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Abstract. The purpose of this article is to study quasi linear parabolic partial differ-

ential equations of second order, posed on a bounded network, satisfying a nonlinear and

non dynamical Neumann boundary condition at the vertices. We prove the existence

and the uniqueness of a classical solution.

1. Introduction

The purpose of this article is to study quasi linear parabolic partial differential equations

of second order, posed on a bounded network, satisfying a nonlinear and non dynamical

Neumann boundary condition at the vertices, also called the junction points. For simplic-

ity of notation, we have focused on a network containing a single junction. More precisely,

giving a final time T > 0, if I ∈ N
∗ denotes the number of edges of the single junction,

ai > 0 is the length of each edge i (i ∈ {1 . . . I}), and ”0” denotes the junction point, the

problem is reduced to:
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∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0, ai),

F (u(t, 0), ∂xu(t, 0)) = 0, if t ∈ [0, T ),

with u(t, 0) = (u1(t, 0), . . . , uI(t, 0)), ∂xu(t, 0) = (∂xu1(t, 0), . . . , ∂xuI(t, 0)),

and ∀(i, j) ∈ {1 . . . I}2, ui(t, 0) = uj(t, 0),

∀i ∈ {1 . . . I}, ui(t, ai) = φi(t), if t ∈ [0, T ],

∀i ∈ {1 . . . I}, ui(0, x) = gi(x), if x ∈ [0, ai].

(1)

To simplify our study, we impose Dirichlet boundary condition (φi) at the ai. One can

consider classical Neumann boundary conditions, without adding any mathematical tech-

nical issues for the problem (1). The multi-junction setting involving the equations of

1
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type (1) can be treated with similar tools, with a Neumann boundary condition F (or a

classical Dirichlet boundary condition) at the junction points. The well-known Kirchhoff

law corresponds to the case where F is linear in ∂xu and independent of u, (for instance:

F (∂xu(t, 0)) =
∑I

i=1 ∂xui(t, 0) = 0).

Originally introduced by Nikol’skii [15] and Lumer [13, 14], the concept of ramified

spaces and the analysis of partial differential equation on these spaces have attracted

a lot of attention in the last 30 years. As explained in [15], the main motivations are

applications in physics, chemistry, and biology (for instance small transverse vibrations

in a grid of strings, vibration of a grid of beams, drainage system, electrical equation

with Kirchhoff law, wave equation, heat equation,...). Concerning applications in biology,

we can cite for instance the recent works ([2],[8] and [17]), where equations of type (1)

are used in the multi-junction case to modelize the dynamic of species in river networks.

Linear diffusions of the form (1), with a Kirchhoff law, are also naturally associated with

stochastic processes living on graphs. These processes were introduced in the seminal

papers [4] and [5]. Another motivation for studying (1) is the analysis of associated

stochastic optimal control problems with a control at the junction.

There have been several works on linear and quasilinear parabolic equations of the

form (1). For linear equations, von Below [18] shows that, under natural smoothness

and compatibility conditions, linear boundary value problems posed on a junction with a

linear Kirchhoff condition at the junction point is well-posed. The proof consists mainly

in showing that the initial boundary value problem posed on a junction is equivalent to

a well-posed initial boundary value problem for a parabolic system, where the boundary

conditions are such that the classical results on linear parabolic equations [9] can be

applied. The same author investigates in [19] the strong maximum principle for semi

linear parabolic operators with Kirchhoff condition, while in [20] he studies the classical

global solvability for a class of semilinear parabolic equations on ramified networks, where

a dynamical node condition is prescribed: Namely the Neumann condition at the junction

point x = 0 in (1), is replaced by the dynamic one:

∂tu(t, 0) + F (t, u(t, 0), ∂xu(t, 0)) = 0.
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In this way the application of classical estimates for domains established in [9] becomes

possible. The author then establishes the classical solvability in the class C1+α,2+α, with

the aid of the Leray-Schauder-principle and the maximum principle of [19]. Let us note

that this kind of proof fails for equation (1) because in this case one cannot expect an

uniform bound for the term |∂tu(t, 0)| (the proof of Lemma 3.1 of [9] VI.3 fails). Still

in the linear setting, another approach, yielding similar existence results, was developed

by Fijavz, Mugnolo and Sikolya in [3]: the idea is to use semi-group theory as well as

variational methods to understand how the spectrum of the operator is related to the

structure of the network.

Equations of the form (1) can also be analyzed in terms of viscosity solutions. The

first results on viscosity solutions for Hamilton-Jacobi equations on networks have been

obtained by Schieborn in [16] for the Eikonal equations and later discussed in many

contributions on first order problems [1, 7, 10], elliptic equations [11] and second order

problems with vanishing diffusion at the vertex [12]. In contrast second order Hamilton-

Jacobi equations with a non vanishing viscosity at the boundary have seldom been studied

in the literature and our aim is to show the well-posedness of classical solutions for (1) in

suitable Höder spaces: see Theorem 2.2 for the existence and Theorem 2.4 for the compar-

ison, and thus the uniqueness. Our main assumptions are that the equation is uniformly

parabolic with smooth coefficients and that the term F = F (u, p) at the junction is either

decreasing with respect to u or increasing with respect to p. The main idea of the proof is

to use a time discretization, exploiting at each step the solvability in C2+α of the elliptic

problem:
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−σi(x, ∂xui(x))∂
2
xui(x) +Hi(x, ui(x), ∂xui(x)) = 0, if x ∈ (0, ai)

F (u(0), ∂xu(0)) = 0,

with u(0) = (u1(0), . . . , uI(0)), ∂xu(0) = (∂xu1(0), . . . , ∂xuI(0)),

and ∀(i, j) ∈ {1 . . . I}2, ui(0) = uj(0),

∀i ∈ {1 . . . I}, ui(ai) = φi.

(2)

The paper is organized as follows. In section 2, we introduce the notations and state

our main results. In Section 3, we review the mains results of existence and uniqueness of

the elliptic problem (2). Finally Section 4, is dedicated to the proof of our main results.
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2. main results

In this section we state our main result Theorem 2.2, on the solvability of the parabolic

problem with Neumann boundary condition at the vertex, posed on a bounded junction

(1), stated in Introduction:
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∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0, ai),

F (u(t, 0), ∂xu(t, 0)) = 0, if t ∈ [0, T ),

with u(t, 0) = (u1(t, 0), . . . , uI(t, 0)), ∂xu(t, 0) = (∂xu1(t, 0), . . . , ∂xuI(t, 0)),

and ∀(i, j) ∈ {1 . . . I}2, ui(t, 0) = uj(t, 0),

∀i ∈ {1 . . . I}, ui(t, ai) = φi(t), if t ∈ [0, T ],

∀i ∈ {1 . . . I}, ui(0, x) = gi(x), if x ∈ [0, ai].

(1)

There will be two typical assumptions for F = F (u, p): either F is decreasing with respect

to u or F is increasing with respect to p (Kirchhoff conditions).

2.1. Notations and preliminary results. Let us start by introducing the main nota-

tion used in this paper as well as an interpolation result. Let I ∈ N
∗ be the number of

edges, and a = (a1, . . . aI) ∈ (0,∞)I be the length of each edge. The bounded junction

J a is defined by

J a =
I
⋃

i=1

Jai
i , with: ∀i ∈ {1 . . . I} Jai

i := [0, ai], and ∀(i, j) ∈ {1 . . . I}2, i 6= j, Jai
i ∩ J

aj
j = {0}.

The intersection of the (Jai
i )1≤i≤I is called the junction point and is denoted by 0.

We identify all the points of J a by the couples (x, i) (with i ∈ {1 . . . I}, x ∈ |0,maxi∈{1...I} ai]),

such that we have: (x, i) ∈ J a if and only if x ∈ Jai
i . For T > 0, the time-space domain

J a
T is defined by

J a
T = [0, T ]×J a.

The interior of J a
T set minus the junction point 0 is denoted by

◦

J a
T , and is defined by

◦

J a
T = (0, T )×

(

I
⋃

i=1

◦

Jai
i

)

.
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For the functionnal spaces that will be used in the sequel, we use here the notations

of Chapter 1.1 of [9]. For the convenience of the reader, we recall these notations

in Appendix A. In addition we introduce the parabolic Hölder space on the junction
(

C
l
2
,l(J a

T ), ‖.‖C
l
2 ,l(J a

T
)

)

and the space C
l
2
,l

b (
◦

J a
T ), defined by (where l > 0, see Annexe A for

more details)

C
l
2
,l(J a

T ) :=
{

f : J a
T → R, (t, (x, i)) 7→ fi(t, x), ∀(i, j) ∈ {1 . . . I}2, ∀t ∈ (0, T ),

fi(t, 0) = fj(t, 0), ∀i ∈ {1 . . . I}, (t, x) 7→ fi(t, x) ∈ C
l
2
,l([0, T ]× [0, ai])

}

,

C
l
2
,l

b (
◦

J a
T ) :=

{

f : J a
T → R, (t, (x, i)) 7→ fi(t, x),

∀i ∈ {1 . . . I}, (t, x) 7→ fi(t, x) ∈ C
l
2
,l

b ((0, T )× (0, ai))
}

,

with:

‖u‖
C

l
2 ,l(J a

T
)

=
∑

1≤i≤I

‖ui‖
C

l
2 ,l([0,T ]×[0,ai])

.

We will use the same notations, when the domain does not depend on time, namely T = 0,

ΩT = Ω, removing the dependence on the time variable.

We continue with the definition of a nondecreasing map F : R
I → R. Let (x =

(x1, . . . xI), y = (y1 . . . yI)) ∈ R
2I , we say that

x ≤ y, if ∀i ∈ {1 . . . I}, xi ≤ yi,

and

x < y, if x ≤ y, and there exists j ∈ {1 . . . I}, xj < yj.

We say that F ∈ C(RI ,R) is nondecreasing if

∀(x, y) ∈ R
I , if x ≤ y, then F (x) ≤ F (y),

increasing if

∀(x, y) ∈ R
I , if x < y, then F (x) < F (y).

