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A simplified version of the quantum teleportation protocol is presented in here. Its experimental 
confirmation will have deep implications for a better understanding of Quantum Entanglement with a 
particular projection on Quantum Communications. 
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1 Introduction 
 
First, we should mention the key pieces in Quantum Information Processing (in general), and 
Quantum Computing, and Communications (in particular), i.e., the Principle of Superposition and the 
quantum entanglement [1]. Both closely related to the work of Erwin Schrödinger [2, 3]. In fact, 

Schrödinger defined the entangled of pure states as the pure quantum state ABΨ  associated to  

composite systems like A and B that cannot be represented in the form of simple tensor products of 
subsystem state-vectors, that is [1], 
 

AB A BΨ ≠ ψ ⊗ ψ                                                      (1) 

 

where ⊗  indicates the tensor product (also known as Kronecker’s product) while Aψ and Bψ are 

vectors providing the states of both subsystems, such as elementary particles [2, 3]. Those states of 
composite systems that can be represented as tensor products of subsystem states constitute the 
complement in the set of pure states, the product states [1]. In fact, states of the composite system that 
can be represented in this form are called separable states. Then, since not all states are separable 
states (and thus product states) we will carry out the following analysis. Establish a pair of basis: 

{ }Ax  for HA and { }By  for HB. In HA ⊗ HB, the most general state is of the form 

 

AB xy A B
x ,y

n x yΨ = ⊗∑ .              (2) 

 

Therefore, this state will be separable if there exist vectors A
xn   , B

yn    so that A B
xy x yn n n=  yielding 

A
A x A

x

n xψ =∑ and B
B y B

y

n yψ =∑ . It is inseparable if for any vectors A
xn   , B

yn    at least for 

one pair of coordinates Axn , B
yn  we have A B

xy x yn n n≠ . If a state is inseparable, it is called an entangled 

state. 
On the other hand, in 1935 Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) propose a 

thought experiment by which they try to demonstrate that the wave-function does not provide a 
complete description of physical reality (and which gives rise to the famous EPR paradox), and hence 
that the Copenhagen interpretation is unsatisfactory; resolutions of the paradox have important 
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implications for the interpretation of quantum mechanics [4]. The essence of the paradox is that 
particles can interact in such a way that it is possible to measure both their position and their 
momentum more accurately than Heisenberg's uncertainty principle allows [5], unless measuring one 
particle instantaneously affects the other to prevent this accuracy, which would involve information 
being transmitted faster than light [6-8] as forbidden by the theory of relativity ("spooky action at a 
distance") [5, 9-13]. This consequence had not previously been noticed and seemed unreasonable at 
the time; the phenomenon involved is now known as quantum entanglement [1, 5]. 

Moreover, in 1964 John S. Bell introduces his famous theorem [9] associated with 4 states, i.e., 2-

qubit vectors into a combined space of Hilbert 2 2
AB A BΗ = Η ⊗ Η , and relative to two subsystems A 

and B, 
 

( )

( )

1
0 0 1 1

2
1

0 1 1 0
2

AB A B A B

AB A B A B

, ,

, ,

±

±

Φ = ±

Ψ = ±

                           (3) 

 
where they are called Bell’s states, and also known as EPR pairs. This theorem raises an inequality, 
which when violated by quantum mechanics establishes the non-locality present in the entanglement 
of two subsystems like A and B. Besides, a posterior redefinition of this inequality due to Clauser, 
Horne, Shimony and Holt (CHSH) [14] leads to a more conducive way to experimental testing with 
[13] and without [15] loopholes. 

