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1 Introduction 

 

First, we should mention the key pieces in Quantum Information Processing in general, as well as 

quantum computing and communications in particular: the Principle of Superposition and quantum 

entanglement [1], which are both closely related to the work of Erwin Schrödinger [2, 3]. In fact, 

Schrödinger defined the entanglement of pure states as the pure quantum state 
AB  associated to 

composite systems like A and B that cannot be represented in the form of simple tensor products of 

subsystem state-vectors, that is [1], 

 

AB A B                                                          (1) 

 

where “ ” indicates the tensor product, also known as Kronecker’s product, while 
A and 

B are vectors providing the states of both subsystems, such as elementary particles [2, 3]. Those 

states of composite systems that can be represented as tensor products of subsystem states constitute 

the complement in the set of pure states: the product states [1]. In fact, states of the composite system 

that can be represented in this form are called separable states. Since not all states are separable states, 

and thus product states, we will carry out the following analysis: we establish a pair of basis:  Ax  

for HA and  By  for HB. In HA ⊗ HB, the most general state is of the form 

 

AB xy A B

x,y

n x y   .              (2) 

 

Therefore, this state will be separable if vectors 
A

xn    and 
B

yn    exist so that 
A B

xy x yn n n  yielding 

A

A x A

x

n x  and 
B

B y B

y

n y  . It is inseparable if for any vectors 
A

xn    and 
B

yn    at least 

for one pair of coordinates 
A

xn  and 
B

yn , we have 
A B

xy x yn n n . If a state is inseparable, it is called an 

entangled state. On the other hand, in 1935 Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) 

proposed a thought experiment by which they tried to demonstrate that the wave-function did not 

provide a complete description of physical reality, and which gave rise to the famous EPR paradox, 
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and hence that the Copenhagen’s interpretation is unsatisfactory. From this point onwards, resolutions 

of the paradox have had important implications for the interpretation of Quantum Mechanics (QMech) 

[4]. The essence of this paradox is that particles can interact in such a way that it is possible to 

measure both their position and their momentum more accurately than what Heisenberg's uncertainty 

principle allows us to achieve [5] unless we measure one particle which will instantaneously affect the 

other one preventing this accuracy. Consequently, this individual measurement would involve 

information transmitted faster than light [6-8], yet forbidden by the theory of relativity (which is 

known as a "spooky action at a distance") [5, 9-13]. This consequence had not previously been noticed 

and seemed unreasonable at the time; however, the phenomenon involved is now known as quantum 

entanglement (QEnta) [1, 5]. Moreover, in 1964 John S. Bell introduced his famous theorem [9] asso-

ciated with 4 states: 2-qubit vectors into a combined space of Hilbert 
2 2

AB A B   , and relative to 

two subsystems A and B, 

 

   
1 1

0 0 1 1 0 1 1 0
2 2

AB A B A B AB A B A B, , , , ,                              (3) 

 

where they are called Bell’s states, and also known as EPR pairs. This theorem raises an inequality, 

which when violated by QMech establishes the non-locality present in the entanglement of two 

subsystems like A and B. Besides, a posterior redefinition of this inequality due to Clauser, Horne, 

Shimony and Holt (CHSH) [14] leads to a more practical way of experimental testing with [13] and 

without [15] loopholes. 

An extremely important concept in Quantum Teleportation (QTele) is the No-Cloning Theorem [5] 

[16], which states that it is impossible to create an identical copy of an arbitrary unknown quantum 

state. This No-Go Theorem of QMech was articulated by Wootters and Zurek [16] and Dieks [12] in 

1982, and has profound implications in quantum computing as well as related fields. Besides, the No-

Cloning Theorem [5] prevents the transfer of information faster than the speed of light [6-8]. We have 

seen that a measurement on subsystem A instantaneously transforms subsystem B into a well-defined 

state. The word “instantaneous” has deep implications in Quantum Communication (QComm) [1]. Let 

us imagine that an entangled pure state has been produced with a subsystem SA at Alice’s location and 

another subsystem SB at Bob’s location very far away from each other. Alice attempts to transmit one 

bit of information to Bob by measuring one of the two non-commuting observables on her subsystem 

SA. If Bob succeeds in reading out this information on his subsystem SB, then this implies that it 

should have been transmitted at a speed greater than that of light contradicting the theory of relativity 

[6].  

QTele [17-19] is a process by which a quantum state   can be transferred from one point to 

another while destroying the original state, which is required by the no-cloning theorem [5, 12, 16]. 