Next we recall an interpolation inequality, which will be useful in the sequel.
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Lemma 2.1. Suppose that u ∈ C0,1([0, T ] × [0, R]) satisfies an Hölder condition in t in

[0, T ]× [0, R], with exponent α ∈ (0, 1], constant ν1, and has derivative ∂xu, which for any

t ∈ [0, T ] are Hölder continuous in the variable x, with exponent γ ∈ (0, 1], and constant

ν2. Then the derivative ∂xu satisfies in [0, T ] × [0, R], an Hölder condition in t, with

exponent αγ

1+γ
, and constant depending only on ν1, ν2, γ. More precisely

∀(t, s) ∈ [0, T ]2, |t− s| ≤ 1, ∀x ∈ [0, R],

|∂xu(t, x)− ∂xu(s, x)| ≤
(

2ν2

(

ν1
γν2

)
γ

1+γ

+ 2ν1

(

γν2
ν1

)− 1
1+γ

)

|t− s|
αγ

1+γ .

This is a special case of Lemma II.3.1, in [9], (see also [15]). The main difference is that

we are able to get global Hölder regularity in [0, T ] × [0, R] for ∂xu in its first variable.

Let us recall that this kind of result fails in higher dimensions.

Proof. Let (t, s) ∈ [0, T ]2, with |t − s| ≤ 1, and x ∈ [0, R]. Suppose first that x ∈ [0, R
2
].

Let y ∈ [0, R], with y 6= x, we write:

∂xu(t, x)− ∂xu(s, x) =

1

y − x

∫ y

x

(∂xu(t, x)− ∂xu(t, z)) + (∂xu(t, z)− ∂xu(s, z)) + (∂xu(s, z)− ∂xu(s, x)) dz.

Using the Hölder condition in time satisfied by u, we have:

∣

∣

∣

1

y − x

∫ y

x

(∂xu(t, z)− ∂xu(s, z))dz
∣

∣

∣
≤

2ν1|t− s|α

|y − x|
.

On the other hand, using the Hölder regularity of ∂xu in space satisfied, we have:

∣

∣

∣

1

y − x

∫ y

x

(∂xu(t, x)− ∂xu(t, z)) + (∂xu(s, z)− ∂xu(s, x))dz
∣

∣

∣
≤ 2ν2|y − x|γ.

It follows:

|∂xu(t, x)− ∂xu(s, x)| ≤ 2ν2|y − x|γ +
2ν1|t− s|α

|y − x|
.

Assuming that |t− s| ≤
(

(3R
2
)1+γ γν2

ν1

)
1
α

∧ 1, minimizing in y ∈ [0, R], for y > x, the right

side of the last equation, we get that the infimum is reached for

y∗ = x +
(ν1|t− s|α

γν2

)
1

1+γ

,
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and then:

|∂xu(t, x)− ∂xu(s, x)| ≤ C(ν1, ν2, γ)|t− s|
αγ

1+γ ,

where the constant C(ν1, ν2, γ), depends only on the data (ν1, ν2, γ), and is given by:

C(ν1, ν2, γ) = 2ν2

( ν1
γν2

)
γ

1+γ

+ 2ν1

(γν2
ν1

)− 1
1+γ

.

For the cases y < x, and x ∈ [R
2
, R], we argue similarly, which completes the proof. �

2.2. Assumptions and main results. We state in this subsection the central Theo-

rem of this note, namely the solvability and uniqueness of (1) in the class C
α
2
,1+α(J a

T ) ∩

C
1+α

2
,2+α

b (
◦

J a
T ). In the rest of these notes, we fix α ∈ (0, 1).

We introduce the following data










F ∈ C0(RI × R
I ,R)

g ∈ C1(J a) ∩ C2
b (

◦

J a)
,

and for each i ∈ {1 . . . I}






















σi ∈ C1([0, ai]× R,R)

Hi ∈ C1([0, ai]× R
2,R)

φi ∈ C1([0, T ],R)

.

We suppose furthermore that the data satisfy the following assumption

Assumption (P)

(i) Assumption on F























a) F is decreasing with respect to its first variable,

b) F is nondecreasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , F (b, B) = 0,
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or satisfies the Kirchhoff condition






















a) F is nonincreasing with respect to its first variable,

b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , F (b, B) = 0.

We suppose moreover that there exists a parameter m ∈ R, m ≥ 2 such that we have

(ii) The (uniform) ellipticity condition on the (σi)i∈{1...I} : there exist ν, ν, strictly positive

constants such that:

∀i ∈ {1 . . . I}, ∀(x, p) ∈ [0, ai]× R,

ν(1 + |p|)m−2 ≤ σi(x, p) ≤ ν(1 + |p|)m−2.

(iii) The growth of the (Hi)i∈{1...I} with respect to p exceed the growth of the σi with

respect to p by no more than two, namely there exists µ an increasing real continuous

function such that:

∀i ∈ {1 . . . I}, ∀(x, u, p) ∈ [0, ai]× R
2, |Hi(x, u, p)| ≤ µ(|u|)(1 + |p|)m.

(iv) We impose the following restrictions on the growth with respect to p of the derivatives

for the coefficients (σi, Hi)i∈{1...I}, which are for all i ∈ {1 . . . I}:

a) |∂pσi|[0,ai]×R2(1 + |p|)2 + |∂pHi|[0,ai]×R2 ≤ γ(|u|)(1 + |p|)m−1,

b) |∂xσi|[0,ai]×R2(1 + |p|)2 + |∂xHi|[0,ai]×R2 ≤
(

ε(|u|) + P (|u|, |p|)
)

(1 + |p|)m+1,

c) ∀(x, u, p) ∈ [0, ai]× R
3, −CH ≤ ∂uHi(x, u, p) ≤

(

ε(|u|) + P (|u|, |p|)
)

(1 + |p|)m,

where γ and ε are continuous non negative increasing functions. P is a continuous func-

tion, increasing with respect to its first variable, and tends to 0 for p → +∞, uniformly

with respect to its first variable, from [0, u1] with u1 ∈ R, and CH > 0 is real strictly

positive number. We assume that (γ, ε, P, CH) are independent of i ∈ {1 . . . I}.

(v) A compatibility conditions for g and (φi){1...I}:

F (g(0), ∂xg(0)) = 0 ; ∀i ∈ {1 . . . I}, gi(ai) = φi(0).
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Theorem 2.2. Assume (P). Then system (1) is uniquely solvable in the class C
α
2
,1+α(J a

T )∩

C
1+α

2
,2+α

b (
◦

J a
T ). There exist constants (M1,M2,M3), depending only the data introduced in

assumption (P),

M1 =M1

(

maxi∈{1...I}

{

supx∈(0,ai)
| − σi(x, ∂xgi(x))∂

2
xgi(x) +Hi(x, gi(x), ∂xgi(x))| +

|∂tφi|(0,T )

}

,maxi∈{1...I} |gi|(0,ai), CH

)

,

M2 =M2

(

ν, ν, µ(M1), γ(M1), ε(M1), sup|p|≥0 P (M1, |p|),maxi∈{1...I} |∂xgi|(0,ai),M1

)

,

M3 =M3

(

M1, ν(1 + |p|)m−2, µ(|u|)(1 + |p|)m, |u| ≤M1, |p| ≤M2

)

,

such that

||u||C(J a
T
) ≤M1, ||∂xu||C(J a

T
) ≤M2, ||∂tu||C(J a

T
) ≤M1, ||∂2xu||C(J a

T
) ≤M3.

Moreover, there exists a constant M(α) depending on
(

α,M1,M2,M3

)

such that

||u||
C
α
2 ,1+α(J a

T
)
≤M(α).

We continue this Section by giving the definitions of super and sub solution, and stating

a comparison Theorem for our problem.

Definition 2.3. We say that u ∈ C0,1(J a
T ) ∩ C1,2(

◦

J a
T ), is a super solution (resp. sub

solution) of























∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0, ai),

F (u(t, 0), ∂xu(t, 0)) = 0, if t ∈ (0, T ),

(3)

if























∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) ≥ 0, (resp. ≤ 0), ∀(t, x) ∈ (0, T )× (0, ai),

F (u(t, 0), ∂xu(t, 0)) ≤ 0, (resp. ≥ 0), ∀t ∈ (0, T )
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Theorem 2.4. Parabolic comparison.

Assume (P). Let u ∈ C0,1(J a
T )∩C1,2

b (
◦

J a
T ) (resp. v ∈ C0,1(J a

T )∩C1,2
b (

◦

J a
T )) a super solution

(resp. a sub solution) of (3), satisfying for all i ∈ {1 . . . I}, ui(t, ai) ≥ vi(t, ai), for all

t ∈ [0, T ], and ui(0, x) ≥ vi(0, x), for all x ∈ [0, ai].

Then for each (t, (x, i)) ∈ J a
T : ui(t, x) ≥ vi(t, x).

Proof. We start by showing that for each 0 ≤ s < T , for all (t, (x, i)) ∈ J a
s , ui(t, x) ≥

vi(t, x).

Let λ > 0. Suppose that λ > C1 +C2, where the expression of the constants (C1, C2) are

given in the sequel (see (4), and (5)). We argue by contradiction assuming that

sup
(t,(x,i))∈J a

s

exp(−λt + x)
(

vi(t, x)− ui(t, x)
)

> 0.

Using the boundary conditions satisfied by u and v, the supremum above is reached at a

point (t0, (x0, j0)) ∈ (0, s]× J , with 0 ≤ x0 < aj0.

Suppose first that x0 > 0, the optimality conditions imply that

exp(−λt0 + x0)
(

− λ(vj0(t0, x0)− uj0(t0, x0)) + ∂tvj0(t0, x0)− ∂tuj0(t0, x0)
)

≥ 0,

exp(−λt0 + x0))
(

vj0(t0, x0)− uj0(t0, x0) + ∂xvj0(t0, x0)− ∂xuj0(t0, x0)
)

= 0,

exp(−λt0 + x0)
(

vj0(t0, x0)− uj0(t0, x0) + 2
(

∂xvj0(t0, x0)− ∂xuj0(t0, x0)
)

+
(

∂2xvj0(t0, x0)− ∂2xuj0(t0, x0)
))

=

exp(−λt0 + x0)
(

−
(

vj0(t0, x0)− uj0(t0, x0)
)

+ ∂2xvj0(t0, x0)− ∂2xuj0(t0, x0)
)

≤ 0.

