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Abstract

A topological (commutative) ring is said to be rigid when for every
set X, the topological dual of the X-fold topological product of the
ring is isomorphic to the free module over X. Examples are fields with
a ring topology, discrete rings, and normed algebras. Rigidity trans-
lates into a dual equivalence between categories of free modules and
of “topologically-free” modules and, with a suitable topological tensor
product for the latter, it lifts to an equivalence between monoids in this
category (some suitably generalized topological algebras) and coalge-
bras. Several notions of topological semisimplicity for these (commu-
tative) monoids are introduced, and over an algebraically closed field
k, with a ring topology, all these notions, in addition to cosemisim-
plicity for coalgebras and classical Jacobson semisimplicity, are proven
to coincide. Accordingly this leads to the new rigidity result that the
function algebras of k-valued maps defined on a set, with the topology
of simple convergence, are the only topologically semisimple monoids.
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1 Introduction

In this presentation a (Hausdorff1) topological field (k, τ) is said to be rigid
when for every set X, the topological dual ((k, τ)X)′ of the X-fold topo-
logical product (k, τ)X is isomorphic to the vector space k(X) of finitely-

supported k-valued maps defined on X (i.e., those maps X
fÐ→ k such that

for all but finitely many members of X, f(x) = 0). Roughly speaking, this
means that the topological dual of (k, τ)X does not depend on the field
topology τ and which only really matters, is the fact that it has a product
topology. This is essentially the main result of [18] (where it is established for

1All topologies will be assumed separated.
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division rings instead of fields) of which this contribution is a continuation,
in the commutative setting.

Actually this topological property of rigidity is shared by more general
topological (commutative unital) rings2 than only topological fields (a fact
not noticed in [18]). For instance any discrete ring is rigid in the above sense
(see Lemma 31, p. 21). And even if not all topological rings are rigid (see
Section 3.6 for a counter-example), many of them still are (e.g., every real
or complex normed commutative algebra).

It is our intention to study in more details some consequences of the
property of rigidity for arbitrary commutative rings in particular for some of
their topological algebras. This is logically performed in two steps. In the
first step, which is carried out from Section 2 to Section 5, the basic ingre-
dients, needed for the second step, are set up. The second step – Sections 6
and 7 – concerns some issues of (topological) semisimplicity for topological
algebras over a commutative rigid ring.

The content of the first step is as follows. So far, for a topological ring
(R, τ), rigidity reads as ((R, τ)X)′ ≃ R(X) (here, and everywhere else, R
stands for the canonical left R-module structure on the underlying abelian
group of R) for each set X. Suitably topologized (see Section 2.5.1), the
algebraic dual (R(X))∗ turns out to be isomorphic to (R, τ)X . Accordingly
rigidity leads to a one-one correspondence between free R-modules R(X)

and topological (R, τ)-modules of the form (R, τ)X , said to be topologically-
free. In this contribution one observes that topologically-free modules are
particularly nice since they have topological bases which play a rôle similar
to linear bases of free modules (or vector spaces) and make them quite easy
to handle.

More appropriately the above correspondence may be upgraded into a
dual equivalence of categories3 between free and topologically-free modules
(Theorem 79, p. 36, in Section 4) under the algebraic and topological dual
functors. (A similar interpretation of the main result [18, Theorem 5, p. 156]
was given in the quoted reference as a dual equivalence between some cat-
egories of (topological) bimodules over a topological division ring. At this
point what is new in this contribution is a similar interpretation for arbitrary
(commutative) rigid rings.)

It is also worth mentioning at this stage that as a consequence not only
one recovers a result of J. Dieudonné [8] namely that for a field k, the category

2In this contribution, every ring is assumed non-trivial, commutative and unital (see
Conventions 1).

3By dual equivalence is meant an equivalence between a category C and the opposite
Dop of another.

5



of vector spaces over k is equivalent to the dual of that of linearly compact
vector spaces since these are nothing but topologically-free vector spaces
over k with its discrete topology (this was already noticed in [18]), but also
that the category of linearly compact k-vector spaces is equivalent to any
category of topologically-free (k, τ)-vector spaces, with τ a ring topology on
k (Section 4.4.3, p. 37). We take advantage several times of this opportunity
we have to replace a ring topology τ on a field by the discrete topology (in
particular when we study the relations with dual coalgebras and the notions
of topological semisimplicity, see below).

Under the rigidity assumption, the aforementioned dual equivalence en-
ables to provide a topological tensor product ⍟(R,τ) for topologically-free
(R, τ)-modules by transporting the algebraic tensor product ⊗R along the
dual equivalence. It turns out that ⍟(R,τ) is (coherently) associative, com-
mutative and unital, i.e., makes monoidal the category of topologically-free
modules. Not surprisingly the above dual equivalence remains well-behaved,
i.e., monoidal, with respect to the (algebraic and topological) tensor products
(Proposition 98, p. 47, and Theorem 102, p. 48, in Section 5.3).

The reason for this monoidal approach is twofold: On the one hand it
makes it possible to consider monoids in these tensor categories and on the
other hand such a category-theoretic treatment makes it easy and plainly
accessible relationship with some dual objects, namely the comonoids or
coalgebras, just by “reversing the arrows”.

Let’s take the time to be a little more specific here. Monoids in the ten-
sor category of topologically-free modules form a particular kind of suitably
generalized topological algebras or, more generally algebras with a separately
continuous multiplication4 (see Section 5.3.2.3, p. 53) to which one simply
refers to as “monoids” in the continuation of the Introduction, while monoids
in the dual category of free modules are coalgebras (with a free underlying

module5), i.e., modules C together with a “comultiplication” C δÐ→ C⊗RC and
a “counit” C εÐ→ R satisfying axioms which are formally dual to associativity
(for the multiplication) and to the defining property of a (two-sided) unit.
Under the rigidity assumption, the dual equivalence between topologically-
free and free modules, because it is monoidal (see above), has the nice feature
to induce a dual equivalence between monoids and coalgebras (Corollary 104,
p. 49). Thus one has two constructions: a topological dual coalgebra of a
monoid (in the tensor category of topologically-free modules) and an alge-

4For the exposition, in this Introduction one does not make any more distinction be-
tween topological algebras and algebras with a separately continuous multiplication.

5Of course, this is automatically fulfilled when the base ring R is a field.
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braic dual monoid of a coalgebra, and these constructions are inverse one
from the other (up to isomorphism).

There already exists a standard duality theory between algebras and coal-
gebras, over a field, known as finite duality (see Appendix D.4, p. 116) but
contrary to our “topological duality” it is merely an adjunction, not an equiv-
alence. One discusses how these dualities interact (see Section 5.3.2, p. 50)
and in particular one proves that the algebraic dual monoid of a coalgebra
essentially corresponds to its dual in the finite duality sense (Section 5.3.2.2,
p. 52), that over a discrete field, the topological dual coalgebra of a monoid
always is a subcoalgebra of the finite dual coalgebra of its underlying algebra
(see Section 5.3.2.1, p. 51), and furthermore that they are equal exactly when
finite duality provides an equivalence of categories (Theorem 123, p. 57).

This is pretty much what the first step of our study contains. It is now
time to address the second step. Again over a discrete field, our topological
duality between monoids and coalgebras induces a one-one correspondence
between the closed ideals of the former and the subcoalgebras of the latter,
which in particular restricts to a bijection between closed maximal ideals and
simple subcoalgebras (see Section 6, p. 61). Because of the discrete base field
it seems to be quite restrictive, but due to the above dual equivalence, still
we have the opportunity to replace the discrete topology by a ring topology
on the base field.

This nice relation is involved in the last part of the paper (Section 7,
p. 67) which deals with different notions of (topological) semisimplicity over
a field k with a ring topology. Roughly speaking ring-theoretic (Jacobson)
semisimplicity depicts the function algebra behaviour of a commutative alge-
bra. Indeed, any commutative algebra A admits a canonical “representation”
as a function algebra on its “spectrum” spec(A), i.e., a conveniently chosen
set of ideals (for instance all maximal ideals, or all closed maximal ideals for
Banach algebras), namely A

canAÐÐ→ ∏I∈spec(A)A/I. An algebra is semisimple
precisely when this representation is one-to-one.

For a commutative monoid over topologically-free (k, τ)-vector spaces
(recall that it corresponds to a certain kind of topological commutative
(k, τ)-algebras), there are several possible approaches for semisimplicity. The
most direct consists of declaring semisimple those monoids whose underlying
algebra (essentially obtained by forgetting the topology) is semisimple. Con-
sidering the topology too, by taking all closed maximal ideals for the spec-
trum, leads to the notion of topological semisimplicity (see Section 7.1.1.1,
p. 68). Still more specialized, inspired by Gelfand’s work on C∗-algebras,
one may only consider the kernels of continuous characters (i.e., continuous

7



algebra maps from the monoid to the base topological field) as a spectrum,
and this provides the notion of Gelfand semisimplicity (see Section 7.1.2.1,
p. 71). Finally using our dual equivalence one has access to the concept of
cosemisimplicity of the topological dual coalgebra (Appendix D.3, p. 114).
These different notions are not unrelated since one immediately observes
that Gelfand semisimplicity implies topological semisimplicity which in turn
entails semisimplicity of the underlying ordinary algebra.

By the Fundamental Theorem (Appendix D.3, p. 114), coalgebras es-
sentially are, at least locally, finite-dimensional because any finite subset
spans a finite-dimensional subcoalgebra. This property should be reflected
in some way, along our dual equivalence, for monoids in the tensor category
of topologically-free (k, τ)-vector spaces. In fact over a discrete field, the
closed maximal two-sided ideals of a monoid are finite-codimensional, and
furthermore when the field is algebraically closed and the monoid is com-
mutative, they even all have codimension one (Theorem 135, p. 66). This
observation is directly related to Gelfand semisimplicity through the kernels
of continuous characters (Proposition 154, p. 74), and has for consequence
the equivalence between Gelfand semisimplicity and topological semisimplic-
ity (Corollary 156, p. 76) for a discrete algebraically closed field.

Because the categories of topologically-free vector spaces are equivalent
for all ring topologies on the same field, and in particular for the discrete
topology, all of this interact in Theorem 167 (p. 81) where, for an alge-
braically closed field k with a ring topology τ , is established the equivalence
between all the above notions of semisimplicity. As a last and direct conse-
quence this leads to a new topological rigidity result: there is one, and only
one, kind of (Gelfand or topological) semisimple commutative monoids in the
tensor category of topologically-free (k, τ)-vector spaces, namely the X-fold
topological products (k, τ)X of the beginning of the Introduction, for vary-
ing set X, together with the point-wise multiplication, i.e., the algebra of all
functions from X to k with the topology of simple convergence. This extends
the result from algebra that any Jacobson semisimple finite-dimensional com-
mutative algebra over an algebraically closed field k, is canonically isomor-
phic to an algebra of k-valued functions defined on a finite set.

Some remarks on the presentation

As illustrated above, this contribution about topology and its applications
to algebra essentially is at the confluence of two domains, topological alge-
bras and coalgebras. Moreover the language of category theory is adopted,
not only for the exposition, but more soundly for the theory of monoidal
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categories which brings the fundamental tools and results we need to deal
with (co)algebras.

The intention of the author is to make this presentation accessible to
readers who, even familiar with categorical language, are not necessarily
specialists in the theory of monoidal categories or in that of coalgebras. It
follows that category-theoretic notions beyond the standard ones, as well as
definitions and results on coalgebras, will be put together in the Appendix.
In this way, the reader is not obliged to refer to the specific literature. Fur-
thermore many proofs concerning monoidal categories basically consist in
checking that some diagrams commute. They are sometimes tedious and
provide only a minimal understanding. There are thereby all postponed into
a specific Appendix to which the reader may refer if desired.

Of course, it results a long paper and the author’s belief is that it is
the reasonable price to make the presentation directly accessible for a large
audience.

2 Conventions, notations and basic definitions

This section introduces the conventions adopted in the text as well as the
most basic ingredients (e.g., function algebras, algebraic and topological dual
functors) needed for the presentation. It also gives the opportunity to recall
that other notations and definitions (e.g., names of some categories such as
Set, ModR, AlgR, etc.) are provided in the Appendix A (p. 85). The reader
should refer to this Appendix for the standard categorical notions used in
the presentation. An index of notations and notions is also available at the
very end of this contribution.

2.1 Conventions

Let us mention the conventions which are applied hereafter.

1 Conventions 1. Except as otherwise stipulated, all topologies are Haus-
dorff, and every ring is assumed non-trivial (i.e., distinct from the triv-
ial ring (0)), unital and commutative. (To the contrary an algebra over
a ring won’t be assumed commutative nor unital or even non-trivial,
but associative.)

2. For a ring R, R denotes both its underlying set and the canonical left
R-module structure on its underlying additive group. Likewise if A
is an R-algebra, then A is both its underlying set and its underlying
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R-module. The unit of a ring R (resp., a unital algebra A) is either
denoted by 1R (resp. 1A) or simply by 1. The bilinear multiplication
will be denoted mR(x, y), mA(x, y), m(x, y), by juxtaposition xy or
even using an ad hoc notation.

3. A ring map (or morphism of rings) is assumed to preserve the units.

4. A module M over a ring R is actually a unital6 left-R-module, and
when R is a field – usually denoted k – it is called a vector space.

5. Let X be a set, let (Ex, τx), x ∈ X, and (F,σ) be topological spaces.

That a map ∏x∈X Ex
fÐ→ F is continuous means that it is continuous

from the product topological space ∏x∈X(Ex, τx), i.e., ∏xEx with the
product topology, to (F,σ).

6. When all (Ex, τx)’s are equal to the same topological space (E, τ), then
the X-fold topological product ∏x∈X(Ex, τx) is canonically identified
with the set EX of all maps from X to E equipped with the topology
of simple convergence, and is denoted by (E, τ)X . Under this iden-
tification, the canonical projections (E, τ)X πxÐ→ (E, τ) are given by
πx(f) = f(x), x ∈X, f ∈ EX .

7. Given a topological space (E, τ) and x ∈ E, V(E,τ)(x) is the set of all
neighborhoods of x.

2.2 Topological rings, modules and algebras

2 Definition Let R be a ring, and let τ be a (Hausdorff, following our con-
ventions) topology on (the carrier set of) the ring. It is said to be a ring
topology when the structure maps of the ring, namely addition (x, y)↦ x+y,
multiplication (x, y) ↦ m(x, y), and opposite x ↦ −x, are continuous. By
topological ring (R, τ) is meant a ring together with a ring topology τ on it.
(In view of Convention 1.5, the multiplication of a topological ring is jointly
continuous.) By a field with a ring topology, denoted (k, τ), is meant a
topological ring (k, τ) with k a field. A topological field is a field with a ring
topology (k, τ) such that the inversion α ↦ α−1 is continuous from k ∖ {0}
to itself with the subspace topology.

3 Example A ring R with the discrete topology d is a topological ring. Ac-
tually the multiplication R×R mRÐÐ→ R is even uniformly continuous. (Indeed,
mR({0} ×R) +mR(R × {0}) = {0}.)

6This means that 1Rx = x for all x ∈M .
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Let (R, τ) be a topological ring.

1. A pair (M,σ) consisting of a (left and unital) R-module M and a
topology σ on M which makes continuous the addition, opposite and
scalar multiplication R×M →M , is called a topological (R, τ)-module.
Such a topology is referred to as a (R, τ)-module topology. In particular,
when R is a field k, then this provides topological (k, τ)-vector spaces.

2. Given topological (R, τ)-modules (M,σ), (N,γ), a continuous (R, τ)-
linear map (M,σ) fÐ→ (N,γ) is a R-linear mapM

fÐ→ N which is contin-
uous. Topological (R, τ)-modules and these morphisms form a category
TopMod(R,τ), which is denoted TopVect(k,τ), when k is a field.

3. A pair (A, σ), with A an R-algebra, and σ a topology on A, is a topo-
logical (R, τ)-algebra, when σ is a module topology for the underlying
R-module A, and the multiplication of A is a bilinear (jointly7) contin-
uous map. A topological (unital, commutative and non-trivial) (Z,d)
-algebra thus is a topological ring.

4. Given topological (R, τ)-algebras (A, σ), (B, γ), a continuous (R, τ)-
algebra map (A, σ) fÐ→ (B, γ) is a R-algebra map A

fÐ→ B which is also
continuous. Topological (R, τ)-algebras with these morphisms form
a category TopAlg(R,τ). One also has various full subcategories (cf.
Appendix A, p. 85) such as e.g., 1TopAlg(R,τ), cTopAlg(R,τ) and
1,cTopAlg(R,τ) of topological unital, resp. commutative, resp. unital
and commutative algebras. (In the categories of unital algebras, the
morphisms are assumed unital, i.e., they preserve the units.)

4 Remark Following Convention 1.1, it is clear from the above definitions,
that any non-trivial commutative and unital (topological) algebra has an un-
derlying (topological) ring (obtained by forgetting the scalar action).

5 Remark For each topological ring (R, τ), one has obvious forgetful and
7At some point (see Section 5.3.2.3, p. 53) one notwithstanding derogates from our con-

ventions by considering “topological algebras” with a separately continuous multiplication,
called “separately continuous algebras”. See also Appendix E, p. 118.
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embedding functors which make commute the following diagram.

1TopAlg(R,τ)

��

//
1AlgR

��

1,cTopAlg(R,τ)
7 W

jj

��

//
1,cAlgR

* 

88

��

cTopAlg(R,τ)
G g

tt

//
cAlgR � t

&&

TopAlg(R,τ) //

**

AlgR

xx

TopMod(R,τ) //ModR

(1)

6 Example (R, τ) is a topological (R, τ)-module and the topological ring
(R, τ) with the previous module structure, is a topological (R, τ)-algebra.

7 Remark A R-module (resp. R-algebra) with the discrete topology d is a
topological (R,d)-module (resp. (R,d)-algebra).

The following construction (see e.g.,[6, 23]) will be useful in what follows.

8 Definition Let (R, τ) be a topological ring, and letM be a R-module (resp.

R-algebra). Let F = (M fÐ→Mf)f∈F be a family of R-linear (resp. R-algebra)
maps, and for each f ∈ F , (Mf , σf) is a Hausdorff topological (R, τ)-module
(resp. (R, τ)-algebra). The coarsest topology !F on M that makes the maps
of F continuous is called the initial topology induced by F . It is a not
necessarily Hausdorff (R, τ)-module (resp. (R, τ)-algebra) topology, and is
Hausdorff when F separates the points of M , i.e., when for each x /= y in M ,
there is a map f ∈ F such that f(x) /= f(y).