An extremely important concept in quantum teleportation is the No-Cloning Theorem [5, 16], which 
states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This No-
Go Theorem of quantum mechanics was articulated by Wootters and Zurek [16] and Dieks [12] in 
1982, and has profound implications in quantum computing and related fields. Besides, the No-
Cloning Theorem [5] prevents the transfer of information faster than the speed of light [6-8]. We have 
seen that a measurement on subsystem A instantaneously transforms subsystem B into a well-defined 
state. The word “instantaneous” is seductive. Let us imagine that an entangled pure state has been 
produced whose subsystem SA is at Alice’s location and whose another subsystem SB at Bob’s 
location, very far away. Alice attempts to transmit one bit of information to Bob by measuring one of 
two non-commuting observables on her subsystem SA. If Bob succeeds in reading out this information 
on his subsystem SB, then it would have been transmitted at a velocity greater than that of light and 
this would contradict the theory of relativity [6]. 

Quantum teleportation [17-19] is a process by which a quantum state ψ  can be transferred from 

one point to another while destroying the original state, which is required by the no-cloning theorem 
[5, 12, 16]. This process takes place between two different locations. An EPR pair (i.e., two maximally 
entangled states) is apportioned between Alice and Bob. Alice has the state to be teleported. This state 
is entangled with his EPR state, and after that a process involving quantum gates, Alice performs 
measurements with a certain probability, so that in identifying the original state in the appropriate base 
she transmits the elements of that base but in its classic version (i.e., two bits) through a classic 
channel. On the other side, Bob receives both bits, so that with them and the appropriate quantum 
gates, he rebuilds the original state. Clearly, we can see that a quantum teleportation depends on a 
classical communication, which can proceed no faster than the speed of light, it cannot be used for 
faster-than-light transport or communication of classical bits. Of course, the classical channel is the 
weak link in this chain in terms of transmission speed.  

Otherwise, and since the quantum entanglement has a serious enemy, and in addition, quantum 
teleportation necessarily depends on the quantum entanglement, then such an enemy is inherited by 
quantum teleportation. This enemy is decoherence [20], which usually collapse the entanglement. 
Decoherence can be viewed as the loss of information from a system into the environment, since every 
system is loosely coupled with the energetic state of its surroundings. This interaction between the 
state and its environment is clearly seen during the quantum measurement [21], which causes the 
collapse of the wave-function [20, 21]. To try to mitigate this problem, we must apply reconstructive 
techniques of the state, which results in an increase in the computational cost of the process as a whole 
[22]. 
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In this paper we present a new protocol of quantum teleportation which does not require any 
disambiguation based on the transmission of classical bits, as in fact it happens in the original version 
[12, 17-19], which when using two channels (one classic for the bits and another quantum for the 
distribution of the EPRs) is more susceptible to attacks. However, the new version is simpler to 
implement in the laboratory than the original. This possibility has its origin in a work of Quantum 
Communications [23] which, through an extensive analysis, reaches the conclusion that such a 
possibility is viable. 

Finally, the main pending aspect within the teleportation is its lack of instantaneity (seen and a 
whole) and a clear definition of its bandwidth [23]. Both are the responsibility of the classic channel 
that the protocol necessarily uses. To this scenario points to this work based on [23]. 

 
2 Setup 
 
For the implementation of quantum teleportation, we must use some quantum gates, which we are 
going to present next. The first one is the Hadamard gate, which acts on a single qubit. It maps the 

basis state 0  to ( )1
2 0 1+  and 1  to ( )1

2 0 1− , which means that a measurement will have 

equal probabilities to become 1 or 0 (i.e., it creates a superposition). It is represented by the Hadamard 
matrix: 
 

( ) 1 11 1
1 12 2

x zH
 

= σ + σ =  − 
                          (4) 

 

where xσ  and zσ  are two of the three Pauli’s matrices ( )x y z, ,σ σ σ  [24] 

 

0 1

1 0x

 
σ =  

 
,   

0

0y

i

i

− 
σ =  

 
   and   

1 0

0 1z

 
σ =  − 

           (5) 

 

with 1i = − . Figure 1 represents the Hadamard’s gate [24]. 
 
 

 
 
Fig. 1 Hadamard’s gate. 
 
