) remain surprisingly
unaffected by the choice of redshift estimate. In particular, the
number of galaxy-voids with r̄v < 35 h−1 Mpc is clearly overesti-
mated when using photo-z, while the opposite is the case for larger
galaxy-voids. This finding is different to what has previously been
seen in Sánchez et al. (2017), where the largest galaxy-voids in
the REDMAGIC sample were least affected by photo-z uncertainty.
The disagreement is most likely a consequence of the different void
finding techniques. The fact that Sánchez et al. (2017) utilized a
two-dimensional void finder on projected slices, with a line-of-sight
width above the typical photo-z scatter, largely mitigates the effects
of the latter. In contrast, VIDE directly operates on three-dimensional
particle distributions, and the photo-z scatter results in an unphysical
line-of-sight smearing of structures that can be detected as spurious
watershed ridges in the algorithm. The result is that larger voids are
more likely to be segmented into multiple smaller voids.

However, this effect on void abundance is hardly detected in
the cluster-void sample, due to the relatively accurate photometric
redshift estimates in REDMAPPER clusters. The higher accuracy can
be attributed to the fact that multiple member galaxies can contribute
to a single cluster redshift estimate. Moreover, the sparser and more
biased distribution of clusters results in larger voids overall (Sutter
et al. 2014a), so the extent of the photo-z scatter in redshift space
matters less in comparison to the void size. In order to quantify
the impact of photometric redshifts on void identification in more
detail, a comparison on individual voids would be needed. However,
this goes beyond the scope of this paper, as we are only concerned
about summary statistics here.

The robustness of the void size function from cluster-voids in the
presence of photo-z scatter has promising consequences for void
science with photometric surveys. For example, void number counts
can be used to constrain cosmology (Pisani et al. 2015), even when
identified in various tracer distributions. In particular, Ronconi &
Marulli (2017) suggest a simple way to extend the prediction of
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Figure 2. Tracer-density profiles (solid black for REDMAPPER clusters, dashed red for REDMAGIC galaxies) around cluster-defined voids of size 50 < rv <

60 h−1 Mpc in the MICE 2 mocks. The luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

void abundances to potentially observable voids: making use of
equation (1) they claim to be able to accurately forecast the void size
function obtained from haloes based on results from the excursion-
set theory for dark matter voids. According to Fig. 1, this method
may straightforwardly be extended to cluster-voids extracted from
photometric samples, opening up to the possible exploitation of the
void size function as a cosmological probe in a large variety of
forthcoming surveys (e.g. LSST, EUCLID, DESI, see Ivezic et al.
2008; Laureijs et al. 2011; DESI Collaboration 2016)

4.1.2 Density profiles and tracer bias

We now present the results for our analysis run on MICE 2 mocks,
using photometric redshifts for both REDMAGIC and REDMAPPER

samples. As already stressed at the beginning of this Section, the
void finding procedure is performed on clusters, but both of these
samples are used to measure the density of tracers around cluster-
voids. Our aim is to constrain the detailed relation between these
two void density profiles. In particular, we want to check whether
it is linear, similarly to the relation between tracers and mass found
in Pollina et al. (2017) and consistently with what anticipated by
the hydro simulations. To this end we measure the cluster-density
profile ξ vc(r) as a function of the corresponding galaxy-density
profile ξ vg(r) of the same cluster-voids. The density profiles are
estimated with the help of random catalogues, to account for the
mask and light-cone effects. We approximate the Landy–Szalay
estimator of equation (9) as

ξvt(r) 
 〈DvDt〉 − 〈DvRt〉 , (16)

which was shown to yield accurate results on void scales (Hamaus
et al. 2017). We have also compared our measurements with the
more common Davis–Peebles estimator (Davis & Peebles 1983),
which features a ratio instead of a subtraction in equation (16), and
found consistent results. Fig. 2 presents the corresponding tracer-
density profiles for REDMAPPER-defined voids of size 50 < rv <

60 h−1 Mpc. As tracers, we utilize REDMAPPER clusters of richness
λ > 5, and three REDMAGIC samples with varying luminosity cuts.
We observe a more pronounced cluster-density profile with a deeper
core and a higher ridge (dashed black line) than each of the galaxy-
density profiles (dotted red line). Yet, the shapes of all these profiles

seem to match quite nicely, which means that galaxies trace voids
just as the clusters do, albeit with a lower clustering amplitude.
This is further confirmed by the successful interpolation of all
profiles by means of the fitting function presented in equation (10)
(solid black and long-dashed red lines). Note that in some cases
the normalization of the profiles at large distances r can be slightly
offset from zero. This can have various reasons, which may be
related to imperfect corrections for the survey geometry, or the
spread in void sizes in a given bin of rv. However, we have checked
that the magnitude of this effect is small enough not to impact our
conclusions (i.e. coffset is always consistent with zero).