A fundamental system of neighborhood of zero for the above topology !F
consists in the sets ⋂f∈A f−1(Uf), where A ⊆ F is a finite set, and Uf is an
open neighborhood of zero in (Mf , σf). Moreover a R-linear map (resp. R-
algebra map) (N,σ) gÐ→ (M, !F ) is continuous if, and only if, for each f ∈ F ,
(N,σ) f○gÐÐ→ (Mf , σf) is continuous.

2.3 Restriction of scalars

Let (R, τ) and (S, σ) be topological rings, and let (R, τ) fÐ→ (S, σ) be a con-
tinuous ring map. It may be used to transform a topological (S, σ)-module
into a topological (R, τ)-module by restriction of scalars along f .

12



In details, let (M,γ) be a topological (S, σ)-module. There is a scalar
action of R onM given by α⋅v ∶= f(α)v, α ∈ R, v ∈M (where by juxtaposition
is denoted the scalar action S ×M →M). Furthermore this action is again
continuous (by composition of continuous maps).

Let f∗(M,γ) be the topological (R, τ)-module just obtained. At present
let (M,γ) gÐ→ (N,π) be a continuous (S, σ)-linear map. g is also R-linear
because of g(α ⋅ v) = g(f(α)v) = f(α)g(v) = α ⋅ g(v), and thus provides
a continuous (R, τ)-linear map f∗(M,γ) gÐ→ f∗(N,π). All this results in

a functor TopMod(S,σ)
f∗Ð→ TopMod(R,τ) of restriction of scalars along f

(here f∗ should not be confused with the image of f by the algebraic dual
functor (see below)).

2.4 Example: X-fold product and finitely-supported maps

More than just examples, the algebras of all functions from a set to a topo-
logical base ring, and the free modules play a fundamental rôle in this con-
tribution and so deserve some attention.

2.4.1 (Topological) module structures

Let R be a ring, and let X be a set. It is possible to consider the R-module
RX of all maps from X to R. It may be equivalently defined as the X-fold
power of R in the category ModR. Therefore it is the object component of a
functor Setop

PRÐ→ModR whose action on maps is as follows: given X
fÐ→ Y

and g ∈ RY , PR(f)(g) = g ○ f .
Actually when the base ring is topological, then RX itself may be given

a somewhat natural topology (see Example 9 below).

9 Example Let (R, τ) be a topological ring and let X be a set. The X-fold
topological product (R, τ)X of the topological (R, τ)-module (R, τ) is actually
an instance of the more general construction given in Definition 8, obtained
by taking for F the family of all projections (RX πxÐ→ R)x∈X , πx(f) = f(x),
f ∈ RX .

Let R be a ring and let X be a set. Let x ∈ X. Then, δRx , or simply δx,
is the member of RX given for y ∈X, by

δRx (y) = {
1R if x = y
0 if x /= y .

13



10 Remark Because R is assumed non-trivial, the map X
δRXÐ→ RX , x↦ δx,

is one-to-one.

Let f ∈ RX . The support of f is the set supp(f) ∶= {x ∈ X ∶ f(x) /= 0}. Let
R(X) be the sub-R-module of RX consisting of all finitely-supported maps (or
maps with finite support), i.e., the maps f such that supp(f) is finite.

R(X) is actually the free R-module overX, and a basis is given by { δRx ∶x ∈
X }.

11 Notation Let R be a ring and let X be a set. Let x ∈ X, and define
px ∶= R(X) ↪ RX

πxÐ→ R, where R(X) ↪ RX is the canonical inclusion.

12 Remark 1. The construction R(X) is functorial in the set X. Indeed,
let Set

FRÐ→ ModR be the functor given by FR(X) ∶= R(X), and for

X
fÐ→ Y , p ∈ R(X),

FR(f)(p) ∶= ∑
y∈Y

⎛
⎝ ∑
x∈f−1({y })

p(x)
⎞
⎠
δRy .

In other words, FR(f)(δRx ) = δRf(x), x ∈X.

R(X) being free means in category-theoretic terms, that FR is a left

adjoint of the obvious forgetful functor ModR
∣⋅∣Ð→ Set. The map X

δRXÐ→
∣R(X)∣ (Remark 10) is the component at X of the unit of the adjunction
FR ⊣ ∣ ⋅ ∣∶Set→ModR.

2. The construction of (R, τ)X is also (contravariently) functorial in X.

Let Setop
P
(R,τ)ÐÐÐ→ TopMod(R,τ) be given by P(R,τ)(X) ∶= (R, τ)X , and

P(R,τ)(f)(g) ∶= g ○ f , X
fÐ→ Y , g ∈ RY . In other words, for each x ∈ X,

πx ○ P(R,τ)(f) = πf(x) (which also ensures continuity of P(R,τ)(f)). Of
course, the following diagram commutes (where the unnamed arrow is
the obvious forgetful functor).

Setop
P
(R,τ)
//

PR
**

TopMod(R,τ)
��

ModR

(2)
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2.4.2 Algebra structure

Given a ring R, and a set X, RX is merely not just a R-module but, under
point-wise multiplication RX ×RX MXÐÐ→ RX , a commutative R-algebra, the
function algebra on X, denoted AR(X), with unit 1AR(X) ∶= ∑x∈X δRx .

13 Remark AR(X) is functorial in X because for X
fÐ→ Y , g, h ∈ RY , x ∈X,

(PR(f)(gh))(x) = ((gh)○f)(x) = g(f(x))h(f(x)) = (PR(f)(g)PR(f)(h))(x).
This provides a functor Setop

ARÐ→ 1,cAlgR.

14 Notation Let X /= ∅ (in order to consider non-trivial rings). The un-
derlying ring of AR(X) is denoted RX . Of course, 1RX = ∑x∈X δRx .

15 Lemma (R, τ)X × (R, τ)X MXÐÐ→ (R, τ)X is continuous. In consequence
A(R,τ)(X) ∶= ((R, τ)X ,MX ,1RX ) is an object of 1,cTopAlg(R,τ).

Proof: The multiplication RX ×RX MXÐÐ→ RX is continuous since for each
x ∈ X, πx ○MX = mR ○ (πx × πx). Indeed, this equation directly implies
separate continuity in each variable of MX (because so is mR), and given a
finite subset A ⊆X and for each x ∈X, an open neighborhood Ux of zero in
(R, τ), by continuity of mR at zero, there are neighborhoods of zero Vx,Wx

such that mR(Vx,Wx) ⊆ Ux, and thus MX(⋂x∈A π−1
x (Vx),⋂x∈A π−1

x (Wx)) ⊆
⋂x∈A π−1

x (Ux) which ensures continuity of MX at zero, and thus by [23,
Theorem 2.14, p. 16], MX is continuous. ◻

16 Remark Here again, A(R,τ)(X) is functorial in the set X as it readily
follows from Remarks 12 and 13. Besides Diag. (2) may be completed into
the following commutative diagram with unnamed arrows the obvious forgetful
functors.

1,cTopAlg(R,τ) //

��

1,cAlgR

��

Setop

A
(R,τ)jj

P
(R,τ)

tt

AR 55

PR
))

TopMod(R,τ) //ModR

(3)

17 Notation Let X /= ∅. The underlying topological ring of A(R,τ)(X) is
denoted (R, τ)X . (It of course coincides with the X-fold product of (R, τ) in
the category of topological rings.)
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2.5 Recollection of results about algebraic and topological
duals

2.5.1 Algebraic dual functor

Let R be a ring. Let M be a R-module. Let M∗ ∶= ModR(M,R) be the
algebraic (or linear) dual of M . This is readily a R-module on its own.

When (R, τ) is a topological ring, then M∗ may be topologized with the
initial topology w∗

(R,τ), called the weak-∗ topology, induced by the family

(M∗
ΛM (v)ÐÐÐÐ→ R)v∈M of evaluations at some points, where (ΛM(v))(`) ∶= `(v).

This provides a structure of topological (R, τ)-module on M∗, which is even
Hausdorff (since if `(v) = 0 for all v ∈M , then ` = 0).

Moreover given a linear map M
fÐ→ N , N∗ f∗Ð→M∗, ` ↦ f∗(`) ∶= ` ○ f , is

continuous for the above topologies. Consequently, this provides a functor

Modop
R

Alg
(R,τ)ÐÐÐÐ→ TopMod(R,τ) called the algebraic dual functor.

18 Remark M∗ or f∗ stand for Alg(R,τ)(M) or Alg(R,τ)(f).

Up to isomorphism, one recovers the module of all R-valued maps on a
set X, with its product topology, as the algebraic dual of the module of all
finitely-supported maps duly topologized as above.

19 Lemma For each set X, (R, τ)X ≃ Alg(R,τ)(R(X)) (in TopMod(R,τ))
under the map

ρX ∶ (R, τ)X → ((R(X))∗,w∗
(R,τ))

given by (ρX(f)(p)) ∶= ∑x∈X p(x)f(x), f ∈ RX , p ∈ R(X).

Proof: Let ` ∈ (R(X))∗. Let us define X
ˆ̀
Ð→ R by ˆ̀(x) ∶= `(δx), x ∈ X.

That the two constructions are linear and inverse one from the other is clear.
It remains to make sure that there are also continuous. Let ` ∈ (R(X))∗,

and let x ∈ X. Then, πx(ˆ̀) = ˆ̀(x) = `(δx) = (ΛR(X)(δx))(`), which ensures

continuity of ((R(X))∗,w∗
(R,τ))

ρ−1XÐÐ→ (R, τ)X . Let f ∈ RX , and p ∈ R(X).
As (ΛR(X)(p))(ρX(f)) = (ρX(f))(p) = ∑x∈X p(x)f(x) = ∑x∈X πx(p)f(x) =
∑x∈X πx(p)πx(f), ΛR(X)(p)○ρX is a finite linear combination of projections,
whence is continuous for the product topology. In conclusion, (R, τ)X ρXÐ→
((R(X))∗,w∗

(R,τ)) also is continuous. ◻
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20 Definition Let M be a free R-module. Let B be a basis of M . This

defines a family of R-linear maps, the coefficient maps (M b∗Ð→ R)b∈B such
that each v ∈ M is uniquely represented as a finite linear combination v =
∑b∈B b∗(v)b. One denotes FreeModR the full subcategory of ModR spanned
by the free modules.

21 Remark When k is a field, FreeModk is just Vectk itself.

22 Example For each set X, { δRx ∶x ∈ X } is a free basis of R(X), and
px = δ∗x, x ∈X (see Notation 11, p. 14).

23 Remark Given b, d ∈ B, b∗(d) = δb(d). In particular, B
(−)∗ÐÐ→ B∗ ∶=

{ b∗∶ b ∈ B } is a bijection.

Given a free R-module, any choice of a basis makes it possible to define a
module topology on the algebraic dual: given a basis B, let Πτ

B be the initial

topology on M∗ induced by the evaluations (M∗
ΛM (b)ÐÐÐ→ R)b∈B. (In view of

Remark 23, this is clearly a Hausdorff topology.)

24 Lemma Let M be a free R-module. The topology Πτ
B is independent of

the choice of the basis B of M since it is equal to w∗
(R,τ). Moreover, for each

basis B of M , (M∗,w∗
(R,τ)) ≃ (R, τ)

B (in TopMod(R,τ)).

Proof: Let us assume that B is a basis of M . By construction it is clear
that the initial topology induced by (ΛM(b))b∈B is contained into w∗

(R,τ).
Conversely for each v ∈ M , v = ∑x∈X b∗(v)b uniquely, where all but

finitely many b∗(v)’s are zero. Given ` ∈M∗, (ΛM(v))(`) = `(∑b∈B b∗(v)b) =
∑b∈B b∗(v)`(b) = ∑b∈B b∗(v)(ΛM(b))(`) so that ΛM(v) is a finite linear com-
bination of some ΛM(b), whence is continuous from (M∗,Πτ

B) to (R, τ), and
therefore this topology contains w∗

(R,τ).
The last assertion is due to Lemma 19, by functoriality of Alg(R,τ). ◻

2.5.2 Topological dual functor

Let (R, τ) be a topological ring, and let (M,σ) be a topological (R, τ)-
module. Let (M,σ)′ ∶= TopMod(R,τ)((M,σ), (R, τ)) be the topological dual
of (M,σ). It is itself a R-submodule of M∗.

Let (M,σ) fÐ→ (N,γ) be a continuous (R, τ)-linear map between topo-

logical modules. Let (N,γ)′ f ′Ð→ (M,σ)′ be the R-linear map given by
f ′(`) ∶= ` ○ f .
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All of this evidently forms a functor TopModop
(R,τ)

Top
(R,τ)ÐÐÐÐ→ModR.

Let (R, τ) be a topological ring, and let X be a set. Let R(X)
λXÐÐ→ (RX)∗

be given by (λX(p))(f) ∶= ∑x∈X p(x)f(x), p ∈ R(X), f ∈ RX .
Let ρX be the map introduced in Lemma 19. Then, for each p ∈ R(X),

λX(p) = ΛR(X)(p) ○ ρX , which ensures continuity of λX(p), i.e., λX(p) ∈
((R, τ)X)′.

25 Lemma Let (R, τ) be a topological ring, and let X be a set. Then

R(X)
λXÐÐ→ ((R, τ)X)′ is one-to-one.

Proof: Assume p ∈ kerλX , then in particular for each x ∈ X, p(x) =
(λX(p)(δx)) = 0. Whence p = 0. ◻

3 Rigid rings: definitions and (counter-)examples

The term of rigidity to which the title of the present contribution refers, was
originally introduced in [18] as a part of the title of the quoted reference.
The corresponding notion of rigidity, recalled at the beginning of the In-
troduction, was originally but only implicitly introduced in [18, Theorem 5,
p. 156] as the main result therein. Nevertheless the possibility that the con-
clusion of this result could remain valid for more general topological rings
than topological division rings was not noticed. This is the reason why no
explicit definition of a rigid ring was provided then. Since a large part of
this presentation is given for arbitrary rigid rings (Definition 27 below), one
here provides a stock of basic examples.

3.1 Duality pairing

Let R be a ring, and let X be a set. Let us define a R-bilinear map, called

the duality pairing, R(X) ×RX ⟨⋅,⋅⟩XÐÐÐ→ R by

⟨p, f⟩X ∶= ∑
x∈X

p(x)f(x)

(which is a sum with finitely many non-zero terms since p is finitely-supported).
This R-bilinear map is non-degenetate, i.e., ⟨p, f⟩X = 0 for each p ∈ R(X)

implies that f = 0, and ⟨p, f⟩X = 0 for each f ∈ RX implies p = 0.

1. The one-to-one linear map R(X)
λXÐÐ→ ((R, τ)X)′ from Lemma 25 is

related to the pairing by (λX(p))(f) = ⟨p, f⟩X , which implies that
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⟨⋅, ⋅⟩X is separately continuous in its second variable, when its first
variable is fixed.

2. The isomorphism ρX ∶ (R, τ)X ≃ ((R(X))∗,w∗
(R,τ)) from Lemma 19,

p. 16, is also connected to the pairing by (ρX(f))(p) = ⟨p, f⟩X .

3.2 Rigid rings: definition

26 Lemma Let (R, τ) be a topological ring, and let X be a set. For each
f ∈ RX , (f(x)δx)x∈X is summable in (R, τ)X with sum f .

Proof: According to [23, Theorem 10.10, p. 76] it suffices to check that for
each z ∈ X, (πz(f(x)δx))x∈X is summable with sum πz(f) = f(z) in (R, τ).
But since πz(f(x)δx) = f(x)δx(z) this is obvious. ◻

27 Definition Let (R, τ) be a topological ring. It is said to be rigid when

for each set X, R(X)
λXÐÐ→ ((R, τ)X)′ is an isomorphism in ModR, i.e., λX

is onto. In this situation, one sometimes also called rigid a ring topology τ
such that (R, τ) is rigid.

By a rigid field (k, τ) is meant a field k with a ring topology τ , which is
rigid as a topological ring.

28 Lemma Let ` ∈ ((R, τ)X)′. ` ∈ im(λX) if, and only if, ˆ̀∶X → R given

by ˆ̀(x) ∶= `(δx), belongs to R(X). Moreover, im(λX)
ˆ(−)ÐÐ→ R(X), ` ↦ ˆ̀ =

∑x∈X `(δx)δx, is the inverse of λX .

Proof: Let ` ∈ ((R, τ)X)′ such that ˆ̀∈ R(X). Then, λX(ˆ̀) = `, and thus ` ∈
im(λX) since for f ∈ RX , (λX(ˆ̀))(f) = ∑x∈X `(δx)f(x) = `(∑x∈X f(x)δx) =
`(f) (Lemma 26).

Let ` ∈ ((R, τ)X)′ such that ` ∈ im(λX). Let p` ∈ R(X) with λX(p`) = `.
Then, for each x ∈ X, `(δx) = (λX(p`))(δx) = ∑z∈X p`(z)δx(z) = p`(x).
Whence ˆ̀= p` ∈ R(X).

The last assertion is obvious since λX is known to be one-to-one. ◻

3.3 Rigidity and finite powers

Let (R, τ) be a topological ring. Remember from Section 2.4.2 (p. 15) that
for each set I, the I-fold topological product (R, τ)I of the underlying topo-
logical module of (R, τ) inherits from the latter a structure of a topological
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(R, τ)-algebra A(R,τ)(I) under component-wise multiplication and with unit
1A
(R,τ)(I)

∶= ∑i∈I δRi .
Let us assume that I /= ∅ so that the underlying ring (R, τ)I (Notation 17,

p. 15) of A(R,τ)(I) is non-trivial (Convention 1.1, p. 9).
Any topological (R, τ)I -module is also a topological (R, τ)-module under

restriction of scalars (see Section 2.3) along the unit map (R, τ) ηIÐ→ (R, τ)I ,
ηI(1R) = 1RI , which of course is a ring map, and is continuous (because
ηI(α) =mRI (ηI(α),1RI ), α ∈ R.)