 

The second one is the Controlled NOT gate or simply CNOT, which operates on a quantum register 
consisting of 2 qubits. The CNOT gate flips the second qubit (the target qubit) if and only if the first 

qubit (the control qubit) is 1 . The inputs are allowed to be a linear superposition of { }0 1, . As an 

example of this, we can see that the CNOT gate transforms a superposed quantum state of the kind  

00 01 10 11a b c d+ + +  into another like 00 01 11 10a b c d+ + + . The CNOT gate can 

be represented by the matrix: 
 

1 0 0 0

0 1 0 0
0 0 0 0

0 0 0 1

0 0 1 0

xCNOT I

 
 
 = ⊗ + ⊗ σ =
 
 
 

                        (6) 

 
where I is the identity matrix. Figure 2 represents the CNOT gate [24]. 
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Fig. 2 CNOT gate. 
 
 

With both gates, we can build the famous Bell state (or EPR pair, named after Einstein, Podolsky, 

and Rosen paper [4]) from computational basis state 0 [5], as we can see in Fig.3,   

 
 

 
 
Fig. 3 The output of these gates (Hadamard and CNOT) is an EPR qubit or Bell state. In fact, an EPR pair, one 
to Alice and other to Bob. 
 
 
The complete set of Bell’s basis are: 
 

( )

( )

( )

( )

00

01

10

11

1
00 11

2
1

00 11
2
1

01 10
2

1
01 10

2

+

−

+

−

β = Φ = +

β = Φ = −

β = Ψ = +

β = Ψ = −

               (7) 

 
then,  
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

00 01

10 11

10 11

00 01

1 1
00

2 2
1 1

01
2 2

1 1
10

2 2
1 1

11
2 2

+ −

+ −

+ −

+ −

= Φ + Φ = β + β

= Ψ + Ψ = β + β

= Ψ − Ψ = β − β

= Φ − Φ = β − β

            (8) 

 
On the other hand and as a complement to the tools seen so far in this section, it is necessary to be 

able to evaluate the quality of the experimental implementation of teleportation protocols in the 
presence of noise, i.e., how faithful is the teleported state to the original? Therefore, we will need a 
good metrics to be able to evaluate said transfer quality. Then, we recommend here two versions of the 
most used metric in teleportation, the fidelity [25]. These versions have to do with the characteristic of 
the state to teleport, i.e., if it is pure or a mixed state [25-27]. 
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Fidelity f is a metric which gives us the closeness between an initial and final state in a quantum 
process [25]. It has widely been used to characterize the performance of various quantum information 
tasks. Fidelity f is bounded by 0 ≤ f ≤ 1, where the unit fidelity (f = 1) implies that the initial and final 
states are equivalent [25]. Quantum teleportation is designed to transmit all possible (unknown) input 
states, thus a measure of averaging over all inputs is used. That is the average fidelity F. It quantifies 
how well the unknown input states can be transmitted to another location. Thus, F shows the 
optimality of the quantum teleportation. There it is shown that the unit average fidelity (F = 1) can be 
obtained when the two remote parties share the maximally entangled states, whereas F = 2/3 is the 
maximally attainable one in any classical schemes which cannot use the entanglement [25].  

Therefore, if inψ  and outψ  are the state to be teleported and the state teleported, respectively, 

 

in in inρ ψ ψ=  and out out outρ ψ ψ=              (9) 

 
will be their respective density matrices. Fidelity quantifies a transformation performance between 

inψ  and outψ  states as, 

 

( )1 2/

out in outf Tr ρ ρ ρ =
  

.             (10) 

 

The quantum teleportation applies to unknown input states so that the average fidelity—an average 
of the fidelities f over all possible input states—is used: 
 

inF f dψ= ∫                (11) 

 

where indψ is Haar measure with 1indψ =∫ . Here, F = 1 implies that the task is perfectly performed 

for all possible inputs, while F = 1/2 does at random [25]. 
 