The correspondence between the different tracers can be seen
more clearly in Fig. 3, where their void-centric density profiles are
plotted against each other. A linear trend in the data is apparent, so
we fit equation (15) and constrain its slope and offset. We repeat this
for voids of all available sizes from our catalogue and summarize
the results in Table 1. The best-fitting value for bslope decreases when
galaxies with higher luminosity cut are used. This is consistent with
expectation, as they acquire a higher clustering bias, making the
relative bias between clusters and galaxies decrease. In contrast, the
parameter coffset remains consistent with zero in all cases.

The dependence of bslope on void effective radius is visualized
in Fig. 4. We observe a decreasing trend towards the largest voids,
bslope converges to the linear relative bias between the cluster and
the galaxy samples (dashed black line), which is estimated via
the method described in Section 3.3. However, the critical void
radius r+

v , where the two relative bias measurements agree, cannot
be determined from the galaxy sample with the lowest luminosity
cut. This is an effect that we have already observed with hydro
simulations (as shown by Pollina et al. 2017) and is confirmed by our
tests presented in Appendix A1: the higher brel between the samples
is, the larger are the void radii at which convergence between bslope

and brel is reached. Therefore it is not always possible to populate a
radius bin with only voids that are large enough to see bslope converge
to brel. However, looking at the central and left-hand panels of Fig. 4
we have a clear indication that it is possible to measure the relative
linear bias of tracers with this method when applied to the final
DES data set after 5 yr of observations. We further conclude that
the uncertainty inherent in photometric redshift estimates is not
affecting our results from before: the linear relation of equation (1)
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Figure 3. Cluster- and galaxy-density profiles from Fig. 2 plotted against each other. The dotted black line shows the best fit obtained with equation (15).

Table 1. Best-fitting values and 1σ uncertainties on the parameters of equation (15) for cluster-defined voids of various size and for different luminosity cuts
in the galaxy sample from the MICE 2 mocks.

Voids REDMAGIC (L > 0.5L∗) REDMAGIC (L > 1.0L∗) REDMAGIC (L > 1.5L∗)

Bins in rv ( h−1Mpc) bslope coffset bslope coffset bslope coffset

20 < rv < 40 3.21 ± 0.57 −0.071 ± 0.130 2.80 ± 0.64 −0.119 ± 0.173 1.96 ± 0.53 − 0.084 ± 0.158
40 < rv < 50 3.13 ± 0.42 −0.006 ± 0.084 2.56 ± 0.39 −0.066 ± 0.089 2.02 ± 0.39 − 0.090 ± 0.10
50 < rv < 60 2.63 ± 0.27 0.023 ± 0.063 2.02 ± 0.23 −0.041 ± 0.063 1.62 ± 0.22 − 0.082 ± 0.091
60 < rv < 70 2.50 ± 0.33 0.070 ± 0.105 1.88 ± 0.24 −0.043 ± 0.077 1.54 ± 0.26 − 0.111 ± 0.183
70 < rv < 80 2.28 ± 0.35 0.101 ± 0.126 1.56 ± 0.25 −0.067 ± 0.084 1.25 ± 0.24 − 0.174 ± 0.190
80 < rv < 90 2.10 ± 0.39 0.162 ± 0.161 1.41 ± 0.32 −0.127 ± 0.128 1.01 ± 0.31 − 0.262 ± 0.354

Figure 4. Best-fitting values for bslope (solid red) as a function of effective void radius in the MICE 2 mocks. The luminosity cut for the galaxy sample is varied
from left to right, as indicated in each panel. Dashed black lines show the linear relative bias between clusters and galaxies, estimated via their angular power
spectra on large scales.

is still satisfied to the same degree of accuracy as in simulations,
with similar constraints on its parameters.

4.2 Data

Having assessed the feasibility of our analysis using mocks, we are
finally ready to test it on DES Y1 data and to determine whether the
linear relation given by equation (1) (applied to visible tracers) is
in the sky. In this section we describe the void catalogue obtained
from the data and present all related results.