Let X be a set, and let ` ∈ (((R, τ)I)X)′, i.e., ((R, τ)I)X `Ð→ (R, τ)I
is continuous and (R, τ)I -linear, and by restriction of scalar along ηI it is
also continuous and (R, τ)-linear. Therefore for each i ∈ I, ((R, τ)I)X `Ð→
(R, τ)I πiÐ→ (R, τ) belongs to the topological dual space of ((R, τ)I)X seen
as a (R, τ)-module.

Let us assume that (R, τ) is rigid. Then, by Lemma 28, supp(π̂i ○ `) is
finite for each i ∈ I. One may also define X

ˆ̀
Ð→ RI by ˆ̀(x) ∶= `(δRIx ), x ∈ X,

and thus supp(ˆ̀) = {x ∈ X ∶ `(δRIx ) /= 0} = {x ∈ X ∶ ∃i ∈ I, `(δRIx )(i) /= 0} =
{x ∈ X ∶ ∃i ∈ I, πi(`(δR

I

x )) /= 0} = ⋃i∈I supp(π̂i ○ `). Whence if I is finite,
then supp(ˆ̀) is finite too, and (R, τ)I is rigid.

29 Proposition Let (R, τ) be a rigid ring. If I is finite and non-void, then
(R, τ)I is rigid too.

When I is infinite, then (R, τ)I never can be rigid as shown in Section 3.6
below (p. 25).

3.4 Basic stock of examples

Several examples of rigid rings are now presented.

3.4.1 A field with a ring topology

The first assertion of the following result is a slight generalization of the
main theorem in [18] (which is precisely the second assertion below).

30 Lemma Let (k, τ) be a field with a ring topology (see Definition 2, p. 10).
Then, (k, τ) is rigid. In particular, any topological field is rigid.

Proof: Let ` ∈ ((k, τ)X)′. Let f ∈ kX . By Lemma 26, (f(x)δx)x∈X is
summable in (k, τ)X with sum f , and by (linearity and) continuity of `,
(f(x)`(δx))x is summable in (k, τ) with sum `(f). Let f` ∈ kX be given
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by f`(x) ∶= `(δx)−1, when `(δx) /= 0, and f`(x) ∶= 0, when `(δx) = 0. In this
situation, f`(x)`(δx) = 1k for all x ∈ supp(ˆ̀) (see Lemma 28 for the definition
of ˆ̀). Now let U ∈V(k,τ)(0) such that 1k /∈ U . By [23, Theorem 10.5, p. 73],
since (f`(x)`(δx))x is summable, for all but finitely many x’s, f`(x)`(δx) ∈ U .
By definition of f`, there are thus only finitely many x’s with f`(x)`(δx) = 1k

which means that ˆ̀∈ k(X), so that (k, τ) is rigid by Lemma 28. ◻

3.4.2 Discrete rings

There are also rings that are not fields, but still they are rigid. The most
obvious is given below.

31 Lemma For each ring R, the discretely topologized ring (R,d) is rigid.

Proof: Let ` ∈ ((R,d)X)′. For each f ∈ RX , according to Lemma 26
(p. 19), (f(x)`(δx))x∈X is summable in (R,d), with sum `(f). Since {0}
is an open neighborhood of zero in (R,d), f(x)`(δx) = 0 for all but finitely
many x ∈ X ([23, Theorem 10.5, p. 73]). One may apply this result to
f ∶= ∑x∈X δx ∈ RX , which implies that `(δx) = 0 for all but finitely many
x ∈X so that by Lemma 28 (p. 19), λX is onto. ◻

3.4.3 Normed algebras

Every normed, complex or real, commutative and unital algebra is rigid.
Thus so are any (unital and commutative) Banach and C∗-algebras for in-
stance.

32 Lemma Let k = R,C. Let (A, ∥ ⋅ ∥) be a commutative normed k-algebra8

with a unit, assumed non-trivial (1A /= 0). Then, as a topological ring under
the topology induced by the norm, it is rigid.

Proof: Let τ∥−∥ be the topology on A induced by the norm of A, where A
is the underlying k-vector space of A. Let X be a set. Let ` ∈ ((A, τ∥−∥)X)′.
Let f ∈ AX . Then, by Lemma 26 (p. 19), (f(x)δx)x∈X is summable with
sum f , whence (f(x)`(δx))x∈X is summable in (A, τ∥−∥) with sum `(f). So
according to [23, Theorem 10.5, p. 73], for ε > 0, there exists a finite set
Fε ⊆ X such that ∥f(x)`(δx)∥ < ε for all x ∈ X ∖ Fε. Let f ∶X → A be given

8In a normed algebra (A, ∥⋅∥), unital or not, commutative or not, trivial or not, the norm
is assumed sub-multiplicative, i.e., ∥xy∥ ≤ ∥x∥∥y∥, which ensures that the multiplication of
A is jointly continuous with respect to the topology induced by the norm.
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by f(x) = 1
∥`(δx)∥

1A if x ∈ supp(ˆ̀) and f(x) = 0 for x /∈ supp(ˆ̀). Then,

1 = ∥f(x)`(δx)∥ for all x ∈ supp(ˆ̀). Let us assume that 0 < ε < 1. Thus
according to the above, supp(ˆ̀) is finite, so λX is onto by Lemma 28. ◻

3.5 A supplementary example: von Neumann regular rings

3.5.1 Basic results and examples

Let R be a ring. It is said to be von Neumann regular if for each x ∈ R, there
exists y ∈ R such that x = xyx [14, Theorem 4.23, p. 65].

Following our Conventions 1 (p. 9), any von Neumann regular ring is
assumed commutative, unital and non-trivial. It is worth noticing that com-
mutativity forces uniqueness of a “weak inverse”.

33 Lemma Let us assume that R is a (commutative) von Neumann regular
ring. For each x ∈ R, there is a unique y ∈ R such that x = xyx and y = yxy.

Proof: For each x, there is at least one y which meets the requirement of
the statement of the lemma. Indeed, let y such that x = xyx. Let z ∶= yxy.
So xzx = x(yxy)x = (xyx)yx = xyx = x and zxz = (yxy)x(yxy) = yxzxy =
yxy = z. It remains to make sure of uniqueness. Assume y, z both satisfy
the statement. Thus, one has x = x2y = x2z, y = y2x and z = z2x. Therefore,
z = z2x = z2x2y = (x2z)zy = xzy = (x2y)zy = (x2z)y2 = xy2 = y. ◻

34 Definition Let R be a von Neumann regular ring. For each x ∈ R,
the member y of R such that x = xyx and y = yxy, whose existence and
uniqueness are guaranteed by Lemma 33, is referred to as the weak inverse
of x, and is denoted x†.

35 Examples 1. Every field is a von Neumann regular ring with x† ∶=
x−1, x /= 0, and 0† = 0.

2. Every non-void direct product of fields is von Neumann regular: let ki
be a field for each i ∈ I, let (xi)i∈I ∈ ∏i∈I ki, then (xi)†i∈I ∶= (x

†
i )i∈I

provides the required weak inverse.

The following folklore result provides an important source of examples
of von Neumann regular rings.

36 Lemma Let (ki)i∈I be a non-void family of fields. Let R be a ring, and
let ∶R↪∏i∈I ki be an embedding (i.e., a ring map which is one-to-one). Let
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us assume that for each x ∈ R, (x)† ∈ im(), where (xi)†i is defined as in
Example 35.2. Then, R is a von Neumann regular ring.

Proof: For each x ∈ R. Let x⋆ be the unique member of R such that
(x⋆) = (x)†. Because (xx⋆x) = (x)(x⋆)(x) = (x)(x)†(x) = (x) and
(x⋆xx⋆) = (x⋆)(x)(x⋆) = (x)†(x)(x)† = (x)† = (x⋆), xx⋆x = x and
x⋆xx⋆ = x⋆ in such a way that R is a von Neumann regular ring. ◻

One also provides the following definition for later.

37 Definition Let k be a field. Let A = (A,mA,1A) be a unital k-algebra.
It is said to be von Neumann regular when for each x ∈ A, there exists y ∈ A
such that x = xyx.

38 Remark The proof of Lemma 33 works as well after substituting the von
Neumann regular ring R by a commutative von Neumann regular (unital) k-
algebra A = (A,mA,1A), and thus asserts the existence of a uniquely defined
weak inverse x† for each member x ∈ A (i.e., x†xx† = x† and xx†x = x).

39 Example Let k be a field, and let X be a set. Then, Ak(X) (see Sec-
tion 2.4.2, p. 15) is a commutative von Neumann regular k-algebra with
f† ∶= ∑x∈X(f(x))†δk

x, f ∈ kX , where α†, for α ∈ k, is as in Example 35.

3.5.2 A sufficient condition for rigidity

40 Remark Let R be a von Neumann regular ring. For each x ∈ R ∖ {0},
xx† /= 0 since 0 /= x = xx†x. Moreover, for each x ∈ R, x belongs to the set
E(R) of all idempotents (e2 = e) of R since xx†xx† = xx†.

41 Proposition Let (R, τ) be a topological ring such that R is von Neumann
regular. If 0 /∈ E(R) ∖ {0}, then (R, τ) is rigid. In particular, if E(R) is
finite, then (R, τ) is rigid.

Proof: That the second assertion follows from the first is immediate.
Let X be a set. Let us assume that 0 /∈ E(R) ∖ {0}. Let ` ∈ ((R, τ)X)′.

In particular, for each f ∈ RX , (f(x)`(δx))x∈X is summable in (R, τ) with
sum `(f). Let V ∈V(R,τ)(0) such that V ∩ (E(R) ∖ {0}) = ∅. By Cauchy’s
condition [23, Definition 10.3, p. 72], there exists a finite set Af,V ⊆ X
such that for all x /∈ Af,V , f(x)`(δx) ∈ V . Now, let us consider the case
where f is given by f(x) ∶= `(δx)† for each x ∈ X. Then, for each x ∈ X,
f(x)`(δx) = `(δx)†`(δx) ∈ E(R). Whence, in view of Remark 40, for all but
finitely many x’s, f(x)`(δx) = 0, i.e., `(δx) = 0. ◻
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42 Remark One recovers Lemma 30, p. 20, as a consequence of Propo-
sition 41 by taking (R, τ) to be a field (k, τ) with a ring topology since
E(k) = {0,1k }.

3.5.3 An application: Boolean rings

A Boolean ring is a ring B in which x2 = x for all x ∈ B. In other words,
E(B) = B. (According to our Conventions 1 (p. 9) one excludes the trivial
ring, even if it is usually considered as a perfectly correct Boolean ring.) It
is apparent that any Boolean ring is von Neumann regular (with x† = x, for
each x).

43 Proposition Let (B, τ) be a topological ring such that B is a Boolean
ring. 0 /∈ E(B) ∖ {0} if, and only if, τ = d. In other terms, a topological
Boolean ring is rigid if, and only if, its topology is discrete.

Proof: According to Lemma 31 (p. 21), (B,d) is rigid.
Conversely, by contraposition, let us assume that τ /= d. Thus {0} is

not open in τ , so that for each V ∈ V(B,d)(0), there exists x ∈ B ∖ {0} with
x ∈ V . Therefore, 0 ∈ B ∖ {0} = E(B) ∖ {0}. ◻

3.5.4 An application: the box topology

Let (Ei, τi)i∈I be a family of topological spaces. On ∏i∈I Ei is defined the
box topology [12, p. 107] a basis of open sets of which is given by the “box”
∏i∈I Vi, where each Vi ∈ τi, i ∈ I. The product ∏i∈I Ei together with the box
topology is denoted by ⊓i∈I(Ei, τi). (This topology is Hausdorff as soon as
all the (Ei, τi)’s are.)

It is not difficult to see that given a non-void family (Ri, τi)i∈I of topolog-
ical rings, then ⊓i∈I(Ri, τi) still is a topological ring (under component-wise
operations).

44 Proposition Let (ki)i∈I be a non-void family of fields, and for each i ∈ I,
let τi be a ring topology on ki. Let R be a ring with an embedding ∶R ↪
∏i∈I ki. Let us assume that for each x ∈ R, (x)† ∈ im(), where (xi)†i is
defined as in Example 35.2. Let R be topologized with the subspace topology
τ inherited from ⊓i∈I(ki, τi). Then, (R, τ) is rigid.

Proof: Naturally (xi)i∈I ∈ E(∏i∈I ki) if, and only if, xi ∈ {0,1ki } for each
i ∈ I. Now, for each i ∈ I, let Ui be an open neighborhood of zero in (ki, τi)
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such that 1ki /∈ Ui. Then,∏iUi is an open neighborhood of zero in ⊓i∈I(ki, τi)
whose only idempotent member is 0. Therefore, 0 /∈ E(∏i∈I ki) ∖ {0}.

Under the assumptions of the statement, an application of Lemma 36
states that R is a (commutative) von Neumann regular ring. It is also of
course a topological ring under τ (since  is a one-to-one ring map). It is
also clear that E(R) ≃ E((R)) ⊆ E(∏i ki). Furthermore, (E(R) ∖ {0}) =
E((R)) ∖ {0}∩ (R) ⊆ E(∏i ki) ∖ {0}, and thus 0 /∈ E(R) ∖ {0} according
to the above discussion. Therefore, by Proposition 41, (R, τ) is rigid. ◻

3.6 A counter-example

Let (R, τ) be a topological ring, and let us consider the topological (R, τ)X -
module ((R, τ)X)X for a given non-empty9 set X. In order to avoid being
confused by the use of canonical projections of both (RX)X and RX , the
former are momentarily denoted by Πx∶ (RX)X → RX , while one retains the
denotation πx∶RX → R for the latter.

Let us define a linear map (RX)X `Ð→ (R, τ)X by setting `(f)∶x ↦
(f(x))(x), f ∈ (RX)X .

` is continuous. To see this, by definition of the topology on (R, τ)X

it suffices to check that for each x ∈ X, (RX)X `Ð→ RX
πxÐ→ (R, τ) is con-

tinuous. But given f ∈ (RX)X , πx(`(f)) = (f(x))(x) = πx(Πx(f)). In
other words, πx ○ ` = πx ○ Πx which certainly is continuous. It follows that
` ∈ (((R, τ)X)X)′.

Now, for each x ∈ X, (`(δRXx ))(x) = δR
X

x (x) = 1RX , and in particular,
ˆ̀(x) = `(δRXx ) /= 0, which means that supp(ˆ̀) =X.

In consequence the following is obtained.

45 Proposition Let (R, τ) be topological ring, and let X be a non-empty
set. If X is infinite, then (R, τ)X is not rigid.

4 Recasting as an equivalence of categories

The purpose of this section consists to translate the rigidity condition (Def-
inition 27) on a topological ring into a dual equivalence between some cat-
egories of (topological) modules. In a way similar to [18], the equivalence
of categories will be given by the algebraic dual functor with equivalence

9X is assumed non-void to ensure that RX is a non-trivial ring as requires our Con-
vention 1.1, p. 9.

25



inverse the (opposite of the) topological dual functor (see Section 2.5), with
both functors conveniently co-restricted. Therefore, a first step in this di-
rection is to introduce the categories to prove equivalent, and actually just
one, namely the category of topologically-free modules (see below), since the
other is the category of free modules.

4.1 Topologically-free modules

4.1.1 Definition and characterization

46 Definition Let (R, τ) be a topological ring. Let (M,σ) be a topolog-
ical (R, τ)-module. It is said to be a topologically-free (R, τ)-module if
(M,σ) ≃ (R, τ)X , in TopMod(R,τ), for some set X. Let TopFreeMod(R,τ)
be the full subcategory of TopMod(R,τ) spanned by the topologically-free
(R, τ)-modules. Likewise when (k, τ) is a field with a ring topology, then
one defines correspondingly the topologically-free (k, τ)-vector spaces and
their category TopFreeVect(k,τ) ↪ TopVect(k,τ).

47 Remark Of course, for each set X, (R, τ)X itself is a topologically-free

(R, τ)-module. It follows that the functor Setop
P
(R,τ)ÐÐÐ→ TopMod(R,τ) from

Remark 12 (p. 14) factors as follows.

Setop
P
(R,τ)

//

**

TopMod(R,τ)

TopFreeMod(R,τ)
?�

OO
(4)

The co-restriction obtained is still denoted Setop
P
(R,τ)ÐÐÐ→ TopFreeMod(R,τ).

Topologically-free modules are characterized by the fact of possessing
“topological bases” (see Corollary 51 below) which makes easier a number of
calculations and proofs, once such a basis is chosen.

48 Definition Let (M,σ) be a topological (R, τ)-module. Let B ⊆M . It is
said to be a topological basis of (M,σ) if the following hold.

1. For each v ∈M , there exists a unique family (b′(v))b∈B, with b′(v) ∈ R
for each b ∈ B, such that (b′(v)b)b is summable in (M,σ) with sum v.
b′(v) is referred to as the coefficient of v at b ∈ B.

2. For each family (αb)b∈B of elements of R, there is a member v of M
such that b′(v) = αb, b ∈ B. (By the above point such v is unique.)
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3. σ is equal to the initial topology induced by the (topological) coefficient

maps (M b′Ð→ (R, τ))b∈B. (According to the two above points, each b′ is
R-linear.)

49 Remark It is an immediate consequence of the definition that for a topo-
logical basis B of some topological module, 0 /∈ B and b′(d) = δb(d), b, d ∈ B
(since ∑b∈B δb(d)b = d = ∑b∈B b′(d)b). In particular, B

(−)′ÐÐ→ B′ ∶= { b′∶ b ∈ B }
is a bijection.

The next two results are obvious.

50 Lemma Let (M,σ) and (N,γ) be isomorphic topological (R, τ)-modules.
Let Θ∶ (M,σ) ≃ (N,γ) be an isomorphism (in TopMod(R,τ)). Let B be a
topological basis of (M,σ). Then, Θ(B) = {Θ(b)∶ b ∈ B } is a topological
basis of (N,γ).

51 Corollary Let (M,σ) be a (Hausdorff) topological (R, τ)-module. It ad-
mits a topological basis if, and only if, it is topologically-free.

52 Example Let (R, τ) be a topological ring. For each set X, { δx∶x ∈ X }
is a topological basis of (R, τ)X . Moreover πx = δ′x, x ∈X.

4.1.2 Properties of topological bases

In this section one takes the time to establish a certain number of proper-
ties of topological bases since these will be useful hereafter (in particular in
Appendix C).