Using assumptions (P) (iv) a), (iv) c) and the optimality conditions above we have

Hj0(x0, ui(t0, x0), ∂xuj0(t0, x0))−Hj0(x0, vj0(t0, x0), ∂xvj0(t0, x0)) ≤
(

vj0(t0, x0)− uj0(t0, x0)
)(

CH + γ(|∂xvj0(t0, x0)|)
)(

(1 + |∂xuj0(t0, x0))| ∨ |∂xvj0(t0, x0))|)
m−1

)

≤ C1

(

vj0(t0, x0)− uj0(t0, x0)
)

,

where

C1 := maxi∈{1...I}

{

sup(t,x)∈[0,T ]×[0,ai]

{ (

CH + γ(|∂xvi(t, x)|
)(

1 + |∂xui(t, x))|

∨|∂xvi(t, x))|
)m−1 } }

. (4)
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On the other hand we have using assumption (P) (ii), (iv) a), (iv) c), and the optimality

conditions

σj0(x0, ∂xvj0(t0, x0))∂
2
xvj0(t0, x0)− σj0(x0, ∂xuj0(t0, x0))∂

2
xuj0(t0, x0) ≤

(

vj0(t0, x0)− uj0(t0, x0)
)(

ν(1 + |∂xvj0(t0, x0)|)
m−2 +

∣

∣

∣
∂2xuj0(t0, x0)

∣

∣

∣

+ γ(|∂xuj0(t0, x0)|)(1 + |∂xuj0(t0, x0))| ∨ |∂xvj0(t0, x0))|)
m−1

)

≤ C2

(

vj0(t0, x0)− uj0(t0, x0)
)

,

where

C2 := maxi∈{1...I}

{

sup(t,x)∈[0,T ]×[0,ai]

{

ν(1 + |∂xvi(t, x)|)
m−2 +

∣

∣

∣
∂2xui(t, x)

∣

∣

∣

+ γ(|∂xui(t, x)|)(1 + |∂xui(t, x))|+ |∂xvi(t, x))|)
m−1

} }

. (5)

Using now the fact that v is a sub-solution while u is a super-solution, we get

0 ≤

∂tuj0(t0, x0)− σj0(x0, ∂xuj0(t0, x0))∂
2
xuj0(t0, x0) +Hj0(x0, ui(t0, x0), ∂xuj0(t0, x0))

−∂tvj0(t0, x0) + σj0(x0, ∂xvj0(t0, x0))∂
2
xvj0(t0, x0)−Hj0(x0, vj0(t0, x0), ∂xvj0(t0, x0))

≤ −(λ− (C1 + C2))(vj0(t0, x0)− uj0(t0, x0)) < 0,

which is a contradiction. Therefore the supremum is reached at (t0, 0), with t0 ∈ (0, s].

We apply a first order Taylor expansion in space, in the neighborhood of the junction

point 0. Since for all (i, j) ∈ {1 . . . I}, ui(t0, 0) = uj(t0, 0), and vi(t0, 0) = vj(t0, 0), we get

from

∀(i, j) ∈ {1, . . . I}2, ∀h ∈ (0,mini∈{1...I} ai]

vj(t0, 0)− uj(t0, 0) ≥ exp(h)
(

vi(t0, h)− ui(t0, h)
)

,

that

∀(i, j) ∈ {1, . . . I}2, ∀h ∈ (0,mini∈{1...I} ai]

vj(t0, 0)− uj(t0, 0) ≥ vi(t0, 0)− ui(t0, 0) +

h
(

vi(t0, 0)− ui(t0, 0) + ∂xvi(t0, 0)− ∂xui(t0, 0)
)

+ hεi(h),
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where

∀i ∈ {1, . . . I}, limh→0 εi(h) = 0.

We get then

∀i ∈ {1, . . . I}, ∂xvi(t0, 0) ≤ ∂xui(t0, 0)−
(

vi(t0, 0)− ui(t0, 0)
)

< ∂xui(t0, 0).

Using the growth assumptions on F (assumption (P)(i)), and the fact that v is a sub-

solution while u is a super-solution, we get

0 ≤ F (v(t0, 0), ∂xv(t0, 0)) < F (u(t0, 0), ∂xu(t0, 0)) ≤ 0,

and then a contradiction.

We deduce then for all 0 ≤ s < T , for all (t, (x, i)) ∈ [0, s]× J a,

exp(−λt+ x)
(

vi(t, x)− ui(t, x)
)

≤ 0.

Using the continuity of u and v, we deduce finally that for all (t, (x, i)) ∈ [0, T ]×J a,

vi(t, x) ≤ ui(t, x).

�

3. The elliptic problem

As explained in the introduction, the construction of a solution for our parabolic prob-

lem (1) relies on a time discretization and on the solvability of the associated elliptic

problem. We review in this section the well-posedness of the elliptic problem (2):







































−σi(x, ∂xui(x))∂
2
xui(x) +Hi(x, ui(x), ∂xui(x)) = 0, if x ∈ (0, ai)

F (u(0), ∂xu(0)) = 0, with ∀(i, j) ∈ {1 . . . I}2, ui(0) = uj(0),

and u(0) = (u1(0), . . . , uI(0)), ∂xu(0) = (∂xu1(0), . . . , ∂xuI(0)),

∀i ∈ {1 . . . I}, ui(ai) = φi.

(2)
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We introduce the following data for i ∈ {1 . . . I}







































F ∈ C0(RI × R
I ,R)

σi ∈ C1([0, ai]× R,R)

Hi ∈ C1([0, ai]× R
2,R)

φi ∈ R

,

satisfying the following assumption

Assumption (E)

(i) Assumption on F























a) F is decreasing with respect to its first variable,

b) F is nondecreasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , such that : F (b, B) = 0,

or F satisfy the Kirchhoff condition























a) F is nonincreasing with respect to its first variable,

b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , such that : F (b, B) = 0.

(ii) The ellipticity condition on the σi

∃c > 0, ∀i ∈ {1 . . . I}, ∀(x, p) ∈ [0, ai]× R, σi(x, p) ≥ c.

(iii) For the Hamiltonians Hi, we suppose

∃CH > 0, ∀i ∈ {1 . . . I}, ∀(x, u, v, p) ∈ (0, ai)× R
3,

if u ≤ v, CH(u− v) ≤ Hi(x, u, p)−Hi(x, v, p).

For each i ∈ {1 . . . I}, we define the following differential operators (δi, δi)i∈{1...I} acting

on C1([0, ai]× R
2,R), for f = f(x, u, p) by

δi := ∂u +
1

p
∂x; δi := p∂p.
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(iv) We impose the following restrictions on the growth with respect to p for the coefficients

(σi, Hi)i∈{1...I} = (σi(x, p), Hi(x, u, p))i∈{1...I}, which are for all i ∈ {1 . . . I}

δiσi = o(σi),

δiσi = O(σi),

Hi = O(σip
2),

δiHi ≤ o(σip
2),

δiHi ≤ O(σip
2),

where the limits behind are understood as p→ +∞, uniformly in x, for bounded u.

The main result of this section is the following Theorem, for the solvability and unique-

ness of the elliptic problem posed on the junction, with non linear Neumann condition at

the junction point.

Theorem 3.1. Assume (E). Then system (2), is uniquely solvable in the class C2+α(J a).

Theorem 3.1 is stated without proof in [11]. For the convenience of the reader, we

sketch its proof in the Appendix. The uniqueness of the solution of (2), is a consequence

of the elliptic comparison Theorem for smooth solutions, for the Neumann problem, stated

in this Section, and whose proof uses the same arguments of the proof of the parabolic

comparison Theorem 2.4.

We complete this section by recalling the definition of super and sub solution for the

elliptic problem (2), and the corresponding elliptic comparison Theorem.

Definition 3.2. Let u ∈ C2(J a). We say that u is a super solution (resp. sub solution)

of










−σi(x, ∂xfi(x))∂
2
xfi(x) +Hi(x, fi(x), ∂xfi(x)) = 0, if x ∈ (0, ai),

F (f(0), ∂xf(0)) = 0,
(6)

if










−σi(x, ∂xui(x))∂
2
xui(x) +Hi(x, ui(x), ∂xui(x)) ≥ 0, (resp. ≤ 0), if x ∈ (0, ai),

F (u(0), ∂xu(0)) ≤ 0, (resp. ≥ 0).
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Theorem 3.3. Elliptic comparison Theorem, see for instance Theorem 2.1 of [11].

Assume (E). Let u ∈ C2(J a) (resp. v ∈ C2(J a)) a super solution (resp. a sub solution)

of (6), satisfying for all i ∈ {1 . . . I}, ui(ai) ≥ vi(ai). Then for each (x, i) ∈ J a :

ui(x) ≥ vi(x).

4. The parabolic problem

In this Section, we prove Theorem 2.2. The construction of the solution is based on

the results obtained in Section 3 for the elliptic problem, and is done by considering a

sequence un ∈ C2(J a), solving on a time grid an elliptic scheme defined by induction. We

will prove that the solution un converges to the required solution.

4.1. Estimates on the discretized scheme. Let n ∈ N
∗, we consider the following

time grid, (tnk = kT
n
)0≤k≤n of [0, T ], and the following sequence (uk)0≤k≤n of C2+α(J a),

defined recursively by

for k = 0, u0 = g,

and for 1 ≤ k ≤ n, uk is the unique solution of the following elliptic problem






































n(ui,k(x)− ui,k−1(x))− σi(x, ∂xui,k(x))∂
2
xui,k(x))+

Hi(x, ui,k(x), ∂xui,k(x)) = 0, if x ∈ (0, ai),

F (uk(0), ∂xuk(0)) = 0,

∀i ∈ {1 . . . I}, ui,k(ai) = φi(t
n
k).