This process takes place between two different locations. An EPR pair (i.e., two maximally entangled 

states) is apportioned between Alice and Bob. Alice has the state to be teleported. This state is entan-

gled with her EPR state, and after a process involving quantum gates, Alice performs measurements 

with a certain probability, so as to identify the original state in the appropriate base. Consequently, she 

transmits the elements of that base but in its classical version (i.e., two bits) through a classical 

channel. On the other side, Bob receives both bits, which he uses in tandem with the appropriate 

quantum gates. As a result, he rebuilds the original state. Clearly, we can see that a QTele depends on 

a classical communication, which can proceed no faster than the speed of light. In other words, it 

cannot be used for faster-than-light transport or communication of classical bits. Of course, the 

classical channel is the weak link in this chain in terms of transmission speed.  

On the other hand, since the QEnta has a serious enemy and QTele necessarily depends on the 

QEnta, then such enemy is inherited by QTele. This enemy is decoherence [20], which usually 

collapses the entanglement. Decoherence can be viewed as the loss of information from a system into 

the environment, since every system is loosely coupled with the energetic state of its surroundings. 

This interaction between the state and its environment is clearly seen during Quantum Measurement 

(QMeas) [21], which causes the collapse of the wave-function [20, 21]. In order to mitigate this 

problem, we must apply reconstructive techniques of the state, which results in an increase in the 

computational cost of the process as a whole [22]. 
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In this paper we present a new protocol of QTele which does not require any disambiguation based 

on the transmission of classical bits, as in fact it happens in the original version [12, 17-19], which 

when using two channels (one classical for the bits and another quantum for the distribution of the 

EPRs) is more vulnerable to attacks. However, the new version is easier to implement in the laboratory 

than the original. This possibility has its origin in a work of QComm [23] which, through an extensive 

analysis, reaches the conclusion that such a possibility is viable. 

Finally, the main pending aspect within the teleportation is its lack of instantaneity (seen and a 

whole) and a clear definition of its bandwidth [23]. Both are the responsibility of the classical channel 

that the protocol mandatory uses. This is the scenario where this work points to based on [23]. 

 

2 Setup 

 

For the implementation of QTele, we must use some quantum gates, which we are going to present 

next. The first one is the Hadamard’s gate, which acts on a single qubit. It maps the basis state 0  to 

 1
2

0 1  and 1  to  1
2

0 1 , which means that a measurement will have equal probabili-

ties to become 1 or 0 (i.e., it creates a superposition). It is represented by the Hadamard’s matrix: 

 

 
1 11 1

1 12 2
x zH

 
     

 
                          (4) 

 

where 
x  and 

z  are two of the three Pauli’s matrices  x y z, ,    [24] 

 

0 1

1 0
x

 
   

 
,   

0

0
y

i

i

 
   

 
   and   

1 0

0 1
z

 
   

 
           (5) 

 

with 1i   . Figure 1 represents the Hadamard’s gate [24]. 
 

 

 
 

Fig. 1 Hadamard’s (H) gate. 

 

 

The second one is the Controlled NOT gate or simply CNOT, which operates on a quantum register 

consisting of 2 qubits. The CNOT gate flips the second qubit (the target qubit) if and only if the first 

qubit (the control qubit) is 1 . The inputs are allowed to be a linear superposition of  0 1, . As an 

example of this, we can see that the CNOT gate transforms a superposed quantum state of the kind  

00 01 10 11a b c d    into another like 00 01 11 10a b c d   . The CNOT gate can 

be represented by the matrix: 

 

1 0 0 0

0 1 0 0
0 0 0 0

0 0 0 1

0 0 1 0

xCNOT I

 
 
     
 
 
 

                        (6) 

 

where I is the identity matrix. Figure 2 represents the CNOT gate [24]. 
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Fig. 2 CNOT gate. 

 

 

With both gates, we can build the famous Bell’s state (or EPR pair, named after Einstein, Podolsky, 

and Rosen paper [4]) from the computational basis state (CBS) 0 [5], as we can see in Figure 3,   

 

 

 
 
Fig. 3 The output of these gates (Hadamard and CNOT) is an EPR qubit or Bell’s state. In fact, it is an EPR pair, 

one for Alice and another one for Bob. 