53 Lemma Let (M,σ) be a topologically-free (R, τ)-module with topological
basis B. Then, B is R-linearly independent and the linear span ⟨B⟩ of B is
dense in (M,σ).

Proof: Let bi, i = 1,⋯, n be pairwise distinct elements of B. Let αi ∈ R,
i = 1,⋯, n. Let us assume that ∑ni=1 αibi = 0. Since 0 = ∑b∈B 0b is the sum
of the summable family (zbb)b, with zb = 0, b ∈ B, and 0 is also the sum
of the summable family (abb)b with abi = αi, i = 1,⋯, n, and ab = 0, b /= bi,
i = 1,⋯, n, by uniqueness it follows that αi = 0, i = 1,⋯, n.

Now, let us check that ⟨B⟩ is dense in (M,σ). Let u ∈ M and let V ∶=
{ v ∈ M ∶ b′(v) ∈ Ub, b ∈ A} be a neighborhood of zero, where A is a finite
subset of B and Ub is a neighborhood of zero in (R, τ) for each b ∈ A. One
has to check that u + V meets ⟨B⟩. Let uA ∶= ∑b∈A(b′(u) + b′(v))b ∈ ⟨B⟩
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for some v = ∑b∈B b′(v)b ∈ V (whence b′(v) ∈ Ub, b ∈ A). Then, uA − u =
∑b∈A b′(v)b −∑b∈B∖A b′(u)b so that for each b ∈ A, b′(uA − u)b = b′(v) ∈ Ub,
whence uA − u ∈ V . ◻

As a consequence of Lemma 53 one immediately gets the following.

54 Corollary Let (M,σ) be a topologically-free (R, τ)-module, and let (N,γ)
be a topological (R, τ)-module. Let (M,σ) f,gÐ→ (N,γ) be two continuous
(R, τ)-linear maps. f = g if, and only if, for any topological basis B of
(M,σ), f(b) = g(b) for each b ∈ B.

Topologically-free modules allow for the definition of changes of topolog-
ical bases.

55 Lemma Let (M,σ) and (N,γ) be two topologically-free (R, τ)-modules,
and let B,D be respective topological bases. Let f ∶B → D be a bijection.
Then, there is a unique isomorphism g in TopMod(R,τ) such that g(b) =
f(b), b ∈ B.

Proof: The question of uniqueness is settled by Corollary 54. If such
an isomorphism g exists, then g(v) = g (∑b∈B b′(v)b) = ∑b∈B b′(v)g(b) =
∑b∈B b′(v)f(b) = ∑d∈D(f−1(d))′(v)d, v ∈ M . One observes that g as de-
fined by the right hand-side of the last equality, is R-linear, whence one only
needs to establish continuity. Let d ∈ D. Then, d′(g(v)) = (f−1(d))′(v),
v ∈ M , so that d′ ○ g = (f−1(d))′ which ensures continuity. Finally, it is
obvious from its definition that g(b) = f(b), b ∈ B. ◻

56 Lemma Let M be a free module with basis B. Then, (M∗,w∗
(R,τ)) is

a topologically-free module with topological basis B∗ ∶= { b∗∶ b ∈ B } (see Re-
mark 23, p. 17).

Proof: According to Lemma 24 (p. 17), (M∗,w∗
(R,τ)) is a topologically-free

module. It remains to check that B∗ is a topological basis. Let M
θBÐ→ R(B)

be the isomorphism given by θB(b) = δb, b ∈ B. Thus, θ∗B ∶ (R(B))∗ ≃ M∗,
and θ∗B ○ ρB ∶RB ≃ (R(B))∗ ≃ M∗ is given by θ∗B(ρB(δRb )) = ρB(δRb ) ○ θB =
pb ○ θB for b ∈ B. Whence for v = ∑d∈B d∗(v)d ∈ M , (θ∗B(ρB(δRb )))(v) =
∑d∈B d∗(v)pb(θB(d)) = ∑d∈B d∗(v)pb(δd) = b∗(v). Now, { δb∶ b ∈ B } being a
topological basis of RB, by Lemma 50, this shows that B∗ is a topological
basis of (M∗,w∗

(R,τ)). ◻
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57 Example Let M = R(X). Then, { δ∗x ∶x ∈ X } is a topological basis of
(R(X))∗. But, δ∗x(p) = p(x), x ∈X, p ∈ R(X). Therefore, δ∗x = px, x ∈X.

58 Remark If B is a basis of a free module M , then B ≃ B∗ under b↦ b∗,
because for each b, d ∈ B, b∗(d) = δb(d).

59 Corollary Let (R, τ) be a topological ring. The algebraic dual functors

Modop
R

Alg
(R,τ)ÐÐÐÐ→ TopMod(R,τ) factors as illustrated in the diagram below.

Moreover the resulting co-restriction of Alg(R,τ) (the bottom arrow of the
diagram) is essentially surjective.

Modop
R

Alg
(R,τ)
// TopMod(R,τ)

FreeModop
R

?�

OO

// TopFreeMod(R,τ)
?�

OO
(5)

Proof: The first assertion is merely Lemma 56. Regarding the second asser-
tion, let (M,σ) be a topologically-free module. So, for some set X, (M,σ) ≃
(R, τ)X . According to Lemma 19 (p. 16), (R, τ)X ≃ Alg(R,τ)(R(X)). ◻

60 Remark When k is a field with a ring topology τ , then one has the

corresponding factorization of Vectopk

Alg
(k,τ)ÐÐÐÐ→ TopVect(k,τ).

Vectopk

Alg
(k,τ)
//

**

TopVect(k,τ)

TopFreeVect(k,τ)
?�

OO
(6)

61 Corollary Let M be a free module with basis B. Let ` ∈M∗. Then, for
each b ∈ B, `(b) = (b∗)′(`).

Proof: Since by Lemma 56, B∗ is a topological basis of (M∗,w∗
(R,τ)),

` = ∑b∈B(b∗)′(`)b∗ (sum of a summable family). According to the definition
of the topology w∗

(R,τ) this implies that for each v ∈ M , `(v) is the sum of
the summable family ((b∗)′(`)(ΛM(v))(b∗))b∈B in (R, τ). Whence `(v) =
∑b∈B(b∗)′(`)b∗(v) (sum of a summable family) and in particular, `(b) =
∑d∈B(d∗)′(`)d∗(b) = (b∗)′(`), b ∈ B. ◻

62 Lemma Let (R, τ) be a rigid ring. Let (M,σ) be a topologically-free
(R, τ)-module with topological basis B. Then, (M,σ)′ is free with basis B′ ∶=
{ b′∶ b ∈ B }.
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Proof: Let ΘB ∶ (M,σ) ≃ (R, τ)B be given by ΘB(b) = δb. Therefore
Θ′
B ∶ ((R, τ)B)′ ≃ (M,σ)′, and thus one has an isomorphism Θ′

B ○ λB ∶R(B) ≃
(M,σ)′. Since a module isomorphic to a free module is free, (M,σ)′ is free.
The previous isomorphism acts as: Θ′

B(λB(δb)) = Θ′
B(πb) = πb○ΘB for b ∈ B.

It follows that {πb ○ΘB ∶ b ∈ B } is a basis of (M,σ)′. Now let b ∈ B and let
v = ∑d∈B d′(v)d ∈ M (sum of a summable family). One has by continuity
and linearity, πb(ΘB(v)) = πb(∑d∈B d′(v)ΘB(d)) = πb(∑d∈B d′(v)δb) = b′(v).

◻

63 Example Let (R, τ) be a rigid ring. Let (M,σ) = (R, τ)X . By Exam-
ple 52, { δ′x∶x ∈X } = {πx∶x ∈X } is a linear basis of ((R, τ)X)′.

64 Corollary Let (R, τ) be a rigid ring. The functor TopModop
(R,τ)

Top
(R,τ)ÐÐÐÐ→

ModR factors as indicated by the diagram below.

TopModop
(R,τ)

Top
(R,τ)

//ModR

TopFreeModop
(R,τ)

?�

OO

// FreeModR
?�

OO
(7)

65 Remark Let (k, τ) be a field with a ring topology. One has the corre-

sponding factorization of TopVectop
(k,τ)

Top
(k,τ)ÐÐÐÐ→Vectk.

TopVectop
(k,τ)

Top
(k,τ)
// Vectk

TopFreeVectop
(k,τ)

?�

OO
55

(8)

66 Corollary Under the assumptions of Lemma 62, for ` ∈ (M,σ)′ and
b ∈ B, `(b) = (b′)∗(`).

Proof: Lemma 62 tells us that ` = ∑b∈B(b′)∗(`)b′ (finite linear com-
bination). For v ∈ M , one has `(v) = ∑b∈B(b′)∗(`)b′(v). In particular,
`(b) = (b′)∗(`) for each b ∈ B. ◻
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4.2 The topological dual of the algebraic dual of a free mod-
ule

Let (R, τ) be a topological ring. Let M be a R-module, and let us consider
as in Section 2.5.1 (p. 16) the R-linear map

M
ΛMÐÐ→ (M∗,w∗

(R,τ))
′

(ΛM(v))(`) = `(v), v ∈M , ` ∈M∗.
Our objective in this section is to prove that under the assumption that

(R, τ) is rigid, ΛM is an isomorphism, when M is free, and furthermore that
it is natural in M . This will provide the first half of the dual equivalence of
categories mentioned in the Introduction between free and topologically-free
modules.

67 Lemma Let M be a projective10 R-module. Then, ΛM is one-to-one.

Proof: Let us consider a dual basis for M , i.e., sets B ⊆ R and { e∗∶ e ∈
B } ⊆M∗, such that for all v ∈M , e∗(v) = 0 for all but finitely many e∗ ∈ B∗

and v = ∑e∈B e∗(v)e ([14, p. 23]).
Let v ∈ ker ΛM , i.e., (ΛM(v))(`) = `(v) = 0 for each ` ∈ M∗. Then, in

particular, ΛM(v)(e∗) = e∗(v) = 0 for all e ∈ B, and thus v = 0. ◻

68 Corollary If M is a free R-module, then ΛM is one-to-one.

69 Lemma Λ(R,τ) ∶= (ΛM)M ∶ id⇒ Top(R,τ) ○Algop(R,τ)∶ModR →ModR is a
natural transformation.

Proof: Let M
fÐ→ N be a R-linear map. Let v ∈M and ` ∈ N∗. Then,

((f∗)′(ΛM(v)))(`) = ΛM(f∗(`))
= `(f(v))
= (ΛN(f(v)))(`).

(9)

This is equivalent to the commutativity of the following diagram, which
implies naturality of Λ(R,τ).

M
ΛM //

f
��

(M∗,w∗
(R,τ))

′

(f∗)′
��

N
ΛN
// (N∗,w∗

(R,τ))
′

(10)

10A R-module P is projective if it is isomorphic to a direct summand of a free module,
i.e., there exists some set X and modules M,N such that R(X) =M ⊕N and M ≃ P [14,
p. 22].
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◻

70 Lemma Let M be a free module. For each free basis X of M , the fol-
lowing diagram commutes in ModR, where M

θXÐ→ R(X) is the canonical
isomorphism given by θX(x) = δRx , x ∈X.

M
ΛM // (M∗,w∗

(R,τ))
′

(θ∗X)
′

((R(X))∗,w∗
(R,τ))

′

R(X)

θX

λX
// ((R, τ)X)′

ρ′X

(11)

Proof: Let x ∈X and f ∈ RX . Then,

((λX ○ θX)(x))(f) = (λX(δx))(f)
= ⟨δx, f⟩X
= f(x)

(12)

and

((ρ′X ○ (θ∗X)′ ○ΛM)(x))(f) = ρ′X((ΛM(ηX(x)) ○ φ∗X)(f)
= (ΛM(x))(θ∗X(ρX(f)))
= (ρX(f) ○ θX)(x)
= (ρX(f))(δx)
= ⟨δx, f⟩X
= f(x).

(13)

Because M is free on X, this entails commutativity of the diagram (11). ◻

71 Remark Let (R, τ) be rigid. According to the proof of Lemma 70, for
each free module M and each basis X of M ,

ΛM = ((θ−1
X )∗)′ ○ (ρ−1

X )′ ○ λX ○ θX .

Since a direct inspection shows that

(ρ−1
X )′ ○ λX = ΛR(X) (14)

it follows that
ΛM = ((θ−1

X )∗)′ ○ΛR(X) ○ θX .
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72 Corollary Let us assume that (R, τ) is rigid. Then, for each free R-

module, M
ΛMÐÐ→ (M∗,w∗

(R,τ))
′ is an isomorphism.

Proof: This follows from the commutativity of Diagram (11) for any free
basis X of M , because λX is an isomorphism too (since (R, τ) is rigid). ◻

Let (R, τ) (resp. (k, τ)) be a rigid ring (resp. field). Let us still de-

note by FreeModop
R

Alg
(R,τ)ÐÐÐÐ→ TopFreeMod(R,τ) (resp. Vectopk

Alg
(k,τ)ÐÐÐÐ→

TopFreeVect(k,τ)) and by TopFreeModop
(R,τ)

Top
(R,τ)ÐÐÐÐ→ FreeModR (resp.

TopFreeVectop
(k,τ)

Top
(k,τ)ÐÐÐÐ→ Vectk) the functors provided by Corollaries 59

(p. 29) and 64 (p. 30)

73 Corollary Let us assume that (R, τ) is rigid. Λ(R,τ) ∶= (ΛM)M ∶ id ⇒
Top(R,τ) ○Algop(R,τ)∶FreeModR → FreeModR is a natural isomorphism.

Proof: It is a direct consequence of Lemma 69 and of Corollary 72. ◻

74 Corollary Let us assume that (k, τ) is a field with a ring topology. Then,
Λ(k,τ) ∶= (ΛM)M ∶ id ⇒ Top(k,τ) ○ Algop(k,τ)∶Vectk → Vectk is a natural iso-
morphism.

4.3 The algebraic dual of the topological dual of a topologically-
free module

Let (M,σ) be a topological (R, τ)-module. Let us consider the R-linear map

M
Γ
(M,σ)ÐÐÐÐ→ ((M,σ)′)∗ by setting (Γ(M,σ)(v))(`) ∶= `(v).
In order to obtain the other half of the dual equivalence between free

and topologically-free modules it remains to prove that when (R, τ) is rigid
and (M,σ) topologically-free, Γ(M,σ) is an isomorphism, and is natural in
(M,σ).

75 Lemma Let us assume that (R, τ) is rigid. Let (M,σ) be a topologically-
free (R, τ)-module.

1. (M,σ)
Γ
(M,σ)ÐÐÐÐ→ (((M,σ)′)∗,w∗

(R,τ)) is continuous.

2. Γ(M,σ) is a linear isomorphism.

3. Γ−1
(M,σ) is continuous.
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Proof: Let Θ∶ (M,σ) ≃ (R, τ)X be an isomorphism (in TopMod(R,τ)).

1. Since (R, τ) is rigid, λX ∶R(X) ≃ ((R, τ)X)′ is an isomorphism. There-

fore R(X)
λXÐÐ→ ((R, τ)X)′ Θ′

Ð→ (M,σ)′ is an isomorphism too in ModR.
In particular, (M,σ)′ is a free with basis {Θ′(λX(δRx ))∶x ∈ X }. By
Lemma 24 (p. 17), the weak-∗ topology on ((M,σ)′)∗ is the same as

the initial topology given by the maps ((M,σ)′)∗
Λ
(M,σ)′(πx○Θ)ÐÐÐÐÐÐÐÐ→ (R, τ),

x ∈ X, because Θ′(λX(δRx )) = Θ′(πx) = πx ○ Θ. Therefore, Γ(M,σ) is
continuous if, and only if, for each x ∈ X, Λ(M,σ)′(πx ○ Θ) ○ Γ(M,σ)

is continuous. Let v ∈ M . One has (Λ(M,σ)′(πx ○ Θ))(Γ(M,σ)(v)) =
(Γ(M,σ)(v))(πx ○Θ) = πx(Θ(v)) = (Θ(v))(x). Therefore, Λ(M,σ)′(πx ○
Θ) ○ Γ(M,σ) = πx ○ Θ. Since πx and Θ are continuous, the expected
result is obtained.

2. Let v ∈ ker Γ(M,σ). Since for each x ∈X, πx ∈ ((R, τ)X)′, it follows that
Θ′(πx) ∈ (M,σ)′, and thus (Θ(v))(x) = πx(Θ(v)) = (Θ′(πx))(v) =
(Γ(M,σ)(v))(Θ′(πx)) = 0. Since this is so for an arbitrary x ∈ X, it
follows that Θ(v) = 0 whence v = 0.
To prove that Γ(M,σ) is onto one proves that the following diagram
commutes in TopMod(R,τ). This actually shows directly that Γ(M,σ)

is an isomorphism and an homeomorphism (so the last above assertion
will be already proved) by composition of isomorphisms and homeo-
morphisms.

(M,σ)
Θ

tt

Γ
(M,σ)

// (((M,σ)′)∗,w∗
(R,τ))

(R, τ)X

ρX **

((R(X))∗,w∗
(R,τ)) (λ−1X )

∗

// ((((R, τ)X)′)∗,w∗
(R,τ))

((Θ′)∗)−1

OO

(15)

Let v ∈M and let ` ∈ (M,σ)′. One has

(((λ−1
X ○ (Θ−1)′)∗ ○ ρX ○Θ)(v))(`)

= (ρX(Θ(v)))(λ−1
X ((Θ−1)′(`))

= (ρX(Θ(v)))(λ−1
X (` ○Θ−1))

= (ρX(Θ(v)))(∑
x∈X

`(Θ−1(δx))δx)

= ∑x∈X `(φ−1(δx))(Θ(v))(x)
= `(∑x∈X Θ−1(δx)(Θ(v))(x))
= `(v)
= (Γ(M,σ)(v))(`).

(16)
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Let us make explicit the penultimate equality: because Θ(v) is the sum
∑x∈X(Θ(v))(x)δx of a summable family, v = Θ−1(∑x∈X(Θ(v))(x)) =
∑x∈X(Θ(v))(x)Θ−1(δx).