4.2.1 DES void catalogue

This section presents the first catalogue of three-dimensional water-
shed voids built with DES data. We follow our previous approach,

using REDMAPPER clusters with λ > 5 for void identification with
VIDE. Since the area observed during the first year of DES (Y1A1)
operations is significantly smaller (1321 deg2) than the full octant of
the MICE 2 mocks, the number statistics of the data are expected to be
lower. In total we find 475 voids in the redshift range 0.2 < z < 0.65
(which is the range where all REDMAGIC samples are fairly volume
limited), with effective radii between 15 h−1 Mpc and 80 h−1 Mpc.
Voids intersecting with the survey mask have been pruned from the
final sample. The void size function is shown in Fig. 5, with an
inset displaying the average cluster-density profile of all voids in
the sample (both in dashed black). It is remarkably similar to that
of cluster-voids in mocks shown in Fig. 1, which we overplot here
in pale blue to allow a better comparison. The small difference in
the void-size function can be caused by the assumed mass–richness
relation in the cluster mocks, which may not reproduce the real
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Figure 5. Abundance of voids as a function of their effective radius,
identified in the distribution of REDMAPPER clusters from DES data (Y1A1,
dashed black) and MICE 2 (dotted pale blue). The average cluster-density
profiles of all voids are shown as inset for both cases.

Figure 6. Density plot of REDMAPPER clusters and their associated void
centres (cyan circles) in a redshift slice of 0.2 < z < 0.45. The blue line
displays the 5-yr DES footprint, voids intersecting with the survey mask are
discarded.

data exactly. This is apparent for small size voids; nevertheless,
for larger voids in the sample (rv � 35 Mpc h−1) the two void-
size functions overlap within errors. The inset plot displays an even
better agreement between mocks and observation for what concerns
the cluster-density profiles around all voids included in the two
catalogues. This statistic overlaps perfectly within errors.

The footprint of our void catalogue on the sky can be perceived
in Fig. 6, which was made using the public code SKYMAPPER.6 We
show the positions of void centres (cyan circles) on the density plot
of clusters for a redshift slice of 0.2 < z < 0.45. This range was
chosen to allow direct comparison with fig. 1 of Gruen et al. (2018),
where a similar map for the location of line-of-sight underdensities
in the galaxy spatial distribution was presented. The blue line
displays the full DES footprint at the end of its operations. Fig. 7
is a three-dimensional plot of the DES light-cone, where 5 per cent
of all REDMAPPER clusters are shown in magenta, 5 per cent of
those clusters located inside voids are highlighted in green, and
black spheres of radius rv indicate the locations of void centres
with a size that reflects the spherical equivalent of the watershed
volume. The number of clusters was diluted for visualization
purposes.

6https://github.com/pmelchior/skymapper.

Figure 7. Three-dimensional map of the DES light-cone; magenta dots
show 5 per cent of all REDMAPPER clusters, green dots display 5 per cent
of REDMAPPER clusters inside watershed voids, and black spheres of radius
rv represent the spherical volume of each void.

4.2.2 Density profiles and tracer bias

With the observational void catalogue at hand, we are now in the
position to apply our earlier analysis to real data. Fig. 8 features the
average tracer density profiles for cluster-voids of size 40 < rv <

80 h−1 Mpc. As tracers, we use REDMAPPER clusters (dashed black
lines) and REDMAGIC galaxies of high-density, high-luminosity,
and higher luminosity samples (dashed red lines, from left to right).
As apparent from each panel, the densities of different tracers are
highly correlated in these void environments, all featuring a clear
depression around the void centre, and a compensating ridge at the
void edge. In particular, the similarity with the mocks in Fig. 2 is
striking, as is the ability of equation (10) to accurately fit the data
(solid black and long-dashed red lines). However, due to the smaller
area it can be noted that the uncertainties in the real data are higher,
especially close to the void centres, where the statistics are most
affected by the sparsity of tracers. We note that the average value
at r/rv ≈ 2 slightly deviates from the mean density of the Universe
when measuring the density of clusters. This is due to a systematic
issue with the mask, which is more complicated than what initially
modelled by the collaboration. However the mean density of the
Universe is well within the range of values allowed by the statistical
error when the average void profile is computed including all voids
in the sample (see Fig. 5). This might point to a persistency of this
issue only on very large scales. We are confident that this is not a
significant systematic for our analysis, as confirmed by results we
show in the next sections.

The sparsity of the tracers also has an impact on Fig. 9, where we
focus on the relation between cluster- and galaxy-density profiles
plotted against each other. The linear trend in the data is apparent,
although some of the data points exhibit large scatter. In all cases
we find equation (15) to provide a satisfactory fit to the data. We
find no evidence for any deviation from linearity other than due
to statistical noise, which argues equation (15) to indeed be the
simplest and most conservative model that is consistent with the
data. Our earlier results based on simulations and mocks with much
better statistics corroborate this result. We further confirm a decrease
in the best-fitting value of the slope bslope, caused by an increase in
the bias of the galaxy samples with increasing luminosity cuts. At
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Figure 8. Tracer-density profiles (solid black for REDMAPPER clusters, dashed red for REDMAGIC galaxies) around cluster-defined voids of size 40 < rv <

80 h−1 Mpc in the DES data. The luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

Figure 9. Cluster- and galaxy-density profiles from Fig. 8 plotted against each other. The dotted black line shows the best fit obtained with equation (15).

the same time, the offsets coffset remain consistent with zero. The
detailed parameter constraints are reported in Table 2.