 

 

As an example, we are going to build 
00 , i.e., the Bell’s state of Figure 3 based on two states 0  

at its entrance and the application of Hadamard (H) and CNOT gates in that order. Thus, for the upper 

branch of Figure 3, we have 

 

1 1 1 1 21
0

1 1 02 1 2
H

    
      

      

                (7) 

 

While by the lower branch, simply 0 0 . Now, and before of CNOT gate, the Kronecker’s 

product “ ” intervenes between both branches of Figure 3, the upper and the lower, 

 

1 2

1 1 2 0
0 0

0 1 2 1 2

0

H

 
 

    
       

      
  

                   (8) 

 

Finally, CNOT gate is applied 

 

  00

1 0 0 0 1 2 1 2 1 0

0 1 0 0 0 0 0 01 1

0 0 0 1 0 0 02 21 2

0 0 1 0 0 10 1 2

1 1 1 1
0 0 1 1 0 0 1 1

2 2 2 2

1
00 11

2

        
        
          
        
        
           

     

   

              (9) 
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The complete set of Bell’s basis are: 

 

 

 

 

 

00

01

10

11

1
00 11

2

1
00 11

2

1
01 10

2

1
01 10

2









    

    

    

    

             (10) 

 

then,  

 

   

   

   

   

00 01

10 11

10 11

00 01

1 1
00

2 2

1 1
01

2 2

1 1
10

2 2

1 1
11

2 2

 

 

 

 

       

       

       

       

              (11) 

 

On the other hand and as a complement to the tools seen so far in this section, it is necessary to be 

able to evaluate the quality of the experimental implementation of teleportation protocols in the 

presence of noise, i.e., how similar the teleported state is in comparison to the original? Therefore, we 

will need a good metric to be able to evaluate said transfer quality. Then, we recommend here two 

versions of the most used metric in teleportation: fidelity [25]. These versions have to do with the 

characteristic of the state to teleport, i.e., if it is pure or a mixed state [25]-[27]. 

Fidelity f is a metric that shows us how similar the initial and final states in a quantum process are 

[25]. It has widely been used to characterize the performance of various quantum information tasks. 

Fidelity f is bounded by 0 ≤ f ≤ 1, where the unit fidelity (f = 1) implies that the initial and final states 

are equivalent [25]. QTele is designed to transmit all possible (unknown) input states, thus a measure 

of the average of all inputs is used. That is the average fidelity F which quantifies how well the 

unknown input states can be transmitted to another location. Thus, F shows the optimality of the 

QTele where it is shown that the unit average fidelity (F = 1) can be obtained when the two remote 

parties share the maximally entangled states, whereas F = 2/3 is the maximum fidelity attainable in 

any classical schemes which the entanglement cannot use [25].  

Therefore, if 
in  and 

out  are the state to be teleported and the state teleported, respectively, 

 

in in in    and 
out out out              (12) 

 

will be their respective density matrices. Fidelity quantifies a transformation performance between 

in  and 
out  states as, 

 

 
1 2/

out in outf Tr    
  

.             (13) 

 

The quantum teleportation applies to unknown input states so that the average fidelity—an average 

of the fidelities f over all possible input states—is used: 

 

inF f d                 (14) 
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where 
ind is Haar’s measure with 1ind  . Here, F = 1 implies that the task is perfectly performed 

for all possible inputs, while F = 1/2 implies some kind of uncertainty about the possibility of carrying 

out the task perfectly [25]. 

 

3 Standard Quantum Teleportation 

 

Then, we will develop the standard QTele protocol with and without noise where the noiseless analy-

sis is essential when keeping in mind the implications of the new protocol for the whole Physics. 

Besides, from the theoretical and the purely experimental point of views, we must consider the reality 

of the laboratory affected by innumerable noises due to all the gates involved for the purpose of 

implementing the different protocols. For this last reason, we need a thorough analysis in the presence 

of noise. 

 

3.1 Noiseless analysis 
 

QTele begins with the distribution of the EPR pair 
00  to Alice and Bob. This distribution constitu-

tes the entanglement link between Alice and Bob. After that, we continue with the complete sketch of 

QTele of Figure 4, where the green line indicates the border between the sides of Alice and Bob, that 

is, both extremes of the entanglement link. In Figure 4, a single fine line represents a wire carrying one 

qubit, while a double line represents a wire carrying one classical bit [24]. Besides, the classical 

channel is really a control classical channel for disambiguation purposes (as we will see below through 

two bits), while the entanglement link is really an entanglement data link. Besides, in this figure, the 

block with an H represents a Hadamard’s gate, and 00

A B

   of Equation (10). 

 

 

 
 

Fig.4 Standard teleportation protocol using an EPR pair and two classical bits for disambiguation. 
 

 

Now, If 10    is an arbitrary state to be teleported with 
2 2

1    and   £  of a 

Hilbert’s space, then, the initial state (3-partite state) will be, 

 

   

   

0 00 00
10 1 00 11

2

1 0 00 11 1 00 11
2

1 000 011 100 111
2

      

 

   

     

     

      

                   (15) 

 

where for simplicity (and from here on) we have adopted x y x y   in a generic form.  