3. Follows from the above point.

◻

76 Remark Let (R, τ) be rigid. A direct computation shows that

Γ(R,τ)X = (λ−1
X )∗ ○ ρX . (17)

Together with Lemma 75 this implies that for each topologically-free (R, τ)-
module (M,σ), and each TopMod(R,τ)-isomorphism (M,σ) ΘÐ→ (R, τ)X

Γ(M,σ) = ((Θ−1)′)∗ ○ Γ(R,τ)X ○Θ. (18)

77 Lemma Let (R, τ) be a rigid ring. Γ(R,τ) ∶= (Γ(M,σ))(M,σ) provides a
natural isomorphism Γ(R,τ)∶ id ⇒ Alg(R,τ) ○ Topop(R,τ)∶TopFreeMod(R,τ) →
TopFreeMod(R,τ).

Proof: According to Lemma 75 it suffices to check naturality of Γ(R,τ).
Let (M,σ), (N,γ) be topologicall-free (R, τ)-modules. Let (M,σ) fÐ→ (N,γ)
be a continuous (R, τ)-linear map. Let v ∈M and ` ∈ (N,γ)′. One has

((f ′)∗((Γ(M,σ)(v)))(`) = (Γ(M,σ)(v))(f ′(`))
= (Γ(M,σ)(v))(` ○ f)
= `(f(v))
= (Γ(N,γ)(f(v)))(`).

(19)

This is equivalent to the commutativity of the following diagram, for each
f ∈ TopMod(R,τ)((M,σ), (N,γ)), which is naturality of Γ(R,τ).

(M,σ)
f
��

Γ
(M,σ)
// (((M,σ)′)∗,w∗

(R,τ))
(f ′)∗
��

(N,γ)
Γ
(N,γ)

// (((N,γ)′)∗,w∗
(R,τ))

(20)

◻

78 Corollary Let us assume that (k, τ) is a field with a ring topology.
Γ(k,τ)∶ id⇒ Alg(k,τ) ○Topop(k,τ)∶TopFreeVect(k,τ) → TopFreeVect(k,τ) with

Γ(k,τ) ∶= (Γ(M,σ))(M,σ), is a natural isomorphism.
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4.4 For a rigid ring (R, τ), FreeModR ≃ TopFreeModop
(R,τ)

The results of the two previous sections may be combined to provide the
expected equivalence of categories.

4.4.1 The equivalence and some of its immediate consequences

Collecting Corollary 73 and Lemma 77, one immediately gets the following.

79 Theorem Let us assume that (R, τ) is rigid. TopFreeModop
(R,τ)

Top
(R,τ)ÐÐÐÐ→

FreeModR is an equivalence of categories, with equivalence inverse the func-

tor FreeModR

Algop
(R,τ)ÐÐÐÐ→ TopFreeModop

(R,τ)
.

80 Corollary Let (k, τ) be a rigid field. TopFreeVectop
(k,τ)

Top
(k,τ)ÐÐÐÐ→Vectk

is an equivalence of categories, and Vectk

Algop
(k,τ)ÐÐÐÐ→ TopFreeVectop

(k,τ) is its
equivalence inverse.

Section 4.1.2 about the properties of topological bases may be completed
by the following remark.

81 Remark 1. Let (M,σ) be a topologically-free (R, τ)-module. Then,
(M,σ)′ is a free. Let B be a basis of (M,σ)′. Then, by Lemma 56
(p. 28), B∗ is a topological basis of ((M,σ)′)∗. For each b ∈ B, let
b∗ ∈ M be given by b∗ ∶= Γ−1

(M,σ)(b
∗). Then, B∗ ∶= { b∗∶ b ∈ B } is a

topological basis of (M,σ). (This is so because B∗ = Γ−1
(M,σ)(B

∗).)
Moreover (B∗)′ = B. (Indeed, let b ∈ B, and let ` ∈ (M,σ)′. According
to Corollary 66, ((b∗)′)∗(`) = `(b∗) = Γ(M,σ)(b∗)(`) = b∗(`). Whence
((b∗)′)∗ = b∗ so that (b∗)′ = b.)

2. Let M be a free module. Then, M∗ is topologically-free. Let B be a
topological basis of M∗. Then, by Lemma 62, B′ is a free basis of
(M∗)′. For each b ∈ B, let b′ ∈ M be given by b′ ∶= Λ−1

M (b′). Then,
B′ ∶= { b′ ∶ b ∈ B } is a free basis of M . (Because B′ = Λ−1

M (B′).)
Moreover (B′)∗ = B. (Indeed, let b ∈ B, and let ` ∈ M∗. Accord-
ing to Corollary 61, ((b′)∗)′(`) = `(b′) = ΛM(b′)(`) = b′(`). Whence
((b′)∗)′ = b′ so that (b′)∗ = b.)
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82 Corollary Let (R, τ) be a rigid ring.

1. For each free topologically-free module (M,σ), Γ′
(M,σ) = Λ−1

(M,σ)′ .

2. For each free module M , Λ∗
M = Γ−1

M∗ .

Proof: This is a consequence of the triangular identities for an (adjoint)
equivalence [17, p. 85] and of Theorem 79. ◻

83 Corollary Let (R, τ) be a rigid ring.

1. For each free R-module M , Λ(M∗)′ = (Λ∗
M)′.

2. For each topologically-free (R, τ)-module (M,σ), Γ(((M,σ)′)∗,w∗
(R,τ)

) =
(Γ′
(M,σ))

∗.

4.4.2 Finite-dimensional vector spaces

Let k be a field. Let (M,σ) be a topologically-free (k,d)-vector space with
M finite-dimensional. Then, σ is the discrete topology on M (indeed, let us
consider M = RX , X finite, then {0} = ⋂x∈X π−1

x ({0}) is open in (R,d)X).
It follows that (M,σ)′ =M∗, and the equivalence established in Corollary 80
coincides with the usual dual equivalence FinDimVectk ≃ FinDimVectopk
under the algebraic dual functor, where FinDimVectk is the category of
finite-dimensional k-vector spaces.

4.4.3 Linearly compact vector spaces

Let k be a field. A topological (k,d)-vector space (M,σ) is said to be
linearly topologized (or that σ is a linear topology) if σ admits a fundamental
system of neighborhoods of zero consisting of open sub-vector spaces. Such
a topological vector space (M,σ) is a linearly compact k-vector space when
(M,σ) ≃ (k,d)X for some set X (see [4, Proposition 24.4, p. 105]). The full
subcategory LCpVectk of TopVect(k,d) spanned by the linearly compact
vector spaces thus is the same as TopFreeVect(k,d).

84 Corollary (of Theorem 79) Let R be a ring. For each rigid topologies τ, σ
on R, the categories TopFreeMod(R,τ) and TopFreeMod(R,σ) are equiva-
lent. Moreover, for each rigid field (k, τ), TopFreeVect(k,τ) is equivalent
to LCpVectk.
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Proof: This follows from Theorem 79 because of transitivity of equiva-
lence of categories (or more precisely, by composition of adjunctions, and in
particular of adjoint equivalences). ◻

In particular, when k is a field, one recovers, as stated in the Introduction,
the result of J. Dieudonné [8] that Vectopk ≃ LCpVectk.

4.4.4 The universal property of (R, τ)X

Let C FÐ→D be a functor. Let EssIm(F ), called the essential image of F , be
the full subcategory of D spanned by the D-objects which are isomorphic to
some F (c), where c is aC-object. Let EssIm(F ) EÐ→D be the corresponding
full embedding functor. Of course, by definition, F factors through E, i.e.,
there is a unique functor C

F0Ð→ EssIm(F ) such that F = E ○ F0.

85 Lemma Let us assume that F is a left adjoint of a functor D
GÐ→ C.

Then, F0 is a left adjoint of EssIm(F ) G○EÐÐ→C.

Proof: See Appendix A.2, p. 88. ◻

All this being said, for a ring R, the forgetful functor ModR
∣⋅∣Ð→ Set (see

Remark 12, p. 14) may be restricted as indicated in the following commuta-

tive diagram, and the restriction still is denoted FreeModR
∣⋅∣Ð→ Set.

ModR
∣⋅∣

// Set

FreeModR
?�

OO 55 (21)

Likewise Set
FRÐ→ModR (see again Remark 12) may be co-restricted as

indicated by the commutative diagram below, and the co-restriction is given
the same name Set

FRÐ→ FreeModR.

Set
FR //

))

ModR

FreeModR
?�

OO
(22)

(Of course, when R is a field k, there is no need to consider the corresponding
co-restrictions.)

Because FreeModR = EssIm(FR), we are in a situation where Lemma 85
may be applied. Therefore, the adjunction FR ⊣ ∣ ⋅ ∣∶Set → FreeModR is
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obtained, and by composition, for each rigid ring (R, τ), there is also the
following adjunction Algop

(R,τ)
○FR ⊣ ∣ ⋅ ∣ ○Top(R,τ)∶Set→ TopFreeModop

(R,τ)
.

Since (R, τ)X ≃ ((R(X))∗,w∗
(R,τ)) (Lemma 19, p. 16), the previous adjunc-

tion may be translated into a universal property of (R, τ)X , as explained
below, which somehow legitimates the terminology topologically-free.

86 Proposition Let us assume that (R, τ) is rigid. Let X be a set. For

each topologically-free module (M,σ) and any map X
fÐ→ ∣(M,σ)′∣, there is

a unique continuous (R, τ)-linear map (M,σ) f ♯Ð→ (R, τ)X such that ∣(f ♯)′∣ ○
∣λX ∣ ○ δRX = f (cf. Remark 10, p. 14, for the definition of δRX).

Proof: There is a unique R-linear map R(X)
f̃Ð→ (M,σ)′ such that ∣f̃ ∣ ○

δRX = f . Let us define the continuous linear map (M,σ) f ♯Ð→ (R, τ)X ∶=

(M,σ)
Γ
(M,σ)ÐÐÐÐ→ (((M,σ)′)∗,w∗

(R,τ))
(f̃)∗ÐÐ→ ((R(X))∗,w∗

(R,τ))
ρ−1XÐÐ→ (R, τ)X . One

has

∣(f ♯)′∣ ○ ∣λX ∣ ○ δRX = ∣Γ′
(M,σ)∣ ○ ∣((f̃)

∗)′∣ ○ ∣(ρ−1
X )′∣ ○ ∣λX ∣ ○ δRX

= ∣Γ′
(M,σ)∣ ○ ∣((f̃)

∗)′∣ ○ ∣ΛR(X) ∣ ○ δRX
(by Eq. (14), p. 32)

= ∣Γ′
(M,σ)∣ ○ ∣Λ(M,σ)′ ∣ ○ ∣f̃ ∣ ○ δRX

(by naturality of Λ)
= ∣f̃ ∣ ○ δRX

(by Corollary 82, p. 37)
= f.

(23)

It remains to check uniqueness of f ♯. Let (M,σ) gÐ→ (R, τ)X be a continuous
linear map such that ∣g′∣○ ∣λX ∣○δRX = f . Then, g′ ○λX = f̃ . Thus, λ∗X ○(g′)∗ =
f̃∗ = ρX ○ f ♯ ○ Γ−1

(M,σ). So ρX ○ Γ−1
(R,τ)X

○ (g′)∗ = ρX ○ f ♯ ○ Γ−1
(M,σ) according to

Eq. (17), p. 35, and thus Γ−1
(R,τ)X

○ (g′)∗ = f ♯ ○ Γ−1
(M,σ). Then, by naturality

of Γ−1, g ○ Γ−1
(M,σ) = f ♯ ○ Γ−1

(M,σ), i.e., g = f ♯. ◻

87 Remark Let us make explicit the construction of the continuous (R, τ)-
linear map (M,σ) f ♯Ð→ (R, τ)X for X

fÐ→ ∣(M,σ)′∣. Let v ∈ M and x ∈ X.
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Then, using the same notations as in the proof of Proposition 86, one has

(f ♯(v))(x) = (ρ−1
X ((f̃)∗(Γ(M,σ)(v))))(x)

= (ρ−1
X (Γ(M,σ)(v) ○ f̃))(x)

= (Γ(M,σ)(v))(f̃(δRx ))
= (f̃(δRx ))(v)
= (f(x))(v).

(24)

Wherefore, f ♯(v) = ∑x∈X(f(x))(v)δRx , v ∈M .
The definition of an isomorphism from a bijection between topological

bases, provided by Lemma 55 (p. 28) is a particular instance of the above

construction. Let indeed B be a topological basis of (M,σ), and let B
fÐ→

X be a bijection. Let h ∶= X f−1ÐÐ→ B
(−)′ÐÐ→ (M,σ)′, where B

(−)′ÐÐ→ (M,σ)′
is the map b ↦ b′ as in Remark 49 (p. 27). Then for v ∈ M , h♯(v) =
∑x∈X(f−1(x))′(v)δRx , and thus h♯ corresponds to the isomorphism given in
Lemma 55.

88 Remark Let (R, τ) be a rigid ring. The universal property raised in

Proposition 86 may be turned into a functor Setop
TF
(R,τ)ÐÐÐÐ→ TopFreeMod(R,τ)

(“TF ” stands for “Topologically-Free”) in a usual way as follows: let X
fÐ→ Y

be a set-theoretic map. Then there is a unique continuous (R, τ)-linear map

(R, τ)Y
TF
(R,τ)(f)ÐÐÐÐÐÐ→ (R, τ)X such that ∣TF(R,τ)(f)′∣ ○ ∣λX ∣ ○ δRX = ∣λY ∣ ○ δRY ○ f .

In details, let x ∈ X. Since λX(δRx ) = πx, TF(R,τ)(f)′(λX(δRX(x)) =
TF(R,τ)(f)′(λX(δx)) = TF(R,τ)(f)′(πx) = πx○TF(R,τ)(f). But it is also equal

to λY (δRY (f(x))) = λY (δRf(x)) = πf(x). It follows that TF(R,τ) = Setop
P
(R,τ)ÐÐÐ→

TopFreeMod(R,τ) (see Remark 47, p. 26).

As a consequence of Remark 88, the following result is immediate, since
TF op
(R,τ)

by construction, is a left adjoint of ∣ − ∣ ○ Top(R,τ) (this is basically
the content of Proposition 86).

89 Proposition Let (R, τ) be a rigid ring. Set
P op
(R,τ)ÐÐÐ→ TopFreeModop

(R,τ)

is a left adjoint of TopFreeModop
(R,τ)

Top
(R,τ)ÐÐÐÐ→ FreeModR

∣−∣Ð→ Set, and thus

is naturally equivalent to Set
Algop

(R,τ)
○FR

ÐÐÐÐÐÐ→ TopFreeModop
(R,τ)

.
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5 Tensor product of topologically-free modules

In this current section most of the ingredients so far introduced and devel-
oped fit together so as to lift the equivalence FreeMod ≃ TopFreeModop

(R,τ)

to a duality between some (suitably generalized) topological algebras and
coalgebras. Let us briefly describe how this goal is achieved:

1. A topological tensor product ⍟(R,τ) for topologically-free modules (over
a rigid ring (R, τ)) is provided by transport of the algebraic tensor
product ⊗R of R-modules along the dual equivalence from Section 4.

2. A topological basis (Definition 48) for (M,σ)⍟(R,τ) (N,γ) is described
in terms of topological bases of (M,σ), (N,γ).

3. The aforementioned equivalence is proved to be compatible with ⊗R

and ⍟(R,τ) (i.e., it is a monoidal equivalence) thanks to the above
accurate description of a topological basis for the topological tensor
product (the proofs are placed in Appendix C).

4. Accordingly, for category-theoretic reasons (see Appendix B), one ob-
tains a dual equivalence between some topological algebras and coal-
gebras, still under the algebraic and topological dual functors.

5. Finally, one discusses how it interacts with the standard duality be-
tween algebras and coalgebras, known as finite duality.

5.1 Algebraic tensor product of modules

We do not claim to any originality in this first section, since the results are
well-known (cf. [5] for instance) but they are recalled for the reader’s conve-
nience and because it gives us the opportunity to introduce some notations
used hereafter.

Let R be a ring. For each R-modules M,N , there is a R-module M ⊗RN

and a R-bilinear map M × N ⊗Ð→ M ⊗R N universal with respect to all R-
bilinear maps M × N → P (P is an arbitrary R-module). In other words,

each R-bilinear map M ×N fÐ→ P uniquely factors as

M ×N f
//

⊗ ��

P

M ⊗R P
f̃

66 (25)
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where f̃ is R-linear. As usually the image of (x, y) ∈M ×N by ⊗ is denoted
x⊗ y.

From this universality property, one deduces that for R-linear mapsMi
fiÐ→

Ni, i = 1,2, there is a unique R-linear map M1 ⊗RM2
f1⊗Rf2ÐÐÐÐ→ N1 ⊗RN2 such

that (f1 ⊗R f2)(x1 ⊗ x2) = f1(x1)⊗ f2(x2), xi ∈Mi, i = 1,2.
Furthermore, with the following isomorphisms (M ⊗R N) ⊗R P

αM,N,PÐÐÐÐ→
M⊗R(N⊗RP ), αM,N,P ((x⊗y)⊗z) = x⊗(y⊗z),M⊗RR

ρMÐÐ→M , ρM(x⊗1R) =
x, R⊗RN

λNÐÐ→ N , λN(1R⊗y) = y,M⊗RN
σM,NÐÐÐ→ N⊗RM , σM,N(x⊗y) = y⊗x,

ModR = (ModR,⊗R,R) is a symmetric monoidal category (see Appendix B,
p. 89).

90 Lemma Let M,N be two free modules. Then, M ⊗R N is free.

Proof: Let X be a basis of M and Y be a basis of N . M ⊗RN ≃ R(X) ⊗R

R(Y ) ≃ R(X×Y ) where the first isomorphism is due to functoriality of ⊗R,

and where the second isomorphism is given as follows: let R(X)×R(Y )
φX,YÐÐÐ→

R(X×Y ), φX,Y (f, g) = ∑(x,y)∈X×Y f(x)g(y)δR(x,y). It is R-bilinear so there is a

unique R-linear map R(X)⊗RR
(Y )

ΦX,YÐÐÐ→ R(X×Y ), ΦX,Y (f ⊗ g) = φX,Y (f, g).
Conversely, let R(X×Y )

ΨX,YÐÐÐ→ R(X)⊗RR
(Y ) be the unique R-linear map given

on the basis elements by ΨX,Y (δR(x,y)) = δ
R
x ⊗δRy . It is then easy to check that

ΦX,Y and ΨX,Y are inverse one from the other. ◻
As a consequence of Lemma 90, it is a matter of simple verifications to

see that FreeModR = (FreeModR,⊗R,R) is a (symmetric) monoidal subcat-
egory of ModR (see again Appendix B).