Finally, we test the convergence of bslope to the linear relative bias
brel of the employed tracers. Due to the relatively low number of
voids in our sample, we can only afford to have two independent bins
in effective radius. We choose to split the sample such that both bins
roughly contain the same number of voids, with rv < 40 h−1 Mpc
and rv > 40 h−1 Mpc. The corresponding best-fitting values of bslope

are shown as the red dots, connected by a solid line in Fig. 10 (which
is analogous to Fig. 4 albeit with DES data). In comparison, the
linear relative bias estimated via the large-scale clustering statistics
of the tracers, as described in Section 3.3, is shown in dashed
black. Evidently, the poor statistics in the measurement do not allow
any detailed conclusions about the convergence properties of bslope

towards brel. However, at least for the galaxy samples of high and
higher luminosity, an indication for a decrease in bslope at larger rv

is apparent. A more detailed investigation of this will be possible
with future DES tracer catalogues of larger size. The final DES Y5
tracer catalogues will provide similar statistics as the MICE 2 mocks
employed above. To allow a better comparison with the latter, we
repeat the analysis with the mock catalogue employing the same
two bins in void radius as used for the observational case. We
overplot the so obtained bslope using blue dots. The range of values
of bslope predicted with the mock catalogue always overlaps with

those allowed by the observational case. When bslope is calculated
with respect to the higher luminosity galaxy sample (left-hand
panel), the values predicted with mocks is almost exactly the same
as the observational one. This implies that the deviation from the
theoretical value (dashed black) is mostly due to the large range of
void sizes included in each void bin. Such effect can be alleviated
by employing bin in void-sizes that span over a smaller range of
values, as shown in Section 4.1, which will be possible with a larger
void catalogue. In other words, in the observational case we cannot
resolve small enough bins to reach convergence towards large voids.

5 C O N C L U S I O N S

The aim of this paper was to probe the nature of tracer bias in
void environments, a regime of large-scale structure that so far
has little been investigated specifically for this purpose (however,
see Neyrinck et al. 2014; Yang et al. 2017; Paranjape, Hahn &
Sheth 2018). In contrast, the overall tracer bias, which is typically
weighted towards the most overdense structures in the Universe,
has remained an active topic of research for a long time, due
to its complex non-linear behaviour on intermediate and small
scales (e.g. Smith et al. 2007; Cacciato et al. 2012; Dvornik et al.
2018; Simon & Hilbert 2018; Springel et al. 2018, and references
therein). Moreover, recent evidence for additional stochasticity

MNRAS 487, 2836–2852 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/2/2836/5509591 by guest on 08 July 2022



2846 DES Collaboration

Table 2. Best-fitting values and 1σ uncertainties on the parameters of equation (15) for cluster-defined voids of various size and for different luminosity cuts
in the galaxy sample from the DES data.

Voids REDMAGIC (L > 0.5L∗) REDMAGIC (L > 1.0L∗) REDMAGIC (L > 1.5L∗)

Bins in rv [ h−1Mpc] bslope coffset bslope coffset bslope coffset

15 < rv < 40 2.92 ± 0.53 −0.055 ± 0.122 2.62 ± 0.62 −0.038 ± 0.145 2.45 ± 0.59 −0.027 ± 0.138
40 < rv < 86 2.91 ± 0.40 −0.065 ± 0.083 2.21 ± 0.37 −0.056 ± 0.084 1.68 ± 0.37 −0.043 ± 0.095

Figure 10. Best-fitting values for bslope (solid red) as a function of void radius in DES data. The luminosity cut for the galaxy sample varies from left to right,
as indicated in each panel. Blue dots display value of bslope predicted by mocks. Dashed black lines show the theoretical linear relative bias between clusters
and galaxies, estimated via their angular power spectra on large scales.

beyond the Poisson expectation in the clustering properties of
galaxies and clusters further complicates the common treatment
of bias (e.g. Hamaus et al. 2010; Baldauf et al. 2013; Paech et al.
2017; Friedrich et al. 2018; Gruen et al. 2018). A consistent and
reliable framework for the modelling of tracer bias is indispensable
for the cosmological analysis of modern data sets of large-scale
structure, because it establishes a connection between its observ-
able luminous constituents and the invisible dark matter. As the
latter is expected to be responsible for more than 80 per cent of
the mass content in the Universe, the accuracy of cosmological
constraints is often limited by the degree to which tracer bias is
understood.