(7)

The solvability of the elliptic scheme (7) can be proved by induction, using the same

arguments as for Theorem 3.1. The next step consists in obtaining uniform estimates

of (uk)0≤k≤n. We start first by getting uniform bounds for n|ui,k − ui,k−1|(0,ai) using the

comparison Theorem 3.3.

Lemma 4.1. Assume (P). There exists a constant C > 0, independent of n, depending

only the data C = C
(

maxi∈{1...I}

{

supx∈(0,ai) |−σi(x, ∂xgi(x))∂
2
xgi(x)+Hi(x, gi(x), ∂xgi(x))|+
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|∂tφi|(0,T )

}

, CH

)

, such that:

sup
n≥0

max
k∈{1...n}

max
i∈{1...I}

{

n|ui,k − ui,k−1|(0,ai)

}

≤ C,

and then

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|ui,k|(0,ai)

}

≤ C + max
i∈{1...I}

{

|gi|(0,ai)

}

.

Proof. Let n > ⌊CH⌋, where CH is defined in assumption (P) (iv) c). Let k ∈ {1 . . . n},

we define the following sequence:











M0 = maxi∈{1...I}

{

supx∈(0,ai) | − σi(x, ∂xgi(x))∂
2
xgi(x) +Hi(x, gi(x), ∂xgi(x))| + |∂tφi|(0,T )

}

,

Mk,n =
n

n− CH

Mk−1,n, k ∈ {1 . . . n}.

We claim that for each k ∈ {1 . . . n}:

max
i∈{1...I}

{

n|ui,k − ui,k−1|(0,ai)

}

≤ Mk,n.

We give a proof by induction. For this, if k = 1, let us show that the map h defined on

the junction by:

h :=











J a → R

(x, i) 7→
M1,n

n
+ gi(x),

is a super solution of (7), for k = 1. For this we will use the Elliptic Comparison Theorem

3.3.

Using the compatibility conditions satisfied by g, namely assumption (P) (v), and the

assumptions of growth on F , assumption (P) (i), we get for the boundary conditions:

F (h(0), ∂xh(0)) ≤ F (g(0), ∂xg(0)) = 0,

∀i ∈ {1 . . . I}, hi(ai) =
M1,n

n
+ gi(ai) ≥

M0,n

n
+ gi(ai) ≥ φi(t

n
1 ).
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For all i ∈ {1 . . . I}, and x ∈ (0, ai), we get using assumption (P) (iii):

n(hi(x)− gi(x))− σi(x, ∂xhi(x))∂
2
xhi(x) +Hi(x, hi(x), ∂xhi(x)) =

M1,n − σi(x, ∂xgi(x))∂
2
xgi(x) +Hi(x,

M1,n

n
+ gi(x), ∂xgi(x)) ≥

M1,n − σi(x, ∂xgi(x))∂
2
xgi(x) +Hi(x, gi(x), ∂xgi(x))−

M1,nCH

n
≥ 0.

It follows from the comparison Theorem 3.3, that for all i ∈ {1 . . . I}, and x ∈ [0, ai]:

u1,i(x) ≤
M1,n

n
+ gi(x).

Using the same arguments, we show that:

h :=











J a → R

(x, i) 7→ −M1,n

n
+ gi(x),

is a sub solution of (7) for k = 1, and we then get:

max
i∈{1...I}

{

sup
x∈(0,ai)

n|u1,i(x)− gi(x)|
}

≤ M1,n.

Let 2 ≤ k ≤ n, suppose that the assumption of induction holds true.Let us show that

the following map:

h :=











J a → R

(x, i) 7→
Mk,n

n
+ ui,k−1(x),

is a super solution of (7). For the boundary conditions, using assumption (P) (i), we get:

F (h(0), ∂xh(0)) ≤ F (uk−1(0), ∂xuk−1(0)) ≤ 0,

∀i ∈ {1 . . . I}, hi(ai) =
Mk,n

n
+ ui,k−1(ai) ≥

M0,n

n
+ ui,k−1(ai) ≥ φi(t

n
k).

For all i ∈ {1 . . . I}, and x ∈ (0, ai):

n(hi(x)− ui,k−1(x))− σi(x, ∂xh(x))∂
2
xh(x) +Hi(x, h(x), ∂xh(x)) =

Mk,n − σi(x, ∂xui,k−1(x))∂
2
xui,k−1(x) +Hi(x,

Mk,n

n
+ ui,k−1(x), ∂xui,k−1(x)) ≥

Mk,n − σi(x, ∂xui,k−1(x))∂
2
xui,k−1(x) +Hi(x, ui,k−1(x), ∂xui,k−1(x))−

CHMk,n

n
.
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Since we have for all x ∈ (0, ai):

−σi(x, ∂xui,k−1(x))∂
2
xui,k−1(x) +Hi(x, ui,k−1(x), ∂xui,k−1(x)) = −n(ui,k−1(x)− ui,k−2(x)),

using the induction assumption we get:

n(hi(x)− ui,k−1(x))− σi(x, ∂xh(x))∂
2
xh(x) +Hi(x, ∂xh(x), ∂xh(x)) ≥

Mk,n − n(ui,k−1(x)− ui,k−2(x))−
CHMk,n

n
≥ Mk,n

n− CH

n
−Mk−1,n ≥ 0.

It follows from the comparison Theorem 3.3, that for all (x, i) ∈ J a:

ui,k(x) ≤
Mk,n

n
+ ui,k−1(x).

Using the same arguments, we show that:

h :=











J a → R

(x, i) 7→ −
Mk,n

n
+ ui,k−1(x),

is a sub solution of (7), and we get:

max
i∈{1...I}

{

n|ui,k(x)− ui,k−1(x)|(0,ai)

}

≤ Mk,n.

We obtain finally using that for all k ∈ {1 . . . n}:











Mk,n ≤ Mn,n,

Mk,n =
( n

n− CH

)k

M0,

and

Mn,n
n→+∞
−−−−→ C := exp(CH)maxi∈{1...I}

{

supx∈(0,ai) | − σi(x, ∂xgi(x))∂
2
xgi(x) +

Hi(x, gi(x), ∂xgi(x))|+ |∂tφi|(0,T )

}

,

that

supn≥0 maxk∈{1...n} maxi∈{1...I}

{

n|ui,k − ui,k−1|(0,ai)

}

≤ C,

supn≥0 maxk∈{0...n} maxi∈{1...I}

{

|ui,k|(0,ai)

}

≤ C +maxi∈{1...I}

{

|gi|(0,ai)

}

.

That completes the proof. �
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The next step consists in obtaining uniform estimates for |∂xui,k|(0,ai), in terms of n|ui,k−

ui,k−1|(0,ai) and the quantities (ν, ν, µ, γ, ε, P ) introduced in assumption (P) (ii), (iii) and

(iv). More precisely, we use similar arguments as for the proof of Theorem 14.1 of [6],

using a classical argument of upper and lower barrier functions at the boundary. The

assumption of growth (P) (ii) and (iii) are used in a key way to get an uniform bound

on the gradient at the boundary. Finally to conclude, we appeal to a gradient maximum

principle, using the growth assumption (P) (iv), adapting Theorem 15.2 of [6] to our

elliptic scheme.

Lemma 4.2. Assume (P). There exists a constant C > 0, independent of n, depending

only the data:

(

ν, ν, µ(|u|), γ(|u|), ε(|u|), sup|p|≥0P (|u|, |p|),maxi∈{1...I} |∂xgi|(0,ai),

supn≥0maxk∈{1...n}maxi∈{1...I}

{

n|ui,k − ui,k−1|(0,ai)

}

,

with |u| ≤ supn≥0maxk∈{0...n}maxi∈{1...I}

{

|ui,k|(0,ai)

})

,

such that:

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|∂xui,k|(0,ai)

}

≤ C.

Proof. Step 1: We claim that, for each k ∈ {1 . . . n}, maxi∈{1...I}

{

|∂xui,k|∂(0,ai)

}

is

bounded by the data, uniformly in n.

It follows from Lemma 4.1, that there exists M > 0 such that:

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|ui,k|(0,ai) + n|ui,k − ui,k−1|(0,ai)

}

≤ M.

We fix i ∈ {1 . . . I}. We apply a barrier method consisting in building two functions

w+
i,k, w

−
i,k satisfying in a neighborhood of 0, for example [0, κ], with κ ≤ ai:

Qi(x, w
+
i,k(x), ∂xw

+
i,k(x), ∂

2
xw

+
i,k(x)) ≥ 0, ∀x ∈ [0, κ], w+

i,k(0) = ui,k(0), w+
i,k(κ) ≥M,

Qi(x, w
−
i,k(x), ∂xw

−
i,k(x), ∂

2
xw

−
i,k(x)) ≤ 0, ∀x ∈ [0, κ], w−

i,k(0) = ui,k(0), w−
i,k(κ) ≤ −M,

where we recall that for each (x, u, p, S) ∈ [0, ai]× R3:

Qi(x, u, p, S) = n(u− ui,k−1(x))− σi(x, p)S +Hi(x, u, p).
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For n > ⌊CH⌋, where CH is defined in assumption P (iv) c), it follows then from the

comparison principle that:

w−
i,k(x) ≤ ui,k(x) ≤ w+

i,k(x), ∀x ∈ [0, κ],

and then:

∂xw
−
i,k(0) ≤ ∂xui,k(0) ≤ ∂xw

+
i,k(0).