5.2 Topological tensor product of topologically-free modules

We now wish to take advantage of the equivalence of categories FreeModR ≃
TopFreeModop

(R,τ)
(Theorem 79, p. 36) for a rigid ring (R, τ), to introduce

a topological tensor product of topologically-free modules.

From here to the end of Subsection 5.2, (R, τ) is a rigid ring.

5.2.1 The bifunctor ⍟(R,τ)
Let (M,σ), (N,γ) be topologically-free (R, τ)-modules. One defines their
topological tensor product over (R, τ) as

(M,σ)⍟(R,τ) (N,γ) ∶= Alg(R,τ)((M,σ)′ ⊗R (N,γ)′). (26)
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One immediately observes that (M,σ)⍟(R,τ)(N,γ) still is a topologically-free
(R, τ)-module as

1. (M,σ)′ and (N,γ)′ are free R-modules (Lemma 62, p. 29),

2. (M,σ)′ ⊗R (N,γ)′ also is (Lemma 90),

3. The algebraic dual of a free module is topologically-free (Lemma 24,
p. 17).

Actually, this definition is just the object component of a bifunctor (see
Appendix A, p. 85)

TopFreeMod(R,τ) ×TopFreeMod(R,τ)
−⍟
(R,τ)−ÐÐÐÐÐ→ TopFreeMod(R,τ)

namely TopFreeMod(R,τ) × TopFreeMod(R,τ)
Topop

(R,τ)
×Topop

(R,τ)ÐÐÐÐÐÐÐÐÐÐ→ Modop
R ×

Modop
R

⊗
op
RÐÐ→Modop

R

Alg
(R,τ)ÐÐÐÐ→ TopMod(R,τ). (Recall from Appendix A that

Modop
R ×Modop

R = (ModR ×ModR)op.)

91 Remark Let X,Y be sets. One has

(R, τ)X ⍟(R,τ) (R, τ)Y = ((((R, τ)X)′ ⊗R ((R, τ)Y )′)∗,w∗
(R,τ))

≃ ((R(X) ⊗R R
(Y ))∗,w∗

(R,τ))
(under (λX ⊗R λY )∗)

≃ ((R(X×Y ))∗,w∗
(R,τ))

(under Ψ∗
X,Y ; see the proof of Lemma 90)

≃ (R, τ)X×Y .
(under ρ−1

X×Y )
(27)

Since ⍟(R,τ) is a functor it is worth to make explicit its action on mor-
phisms. Given fi ∈ TopFreeMod(R,τ)((Mi, σi), (Ni, γi)), i = 1,2, one has

f1 ⍟(R,τ) f2 ∶= (M1, σ1)⍟(R,τ) (M2, σ2)
(f ′1⊗Rf

′

2)
∗

ÐÐÐÐÐ→ (N1, γ1)⍟(R,τ) (N2, γ2).
In details, let ` ∈ ((M1, σ1)′ ⊗R (M2, σ2)′)∗, `1 ∈ (N1, γ1)′ and `2 ∈

(N2, γ2)′. Then,

((f1 ⍟(R,τ) f2)(`))(`1 ⊗ `2) = (((f ′ ⊗R g
′)∗)(`))(`1 ⊗ `2)

= `((f ′1 ⊗R f
′
2)(`1 ⊗ `2))

= `((f ′1(`1))⊗ (f ′2(`2)))
= `((`1 ○ f1)⊗ (`2 ○ f2)).

(28)
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5.2.2 A topological basis of (M,σ)⍟(R,τ) (N,γ)

Our next goal will be to describe a topological basis (Definition 48) of
(M,σ)⍟(R,τ)(N,γ) in terms of topological bases of (M,σ) and (N,γ). Once
this goal achieved, we will take advantage of the use of topological bases in
order to handle more appropriately the topological tensor products.

92 Definition Given a ring S, for every S-modules M,N , one has a natural

R-linear map M∗⊗SN
∗

ΘM,NÐÐÐ→ (M⊗SM)∗ given by (ΘM,N(`1⊗`2))(u⊗v) =
`1(u)`2(v), `1 ∈M∗, `2 ∈ N∗, u ∈M and v ∈ N .

Let (M,σ), (N,γ) be two topologically-free (R, τ)-modules. Let u ∈ M
and v ∈ N . Let us define

u⍟ v ∶= Θ(M,σ)′,(N,γ)′(Γ(M,σ)(u)⊗R Γ(N,γ)(v)) ∈ (M,σ)⊗(R,τ) (N,γ). (29)

In details, given `1 ∈ (M,σ)′ and `2 ∈ (N,γ)′, (u⍟ v)(`1 ⊗ `2) = `1(u)`2(v).

93 Lemma Let (M,σ) and (N,γ) be both topologically-free (R, τ)-modules,
with respective topological bases B,D. The map B ×D −⍟−ÐÐ→ (M,σ) ⍟(R,τ)
(N,γ) given by (b, d)↦ b⍟ d, is one-to-one.

Proof: Let b1, b2 ∈ B and d1, d2 ∈D, and let us assume that b1⍟d1 = b2⍟d2.
So 1R = b′1(b1)d′1(d1) = (b1⍟d1)(b′1⊗d′1) = (b2⍟d2)(b′1⊗d′1) = b′1(b2)d′1(d2) =
δb1(b2)δd1(d2) by Remark 49 (p. 27). Thus b1 = b2 and d1 = d2. ◻

94 Lemma Let (M,σ) and (N,γ) be both topologically-free (R, τ)-modules.
The mapM×N −⍟−ÐÐ→ (M,σ)⍟(R,τ)(N,γ) is R-bilinear and separately contin-
uous in both variable. Moreover, if τ = d, then ⍟ is even jointly continuous.

Proof: R-bilinearity is clear. The topology w∗
(R,τ) on (M,σ)⍟(R,τ) (N,γ) =

((M,σ)′⊗R(N,γ)′)∗ is the initial topology induced by evaluations ((M,σ)′⊗R

(N,γ)′)∗
Λ
(M,σ)′⊗R(N,γ)

′(t)

ÐÐÐÐÐÐÐÐÐÐ→ (R, τ), ` ↦ `(t), t ∈ (M,σ)′ ⊗R (N,γ)′. Since
(M,σ)′ is free on say X and (N,γ)′ is free on Y , this topology is the same

as the initial topology induced by ((M,σ)′⊗R ((N,µ)′)∗
Λ
(M,σ)′⊗R(N,γ)

′(x⊗y)

ÐÐÐÐÐÐÐÐÐÐÐÐ→
(R, τ), x ∈X, y ∈ Y (Lemma 24, p. 17).

Let x ∈X, y ∈ Y , u ∈M and v ∈ N . Then, Λ(M,σ)′⊗R(N,γ)′(x⊗y)(u⍟v) =
(u⍟ v)(x⊗ y) = x(u)y(v) =mR(x(u), x(v)), whence Λ(M,σ)′⊗R(N,γ)′(x⊗ y) ○
(−⍟−) =mR ○ (x× y). This automatically guarantees separate continuity in
each variable of ⍟.
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Let us assume that τ = d. According to the above general case, to see that
⍟ is continuous, by [23, Theorem 2.14, p. 17], it remains to check continuity
at zero of ⍟. Let A ⊆X×Y be a finite set, and for each (x, y) ∈ A, let U(x,y) be
an open neighborhood of zero in (R,d). Let A1 ∶= {x ∈X ∶ ∃y ∈ Y, (x, y) ∈ A}
and A2 ∶= { y ∈ Y ∶ ∃x ∈X, (x, y) ∈ A}. A1,A2 are both finite and A ⊆ A1×A2.
Let u ∈M such that x(u) = 0 for all x ∈ A1, and v ∈ N such that y(v) = 0 for
all y ∈ A2. Then, (u ⍟ v)(x ⊗ y) = 0 for all (x, y) ∈ A1 ×A2, and even more
so (u⍟ v)(x⊗ y) ∈ U(x,y) for all (x, y) ∈ A. ◻

95 Remark Let X,Y be sets, and let f ∈ RX , g ∈ RY . Then11, since ⍟ is
separately continuous by Lemma 94,

f ⍟ g = (∑x∈X f(x)δRx )⍟ (∑y∈Y g(y)δRy )
= ∑(x,y)∈X×Y f(x)g(y)δRx ⍟ δRy .

(as a sum of a summable family)
(30)

More generally, but for the same reason as above, if B is a topological basis
of (M,σ) and D is a topological basis of (N,γ), then

u⍟ v = ∑
(b,d)∈B×D

b′(u)d′(v)b⍟ d,

u ∈M , v ∈ N . In particular, one observes (in view of Proposition 96 below)
that (b⍟ d)′(u⍟ v) = b′(u)d′(v), b ∈ B, u ∈M , d ∈D, and v ∈ N .

96 Proposition Let (M,σ) and (N,γ) be topologically-free (R, τ)-modules,
with respective topological bases B,D. Then, (b⍟ d)(b,d)∈B×D is a topological
basis of (M,σ)⍟(R,τ) (N,γ).

Proof: Let us first prove that { (δRx ⍟ δRy )(x,y)∈X×Y ∶ (x, y) ∈ X × Y } is a
topological basis of (R, τ)X ⍟(R,τ) (R, τ)Y . By virtue of Lemma 50 (p. 27)
and Remark 91, { ((λ−1

X ⊗R λ
−1
Y )∗(Φ∗

X,Y (ρX×Y (δR(x,y)))))∶ (x, y) ∈ X × Y } is
a topological basis of (R, τ)X ⍟(R,τ) (R, τ)Y . Let `1 ∈ ((R, τ)X)′ and `2 ∈

11The second equality in Eq. (30) follows from the proof of [23, Theorem 10.15, p. 78]
which, by inspection, shows that the cited result still is valid more generally after the
replacement of a jointly continuous bilinear map by a separately continuous bilinear map.
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((R, τ)Y )′. Then,

((λ−1
X ⊗R λ

−1
Y )∗(Φ∗

X,Y (ρX×Y (δR(x,y)))))(`1 ⊗ `2)
= ρX×Y (δR(x,y))(ΦX,Y ((λ−1

X (`1)⊗ λ−1
Y )(`2)))

= p(x,y)(ΦX,Y (ˆ̀1 ⊗ ˆ̀
2))

= p(x,y) (∑(s,t)∈X×Y `1(δs)`2(δt)δ(s,t))
= `1(δx)`2(δy)
= (δx ⍟ δy)(`1 ⊗ `2).

(31)

Secondly, by assumption, (M,σ) ≃ (R, τ)B and (N,γ) ≃ (R, τ)D in
TopMod(R,τ), and thus by functoriality of ⍟(R,τ), (M,σ) ⍟(R,τ) (N,γ) ≃
(R, τ)B ⍟(R,τ) (R, τ)D. Let us be more specific by providing an isomor-
phism. Let ΘB ∶ (M,σ) ≃ (R, τ)B, ΘB(b) = δb, b ∈ B, and let ΘD ∶ (N,γ) ≃
(R, τ)D, ΘD(d) = δd, d ∈ D. Thus an isomorphism is given by ΘB ⍟(R,τ)
ΘD ∶ (M,σ)⍟(R,τ)(N,γ) ≃ (R, τ)B⍟(R,τ)(R, τ)D. One knows by the first part
of the proof that (δx ⍟ δy)(x,y)∈X×Y is a topological basis of (R, τ)B ⍟(R,τ)
(R, τ)D and one observes that (θB ⍟(R,τ) θD)(b⍟ d) = δb ⍟ δd, which ensures
that (b⍟ d)(b,d)∈B×D is a topological basis of (M,σ)⍟(R,τ) (N,γ). ◻

97 Corollary Let (M,σ) and (N,γ) be topologically-free (R, τ)-modules.
Then, {u⍟ v∶u ∈M, v ∈ N } spans a dense subspace in (M,σ)⍟(R,τ) (N,γ).

Proof: Let B,D be topological bases of M,N respectively. By Proposi-
tion 96, { b⍟d∶ b ∈ B, d ∈D } is a topological basis of (M,σ)⍟(R,τ)(N,γ). Ac-
cording to Lemma 53, ⟨{ b⍟d∶ b ∈ B, d ∈D }⟩ is dense in (M,σ)⍟(R,τ) (N,γ).
Since { b⍟ d∶ b ∈ B, d ∈D } ⊆ {u⍟ v∶u ∈M, v ∈ N } it follows even more that
⟨{u⍟ v∶u ∈M, v ∈ N }⟩ so is dense in (M,σ)⍟(R,τ) (N,γ). ◻

5.2.3 Application

Let (Mi, σi) and (Ni, γi), i = 1,2, be topologically-free (R, τ)-modules. Let

(Mi, σi)
fiÐ→ (Ni, γi), i = 1,2, be continuous (R, τ)-linear maps.

Let (u, v) ∈ M1 ×M2, and `i ∈ (Ni, γi)′, i = 1,2. By Eq. (28), p. 43,
((f1⍟(R,τ)f2)(u⍟v))(`1⊗`2) = (u⍟v)((`1○f1)⊗(`2○f2)) = `1(f1(u))`2(f2(v)) =
(f1(u)⍟ f2(v))(`1 ⊗ `2). Whence

(f1 ⍟(R,τ) f2)(u⍟ v) = f1(u)⍟ f2(v). (32)

Let us assume that B is a topological basis of (M1, σ1) andD is a topolog-
ical basis of (M2, σ2). Given t ∈ (M1, σ1)⍟(R,τ) (M2, σ2), by Proposition 96,
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t = ∑(b,d)∈B×D(b⍟d)′(t)b⍟d (sum of a summable family) uniquely, and thus
using Eq. (32),

(f1 ⍟(R,τ) f2)(t) = (f1 ⍟(R,τ) f2)
⎛
⎝ ∑
(b,d)∈B×D

(b⍟ d)′(t)b⍟ d
⎞
⎠

= ∑
(b,d)∈B×D

(b⍟ d)′(t)f1(b)⍟ f2(b).
(33)

In particular, if t = u⍟ v, u ∈M1, v ∈M2, then in view of Remark 95,

f1(u)⍟f2(v) = (f1⍟(R,τ) f2)(u⍟v) = ∑
(b,d)∈B×D

b′(u)d′(v)f1(b)⍟f2(d). (34)

5.3 Monoidality of ⍟(R,τ) and its consequences

5.3.1 Monoidality

Most of the proofs of the results of this section are postponed to Appendix C
(p. 98) because they mainly consist in rather tedious, but simple, inspections
of commutativity of some diagrams. Moreover one freely uses notations
and freely applies results about monoidal categories joined together in Ap-
pendix B (p. 89). The reader familiar with standard notions from this topic
(monoidal categories and functors, and monoids in monoidal categories) may
skip the specific appendices, unless a thorough understanding is wished.

98 Proposition Let (R, τ) be a rigid ring.

TopFreeMod(R,τ) ∶= (TopFreeMod(R,τ),⍟(R,τ), (R, τ))

is a symmetric monoidal category.

Proof: See Appendix C.1 (p. 98). ◻

99 Corollary For each field (k, τ) with a ring topology,

TopFreeVect(k,τ) ∶= (TopFreeVect(k,τ),⍟(k,τ), (k, τ))

is a symmetric monoidal category.

100 Example Let (R, τ) be a rigid ring. Let X be a set. Let us define
a commutative monoid M(R,τ)(X) ∶= ((R, τ)X , µX , ηX) in TopFreeMod(R,τ)
by µX(f) ∶= ∑x∈X(δRx ⍟ δRx )′(f)δRx , f ∈ (R, τ)X ⍟(R,τ) (R, τ)X , and ηX(1R) =
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∑x∈X δRX . (Under the isomorphism (R, τ)X ⍟(R,τ) (R, τ)X ≃ (R, τ)X×X from
Remark 91 (p. 43), one has µX(f) = ∑x∈X f(x,x)δRX , for f ∈ RX×X , and
thus given f, g ∈ RX , µX(f ⍟ g) = ∑x∈X f(x)g(x)δRx .)

101 Remark The construction of M(R,τ)(X) for a rigid ring (R, τ), pro-

vided in Example 100, is the object component of a functor Setop
M
(R,τ)ÐÐÐ→

cMon(TopFreeMod(R,τ)).
Indeed, given a map Y

fÐ→X, g ∈ RX ↦ g ○ f ∈ RY is a monoid morphism
fromM(R,τ)(X) toM(R,τ)(Y ) since for each g, h ∈ RX , µY ((g○f)⍟(h○f)) =
∑y∈Y g(f(y))h(f(y))δy = µX(g ⍟ h) ○ f , and ηX(1R) ○ f = ηY (1R).

Let (R, τ) be a rigid ring. For each free R-modules M,N , let us de-
fine ΦM,N ∶= (M∗,w∗

(R,τ)) ⍟(R,τ) (N
∗,w∗

(R,τ)) = Alg(R,τ)((M∗,w∗
(R,τ))

′ ⊗R

(N∗,w∗
(R,τ))

′) (ΛM⊗RΛN )
∗

ÐÐÐÐÐÐÐ→ ((M ⊗R N)∗,w∗
(R,τ)). According to Corollary 72

(p. 33), ΦM,N is an isomorphism in TopFreeMod(R,τ). Naturality in M,N
is clear, so this provides a natural isomorphism

Φ∶Alg(R,τ)(−)⍟(R,τ) Alg(R,τ)(−)⇒ Alg(R,τ)(− ⊗R −)∶
FreeModop

R ×FreeModop
R → TopFreeMod(R,τ).

(35)

Furthermore, let us consider the isomorphism (R, τ) φÐ→ (R∗,w∗
(R,τ)) given

by φ(1R) ∶= idR, with inverse φ−1(`) = `(1R).
Let (M,σ), (N,γ) be topologically-free (R, τ)-modules. One defines the

map Ψ(M,σ),(N,γ) ∶= (M,σ)′ ⊗R (N,γ)′
Λ
(M,σ)′⊗R(N,γ)

′

ÐÐÐÐÐÐÐÐ→ (Alg(R,τ)((M,σ)′ ⊗R

(N,γ)′))′ = ((M,σ)⍟(R,τ) (N,γ))′. Still by Corollary 72, this gives rise to a
natural isomorphism

Ψ∶Top(R,τ)(−)⊗R Top(R,τ)(−)⇒ Top(R,τ)(− ⍟(R,τ) −)∶
TopFreeModop

(R,τ)
×TopFreeModop

(R,τ)
→ FreeModR.