In this work we have investigated tracer bias in void environments
of the distribution of galaxy clusters, based on a complete pipeline
of hydrodynamical simulations, mocks, and data from the first
year of DES observations. We find a remarkably linear relationship
between the void-centric density fluctuations of clusters and galaxy
samples of various magnitude limits across all distance scales,
suggesting tracer bias to remain linear in the two-point statistics
of void environments. This confirms recent simulation results by
Pollina et al. (2017), but for the first time with observational data.
We show that the relative clustering amplitude between any two
tracers can be expressed by a single multiplicative constant bslope,
relating their void-tracer cross-correlation functions according to
equation (15) with an offset consistent with zero (coffset = 0).
However, the constant bslope coincides with the linear relative bias
brel between those tracers only when voids above a certain critical
effective radius r+

v are used in this measurement. In case of very
sparse void tracers, such as the galaxy clusters used here, the value
of r+

v may exceed the available range of void sizes in a given area
on the sky. For smaller voids, bslope increases towards lower rv.

A detailed model for this behaviour can be important in cases
where the absolute value of tracer bias is needed to obtain parameter
constraints, which goes beyond the scope of this paper. It has been
pointed out that tracer environment can be more relevant than

host halo mass to determine the bias of tracers (Abbas & Sheth
2007; Pujol et al. 2017; Shi & Sheth 2018), and we expect the
environmental constraint from voids to be important in this respect.
When tracers are selected above some mass or luminosity threshold,
as done here, they are typically more biased in void environments
than elsewhere in the cosmic web (Yang et al. 2017; Paranjape
et al. 2018). Conversely, selecting the most extreme environments
as tracers of the density field, such as the centres of voids, can lead to
a vanishing, or even negative clustering bias (Hamaus et al. 2014b;
Clampitt, Jain & Sánchez 2016). Nevertheless, the fact that tracer
bias can be treated linearly with a single free parameter significantly
simplifies most common two-point clustering analyses of large-
scale structure. For example, it implies that different tracer-density
profiles around voids can be described with the same universal
functional form (as provided by equation (10), Hamaus et al. 2014c;
Sutter et al. 2014a). The analysis we presented is arguably the best
approach to test such a function, as with observational data we
do not have access to the entire three-dimensional distribution of
luminous and dark matter. Furthermore, the presented method can
be augmented with measurements of tangential shear around voids,
which provides the projected surface-mass density excess between
weakly lensed source galaxies and the observer. Shape catalogues
of the galaxies in DES are available, a study of the absolute tracer
bias with respect to the underlying dark matter distribution in void
environments is underway (Fang et al., in preparation). Our con-
clusions are further in excellent agreement with recent analyses of
weak lensing by troughs in the projected galaxy distribution (Gruen
et al. 2016, 2018), which can be accurately modelled using linear
bias (Friedrich et al. 2018). While those results argue for a non-
vanishing stochasticity parameter to be important for the counts-
in-cells statistic, this does not apply to cross-correlation functions
(as employed in this paper), where stochasticity does not enter at
non-zero separation.

As a side product, we have constructed the first catalogue of 3D-
watershed voids that are solely based on photometric redshift mea-
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surements with a controlled photo-z uncertainty.7 Another element
of novelty in our approach is that we employ galaxy clusters, rather
than single galaxies, as tracers for void finding. In fact, our tests
with mocks indicate that while the accuracy of REDMAGIC redshift
estimates for single galaxies is not sufficient to match void number
counts from a spectroscopic survey, REDMAPPER clusters produce
remarkably similar void abundances among spec-z and photo-z
catalogues. The flip side of using clusters rather than galaxies as
void tracers is that they can only access fewer and larger voids, due
to their sparsity. Nevertheless, for our purposes this constitutes also
an advantage, as the relative impact of photo-z scatter becomes even
smaller for large voids. Furthermore, the high number of clusters
accessible in photometric surveys opens up a promising perspective
for void science in the future. In fact forthcoming surveys, such as
LSST (Ivezic et al. 2008) and EUCLID Laureijs et al. (2011), will
partially rely on photometric redshift estimates. The effort to fully
exploit these kind of data in the context of void studies will thereby
benefit from our analysis.
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Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015, MNRAS, 448,

2987
Friedrich O. et al., 2018, Phys. Rev. D, 98, 023508
Granett B. R., Neyrinck M. C., Szapudi I., 2008, ApJ, 683, L99
Gregory S. A., Thompson L. A., Tifft W. G., 1978, Bull. Am. Astron. Soc.,

622
Gruen D. et al., 2016, MNRAS, 455, 3367
Gruen D. et al., 2018, Phys. Rev. D, 98, 023507
Hamaus N., Seljak U., Desjacques V., Smith R. E., Baldauf T., 2010,

Phys. Rev. D, 82, 043515
Hamaus N., Sutter P. M., Lavaux G., Wandelt B. D., 2014a, J. Cosmol.