We look for w+
i,k defined on [0, κ] of the form:

w+
i,0 = gi(x)

w+
i,k : x 7→ ui,k(0) +

1

β
ln(1 + θx),

where the constants (β, θ, κ) will be chosen in the sequel independent of k. Remark first

that for all x ∈ [0, κ], ∂2xw
+
i,k(x) = −β∂xw

+
i,k(x)

2, and w+
i,k(0) = ui,k(0). Let us choose

(θ, κ), such that:

∀k ∈ {1 . . . n}, 0 < κ ≤ min
i∈{1...I}

ai, w+
i,k(κ) ≥M, ∂xw

+
i,k(κ) ≥ β. (8)

We choose for instance:

θ = β2 exp(2βM) +
1

mini∈{1...I} ai
exp(2βM)

κ =
1

θ

(

exp(2βM)− 1
)

. (9)

The constant β will be chosen in order to get:

β ≥ sup
k∈{1...n}

sup
x∈[0,κ]

µ(w+
i,k(x))(1 + ∂xw

+
i,k(x))

m +M

ν(1 + ∂xw
+
i,k(x))

m−2∂xw
+
i,k(x)

2
, (10)

where (µ(.), ν,m) are defined in assumption (P) (ii) and (iii). Since we have:

∀x ∈ [0, κ], w+
i,k(x) ≤ w+

i,k(κ) = 2M,

β ≤ ∂xw
+
i,k(κ) ≤ ∂xw

+
i,k(x) ≤ ∂xw

+
i,k(0),

we can then choose β large enough to get (10), for instance:

β ≥
µ(2M)

ν

(

1 +
1

β

)2

+
M

νβ2
.
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It is easy to show by induction that w+
i,k is lower barrier of ui,k in the neighborhood [0, κ].

More precisely, since w+
i,0 = ui,0, and for all k ∈ {1 . . . n}:

w+
i,k(0) = ui,k(0), w+

i,k(κ) ≥ ui,k(κ),

w+
i,k(x) = w+

i,k−1(x) + ui,k(0)− ui,k−1(0) ≥ w+
i,k−1(x)−

M

n
,

we get using the assumption of induction, assumption (P) (ii) and (iii), and (10) that for

all x ∈ (0, κ):

n(w+
i,k(x)− ui,k−1(x))− σi(x, ∂xw

+
i,k(x))∂

2
xw

+
i,k(x) +Hi(x, w

+
i,k(x), ∂xw

+
i,k(x)) ≥

−M + βσi(x, ∂xw
+
i,k(x))∂xw

+
i,k(x)

2 +Hi(x, w
+
i,k(x), ∂xw

+
i,k(x)) ≥

−M + βν(1 + ∂xw
+
i,k(x))

m−2∂xw
+
i,k(x)

2 + µ(w+
i,k(x))(1 + ∂xw

+
i,k(x))

m ≥ 0.

We obtain therefore:

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

∂xui,k(0) ≤
θ

β
∨ max

i∈{1...I}
∂xgi(0).

With the same arguments we can show that:

w−
i,0 = gi(x)

w−
i,k : x 7→ ui,k(0)−

1

β
ln(1 + θx),

is a lower barrier in the neighborhood of 0. Using the same method, we can show that

∂xui,k(ai) is uniformly bounded by the same upper bounds, which completes the proof of

Step 1.

Step 2 : For the convenience of the reader, we do not detail all the computations of

this Step, since they can be found in the proof of Theorem 15.2 of [6]. It follows from

Lemma 4.1 that there exists M > 0 such that:

supn≥0 maxk∈{0...n} maxi∈{1...I}

{

|ui,k|(0,ai)

}

≤ M.

We set furthermore:

∀(x, u, p) ∈ [0, ai]× R
2, Hn

i,k(x, u, p) = n(u− ui,k−1(x)) +Hi(x, u, p).
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Let u be a solution of the elliptic equation, for x ∈ (0, ai):

σi(x, ∂xu(x))∂xu(x)−Hn
i,k(x, u(x), ∂xu(x)) = 0,

and assume that |u|(0,ai) ≤M . The main key of the proof will be in the use of the following

equalities:

δiH
n
i,k(x, u, p) = δiHi(x, u, p) +

n(p− ∂xui,k−1(x))

p
, δiH

n
i,k(x, u, p) = δiHi(x, u, p), (11)

where we recall that the operators δi and δ̄i are defined in assumption (E) (iii). We follow

the proof of Theorem 15.2 in [6]. We set u = ψ(u), where ψ ∈ C3[m,M ], is increasing and

m = φ(−M), M = φ(M).

In the sequel, we will set v = ∂xu
2 and v = ∂xu

2. To simplify the notations, we will

omit the variables (x, u(x), ∂xu(x)) in the functions σi and Hn
i,k, and the variable u for

ψ. We assume first that the solution u ∈ C3([−M,M ]), and we follow exactly all the

computations that lead to equation of (15.25) of [6] to get the following inequality:

σi∂
2
xv +Bi∂xv +Gn

i,k ≥ 0, (12)

where Bi and G
n
i,k have the same expression in (15.26) of [6] with (σi = σ∗

i , ci = 0). We

choose (r = 0, s = 0), since we will see in the sequel (13), that condition (15.32) of [6]

holds under assumption assumption (P). We have more precisely:

Bi = ψ′∂pσi∂xu− ∂pHi + ω∂p(σip
2),

Gn
i,k =

ω′

ψ′
+ κiω

2 + βiω + θni,k,

ω =
ψ′′

ψ′2
∈ C1([m,M ]),

κi =
1

σip2

(

δi(σip
2) +

p2

4σi
|(δi + 1)σi|

2
)

,

βi =
1

σip2

(

δi(σip
2)− δiHi +

p2

2σi
((δi + 1)σi)(δiσi)

)

,

θni,k =
1

σip2

( p2

4σi
|δiσi|

2 − δiH
n
i,k

)

= θi −
1

σip2

(n(p− ∂xui,k−1(x))

p

)

,

θi =
1

σip2

( p2

4σi
|δiσi|

2 − δiHi

)

.
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We set in the sequel:

Gi =
∂xω

∂xψ
+ κiω

2 + βiω + θi, in order to get Gn
i,k = Gi −

1

σip2

(n(p− ∂xui,k−1(x))

p

)

.

More precisely, we see from (11) that all the coefficients (Bi, κi, βi, θi) can be chosen

independent of n and ui,k−1. The main argument then to get a bound of ∂xu is to apply

a maximum principle for v in (12), and this will be done as soon as we ensure:

Gn
i,k ≤ 0, for |∂xu| ≥ Ln

k .

On the other hand, using assumption (P) (ii) (iii) and (iv), it is easy to check that there

exist constants (a, b, c), depending only on the data:

(

ν, ν, µ(M), γ(M), ε(M), sup
|p|≥0

P (M, |p|)
)

,

such that:

supx∈[0,ai],|u|≤M lim sup|p|→+∞ κi(x, u, p) ≤ a,

supx∈[0,ai],|u|≤M lim sup|p|→+∞ βi(x, u, p) ≤ b,

supx∈[0,ai],|u|≤M lim sup|p|→+∞ θi(x, u, p) ≤ c, (13)

where,

a =
1

ν
(γ(M) + 2ν) +

1

2
+
γ(M)2

ν2
,

b =
ε(M) + sup|p|≥0 P (M, |p|) + γ(M)

ν
+

(ε(M) + sup|p|≥0P (M, |p|))(ν + γ(M))

ν2
,

c =
(ε(M) + sup|p|≥0P (M, |p|))2

4ν2
+

2(ε(M) + sup|p|≥0P (M, |p|))

ν
.

As it has been on the proof of Theorem 15.2 of [6], we choose then L = L(a, b, c), and

ψ(·) = ψ(a, b, c)(·) such that we have:

Gi ≤ 0, if |∂xu(x)| ≥ L(a, b, c).

We see then from the expression of θni,k that we get

Gn
i,k ≤ 0, if |∂xu(x)| ≥ L(a, b, c) ∨ |∂xui,k−1(x)|.



24 ISAAC OHAVI

Therefore applying the maximum principle to v in (12), and from the relation u = ψ(u),

v = ∂xu
2 we get finally:

|∂xu|(0,ai) ≤ max
(maxψ′(a, b, c)(·)

minψ′(a, b, c)(·)
, |∂xu|∂(0,ai), L(a, b, c), |∂xui,k−1|(0,ai)

)

.

This upper bound still holds if u ∈ C2([0, ai]), (cf. (15.30) and (15.31) of the proof of

Theorem 15.2 in [6]). Finally applying the upper bound above to the solution uk, we get

by induction that:

supn≥0 maxk∈{0...n} maxi∈{1...I}

{

|∂xui,k|(0,ai)

}

≤ maxi∈{1...I}max
(maxψ′(a, b, c)(·)

minψ′(a, b, c)(·)
, |∂xui,k|∂(0,ai), L(a, b, c), |∂xgi|(0,ai)

)

.

This completes the proof. �

The following Proposition follows from Lemmas 4.1 and 4.2, assumption (P) (ii) (iii),

and from the relation:

∀x ∈ [0, ai], |∂2xui,k(x))| ≤
|n(ui,k(x)− ui,k−1(x))|+ |Hi(x, ui,k(x), ∂xui,k(x))|

σi(x, ∂xui,k(x))

≤
|n(ui,k(x)− ui,k−1(x))|+ µ(|ui,k(x)|)(1 + |∂xui,k(x)|

m)

ν(1 + |∂xui,k(x)|m−2)
.

Proposition 4.3. Assume (P). There exist constants (M1,M2,M3), depending only the

data introduced in assumption (P)

M1 =M1

(

maxi∈{1...I}

{

supx∈(0,ai) | − σi(x, ∂xgi(x))∂
2
xgi(x) +Hi(x, gi(x), ∂xgi(x))| +

|∂tφi|(0,T )

}

,maxi∈{1...I} |gi|(0,ai), CH

)

,

M2 =M2

(

ν, ν, µ(M1), γ(M1), ε(M1), sup|p|≥0 P (M1, |p|),maxi∈{1...I} |∂xgi|(0,ai),M1

)

,

M3 =M3

(

M1, ν(1 + |p|)m−2, µ(|u|)(1 + |p|)m, |u| ≤M1, |p| ≤M2

)

,
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such that:

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|ui,k|(0,ai)

}

≤ M1,

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|∂xui,k|(0,ai)

}

≤ M2,

sup
n≥0

max
k∈{1...n}

max
i∈{1...I}

{

|n(ui,k − ui,k−1)|(0,ai)

}

≤ M1,

sup
n≥0

max
k∈{0...n}

max
i∈{1...I}

{

|∂2xui,k|(0,ai)

}

≤ M3.