(36)

Let also R
ψÐ→ (R, τ)′ be given by ψ(1R) = idR and ψ−1(`) = `(1R).

102 Theorem Let (R, τ) be a rigid ring.

1. Alg(R,τ) = (Alg(R,τ),Φ, φ)∶FreeModop
R → TopFreeMod(R,τ) is a strong

symmetric monoidal functor.

2. Top(R,τ) = (Top(R,τ),Ψ, ψ) is a strong symmetric monoidal functor
from TopFreeModop

(R,τ)
to FreeModR, so the opposite (Topd

(R,τ))op (Re-

mark 178, p. 95, Appendix B.3) of its dual omonoidal functor Topd
(R,τ)
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(see 179, Appendix B.3) is a strong symmetric monoidal functor from
TopFreeMod(R,τ) to FreeModop

R .

3. Λop∶ (Topd
(R,τ))op○Alg(R,τ) ⇒ id∶FreeModop

R → FreeModop
R is a monoidal

isomorphism. (See Facts 172, p. 88, in Appendix A, for the definition
of the opposite of a natural transformation.)

4. Γ∶ id⇒ Alg(R,τ) ○ (Topd
(R,τ))op∶TopFreeMod(R,τ) → TopFreeMod(R,τ) is

a monoidal isomorphism.

In particular, FreeModop
R and TopFreeMod(R,τ) are monoidally equivalent.

Proof: See Appendix C.2, p. 103. ◻

103 Corollary For each field (k, τ) with a ring topology, the monoidal cat-
egories Vectop

k and TopFreeVect(k,τ) are monoidally equivalent.

104 Corollary For each rigid ring (R, τ), the induced natural transforma-
tions (see Remark 181 (p. 96) in Appendix B.3)

• Λ̃op∶ ̃(Topd
(R,τ))op ○ Ãlg(R,τ) ⇒ id

εCoalgop
R
∶ εCoalgop

R → εCoalgop
R ,

• Λ̃op∶ ̃(Topd
(R,τ))op○Ãlg(R,τ) ⇒ id

ε,cocCoalgop
R
∶ ε,cocCoalgop

R → ε,cocCoalgop
R ,

• Γ̃∶ idMon(TopFreeMod
(R,τ))

⇒ Ãlg(R,τ) ○
̃(Topd
(R,τ))op∶

Mon(TopFreeMod(R,τ))→Mon(TopFreeMod(R,τ)),

• Γ̃∶ id
cMon(TopFreeMod

(R,τ))
⇒ Ãlg(R,τ) ○

̃(Topd
(R,τ))op∶

cMon(TopFreeMod(R,τ))→ cMon(TopFreeMod(R,τ)) .

are all natural isomorphisms.
Thus εCoalgop

R (resp., ε,cocCoalgop
R ) and Mon(TopFreeMod(R,τ)) (resp.,

cMon(TopFreeMod(R,τ))) are equivalent for each rigid topology τ on R.
In particular, Mon(TopFreeMod(R,τ)) ≃Mon(TopFreeMod(R,σ)) (resp.,

cMon(TopFreeMod(R,τ)) ≃ cMon(TopFreeMod(R,σ))), for each rigid topolo-
gies τ, σ on R.

Proof: Follows from Theorem 102 together with Remarks 181 (p. 96)
and 182 (p. 97) in Appendix B.3 ◻
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105 Example Let us make explicit the domain and codomain of the natural
isomorphism Γ̃ from Corollary 104.

Let ((M,σ),m, e) be an object of Mon(TopFreeMod(R,τ)). Let its topo-
logical dual coalgebra be

((M,σ)′, δ, ε) ∶= ̃(Topd
(R,τ))op((M,σ),m, e)

= ((M,σ)′,Λ−1
(M,σ)′⊗R(M,σ)′ ○m

′, ψ−1 ○ e′).
(37)

In details, ε(`) = ψ−1(e′(`)) = ψ−1(` ○ e) = `(e(1R)), ` ∈ (M,σ)′. Let again
` ∈ (M,σ)′. Then, δ(`) = ((Λ−1

(M,σ)′⊗R(M,σ)′ ○m
′)(`)) = ∑ni=1 `i ⊗ ri for some

`i, ri ∈ (M,σ)′. Thus, ` ○m = ∑ni=1 Λ(M,σ)′⊗R(M,σ)′(`i ⊗ ri). Whence given
u, v ∈M , `(m(u⍟ v)) = ∑ni=1 `i(u)ri(v).

Now, (((M,σ)′)∗,M,E) ∶= Ãlg(R,τ)((M,σ)′, δ, ε) is given by M ∶= δ∗ ○
(Λ(M,σ)′⊗RΛ(M,σ)′)∗ and E ∶= ε∗ ○φ. Thus E(1R) = ε∗(φ(1R)) = ε∗(idR) = ε,
and given L1, L2 ∈ ((M,σ)′)∗, and ` ∈ (M,σ)′,

(M(L1 ⍟L2))(`) = (δ∗((Λ(M,σ)′ ⊗R Λ(M,σ)′)∗(L1 ⍟L2)))(`)
= ((Λ(M,σ)′ ⊗R Λ(M,σ)′)∗(L1 ⍟L2))(δ(`))
= (L1 ⍟L2)((Λ(M,σ)′ ⊗R Λ(M,σ)′)(δ(`)))
= (L1 ⍟L2)(∑ni=1 Λ(M,σ)′(`i)⊗Λ(M,σ)′(ri))
= ∑ni=1 Λ(M,σ)′(`i)(L1)Λ(M,σ)′(ri)(L2)
= ∑ni=1L1(`i)L2(ri).

(38)

Finally, Γ̃((M,σ),m,e) = Γ(M,σ)∶ ((M,σ),m, e) ≃ (((M,σ)′)∗,M,E) is a monoid
isomorphism.

106 Corollary The equivalence from Corollary 104 restricts to an equiva-
lence between the category εFinDimCoalgk (resp. ε,cocFinDimCoalgk) of
finite-dimensional (resp. cocommutative) coalgebras and Mon(FinDimVectk)
(resp., cMon(FinDimVectk)), where FinDimVectk = (FinDimVectk,⊗k,k)
(see Section 4.4.2).

5.3.2 Relationship with finite duality

As already mentioned at the beginning of the current section, there is a
standard and well-known notion of duality between algebras and coalgebras,
known as the finite duality and briefly described in Appendix D.4 (p. 116).
It is our intention to understand the relations if any, between the equivalence
of categories from Corollary 104 and the finite duality.

In a few words, finite duality is implemented, over a field k, by an ad-
junction between monoids in Vectk (i.e., up to a concrete isomorphism (see
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Example 173, p. 92 in Appendix B.2), the ordinary algebras) and (the op-
posite of the category of) comonoids still in Vectk, i.e., coalgebras (see Ap-
pendix D, p. 111). So to make the comparison between the two approaches
of duality possible, one first defines an underlying (ordinary) algebra of any
monoid in TopFreeVect(k,τ), and this is sufficient to handle one half of the
finite duality, namely the (contravariant) functorial relation from coalgebras
to algebras since it is purely algebraic. Regarding the other direction, namely
from algebras to coalgebras, topological aspects have to be taken into con-
sideration and the relations between finite duality and our own duality are
plainly described over a discrete field.

5.3.2.1 The underlying algebra

Let (R, τ) be a rigid ring. Let (M,σ), (N,γ) be topologically-free (R, τ)-
modules. According to Lemma 94 (p. 44), M ×N −⍟−ÐÐ→ (M,σ)⍟(R,τ) (N,γ)

is R-bilinear. Denoting by TopFreeMod(R,τ)
∥−∥ÐÐ→ ModR the canonical

forgetful functor, this means that there is a unique R-linear map ∥(M,σ)∥⊗R

∥(N,γ)∥
Ξ
(M,σ),(N,γ)ÐÐÐÐÐÐÐ→ ∥(M,σ)⍟(R,τ) (N,γ)∥ such that for each u ∈M , v ∈ N ,

Ξ(M,σ),(N,γ)(u⊗ v) = u⍟ v.

107 Lemma A ∶= (∥ − ∥, (Ξ(M,σ),(N,γ))(M,σ),(N,γ), idR) is a lax symmetric
monoidal functor from TopFreeMod(R,τ) to ModR.

Proof: See Appendix C.3 (p. 109). ◻
Let Ã∶Mon(TopFreeMod(R,τ))→Mon(ModR) be the functor induced by

A as introduced in Appendix B.3, p. 93. Using the functorial isomorphism
O∶Mon(ModR) ≃ 1AlgR (Example 173, p. 92, Appendix B.2), to any monoid
in TopFreeMod(R,τ) is associated an ordinary algebra.

108 Definition Let us define UA ∶= Mon(TopFreeMod(R,τ))
O○ÃÐÐ→ 1AlgR.

Given a monoid ((M,σ), µ, η) in TopFreeMod(R,τ), then UA((M,σ), µ, η) =
O(Ã((M,σ), µ, η)) is referred to as the underlying (ordinary) algebra of the
monoid ((M,σ), µ, η).

In details, let ((A,σ), µ, η) be an object of Mon(TopFreeMod(R,τ)).
Then, UA((A,σ), µ, η) = (A,µbil, η(1R)) with µbil∶A × A → A given by
µbil(u, v) ∶= µ(u⍟ v).
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109 Remark Since by Lemma 107, A is symmetric, one has an induced

functor (see Remark 178, p. 95, Appendix B.3) cMon(TopFreeMod(R,τ))
ÃÐ→

cMon(ModR). Because one has the co-restriction cMon(ModR)
OÐ→ 1,cAlgR

(Example 173, p. 92, in Appendix B.2), one may likewise consider the un-

derlying (ordinary) algebra functor UA = cMon(TopFreeMod(R,τ))
O○ÃÐÐ→

1,cAlgR.

110 Example (Continuation of Example 100, p. 47) UA(M(R,τ)(X)) =
ARX (see Section 2.4.2, p. 15).

5.3.2.2 Relations with D̃∗

Let (R, τ) be a rigid ring. Let FreeModR
EÐ→ModR be the canonical embed-

ding functor. Since FreeModR is a symmetric monoidal subcategory of ModR
it follows that E = (E, id, id) is a strict monoidal functor from FreeModR to
ModR (see Appendix B.3, p. 93).

One claims that12

D∗ ○ Eop = A ○ Alg(R,τ).

In particular, if k is a field (and τ is a ring topology on k), then this
reduces to D∗ = A ○ Alg(k,τ).

To see this, using the notations from Appendix D.4 (p. 116), one has
to check that ((−)∗ ○ Eop,Θ, θ) = (∥ − ∥,Ξ, idR) ○ (Alg(R,τ),Φ, φ) = (∥ − ∥ ○
Alg(R,τ), (∥ΦM,N∥○ΞM∗,N∗)M,N , ∥φ∥) (by the composition of monoidal func-
tors recalled in Appendix B.3, p. 93).

1. That ∥−∥○Alg(R,τ) = (−)∗○Eop is due to the very definition of Alg(R,τ).

2. Of course, ∥φ∥ = θ.

3. It remains to check that for each free modules M,N , ∥(ΛM ⊗ΛN)∗∥ ○
ΞM∗,N∗ = ΘM,N . Let `1 ∈M∗, `2 ∈ N∗, u ∈M and v ∈ N . One has

((ΛM ⊗R ΛN)∗(ΞM∗,N∗(`1 ⊗ `2)))(u⊗ v)
= (`1 ⍟ `2)(ΛM(u)⊗ΛN(v))
= (ΛM(u))(`1)(ΛN(v))(`2)
= `1(u)`2(v)
= (ΘM,N(`1 ⊗ `2))(u⊗ v).

(39)

It follows that the dual monoid13 D̃∗(C) of a k-coalgebra C in finite duality,
12See Appendix D.4, p. 116, for the definition of the monoidal functor D∗.
13In Vectk.
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is equal to Ã(Ãlg(k,τ)(C)) whatever the ring topology τ on the field k, and
thus as ordinary algebras, O(D̃∗(C)) = UA(Ãlg(k,τ)(C)).

111 Proposition Let (k, τ) be a field with a ring topology. The functor

Mon(FreeTopVect(k,τ))
O○ÃÐÐ→ 1Algk has a left adjoint, namely Ãlg(k,τ) ○

Dop
fin ○O

−1, where Dfin∶Mon(Vectk)op → εCoalgk is the finite dual functor
(see Appendix D.4, p. 116).

Proof: One has D̃∗ = Ã ○ Ãlg(k,τ), whence D̃∗ ○ ̃(Topd
(k,τ))op = Ã ○ Ãlg(k,τ) ○

̃(Topd
(k,τ))op ≃ Ã (natural isomorphism) by Theorem 102 (p. 48). Since

Ãlg(k,τ) ○Dop
fin is a left adjoint of D̃∗ ○ ̃(Topd

(k,τ))op (Appendix D.4, p. 116),
it follows from the lemma below that it is also the left adjoint of Ã. ◻

Next lemma is rather easy so is provided without proof.

112 Lemma Let F,G be two naturally isomorphic functors. If L is a left
adjoint of F , then it is also a left adjoint of G.

5.3.2.3 The underlying topological algebra

Let R be a ring. The underlying algebra functorMon(TopFreeMod(R,d))
UAÐÐ→

1AlgR “lifts” to a topological algebra functor Mon(TopFreeMod(R,d))
TAÐÐ→

1TopAlg(R,d).
Indeed, let ((A,σ), µ, η) be an object ofMon(TopFreeMod(R,d)). One al-

ready knows that (A,σ) is an object of TopMod(R,d) and UA((A,σ), µ, η) =
(A,µbil, η(1R)) is an object of 1AlgR. So it suffices to check that (A,σ) ×
(A,σ) µbilÐÐ→ (A,σ) is continuous. But this is clear since it is equal to the
composition (A,σ) × (A,σ) −⍟−ÐÐ→ (A,σ) ⍟(R,d) (A,σ)

µÐ→ (A,σ) of continu-
ous maps (see Lemma 94, p. 44). Now, let ((A,σ), µ, η) fÐ→ ((B,γ), ν, ζ) be
a morphism in Mon(TopFreeMod(R,d)). In particular, (A,σ) fÐ→ (B,γ) is
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linear and continuous. Moreover, the following diagram commutes.

(A,σ) × (A,σ)

f×f

��

−⍟−
))

µbil

((

(A,σ)⍟(R,d) (A,σ)
f⍟
(R,d)f

��

µ
// (A,σ)

f

��

(B,γ)⍟(R,d) (B,γ) ν
// (B,γ)

(B,γ) × (B,γ)
−⍟−

55

νbil

66

(40)

Since by assumption, one also has f ○ η = ζ, it follows that f(η(1R)) =
ζ(1R), and thus f is a continuous algebra map from ((A,σ), µbil, η(1R))
to ((B,νbil, ζ(1R)).) One furthermore observes that TA is concrete over
TopMod(R,d), for the obvious forgetful functors. Therefore, TA is faithful.
More precisely the following diagram commutes (the unnamed arrows are
either the obvious forgetful functors or the evident embedding functor).

Mon(TopFreeMod(R,d))

��
Ã

~~

TA //
1TopAlg(R,d)

��

xx

TopFreeMod(R,d)
∥⋅∥
��

� � // TopMod(R,d)

ss
Mon(ModR) //

O

22ModR 1AlgR
oo

(41)

113 Remark When A is a commutative monoid in TopFreeMod(R,d), then
TA(A) is a commutative topological algebra.

114 Example (Continuation of Examples 100, p. 47, and 110, p. 52) For
each set X, TA(M(R,d)(X)) = A(R,d)(X) (see Section 2.4.2, p. 15).

115 Lemma TA is full.

Proof: Let A = ((A,σ), µ, η) and B = ((B,γ), ν, ζ) be two monoids in
TopFreeMod(R,d). Let TA(A) gÐ→ TA(B) be a morphism in 1TopAlg(R,d).
In particular, g ∈ 1AlgR(UA(A), UA(B)) ∩ Top((∣A∣, σ), (∣B∣, γ)). (Recall
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from Remark 12 (p. 14) that ModR
∣⋅∣Ð→ Set is the usual forgetful functor,

and Top is the category of Hausdorff topological spaces.)
By assumption, for each u, v ∈ A, one has g(µ(u ⍟ v)) = g(µbil(u, v)) =

νbil(g(u), g(v)) = ν(g(u)⍟g(v)). Thus, g○µ = ν ○(g⍟(R,d) g) on {u⍟v∶u, v ∈
A}. Since this set spans a dense subset of (A,σ)⊗(R,τ) (A,σ) (according to
Corollary 97, p. 46), by linearity and continuity, g ○ µ = ν ○ (g ⍟(R,d) g) on
the whole of (A,σ)⍟(R,d) (A,σ).

Moreover, g(η(1R)) = ζ(1R), then g ○ η = ζ. Therefore, g may be seen as

a morphism A
fÐ→ B in Mon(TopFreeMod(R,d)) with TA(f) = g. ◻

116 Lemma TA is injective on objects.

Proof: Let A = ((A,σ), µ, η) and B = ((B,γ), ν, ζ) be two monoids in
TopFreeMod(R,d) such that TA(A) = TA(B). In particular, (A,σ) = (B,γ),
and η = ζ. By assumption µbil = νbil. Whence µ = ν on {u⍟v∶u ∈ A, v ∈ B }.
Since this set is dense in (A,σ) ⍟(R,d) (B,γ) and µ, ν are continuous, they
are equal on the whole tensor product (A,σ)⍟(R,d) (B,γ). So A = B. ◻

As a consequence of Lemmas 115 and 116, Mon(TopFreeMod(R,d))
TAÐÐ→

1TopAlg(R,d) is a full embedding functor, because TA is faithful. Therefore,
Mon(TopFreeMod(R,d)) is isomorphic to a full subcategory of 1TopAlg(R,d)
([2, Proposition 4.5, p. 49]). Accordingly a monoid in TopFreeMod(R,d) is
essentially a topological algebra.

117 Remark It is clear that the co-restriction cMon(TopFreeMod(R,d))
TAÐÐ→

1,cTopAlg(R,d) of TA (see Remark 113) also is a full embedding functor.