Astropart. Phys., 12, 013
Hamaus N., Wandelt B. D., Sutter P. M., Lavaux G., Warren M. S., 2014b,

Phys. Rev. Lett., 112, 041304
Hamaus N., Sutter P. M., Wandelt B. D., 2014c, Phys. Rev. Lett., 112,

251302
Hamaus N., Sutter P. M., Lavaux G., Wandelt B. D., 2015, J. Cosmol.

Astropart. Phys., 11, 036
Hamaus N., Pisani A., Sutter P. M., Lavaux G., Escoffier S., Wandelt B. D.,

Weller J., 2016, Phys. Rev. Lett., 117, 091302
Hamaus N., Cousinou M.-C., Pisani A., Aubert M., Escoffier S., Weller J.,

2017, J. Cosmol. Astropart. Phys., 7, 014
Hausman M. A., Olson D. W., Roth B. D., 1983, ApJ, 270, 351
Hawken A. J. et al., 2017, A&A, 607, A54
Hirschmann M., Dolag K., Saro A., Bachmann L., Borgani S., Burkert A.,

2014, MNRAS, 442, 2304
Honscheid K., DePoy D. L., for the DES Collaboration, 2008, preprint

(arXiv:0810.3600)
Ivezic Z. et al., 2008, ApJ, 873, 111
Jennings E., Li Y., Hu W., 2013, MNRAS, 434, 2167
Kaiser N., 1984, ApJ, 284, L9
Kessler R. et al., 2015, AJ, 150, 172
Kirshner R. P., Oemler A. Jr, Schechter P. L., Shectman S. A., 1981, ApJ,

248, L57
Komatsu E. et al., 2011, ApJS, 192, 18
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A P P E N D I X : M AG N E T I C U M

A1 Simulations

The hydrodynamical simulation suite MAGNETICUM pathfinder
(Dolag et al., in preparation) has already been employed suc-
cessfully in a wide number of numerical studies. MAGNETICUM

showed so far a remarkably good agreement with observations
for various probes (see e.g. Remus et al. 2013; Hirschmann et al.
2014; McDonald et al. 2014; Dolag et al. 2015; Steinborn et al.
2015, 2016; Teklu et al. 2015; Dolag, Komatsu & Sunyaev 2016;
Remus, Burkert & Dolag 2017). In this work we employ the largest
cosmological volume simulated within that project, which covers
a box of side length 2688 h−1 Mpc, simulated using 2 × 45363

particles (for details, see Bocquet et al. 2016). The simulations
adopt a WMAP7 (Komatsu et al. 2011) �CDM cosmology with
σ 8 = 0.809, h = 0.704, �� = 0.728, �m = 0.272, �b = 0.0456, and
an initial slope for the power spectrum of ns = 0.963. MAGNETICUM

is based on P-GADGET3 (Springel 2005), a parallel cosmological
tree Particle-Mesh (PM) Smoothed-Particle Hydrodynamics (SPH)
code .

Haloes and subhaloes are identified using the SUBFIND algorithm
(Springel et al. 2001; Dolag et al. 2009). SUBFIND identifies

Table A1. Properties of the galaxy and cluster samples in the MAGNETICUM

simulations. The minimum mass Mmin is given in terms of stellar mass M∗
for galaxies, and in terms of M500c for clusters. Nt is the total number of
tracers and Nv the corresponding number of identified voids.

Tracers Mmin( M� h−1) Nt Nv

Galaxies M∗ = 1 × 1011 6.5 × 106 -
M∗ = 5 × 1011 2.6 × 106 -
M∗ = 1 × 1012 3.5 × 105 -

Clusters M500c = 1 × 1014 1.0 × 105 1053

substructures as locally overdense, gravitationally bound groups
of particles, starting from a main halo which is identified through
the friends-of-friends (FoF) algorithm. Substructures are associated
with galaxies. Galaxies in MAGNETICUM can have stellar masses
as low as 4 × 108 h−1 M�, but in this study we will consider
as main sample only galaxies with M∗ ≥ 1011 h−1 M�, which
are more realistically observable. Clusters are identified as main
haloes with overdensity with respect to 500 times the critical
density M500c > 1013 h−1 M�, but in this paper we only consider
MAGNETICUM clusters above 1014 h−1 M�. For our analysis we
make use of the galaxy and cluster samples extracted from the
simulation at redshift z = 0.14 with the criteria explained above. In
Table A1 we summarize some properties of the tracers relevant in
this work.