Now, a CNOT gate is applied to Equation (15), 
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1

1
000 011 110 101

2
          

.                        (16) 

 

At this time, we apply a Hadamard’s gate to the elements of Equation (16), 
 

0 0 1 0 0 1 1 1

2

0 0 0 1 1 0 1 1

1
00 01 10 11

2

1

2

x z x z x z x z

x z x z x z x z

   

     

        
 

            

           

 .                  (17) 

 

Besides, Table I synthesizes the complete process of QTele, where Alice measures two of the 

possible qubits of the basis of Equation (10), and therefore, she transmits the corresponding bits b1 and 

b2 via a classical channel to Bob. The QMeas process is imperative to make the wave-function of the 

original arbitrary state collapse since this is necessary to do so as not to violate the No-Cloning 

Theorem. In other words, the QMeas process destroys the original arbitrary state [24]. 

 
TABLE I 

ALICE’S SIDE: MEASUREMENT OF THE BASE, CLASSICAL TRANSMISSION OF BITS, AND THE COLLAPSE OF STATES,                                                                                    
BOB’S SIDE: CLASSICAL RECEPTION OF BITS, GATES APPLICATION FOR THE FINAL RECOVERY OF THE ARBITRARY STATE. 

Alice’s 

measurement 

Alice  

transmits  

This happens with 

probability 
Collapsed state Bob applies 1 2b b

x z   

00   b2 b1 = 00 
2

0 01 1
2 4x z      0 0

x z    0 0

x z      

01   b2 b1 = 01 
2

1 01 1
2 4x z     1 0

x z    1 0

x z x      

10   b2 b1 = 10 
2

0 11 1
2 4x z     0 1

x z    0 1

x z z      

11   b2 b1 = 11 
2

1 11 1
2 4x z     1 1

x z    1 1

x z x z       

 
At this point, it is important to mention that in literature there are several concerns regarding the 

implementation of teleportation protocols using a bigger or smaller dimensional commitment but 

always with two classical bits for disambiguation. An interesting example can be found in [28], which 

shows that the one-qubit teleportation can be considered as a state transfer between subspaces of the 

whole Hilbert’s space of an indivisible eight-dimensional system. However, this as well as the rest of 

the papers that manipulate high dimensional quantum systems for the implementation of QTele 

protocols do it with two classical bits for disambiguation. 

On Alice's side, the combination of the modules constituted by the following gates: CNOT, H 

(Hadamard) and QMeas, constitute what is known as the Bell-State-Measurement (BSM), while on 

Bob's side, its modules are unitary operations necessary for the reconstruction of the teleported state. 

Alice’s measurement and transmission of the classical bits of disambiguation along with Bob's unitary 

operations are the clearest examples of Local Operations and Classical Communication (LOCC) [29]. 

Finally, we must highlight as a fundamental contrast between this version of the QTele protocol 

with the following one, that here, in Equation (15) we make 
00   and that the Kronecker 

product “ ” is not commutative. 

 

3.2 Noisy analysis 

 

Starting again from Figure 4, and considering noise in the EPR pair by a disturbance of the shape 

 

00 00 11
n

A B                (18) 

 

where subscript n means noise, and  

 
2 2

1A B  ,  with       1 1
2 2

A B A B             (19) 
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Then, repeating Equation (15) but with 
00 n
  instead of 

00 , we will have 

 

  0 00 0 1 00 11

000 100 011 111

n
A B

A A B B

    

   

   

   

                     (20) 

 

Now, a CNOT gate is applied to Equation (20), 
 

1 000 110 011 101A A B B        .                       (21) 

 

At this time, we apply a Hadamard’s gate to the elements of Equation (21), 

 

2

1
000 100 010 110 011 111 001 101

2

00 0 00 1 10 0 10 1 01 0 01 1 11 1 11 0
2 2 2 2 2 2 2 2

00 0 1 10 0 1 01 1 0 11 1 0
2 2 2 2 2 2 2 2

A A A A B B B B

A B A B A B B A

A B A B B A B A

        

       

       

          

       

       
              

       

   (22) 

 

From here on, we will follow a procedure similar to that of Table I but taking into account how sensiti-

vely the state is affected by noise. 

 

4 Simplified Quantum Teleportation 

 

First, and unlike the previous one, the new protocol dispenses with a classical channel to transmit 

the disambiguation bits, as well as it does not require the use of the Pauli’s matrices in Bob's side in 

order to reconstruct the teleported state from the mentioned disambiguation bits. These simplifications 

are the reason for the title of this paper, that is, simplified protocol.  