3 Standard Quantum Teleportation 
 
Then, we will develop the standard quantum teleportation protocol with and without noise.  
 
3.1 Noiseless analysis 
 

The quantum teleportation begins with the distribution of the EPR pair 00β  to Alice and Bob. This 

distribution constitutes the entanglement link between Alice and Bob, and after that, we continue with 
the complete sketch of quantum teleportation of Fig.4, where the green line indicates the border 
between the sides of Alice and Bob, that is, both extremes of the entanglement link. In Fig.4, a single 
fine line represents a wire carrying one qubit, while a double line represents a wire carrying one 
classical bit [24]. Besides, the classical channel is really a control classical channel for disambiguation 
purposes (as we will see below through two bits), while the entanglement link is really an 
entanglement data link. Besides, in this figure, the block with an H represents a Hadamard’s gate, and 

00
A B∪
+≡ Φβ  of Eq.(7). 

Now, If 10 βαψ +=  is an arbitrary state to be teleported with 2 2
1α β+ =  and α β∧ ∈ℂ  of a 

Hilbert space, then, the initial state (3-partite state) will be, 
 

( ) ( )
( ) ( )

0 00 00
10 1 00 11

2
1 0 00 11 1 00 11

2
1 000 011 100 111

2

ψ ψ β ψ β α β

α β

α α β β

= ⊗ = = + +

 = + + + 

=  + + +  

                   (12) 
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Fig.4 Standard Teleportation protocol using an EPR pair and two classical bits for disambiguation. 
 
 
where for simplicity (and from here on) in a generic form x y x y⊗ = .  

Now, CNOT gate is applied to Eq.(12), 
 

1

1
000 011 110 101

2
ψ α α β β=  + + +  

.                        (13) 

 

At this time, we apply a Hadamard’s gate to the elements of Eq.(13), 
 

0 0 1 0 0 1 1 1
2

0 0 0 1 1 0 1 1

1
00 01 10 11

2
1

2

x z x z x z x z

x z x z x z x z
+ − + −

 = + + + 

 = Φ + Φ + Ψ + Ψ 

ψ σ σ ψ σ σ ψ σ σ ψ σ σ ψ

σ σ ψ σ σ ψ σ σ ψ σ σ ψ

 .                  (14) 

 
Besides, Table I synthesizes the complete process of quantum teleportation, where Alice measures 

two of the possible qubits of the basis of Eq.(7) and therefore she transmits the corresponding bits b1 
and b2 via a classical channel to Bob. The quantum measurement process is imperative in order to 
make the wave-function of the original arbitrary state collapse since this is necessary not to violate the 
No-Cloning Theorem. In other words, the quantum measurement process destroys the original 
arbitrary state [24]. 
 

TABLE I 
ALICE’S SIDE: MEASUREMENT OF THE BASE, CLASSICAL TRANSMISSION OF BITS, AND THE COLLAPSE OF STATES,                                                                                

BOB’S SIDE: CLASSICAL RECEPTION OF BITS, GATES APPLICATION FOR THE FINAL RECOVERY OF THE ARBITRARY STATE. 
Alice’s 

measurement 
Alice  

transmits  
This happens with 

probability 
Collapsed state Bob applies 1 2b b

x zσ σ  

00+Φ →  b2 b1 = 00 
20 01 1

2 4x zσ σ ψ =   0 0
x zσ σ ψ+Φ  0 0

x zσ σ ψ = ψ  

01+Ψ →  b2 b1 = 01 
21 01 1

2 4x zσ σ ψ =  1 0
x zσ σ ψ+Ψ  1 0

x z xσ σ ψ = σ ψ  

10−Φ →  b2 b1 = 10 
20 11 1

2 4x zσ σ ψ =  0 1
x zσ σ ψ−Φ  0 1

x z zσ σ ψ = σ ψ  

11−Ψ →  b2 b1 = 11 
21 11 1

2 4x zσ σ ψ =  1 1
x zσ σ ψ−Ψ  1 1

x z x zσ σ ψ = σ σ ψ  

 
At this point, it is important to mention that in literature there are several concerns regarding the 