A2 Results from hydro simulations

As a first step we have to select a tracer of the density in which to
define our void catalogue. Following the guidelines of our analysis,
for this task we rely on the cluster sample, which is the most highly
biased at hand. Furthermore, we apply a conservatively high mass
cut of Mmin = 1014 h−1 M� to our MAGNETICUM clusters, first to
make sure that we do not include objects that are of too low detection
significance in the observed data, and secondly to achieve a relative
bias between our cluster and galaxy sample that is significantly
larger than unity. Since the lower limit for the bias of the galaxy
sample is set by the mass resolution of the simulation, we can only
boost the relative bias by increasing Mmin for the cluster sample. This

Figure A1. Left: Tracer-density profiles (dashed black for clusters, dotted red for galaxies) around cluster-defined voids of radius 190 < rv < 220 h−1 Mpc
in the MAGNETICUM simulation. Solid black and long-dashed red lines show the best fits obtained via equation (10). Right: Cluster- and galaxy-density profiles
from the left-hand panel plotted against each other (black points with error bars). The dotted black line shows the best fit using equation (15).
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Table A2. Best-fitting values and 1σ uncertainties on the parameters of equation (15) for cluster-defined voids of various size and for different stellar-mass
cuts in the galaxy sample from the MAGNETICUM simulation.

Voids Galaxies (M∗ > 1 × 1011 h−1 M�) Galaxies (M∗ > 5 × 1011 h−1 M�) Galaxies (M∗ > 1 × 1012 h−1 M�)

Bins in rv ( h−1Mpc) bslope coffset bslope coffset bslope coffset

90 < rv < 110 3.43 ± 0.39 −0.033 ± 0.089 2.02 ± 0.33 −0.013 ± 0.095 1.20 ± 0.21 −0.005 ± 0.022
110 < rv < 130 3.01 ± 0.10 −0.009 ± 0.070 1.80 ± 0.21 −0.003 ± 0.064 1.12 ± 0.14 −0.001 ± 0.020
130 < rv < 150 3.11 ± 0.26 −0.009 ± 0.063 1.76 ± 0.20 −0.005 ± 0.063 1.12 ± 0.14 −0.000 ± 0.055
150 < rv < 170 2.83 ± 0.22 −0.007 ± 0.045 1.77 ± 0.22 −0.003 ± 0.063 1.11 ± 0.14 −0.001 ± 0.045
170 < rv < 190 2.82 ± 0.26 −0.003 ± 0.063 1.77 ± 0.20 −0.001 ± 0.061 1.15 ± 0.14 −0.002 ± 0.045
190 < rv < 220 2.71 ± 0.22 −0.009 ± 0.045 1.72 ± 0.17 −0.004 ± 0.060 1.10 ± 0.14 −0.002 ± 0.055
220 < rv < 250 2.59 ± 0.33 −0.035 ± 0.105 1.68 ± 0.28 −0.017 ± 0.101 1.15 ± 0.22 −0.000 ± 0.095

implies a lower resolution for smaller voids due to tracer sparsity (for
further details on sparse sampling and void finding, see Sutter et al.
2014a), so the resulting void catalogue contains extremely large
objects. However, as we are only interested in the relation between
tracer-density profiles around a fixed void population, the absolute
distribution of void sizes does not matter for our purposes. We stress
that – given what explained here above – we do not expect nor intend
to make quantitative comparisons between MAGNETICUM and DES
data. Our intention is to test our pipeline qualitatively, within a fully
controlled environment.

In the left-hand panel of Fig. A1 we show the stacked density
profile of such cluster-voids computed twice: once using the same
cluster population they were identified in (dashed black line), and
once using the full galaxy sample extracted from MAGNETICUM