Unfortunately, we are unable to give an upper bound of the modulus of continuity of

∂2xui,k in Cα([0, a]) independent of n. However, we are able to formulate in the weak sense

a limit solution. From the regularity of the coefficients, using some tools introduced in

Section 1, Lemma 2.1, we get interior regularity, and a smooth limit solution.

4.2. Proof of Theorem 2.2.

Proof. The uniqueness is a result of the comparison Theorem 2.4. To simplify the nota-

tions, we set for each i ∈ {1 . . . I}, and for each (x, q, u, p, S) ∈ [0, ai]× R4

Qi(x, u, q, p, S) = q − σi(x, p)S +Hi(x, u, p).

Let n ≥ 0. Consider the subdivision (tnk = kT
n
)0≤k≤n of [0, T ], and (uk)0≤k≤n the solution

of (7).

From estimates of Proposition 4.3, there exists a constant M > 0 independent of n,

such that:

supn≥0 maxk∈{1...n} maxi∈{1...I}

{

|ui,k|(0,ai) + |n(ui,k − ui,k−1)|(0,ai) +

|∂xui,k|(0,ai) + |∂2xui,k|(0,ai)

}

≤ M. (14)

We define the following sequence (vn)n≥0 in C0,2(J a
T ), piecewise differentiable with respect

to its first variable by:

∀i ∈ {1 . . . I}, vi,0(0, x) = gi(x) if x ∈ [0, ai],

vi,n(t, x) = ui,k(x) + n(t− tnk)(ui,k+1(x)− ui,k(x)) if (t, x) ∈ [tnk , t
n
k+1)× [0, ai].
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We deduce then from (14), that there exists a constant M1 independent of n, depending

only on the data of the system, such that for all i ∈ {1 . . . I}

|vi,n|
α
[0,T ]×[0,ai]

+ |∂xvi,n|
α
x,[0,T ]×[0,ai]

≤ M1.

Using Lemma 2.1, we deduce that there exists a constant M2(α) > 0, independent of n,

such that for all i ∈ {1 . . . I}, we have the following global Hölder condition:

|∂xvi,n|
α
2

t,[0,T ]×[0,ai]
+ |∂xvi,n|

α
x,[0,T ]×[0,ai]

≤ M2(α).

We deduce then from Ascoli’s Theorem, that up to a sub sequence n, (vi,n)n≥0 converge

in C0,1([0, T ] × [0, ai]) to vi, and then vi ∈ C
α
2
,1+α([0, T ] × [0, ai]). Since vn satisfies the

following continuity condition at the junction point

∀(i, j) ∈ {1 . . . I}2, ∀n ≥ 0, ∀t ∈ [0, T ], vi,n(t, 0) = vj,n(t, 0),

we deduce then v ∈ C
α
2
,1+α(J a

T ).

We now focus on the regularity of v in
◦

J a
T , and we will prove that v ∈ C1+α

2
,2+α(

◦

J a
T ),

and satisfies on each edge:

Qi(x, vi(t, x), ∂tvi(t, x), ∂xvi(t, x), ∂
2
xvi(t, x)) = 0, if (t, x) ∈ (0, T )× (0, ai).

Using once again (14), there exists a constant M3 independent of n, such that for each

i ∈ {1 . . . I}:

‖∂tvi,n‖L2((0,T )×(0,ai)) ≤ M3, ‖∂2xvi,n‖L2((0,T )×(0,ai)) ≤ M3.

Hence we get up to a sub sequence, that:

∂tvi,n ⇀ ∂tvi, ∂2xvi,n ⇀ ∂2xvi,

weakly in L2((0, T )× (0, ai)).
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The continuity of the coefficients (σi, Hi)i∈{1...I}, Lebesgue Theorem, the linearity of Qi

in the variable ∂t and ∂
2
x, allows us to get for each i ∈ {1 . . . I}, up to a subsequence np:

∫ T

0

∫ ai

0

(

Qi(x, vi,np
(t, x), ∂tvi,np

(t, x), ∂xvi,np
(t, x), ∂2xvi,np

(t, x))
)

ψ(t, x)dxdt

p→+∞
−−−−→

∫ T

0

∫ ai

0

(

Qi(x, vi(t, x), ∂tvi(t, x), ∂xvi(t, x), ∂
2
xvi(t, x))

)

ψ(t, x)dxdt,

∀ψ ∈ C∞
c ((0, T )× (0, ai)).

We now prove that for any ψ ∈ C∞
c ((0, T )× (0, ai)):

∫ T

0

∫ ai

0

(

Qi(x, vi,np
(t, x), ∂tvi,np

(t, x), ∂xvi,np
(t, x), ∂2xvi,np

(t, x))
)

ψ(t, x)dxdt
p→+∞
−−−−→ 0.

Using that (uk)0≤k≤n is the solution of (7), we get for any ψ ∈ C∞
c ((0, T )× (0, ai)):

∫ T

0

∫ ai

0

(

Qi(x, vi,n(t, x), ∂tvi,n(t, x), ∂xvi,n(t, x), ∂
2
xvi,n(t, x))

)

ψ(t, x)dxdt =

n−1
∑

k=0

∫ tn
k+1

tn
k

∫ ai

0

(

σi(x, ∂xui,k+1(x))∂
2
xui,k+1(x)− σi(x, ∂xvi,n(t, x))∂

2
xvi,n(t, x)

+Hi(x, vi,n(t, x), ∂xvi,n(t, x))−Hi(x, ui,k+1(x), ∂xui,k+1(x))
)

ψ(t, x)dxdt. (15)

Using assumption (P) more precisely the Lipschitz continuity of the Hamiltonians Hi, the

Hölder equicontinuity in time of (vi,n, ∂xvi,n), there exists a constant M4(α) independent

of n, such that for each i ∈ {1 . . . I}, for each (t, x) ∈ [tnk , t
n
k+1]× [0, ai]:

|Hi(x, ui,k+1(x), ∂xui,k+1(x))−Hi(x, vi,n(t, x), ∂xvi,n(t, x))| ≤ M4(α)(t− tnk)
α
2 ,

and therefore for any ψ ∈ C∞
c ((0, T )× (0, ai)):

∣

∣

∣

n−1
∑

k=0

∫ tn
k+1

tn
k

∫ ai

0

(

Hi(x, ui,k+1(x), ∂xui,k+1(x))−Hi(x, vi,n(t, x), ∂xvi,n(t, x))
)

ψ(t, x)dxdt
∣

∣

∣
≤

aiM4(α)|ψ|(0,T )×(0,ai)n
−α

2
n→+∞
−−−−→ 0.
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For the last term in (15), we write for each i ∈ {1 . . . I}, for each (t, x) ∈ (tnk , t
n
k+1)×(0, ai):

σi(x, ∂xui,k+1(x))∂
2
xui,k+1(x)− σi(x, ∂xvi,n(t, x))∂

2
xvi,n(t, x) =

(

σi(x, ∂xui,k+1(x))− σi(x, ∂xvi,n(t, x))
)

∂2xui,k(x) + (16)
(

σi(x, ∂xui,k+1(x))− n(t− tnk)σi(x, ∂xvi,n(t, x))
)(

∂2xui,k+1(x)− ∂2xui,k(x)
)

. (17)

Using again the Hölder equicontinuity in time of (vi,n, ∂xvi,n) as well as the uniform bound

on |∂2xui,k|[0,ai] (14), we can show that for (16), for any ψ ∈ C∞
c ((0, T )× (0, ai)):

∣

∣

∣

n−1
∑

k=0

∫ tn
k+1

tn
k

∫ ai

0

(

σi(x, ∂xui,k+1(x))− σi(x, ∂xvi,n(t, x))
)

∂2xui,k(x)ψ(t, x)dxdt
∣

∣

∣

n→+∞
−−−−→ 0.

Finally, from assumptions (P), for all i ∈ {1 . . . I}, σi is differentiable with respect to all

its variable, integrating by part we get for (17):

∣

∣

∣

n−1
∑

k=0

∫ tn
k+1

tn
k

∫ ai

0

(

σi(x, ∂xui,k+1(x))− n(t− tnk)σi(x, ∂xvi,n(t, x))
)

(

∂2xui,k+1(x)− ∂2xui,k(x)
)

ψ(t, x)dxdt
∣

∣

∣
=

∣

∣

∣

n−1
∑

k=0

∫ tn
k+1

tn
k

∫ ai

0

(

∂x

(

σi(x, ∂xui,k+1(t, x))ψ(t, x)
)

− n(t− tnk)∂x

(

σi(x, ∂xvi,n(t, x))ψ(t, x)
))

(

∂xui,k+1(x)− ∂xui,k(x)
)

dxdt
∣

∣

∣

n→+∞
−−−−→ 0.

We conclude that for any ψ ∈ C∞
c ((0, T )× (0, ai)):

∫ T

0

∫ ai

0

(

Qi(x, vi(t, x), ∂tvi(t, x), ∂xvi(t, x), ∂
2
xvi(t, x)))

)

ψ(t, x)dxdt = 0.

It is then possible to consider the last equation as a linear one, with coefficients σ̃i(t, x) =

σi(x, ∂xvi(t, x)), H̃i(t, x) = Hi(x, vi(t, x), ∂xvi(t, x)) belonging to the class C
α
2
,α((0, T ) ×

(0, ai)), and using Theorem III.12.2 of [9], we get finally that for all i ∈ {1 . . . I}, vi ∈

C1+α
2
,2+α((0, T )× (0, ai)), which means that v ∈ C1+α

2
,2+α(

◦

J a
T ).

We deduce that vi satisfies on each edge:

Qi(x, vi(t, x), ∂tvi(t, x), ∂xvi(t, x), ∂
2
xvi(t, x))) = 0, if (t, x) ∈ (0, T )× (0, ai).

From the estimates (14), we know that ∂tvi,n and ∂2xvi,n are uniformly bounded by n. We

deduce finally that v ∈ C
1+α

2
,2+α

b (
◦

J a
T ).
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We conclude by proving that v satisfies the non linear Neumann boundary condition

at the vertex. For this, let t ∈ (0, T ); we have up to a sub sequence np:

F (vnp
(t, 0), ∂xvnp

(t, 0)) −−−−→
p→+∞

F (v(t, 0), ∂xv(t, 0)).