implementation of teleportation protocols using a greater or lesser dimensional commitment but 
always with two classical bits for disambiguation. An interesting example can be found in [28], which 
shows that the one-qubit teleportation can be considered as a state transfer between subspaces of the 
whole Hilbert space of an indivisible eight-dimensional system. However, this as well as the rest of the 
works that manipulate high dimensional quantum systems for the implementation of quantum 
teleportation protocols do it with two classical bits for disambiguation. 
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On Alice's side, the combination of the modules constituted by the following gates: CNOT, H 
(Hadamard) and quantum measurement, constitute what is known as Bell State Measurement (BSM), 
while on Bob's side, its modules are unitary operations necessary for the reconstruction of the 
teleported state. What Alice did plus the transmission of the classic bits of disambiguation along with 
Bob's unitary operations is the clearest example of Local Operations and Classical Communication 
(LOCC) [29]. 

Finally, we must highlight as a fundamental contrast between this version of the quantum 
teleportation protocol with the following one, that here, i.e., in Eq.(12) we make 

00ψ β⊗  and that 

the Kronecker product “⊗ ”  is not commutative. 
 
3.2 Noisy analysis 
 
Starting again from Fig.4, and considering noise in the EPR pair by a disturbance of the shape 
 

00 00 11
n

A Bβ = +              (15) 

 
where subscript n means noise, and  
 

2 2
1A B+ = ,  with  ( ) ( ) ( )1 1

2 2A B A B≠ ∧ ≠ ∧ ≠         (16) 

 
Then, repeating Eq.(12) but with 

00 n
β  instead of 

00β , we will have 

 
( )( )0 00 0 1 00 11

000 100 011 111
n

A B

A A B B

ψ ψ β α β

α β α β

= = + +

= + + +
                     (17) 

 
Now, CNOT gate is applied to Eq.(17), 
 

1 000 110 011 101A A B Bψ α β α β= + + + .                       (18) 
 

At this time, we apply a Hadamard’s gate to the elements of Eq.(18), 
 

2

1
000 100 010 110 011 111 001 101

2

00 0 00 1 10 0 10 1 01 0 01 1 11 1 11 0
2 2 2 2 2 2 2 2

00 0 1 10 0 1 01 1 0 11 1 0
2 2 2 2 2 2 2 2

A A A A B B B B

A B A B A B B A

A B A B B A B A

ψ α α β β α α β β

α β α β β α α β

α β α β α β α β

=  + + − + + + −  

= + + − + + + −

       = + + − + + + −       
       

   (19) 

 
From here, we follow a procedure similar to that of Table I but taking into account how sensitively the 
state will be affected by noise. 
 
4 Simplified Quantum Teleportation 
 
For the new protocol we will focus on Fig.5 using 

00β ψ⊗  instead of 
00ψ β⊗ . 

 

4.1 Noiseless 
 

( )( )0 00

1
00 11 0 1

2
1

000 001 110 111
2

ψ β ψ α β

α β α β

= = + +

=  + + +  

                     (20) 

 
Now, CNOT gate is applied to Eq.(20), 
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Fig.5 Simplified Teleportation protocol using an EPR pair but without classical bits for disambiguation. 
 