(red dotted line). The shaded areas represent the uncertainty on
the mean density profile, computed as the standard deviation of
all individual void profiles from their mean. The void density
profiles are calculated following the procedure explained in the
beginning of Section 3.2, including voids of effective radii in the
range 190 < rv < 220 h−1 Mpc. The function from equation (10)
is used to fit the density profiles (solid black for clusters and long-
dashed red for galaxies), yielding a good match in both cases. This
corroborates the universal character of equation (10) with respect to
tracer type. The very characteristic features are a clear underdense
core close in the void centre and a compensation wall around r

 rv, which are most pronounced in the cluster-density profile.
When the density profile of galaxies around the same cluster-voids
is computed, those features are less pronounced, but still clearly
visible. Because clusters have a higher clustering bias than galaxies,
this behaviour is expected. We aim at investigating the relation
between the void density profiles reported in the left-hand panel of
Fig. A1, therefore we plot the void-centric cluster density profile
ξ vc(r) as a function of the corresponding galaxy-density profile
ξ vg(r). The results are depicted as red dots in the right-hand panel
of Fig. A1, where the error bars show the uncertainty on the mean
density profiles from the left-hand panel. Equation (15) is used to
fit those data points (black dotted line). The linear relation between
ξ vc(r) and ξ vg(r) is evident, and in concordance with the linearity
between ξ vc(r) and the matter-density profile ξ vm(r) from earlier
work (Pollina et al. 2017). The best-fitting values for bslope and
coffset, including their 1σ uncertainties can be found in Table A2.
coffset is compatible with zero within the error, while bslope attains a
value of about 2.7. We expect bslope to be related to the relative bias
between clusters and galaxies, in analogy to equation (12).

We repeated the previous analysis for voids of different size, and
confirmed the linear relation in equation (15) to provide a good fit in
all cases. The best-fitting values of bslope and coffset are summarized in
Table A2. Furthermore, we explored the impact of various mass cuts

in our galaxy sample. The overall clustering amplitude of galaxies is
expected to depend on their stellar mass, which should be reflected
in our best fit for bslope as well. While our original sample contained
all galaxies with stellar mass above 1 × 1011 h−1 M�, we impose
two more restrictive cuts with M∗ > 5 × 1011 h−1 M� and M∗ >

1 × 1012 h−1 M�. Also for these cases we can confirm the linear
relation of equation (15) to perform a good fit. The corresponding
parameter constraints are reported in Table A2.

In Fig. A2 the best-fitting values of bslope are shown as a function
of the mean effective radius of the selected void sample. The three
panels correspond to the different stellar-mass cuts applied to the
galaxy catalogue. We observe a clear trend of bslope decreasing
with void size, a similar behaviour of what has been presented in
Pollina et al. (2017), albeit the different set-up. In that study bslope

converges to a constant value for voids larger than a critical size,
and this value is shown to coincide with the linear bias of the tracer
with respect to the matter distribution. In this case, however, we
expect bslope to converge to the ratio between the linear bias of
cluster and galaxies brel (as explained in Section 4.1.2). We can
estimate brel via equation (12) in two ways, both of which are
plotted in Fig. A3 as solid and dashed black lines with shaded error
bars, respectively. On large scales both estimators agree with each
other, and yield the linear relative bias between the two tracers.
We compare this value with the best fit for bslope obtained from the
largest effective radius bin of our void sample (red solid line with
shaded error bar), which is the most likely one to have converged
towards brel. In the different panels of Fig. A3 only the stellar-
mass cut for the galaxy sample is varied, with the same values as
used in Fig. A2. As evident from Fig. A3, the convergence of bslope

towards brel is not complete in all cases. Only for the highest stellar-
mass cut of M∗ > 1012 h−1 M� in the galaxy sample are the two
values consistent with each other within the errors. At the same
time, the relative bias attains the lowest value in this case, owing
to the higher bias of the galaxy sample. The lower the stellar-mass
cut for the galaxies, the lower becomes their bias. Therefore the
relative bias between clusters and galaxies increases, which also
increases the discrepancy between bslope and brel. Hence, the higher
the relative bias between two tracers, the larger becomes the critical
void radius r+

v at which bslope and brel converge. When voids are
defined in sparse tracer distributions, such as the galaxy clusters
considered here, the size of r+

v may fall well beyond the range of
effective void radii that can be found in the entire void sample. A
similar conclusion has already been drawn in Pollina et al. (2017),
where the value of r+

v was investigated for voids identified in denser
tracer samples. Nevertheless, this first test shows that the findings
of Pollina et al. (2017) can be indeed reproduced by measuring the
relative bias with the analysis proposed in this section, which can
be fully implemented with observational data.
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Figure A2. Best-fitting values for bslope as a function of effective void radius in the MAGNETICUM simulation. The stellar-mass cut for the galaxy sample is
varied from left to right, as indicated in each panel. The cluster sample has a fixed mass cut of M500c > 1014 h−1 M�, it is also used for the void identification.

Figure A3. Comparison of the best-fitting bslope obtained from our largest void sample (solid red line) to the relative bias brel between clusters and galaxies in
the MAGNETICUM simulation, calculated using the estimators as indicated (black dashed and dotted lines). The stellar-mass cut for the galaxy sample is varied
from left to right, with the same values as in Fig. A2.

1Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching,
Germany
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