On the other hand, using that F (uk(0), ∂0uk(x)) = 0, we know from the continuity of F

(assumption (P)), the Hölder equicontinuity in time of t 7→ vn(t, 0), and t 7→ ∂xv(t, 0),

that there exists a constant M5(α) independent of n, such that if t ∈ [tnk , t
n
k+1):

|F (vn(t, 0), ∂xvn(t, 0))| = |F (vn(t, 0), ∂xvn(t, 0))− F (uk(0), ∂xuk(0))| ≤

sup
{

|F (u, x)− F (v, y)|, ‖u− v‖RI + ‖x− y‖RI ≤M5(α)n
−α

2

}

n→+∞
−−−−→ 0.

Therefore, we conclude once more from the continuity of F (assumption (P)), the com-

patibility condition (assumption (P) (v)), that for each t ∈ [0, T ):

F (v(t, 0), ∂xv(t, 0)) = 0.

On the other hand, it is easy to get:

∀i ∈ {1 . . . I}, ∀x ∈ [0, ai], vi(0, x) = gi(x), ∀t ∈ [0, T ], vi(t, ai) = φi(t).

Finally, the expression of the upper bounds of the solution given in Theorem 2.2, are a

consequence of Proposition 4.3, and Lemma 2.1, which completes the proof. �

4.3. On the existence for unbounded junction. We give in this subsection a result

on the existence and the uniqueness of the solution for the parabolic problem (1), posed

on an unbounded junction J defined for I ∈ N
∗ edges by:

J =
I
⋃

i=1

Ji, with: ∀i ∈ {1 . . . I} Ji = [0,+∞), and ∀(i, j) ∈ {1 . . . I}2, i 6= j, Ji ∩ Ji = {0}.

In the sequel, C0,1(JT ) ∩ C1,2(
◦

JT ) is the class of function with regularity C0,1([0, T ] ×

[0,+∞))∩ C1,2((0, T )× (0,+∞)) on each edge, and L∞(JT ) is the set of measurable real

bounded maps defined on JT .
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We introduce the following data










F ∈ C0(RI × R
I ,R)

g ∈ C1
b (J ) ∩ C2

b (
◦

J )
,

and for each i ∈ {1 . . . I}






















σi ∈ C1(R+ × R,R)

Hi ∈ C1(R+ × R
2,R)

φi ∈ C1([0, T ],R)

.

We suppose furthermore that the data satisfy the following assumption

Assumption (P∞)

(i) Assumption on F :























a) F is decreasing with respect to its first variable,

b) F is nondecreasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , F (b, B) = 0,

or the Kirchhoff condition:






















a) F is nonincreasing with respect to its first variable,

b) F is increasing with respect to its second variable,

c) ∃(b, B) ∈ R
I × R

I , F (b, B) = 0.

We suppose moreover that there exists a parameter m ∈ R, m ≥ 2 such that we have

(ii) The (uniform) ellipticity condition on the (σi)i∈{1...I} : there exist ν, ν, strictly positive

constants such that:

∀i ∈ {1 . . . I}, ∀(x, p) ∈ R+ × R,

ν(1 + |p|)m−2 ≤ σi(x, p) ≤ ν(1 + |p|)m−2.

(iii) The growth of the (Hi)i∈{1...I} with respect to p exceed the growth of the σi with

respect to p by no more than two, namely there exists µ an increasing real continuous
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function such that:

∀i ∈ {1 . . . I}, ∀(x, u, p) ∈ R+ × R
2, |Hi(x, u, p)| ≤ µ(|u|)(1 + |p|)m.

(iv) We impose the following restrictions on the growth with respect to p of the derivatives

for the coefficients (σi, Hi)i∈{1...I}, which are for all i ∈ {1 . . . I}:

a) |∂pσi|R+×R2(1 + |p|)2 + |∂pHi|R+×R2 ≤ γ(|u|)(1 + |p|)m−1,

b) |∂xσi|R+×R2(1 + |p|)2 + |∂xHi|R+×R2 ≤
(

ε(|u|) + P (|u|, |p|)
)

(1 + |p|)m+1,

c) ∀(x, u, p) ∈ R+ × R
2, −CH ≤ ∂uHi(x, u, p) ≤

(

ε(|u|) + P (|u|, |p|)
)

(1 + |p|)m,

where γ and ε are continuous non negative increasing functions. P is a continuous func-

tion, increasing with respect to its first variable, and tends to 0 for p → +∞, uniformly

with respect to its first variable, from [0, u1] with u1 ∈ R, and CH > 0 is real strictly

positive number. We assume that (γ, ε, P, CH) are independent of i ∈ {1 . . . I}.

(v) A compatibility conditions for g:

F (g(0), ∂xg(0)) = 0.

We state here a comparison Theorem for the problem 1, posed on an unbounded junc-

tion.

Theorem 4.4. Assume (P∞). Let u ∈ C0,1(JT )∩C
1,2(

◦

JT )∩L
∞(JT ) (resp. v ∈ C0,1(JT )∩

C1,2(
◦

JT ) ∩ L
∞(JT )) be a super solution (resp. a sub solution) of (3) (where ai = +∞),

satisfying for all i ∈ {1 . . . I} for all x ∈ [0,+∞), ui(0, x) ≥ vi(0, x). Then for each

(t, (x, i)) ∈ JT : ui(t, x) ≥ vi(t, x).

Proof. Let s ∈ [0, T ), K = (K . . .K) > (1, . . . 1) in R
I , and λ = λ(K) > 0, that will be

chosen in the sequel. We argue as in the proof of Theorem 2.4, assuming

sup
(t,(x,i))∈JK

s

exp(−λt−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

> 0.

Using the boundary conditions satisfied by u and v, the above supremum is reached at a

point (t0, (x0, j0)) ∈ (0, s]× J , with 0 ≤ x0 ≤ K.
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If x0 ∈ [0, K), the optimality conditions are given for x0 6= 0 by:

−λ(vj0(t0, x0)− uj0(t0, x0)) + ∂tvj0(t0, x0)− ∂tuj0(t0, x0) ≥ 0,

−(x0 − 1)
(

vj0(t0, x0)− uj0(t0, x0)
)

+ ∂xvj0(t0, x0)− ∂xuj0(t0, x0) = 0,
(

vj0(t0, x0)− uj0(t0, x0)
)

− 2(x0 − 1)2
(

vj0(t0, x0)− uj0(t0, x0)
)

+
(

∂2xvj0(t0, x0)− ∂2xuj0(t0, x0)
)

≤ 0,

and if x0 = 0:

∀i ∈ {1, . . . I}, ∂xvi(t0, 0) ≤ ∂xui(t0, 0)−
(

vi(t0, 0)− ui(t0, 0)
)

< ∂xui(t0, 0).

If x0 = 0, we obtain a contradiction exactly as in the proof of Theorem 2.4. On the other

hand if x0 ∈ (0, K), using assumptions (P) (iv) a), (iv) c) and the optimality conditions,

we can choose λ(K) of the form λ(K) = C(1 +K2), (see (4) and (5)), where C > 0 is a

constant independent of K, to get again a contradiction. We deduce that, if:

sup
(t,(x,i))∈JK

s

exp(−λ(K)t−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

> 0,

then for all (t, (x, i)) ∈ [0, T ]× J K :

exp(−λ(K)t−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

≤ exp(−λ(K)t−
(K − 1)2

2
)
(

vi(t,K)− ui(t,K)
)

.

Hence for all (t, (x, i)) ∈ [0, T ]× J K :

exp(−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

≤ exp(−
(K − 1)2

2
)
(

vi(t,K)− ui(t,K)
)

.

On the other hand, if:

sup
(t,(x,i))∈JK

s

exp(−λ(K)t−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

≤ 0,

then for all (t, (x, i)) ∈ [0, T ]× J K :

exp(−λ(K)t−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

≤ 0.

So

exp(−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
)

≤ 0.
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Finally we have, for all (t, (x, i)) ∈ [0, T ]×J K :

max
(

0, exp(−
(x− 1)2

2
)
(

vi(t, x)− ui(t, x)
))

≤ exp(−
(K − 1)2

2
)
(

||u||L∞(JT ) + ||v||L∞(JT )

)

.

Sending K → ∞ and using the boundedness of u and v, we deduce the inequality v ≤ u

in [0, T ]×J . �

Theorem 4.5. Assume (P∞). The following parabolic problem with Neumann boundary

condition at the vertex:


































































∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0,+∞),

F (u(t, 0), ∂xu(t, 0)) = 0, if t ∈ [0, T ),

with u(t, 0) = (u1(t, 0), . . . , uI(t, 0)), ∂xu(t, 0) = (∂xu1(t, 0), . . . , ∂xuI(t, 0)),

and ∀(i, j) ∈ {1 . . . I}2, ui(t, 0) = uj(t, 0),

∀i ∈ {1 . . . I}, ui(0, x) = gi(x), if x ∈ [0,+∞),

(18)

is uniquely solvable in the class C
α
2
,1+α(JT )∩C

1+α
2
,2+α(

◦

JT ). There exist constants (M1,M2,M3),

depending only the data introduced in assumption (P∞)

M1 =M1

(

maxi∈{1...I}

{

supx∈(0,+∞) | − σi(x, ∂xgi(x))∂
2
xgi(x) +Hi(x, gi(x), ∂xgi(x))|

}

,

maxi∈{1...I} |gi|(0,+∞), CH

)

,

M2 =M2

(

ν, ν, µ(M1), γ(M1), ε(M1), sup|p|≥0 P (M1, |p|),maxi∈{1...I} |∂xgi|(0,+∞),M1

)

,

M3 =M3

(

M1, ν(1 + |p|)m−2, µ(|u|)(1 + |p|)m, |u| ≤M1, |p| ≤M2

)

,

such that:

||u||C(JT ) ≤M1, ||∂xu||C(JT ) ≤M2, ||∂tu||C(JT ) ≤M1, ||∂xu||C(JT ) ≤M3.