 

1

1
000 001 100 101

2
ψ α β α β=  + + +  

,                                  (21) 

 
Applying a Hadamard’s gate to the elements of Eq.(21), 
 

( )

2

1
000 100 001 001 000 100 001 101

2
000 001

00 0 1

ψ α α β β α α β β

α β

α β

=  + + + + − + −  

= +

= +

                  (22) 

 
It is clear from Eq.(22) that no disambiguation is necessary. Alice measures (where, both bits are 

always equal to zero independently of ψ ) in order to annul the entanglement and thus avoid violating 

the No-Cloning Theorem [5, 16]. We can also see in Fig.5 that it is not necessary for Bob to apply any 
unitary transformation. This eliminates the classic channel that is responsible for obliging teleportation 
as a whole to be carried out in a time greater than zero, i.e., not being instantaneous.  
 

4.2 Noisy 
 
For noisy EPR pairs we also resorted to Fig.5 and using the same version of Equations (15) and (16). 
Then, repeating Eq.(20) but with 

00 n
β  instead of 

00β , we will have 

 
( )( )0 00 00 11 0 1

000 110 001 111
n

A B

A B A B

ψ β ψ α β

α α β β

= = + +

= + + +
                     (23) 

 
Now, we apply CNOT gate to Eq.(23), 
 

1 000 100 001 101A B A Bψ α α β β= + + +                         (24) 

 
Applying a Hadamard’s gate to the elements of Eq.(24), 
 

( ) ( ) ( ) ( )

( )

( )

2

1
000 100 000 100 001 101 001 101

2

00 0 1 00 0 1 10 0 1 10 0 1
2 2 2 2

00 10 0 1
2 2

0 1

A A B B A A B B

A B A B

A B A B

C

ψ α α α α β β β β

α β α β α β α β

α β

α β

=  + + − + + + −  

= + + + + + − +

 + −   = + +    
    

= +

     (25) 
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where  
 

00 10
2 2

A B A B
C

+ −   = +   
   

                (26) 

 
The worst consequence of noise on the new protocol is that the teleported state loses its purity, that 

is to say, it would not be on Bloch's sphere, in the more general case, given that 1C ≠ , but even so, 
the teleported state is recovered without problems and without disambiguation. 
 
5 Conclusions and Future Works 
 
In this work, we have presented a new quantum teleportation protocol in which we have eliminated the 
classical channel used currently for disambiguation, and since the classical channel is the weak link of 
standard teleportation in all matters relating to safety and speed, the novel seems to be an interesting 
alternative. We speak of security since quantum cryptography [30, 31] is much more robust than its 
classical counterpart, being its main tool the quantum key distribution (QKD) [5, 24, 30, 31]. On the 
other hand, the classical channel forces the communications system (as a complete unit) to have a 
speed of transmission equal to the speed of light, that is, the system is not instantaneous. In other 
words, in the case of an interplanetary communication, the traditional teleportation behaves (from the 
point of view of speed) as a classic communications system currently in use. The new protocol is also 
not instantaneous, it simply doesn't have the disadvantages of the classic channel, although it is 
extremely faster than traditional teleportation. 

The experimental implementation of the new protocol will allow us to verify what is established in 
[23], which is an attempt to unify the two main pillars of Physics: the Theory of Relativity and 
Quantum Mechanics, as well as get a better understanding of the entanglement. This happens because 
the new protocol eliminates the obligation to use two channels, a classical one and a quantum one, and 
that because of the first one, the fundamental attribute of entanglement is lost: the instantaneity. 
Furthermore, in the Quantum Communications work mentioned above [23] is demonstrated that a 
superluminal signaling [7, 8] is not necessary for entanglement to be instantaneous. 

The future challenges in this area involve: a thorough study of what this work means in black hole 
theory, and, a formal and detailed analysis of the complete attributes of the entanglement and therefore 
of a quantum channel in terms of its bandwidth, channel capacity and information transit time for 
Quantum Communications [32-34]. Besides, the impact of the aforementioned verification on 
Quantum Internet [35, 36] and Super Dense Coding [5, 17] is evident. 

Finally, and considering that there are already precedents of teleportation of energy [37, 38], and 
taking into account [23], can we in the not too distant future teleport matter via exclusively quantum 
channels? 
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