For the new protocol we will focus on Figure 5 using 
00   instead of 

00  . 

 

 

Fig.5 Simplified teleportation protocol using an EPR pair but without classical bits for disambiguation. 
 

 

4.1 Noiseless analysis 

 

  0 00

1
00 11 0 1

2

1
000 001 110 111

2

    

   

   

      

                     (23) 

 

Now, a CNOT gate is applied to Equation (23), 

 

1

1
000 001 100 101

2
          

,                                  (24) 
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Applying a Hadamard’s gate to the elements of Equation (24), 

 

 

2

1
000 100 001 101 000 100 001 101

2

000 001

00 0 1

          

 

 

        

 

 

                  (25) 

 

It is clear from Equation (25) that no disambiguation is necessary. Alice measures (where, both bits 

are always equal to zero independently of  ) in order to annul the entanglement and thus avoid 

violating the No-Cloning Theorem [5, 16]. We can also see in Figure 5 that it is not necessary for Bob 

to apply any unitary transformation. This eliminates the classical channel that is responsible for 

making teleportation as a whole to be carried out in a time greater than zero, i.e., not being instanta-

neous.  
 

4.2 Noisy analysis 
 

For noisy EPR pairs we also resorted to Figure 5 using the same version of Equations (18) and (19). 

Then, repeating Equation (23) but with 
00 n
  instead of 

00 , we will have 

 

  0 00 00 11 0 1

000 110 001 111

n
A B

A B A B

    

   

   

   

                     (26) 

 

Now, we apply a CNOT gate to Equation (26), 

 

1 000 100 001 101A B A B                                (27) 

 

Applying a Hadamard’s gate to the elements of Equation (27), we will have, 

 

       

 

 

2

1
000 100 000 100 001 101 001 101

2

00 0 1 00 0 1 10 0 1 10 0 1
2 2 2 2

00 10 0 1
2 2

0 1

A A B B A A B B

A B A B

A B A B

C

        

       

 

 

          

       

     
      

    

 

     (28) 

where  

 

00 10
2 2

A B A B
C

    
    
   

                (29) 

 

The worst consequence of noise in the new protocol is that the teleported state loses its purity, 

which means, it would not be on Bloch's sphere, in the more general case, given that 1C  , but even 

so, the teleported state is recovered without problems and without disambiguation. This clearly indica-

tes that the new protocol is much more robust (immune to noise) than the standard. 

 

5 Conclusions and Future Works 

 

In this work, we have presented a new quantum teleportation protocol in which we have eliminated the 

classical channel used currently for disambiguation, and since the classical channel is the weak link of 

standard teleportation in all matters relating to safety and speed, the new protocol seems to be an 

interesting alternative. We speak of security since quantum cryptography [30] [31] is much more 
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robust than its classical counterpart, being the quantum key distribution (QKD) its main tool [5] [24] 

[30] [31]. On the other hand, in the standard protocol of QTele, the classical channel forces the 

communication systems (as a complete unit) to have a speed of transmission equal to the speed of 

light, that is, the system is not instantaneous. In other words, in the case of an interplanetary commu-

nication, the traditional teleportation behaves (from the point of view of speed) as a current classical 

communication system. Instead, the new protocol is instantaneous since it does not require disambi-

guation through the use of a classical channel, gaining robustness (i.e., noise immunity), security, and 

requiring fewer components for its implementation in a laboratory. 

The experimental implementation of the new protocol will allow us to verify what is established in 

[23], which is an attempt to unify the two main pillars of Physics: the Theory of Relativity and QMec, 

as well as to get a better understanding of the entanglement. This happens because the new protocol 

takes full advantage of the main attribute of entanglement: the instantaneity. 

Furthermore, in the QComm work mentioned above [23] is demonstrated that a superluminal signa-

ling [7, 8] is not necessary for entanglement to be instantaneous. 

Future challenges in this area involve: a thorough study of what this work means in black hole 

theory, and, a formal and detailed analysis of the complete attributes of the entanglement, and 

therefore, of a quantum channel in terms of its bandwidth, channel capacity and information transit 

time for QComm [32-34]. Besides, the impact of the aforementioned verification on Quantum Internet 

[35, 36] and Super Dense Coding [5, 17] is evident. 

Finally, considering that there are already precedents of teleportation of energy [37, 38], and 

keeping in mind the research done in paper [23], an interesting question arises: can we teleport matter 

through exclusively quantum channels in a not so distant future? 
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