Moreover, there exists a constant M(α) depending on
(

α,M1,M2,M3

)

such that for any

a ∈ (0,+∞)I:

||u||
C
α
2 ,1+α(J a

T
)
≤M(α).
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Proof. Assume (P∞) and let a = (a, . . . , a) ∈ (0,+∞)I. Applying Theorem 2.2, we can

define ua ∈ C0,1(J a
T ) ∩ C1,2(

◦

J a
T ) as the unique solution of:



















































∂tui(t, x)− σi(x, ∂xui(t, x))∂
2
xui(t, x)+

Hi(x, ui(t, x), ∂xui(t, x)) = 0, if (t, x) ∈ (0, T )× (0, a),

F (u(t, 0), ∂xu(t, 0)) = 0, if t ∈ [0, T ),

∀i ∈ {1 . . . I}, ui(t, a) = gi(a), if t ∈ [0, T ],

∀i ∈ {1 . . . I}, ui(0, x) = gi(x), if x ∈ [0, a].

(19)

Using assumption (P∞) and Theorem 2.2, we get that there exists a constant C > 0

independent of a such that:

supa≥0 ||ua||C1,2(J a
T
) ≤ C.

We are going to send a to +∞ in (19). Following the same argument as for the proof of

Theorem 2.2, we get that, up to a sub sequence, ua converges locally uniformly to some

map u which solves (18). On the other hand, uniqueness of u is a direct consequence

of the comparison Theorem 4.4, since u ∈ L∞(JT ). Finally the expression of the upper

bounds of the derivatives of u given in Theorem 4.5, are a consequence of Theorem 2.2

and assumption (P∞). �

Appendix A. Functionnal spaces

In this section, we recall several classical notations from [9]. Let l, T ∈ (0,+∞) and Ω be

an open and bounded subset of Rn with smooth boundary (n > 0). We set ΩT = (0, T )×Ω,

and we introduce the following spaces :

-if l ∈ 2N∗,
(

C
l
2
,l(ΩT ), ‖ · ‖

C
l
2 ,l(ΩT )

)

is the Banach space whose elements are continuous

functions (t, x) 7→ u(t, x) in ΩT , together with all its derivatives of the form ∂rt ∂
s
xu, with

2r + s < l. The norm ‖ · ‖
C

l
2 ,l(ΩT )

is defined for all u ∈ C
l
2
,l(ΩT ) by:

‖u‖
C

l
2 ,l(ΩT )

=
∑

2r+s=j

sup
(t,x)∈ΩT

|∂rt ∂
s
xu(t, x)|.

-if l /∈ N
∗,

(

C
l
2
,l(ΩT ), ‖.‖

C
l
2 ,l(ΩT )

)

is the Banach space whose elements are continuous

functions (t, x) 7→ u(t, x) in ΩT , together with all its derivatives of the form ∂rt ∂
s
xu, with
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2r+ s < l, and satisfying an Hölder condition with exponent l−2r−s
2

in their first variable,

and with exponent (l − ⌊l⌋) in their second variable, over all the connected components

of ΩT whose radius is smaller than 1.

The norm ‖ · ‖
C

l
2 ,l(ΩT )

is defined for all u ∈ C
l
2
,l(ΩT ) by:

‖u‖
C

l
2 ,l(ΩT )

= |u|lΩT
+

⌊l⌋
∑

j=0

|u|jΩT
,

with:

∀j ∈ {0, . . . , l}, |u|jΩT
=

∑

2r+s=j

sup
(t,x)∈ΩT

|∂rt ∂
s
xu(t, x)|,

|u|lΩT
= |u|lx,ΩT

+ |u|
l
2
t,ΩT

,

|u|lx,ΩT
=

∑

2r+s=⌊l⌋

|∂rt ∂
s
xu(t, x)|

l−⌊l⌋
x,ΩT

,

|u|lt,ΩT
=

∑

0<l−2r−s<2

|∂rt ∂
s
xu(t, x)|

l−2r−s
2

t,ΩT
,

|u|αx,ΩT
= sup

t∈(0,T )

sup
x,y∈Ω,x 6=y,|x−y|≤1

|u(t, x)− u(t, y)|

|x− y|α
, 0 < α < 1,

|u|αt,ΩT
= sup

x∈Ω
sup

t,s∈(0,T ),t6=s,|t−s|≤1

|u(t, x)− u(s, x)|

|t− s|α
, 0 < α < 1.

- C
l
2
,l(ΩT ) is the set whose elements f belong to C

l
2
,l(OT ) for any open set OT separated

from the boundary of ΩT by a strictly positive distance, namely:

inf
y∈∂ΩT ,x∈OT

||x− y||Rn > 0.

- C
l
2
,l

b (ΩT ) is the subset of C
l
2
,l(ΩT ) consisting in maps u such that the derivatives of the

form ∂rt ∂
s
xu, (with 2r + s < l) are bounded, namely sup(t,x)∈ΩT

|∂rt ∂
s
xu(t, x)| < +∞.

We use the same notations when the domain does not depend on time, namely T = 0,

ΩT = Ω, just removing the dependence on the time variable.

For R > 0, we denote by L2((0, T )×(0, R)) the usual space of square integrable maps and

by C∞
c ((0, T ) × (0, R)) the set of infinite continuous differentiable functions on (0, T ) ×

(0, R), with compact support.
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Appendix B. The Elliptic problem

Proposition B.1. Let θ ∈ R, i ∈ {1, . . . , I} and assume (E) holds. Let uθi ∈ C2([0, ai])

be the solution of:























−σi(x, ∂xu
θ
i (x))∂

2
xu

θ
i (x) +Hi(x, u

θ
i (x), ∂xu

θ
i (x)) = 0, if x ∈ (0, ai)

uθi (0) = uθ(0) = θ,

uθi (ai) = φi.

(20)

Then the following map:

Ψ :=











R → C2([0, ai])

θ 7→ uθi

,

is continuous.

Proof. Let θn a sequence converging to θ. Using the Schauder estimates Theorem 6.6 of

[6], we get that there exists a constant M > 0 independent of n, depending only the data,

such that for all α ∈ (0, 1):

‖uθni ‖C2+α([0,ai]) ≤ M.

From Ascoli’s Theorem, uθni converges up to a subsequence to v in C2([0, ai]) solution of

(20). By uniqueness of the solution of (20), uθni converges necessary to the solution uθi of

(20) in C2([0, ai]), which completes the proof. �

Proof of Theorem 3.1.

Proof. The uniqueness of (2) results from the elliptic comparison Theorem 3.3.

We turn to the solvalbility, and for this let θ ∈ R. We consider the elliptic Dirichlet

problem posed on the the junction:























−σi(x, ∂xui(x))∂
2
xui(x) +Hi(x, ui(x), ∂xui(x)) = 0, if x ∈ (0, ai),

∀i ∈ {1 . . . I}, ui(0) = u(0) = θ,

ui(ai) = φi.

(21)



QUASI LINEAR PARABOLIC PDE POSED ON A NETWORK 37

For all i ∈ {1 . . . I}, each elliptic problem is uniquely solvable on each edge in C2+α([0, ai]),

then (21) is uniquely solvable in the class C2+α(J a), and we denote by uθ its solution.

We turn to the Neumann boundary condition at the vertex. Let us recall assumption

(E)(i)























F is decreasing in its first variable, nondecreasing in its second variable,

or F is nonincreasing in its first variable, increasing in its second variable,

∃(b, B) ∈ R
I × R

I , such that : F (b, B) = 0.

Fix now:

Ki = sup
(x,u)∈(0,ai)×(−aiBi,aiBi)

|Hi(x, u, Bi)|,

θ ≥ max
i∈{1...I}

{

|bi|+ |φi|+ |aiBi|+
Ki

CH

}

,

and let us show that f : x 7→ θ +Bix, is a super solution on each edge Jai
i of (21).

We have the boundary conditions

f(0) = θ, f(ai) = θ + aiBi ≥ |φi|+ |aiBi|+ aiBi ≥ φi,

and using assumption (E) (iii), we have for all x ∈ (0, ai)

−σi(x, ∂xf(x))∂
2
xf(x) +Hi(x, f(x), ∂xf(x)) = Hi(x, θ +Bix,Bi) ≥ Hi(x,Bix,Bi)

+ CHθ ≥ Hi(x,Bix,Bi) +Ki ≥ 0.

We then get that for each i ∈ {1 . . . I}, x ∈ [0, ai], u
θ
i (x) ≤ θ + Bix. A Taylor expansion

in the neighborhood of the junction point gives that for each i ∈ {1 . . . I}, ∂xu
θ
i (0) ≤ Bi.

Since uθ(0) ≥ b, we then get from assumption (E) (i):

F (uθ(0), ∂xu
θ(0)) ≤ F (b, B) ≤ 0.

Similarly, fixing:

θ ≤ min
i∈{1...I}

{

− |bi| − |φi| − |aiBi| −
Ki

CH

}

,
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the map f : x 7→ θ + xBi is a sub solution on each vertex Jai
i of (21), then for each

i ∈ {1 . . . I}, ∂xu
θ
i (0) ≥ Bi, which means:

F (uθ(0), ∂xu
θ(0)) ≥ 0.

From Proposition B.1, we know that the real maps θ 7→ uθ(0) and θ 7→ ∂xu
θ(0) are

continuous. Using the continuity of F (assumption (E)), we get that θ 7→ F (uθ(0), ∂xu
θ(0))

is continuous, and therefore there exists θ∗ ∈ R such that:

F (uθ
∗

(0), ∂xu
θ∗(0)) = 0.

We remark that θ∗ is bounded by the data, namely θ∗ belongs to the following interval:

[

min
i∈{1...I}

{

− |bi| − |φi| − |aiBi| −
sup(x,u)∈(0,ai)

|Hi(x,Bix,Bi)|

CH

}

,

max
i∈{1...I}

{

|bi|+ |φi|+ |aiBi|+
sup(x,u)∈(0,ai)

|Hi(x,Bix,Bi)|

CH

} ]

.

This completes the proof. Finally, since the solution uθ
∗

of (2) is unique, we get the

uniqueness of θ∗. �
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