118 Remark When (R, τ) is a rigid ring, not necessarily discrete, then the
topology σ and the underlying algebra UA(A) = (A,µbil, η(1R)) of a monoid
A = ((A,σ), µ, η) in TopFreeMod(R,τ) still interact but not as nicely as in the
discrete case because one cannot conclude to the joint continuity of (A,σ) ×
(A,σ) µbilÐÐ→ (A,σ) but only to its separate continuity, by Lemma 94 (p. 44).

However the correspondence A ↦ ((A,σ), µbil, η(1R)) still is functorial,
and still denoted TA by abuse of language, from Mon(TopFreeMod(R,τ))
to the category 1,sepTopAlg(R,τ) of separately continuous algebras, where
for a topological ring (R, τ) (not necessarily rigid), 1,sepTopAlg(R,τ) has ob-
jects A = ((A,σ),mA,1A) where (A,mA,1A) is an ordinary unital R-algebra,
(A,σ) is a topological (R, τ)-module and (A,σ) × (A,σ) mAÐÐ→ (A,σ) is sepa-
rately continuous (the morphisms are the continuous unital algebra maps).
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Observe that if A is a commutative monoid in TopFreeMod(R,τ), then
TA(A) is a commutative separately continuous algebra, i.e., an object of
1,c,sepTopAlg(R,τ) (see Appendix E, p. 118).

It is clear that 1TopAlg(R,τ) is a full subcategory of 1,sepTopAlg(R,τ),

and Mon(TopFreeMod(R,τ))
TAÐÐ→ 1,sepTopAlg(R,τ) remains faithful since

concrete over TopMod(R,τ).
Furthermore, the arguments given in the proofs of Lemmas 115 and 116

work as well when (R,d) is replaced by an arbitrary rigid ring (R, τ), and
thus Mon(TopFreeMod(R,τ))

TAÐÐ→ 1,sepTopAlg(R,τ) is also faithful and in-
jective on objects, in consequence of what Mon(TopFreeMod(R,τ)) is iso-
morphic to a full subcategory of 1,sepTopAlg(R,τ). Therefore a monoid in
TopFreeMod(R,τ) practically is a separately continuous algebra.

The co-restriction cMon(TopFreeMod(R,τ))
TAÐÐ→ 1,c,sepTopAlg(R,τ) of

TA has the corresponding properties.

119 Example (Continuation of Examples 100 (p. 47), 110 (p. 52), 114
(p. 54)) Let (R, τ) be rigid. Then, TA(M(R,τ)(X)) = A(R,τ)(X). One
also observes that in this particular case A(R,τ)(X) is even an object of
1,cTopAlg(R,τ) according to Lemma 15 (p. 15).

120 Remark Having in mind Example 119, Remark 101 (p. 48) may be
completed by observing that the following diagram commutes.

Setop
M
(R,τ)

//

A
(R,τ)

��

cMon(TopFreeMod(R,τ))
TA
��

1,cTopAlg(R,τ)
� � //

1,c,sepTopAlg(R,τ)

(42)

5.3.2.4 Relations with Dfin

Finite duality between coalgebras and algebras (see Appendix D.4, p. 116)
has some fundamental topological features that one now briefly discusses in
order that afterwards relations with our topological duality can be brought.

More precisely, let V be any vector space on a field k. Then, V ∗ has a
somewhat natural topology called the V -topology ([1]) or the finite topology
([7]), with a fundamental system of neighborhoods of zero consisting of spaces

W † ∶= { ` ∈ V ∗∶ ∀w ∈W, `(w) = 0} (43)
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whereW runs over the finite-dimensional subspaces of V . This is definitively
the same topology as our w∗

(k,d) (see Section 2.5.1, p. 16). Accordingly this
turns V ∗ into a linearly compact k-vector space (see Section 4.4.3, p. 37).

The closed subspace of (V ∗,w∗
(k,d)) are exactly the subspaces of the form

W †, where W is any subspace of V ([4, Proposition 24.4, p. 105]).

121 Lemma Let W be a subspace of V . codim(W †) is finite if, and only
if, dim(W ) is finite. In this case, codim(W †) = dim(W ).

Proof: One observes that V ∗/W † ≃ W ∗. Indeed, let W
inclWÐÐÐ→ V be the

canonical inclusion. The map V ∗
incl∗WÐÐÐ→ W ∗ is onto since given `0 ∈ W ∗,

there exists ` ∈ V ∗ with (incl∗W (`))(w) = `(inclW (w)) = `(w) = `0(w),
w ∈W . (It suffices to consider a k-linear basis of W , and then an extension
to a basis of the whole V .) Therefore, V ∗/ker incl∗W ≃W ∗. But ker incl∗W =
W †. Finally, since V ∗/W † ≃ W ∗, it follows that codim(W †) = dimW ∗. In
particular, codim(W †) is finite if, and only if, dim(W ) is finite (since for
finite-dimensional spaces W , dim(W ) = dim(W ∗)), and thus in this case
codim(W †) = dim(W ). ◻

122 Remark Given a k-coalgebra C = (C, δC, εC), there is a nice connec-
tion between its subcoalgebras and the two-sided ideals of D̃∗(C) since D is
a subcoalgebra of C if, and only if, D† is a two-sided ideal of D̃∗(C) ([1,
Theorem 2.3.1, p. 78]).

123 Theorem Let k be a field. For each monoid A in TopFreeVect(k,d),
̃(Topd
(k,d))op(A) is a subcoalgebra of Dop

fin(Ã(A)). Furthermore, the asser-
tions below are equivalent.

1. In TA(A) every finite-codimensional ideal is closed.

2. Ã(A) is reflexive14.

3. The coalgebra ̃(Topd
(k,d))op(A) is coreflexive.

4. ̃(Topd
(k,d))op(A) =Dop

fin(Ã(A)).

Proof: Let A = ((A,σ), µ, η) be a monoid in TopFreeMod(k,d). Whence
its underlying topological vector space is a linearly compact vector space

14See Remark 202, p. 117, in Appendix D.4.
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(see Section 4.4.3, p. 37). Let C ∶= ̃(Topd
(k,d))op(A). Since Ã ○ Ãlg(k,d) = D̃∗ it

follows that Ã ≃ Ã○Ãlg(k,d)○
̃(Topd
(k,d))op ≃ D̃∗○ ̃(Topd

(k,d))op (naturally isomor-
phic). In particular, Ã(A) ≃ D̃∗(C). By construction, the underlying topo-
logical vector space of A, namely (A,σ), is also the underlying topological
vector space of TA(A). Also A, TA(A) and Ã(A) share the same underlying
vector space A, which is isomorphic to C∗, where C is the underlying vector
space of the coalgebra C. Of course, (A,σ) ≃ Alg(k,d)(C) = (C∗,w∗

(k,d)).
Therefore, up to such an isomorphism, (A,σ) has a fundamental system of
neighborhoods of zero consisting of V † = { ` ∈ A∶ ∀v ∈ V, `(v) = 0} where V is
a finite-dimensional subspace of C (see the paragraph prior to the statement
of this theorem).

Let ` ∈ (A,σ)′, i.e., (A,σ) `Ð→ (k,d) is a continuous linear map. By
continuity of `, there exists a finite-dimensional subspace V of C such that
V † ⊆ ker `. Let B be a (finite) basis of V , and let D be the (necessarily finite-
dimensional, by Corollary 192, p. 114, in Appendix D.3) subcoalgebra of C
it generates. Then, V ⊆ D, which implies that D† ⊆ V † ⊆ ker `. But D† is a
finite-codimensional ideal of Ã(A) (by Lemma 121 and Remark 122), whence
` ∈ A0, where A0 denotes, similarly to Eq. (118), p. 116 (Appendix D.4), the
underlying vector space of the finite dual coalgebra Dfin(Ã(A)). Therefore,
(A,σ)′ ⊆ A0.

Now let us check that the above inclusion incl(A,σ)′ is a coalgebra map

from ̃(Topd
(k,d))op(A) to Dop

fin(Ã(A)), which is equivalent to (A,σ)′ being
a subcoalgebra of Dop

fin(Ã(A)). One thus needs to make explicit the two
coalgebra structures.

By construction the comultiplication of ̃(Topd
(k,d))op(A) is given by the

composition Λ−1
(A,σ)′⊗k(A,σ)′

○ µ′. So for ` ∈ (A,σ)′, (Λ−1
(A,σ)′⊗k(A,σ)′

○ µ′)(`) =
∑ni=1 `i ⊗ ri, for some `i, ri ∈ (A,σ)′. Therefore, given ` ∈ (A,σ)′, u, v ∈ A,

`(µ(u⍟ v)) = (µ′(`))(u⍟ v)
= (Λ(A,σ)′⊗k(A,σ)′(∑

n
i=1 `i ⊗ ri))(u⍟ v)

= (u⍟ v)(∑ni=1 `i ⊗ ri)
= ∑ni=1(u⍟ v)(`i ⊗ ri)
= ∑ni=1 `i(u)ri(v).

(44)

The counit of ̃(Topd
(k,d))op(A) is (A,σ)′ η

′

Ð→ (k,d)′ ψ
−1

ÐÐ→ k, i.e., `↦ `(η(1k)).
Let B = (B,µ, η) be a monoid in Vectk. Appendix D.4 (p. 116) tells

us that the comultiplication ∆∶B0 → B0 ⊗k B
0 of Dfin(B) is equal to

(Θ0)−1 ○ µ0 (where µ0∶B0 → (B ⊗k B)0 is the co-restriction of µ∗, and

58



Θ0∶B0 ⊗k B
0 ≃ (B ⊗k B)0 is the isomorphism obtained by co-restriction

of the canonical injection ΘB,B ∶B∗ ⊗k B
∗ ↪ (B ⊗k B)∗), and its counit

ε∶B0 → k is ε(`) = `(η(1k)). Now let B ∶= Ã(A) = (A,µ ○ ΞA,A, η). Then,
∆(`) = (Θ0)−1((µ ○ Ξ)0(`)) = ∑ni=1 `i ⊗ ri for some `i, ri ∈ A0. Thus, ` ○ (µ ○
ΞA,A) = (µ ○ Ξ)0(`) = ∑ni=1 Θ0(`i ⊗ ri), and thus for u, v ∈ A, `(µ(u ⍟ v)) =
`(µ(ΞA,A(u ⊗ v))) = ∑ni=1 `i(u)ri(v). Whence the comultiplication from
Eq. (44) coincides with this one for ` ∈ (A,σ)′. Since it is furthermore patent
that the counit of ̃(Topd

(k,d))op(A) is the restriction of that of Dop
fin(Ã(A)),

it follows that (A,σ)′ is a subcoalgebra of Dop
fin(Ã(A)).

It remains to prove the equivalence of the four assertions given in the
statement.

That 2⇔3 follows from Remark 202 (p. 117), Appendix D.4 and the fact
that Ã(A) ≃ D̃∗( ̃(Topd

(k,d))op(A)).
The coalgebra C ∶= ̃(Topd

(k,d))op(A) is coreflexive if, and only if, every
finite-codimensional ideal of D̃∗(C) ≃ Ã(A) is closed in the finite topology of
C∗ ([1, Lemma 2.2.15, p. 76]), which coincides with our topology w∗

(k,d), and
thus it turns out that (D̃∗(C),w∗

(k,d)) ≃ TA(A) (since C
∗ under the finite

topology is equal to Alg(k,d)(C) ≃ (A,σ) by functoriality). Whence 3⇔1.
Let us assume that in TA(A) every finite-codimensional ideal is closed.

Let ` ∈Dfin(Ã(A)). By definition ker ` contains a finite-codimensional ideal
say I of Ã(A). Since I is closed, there exists a finite-dimensional subspace
D of C such that D† = I (since the closed subspaces are of the form D† for
a subspace D of C and by Lemma 121, codim(I) = codim(D†) = dim(D)),
whence I is open, which shows that (A,σ) `Ð→ (k,d) is continuous, i.e., ` ∈
(A,σ)′, because ker ` = `−1({0}) and {0} is open in (k,d). Whence 1⇒4.

Let C ∶= ̃(Topd
(k,d))op(A) = Dop

fin(Ã(A)), so that Ã(A) ≃ D̃∗(C), as above.
Whence C = Dop

fin(Ã(A)) ≃ Dop
fin(D̃∗(C)). This is not sufficient to ensure

coreflexivity of C, since there is at this stage no guaranty that the above
isomorphism corresponds to the unit of the adjunction given in Theorem 201
(p. 117, in Appendix D.4) namely A0 = (A,σ)′ = C ↪ (C∗)0 = (((A,σ)′)∗)0 =
((A0)∗)0, u↦ (`↦ `(u)).

One knows from the beginning of the proof that

Ã(Γ̃A)∶A(A) ≃ Ã(Ãlg(k,d)(
̃(Topd
(k,d))op(A)))

which, in this case where ̃(Topd
(k,d))op(A) =Dop

fin(Ã(A)), is the isomorphism
∥Γ(A,σ)∥∶A ≃ ((A,σ)′)∗ = (A0)∗, u ↦ (` ↦ `(u)) (refer to Remark 181,
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p. 96, in Appendix B.3 for the definition of the induced natural transfor-
mation Γ̃). This shows at once that Ã(A) is reflexive (Remark 202, p. 117,
Appendix D.4), and thus its finite dual coalgebra, namely C is coreflexive
(again by Remark 202 since the adjunction from Theorem 201 reduces to
an equivalence between coreflexive coalgebras and reflexive algebras). Thus
item 4⇒3. ◻

124 Example Let (R, τ) be rigid. Let us use Example 105 (p. 50) to prove
that ̃(Topd

(R,τ))op(M(R,τ)(X)) ≃ CRX, i.e., that the topological dual coalgebra
of M(R,τ)(X) is the group-like coalgebra CRX on X (Appendix D.2, p. 112).

Let us check that the following diagram commutes.

((R, τ)X)′

λX
��

µ′X // ((R, τ)X ⍟(R,τ) (R, τ)X)′

R(X)
dX

// R(X) ⊗R R
(X)

λ−1X ⊗Rλ
−1
X

// ((R, τ)X)′ ⊗R ((R, τ)X)′

Λ
((R,τ)X )′⊗R((R,τ)

X )′

OO
(45)

Let ` ∈ ((R, τ)X)′, x, y ∈X. Then,

(Λ((R,τ)X)′⊗R((R,τ)X)′
((λ−1

X ⊗R λ
−1
X )(dX(λX(`)))))(δx ⍟ δy)

= (Λ((R,τ)X)′⊗R((R,τ)X)′
((λ−1

X ⊗R λ
−1
X )(∑z∈Z `(δz)δz ⊗ δz)))(δx ⍟ δy)

= (δx ⍟ δy)(∑z∈Z `(δz)πz ⊗ πz)
= ∑z∈Z `(δz)πz(δx)πz(δy)
= `(δx)δx(y)
= `(µX(δx ⍟ δy))
= (µ′X(`))(δx ⍟ δy).

(46)
Moreover η′X(`) = ψ(eX(λX(`))) for each ` ∈ ((R, τ)X)′ since (η′X(`))(1R) =
`(ηX(1R)) = ∑x∈X `(δx) and

ψ(eX(λX(`))) = ψ(∑x∈X `(δx))
= (∑x∈X `(δx))idR.

(47)

All of this shows that λX ∶ ̃(Topd
(R,τ))op(M(R,τ)(X)) ≃ CRX is the required

isomorphism of coalgebras.
Let k be a field. It follows from Theorem 123 and Example 114 (p. 54)

that in A(k,d)(X) every finite-codimensional ideal is closed if, and only if
CkX is coreflexive if, and only if, {πx∶x ∈ X } = 1Algk(Ak(X),k) ([21,
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Corollary 3.2, p. 528]). This holds in particular if ∣X ∣ ≤ ∣k∣ (see [21, Corol-
lary 3.6, p. 529]). If k is a finite field, then Ck(X) is coreflexive if, and only
if, X is finite (see [21, Remark 3.7, p. 530]).

6 Duality between closed ideals and subcoalgebras

One now shows that the equivalence Mon(TopFreeVect(k,d)) ≃ εCoalgop
k

(Corollary 104, p. 49) induces a one-one correspondence between closed ideals
of a topological algebra and subcoalgebras of its topological dual coalgebra.

Finite duality also induces a rather nice correspondence between ideals
and subcoalgebras since to an ideal of an algebra corresponds a subcoalge-
bra of its finite dual coalgebra. But the converse does not necessarily hold
(see [1, Remark, p. 79]), contrary to the correspondence provided hereafter
(see Corollary 134 below).

As the main theorem of this section, Theorem 135, it is proven that
closed maximal ideals are automatically finite-codimensional and that when
the base field is algebraically closed they even have a codimension one. This
reflects, by means of the equivalence Mon(TopFreeVect(k,d)) ≃ εCoalgop

k ,
the local finite-dimensional behaviour of coalgebras (see the Fundamental
theorem 191, p. 114, in Appendix D.3) to the topological algebras that belong
to the image of the TA functor (Section 5.3.2.3).

This bijection, between closed ideals and subcoalgebras, will be used in
the following in particular to obtain a logical relationship between topological
semisimplicity of some topological algebras and cosemisimplicity of their dual
coalgebras (see Section 7).

6.1 Orthogonal spaces

6.1.1 Duality pairing revisited

Let (R, τ) be a rigid ring. Let (M,σ) be an object of TopFreeMod(R,τ).
Let us define the R-bilinear map

⟨⋅, ⋅⟩(M,σ)∶ (M,σ)′ ×M → R

by ⟨`, u⟩(M,σ) ∶= `(u) = Γ(M,σ)(u)(`).
This provides a perfect pairing, i.e., it has the following two properties.

1. The map (M,σ)
Γ
(M,σ)ÐÐÐÐ→ ((M,σ)′)∗, u↦ ⟨⋅, u⟩(M,σ), is an isomorphism.

2. The map (M,σ)′ → (M,σ)′, `↦ ⟨`, ⋅⟩(M,σ) is an isomorphism.
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(The second property is tautological while the first follows from Lemma 77,
p. 35.)

125 Remark According to Eq. (17), p. 35, Γ(R,τ)X = (λ−1
X )∗ ○ ρX . Then,

⟨⋅, ⋅⟩(R,τ)X is related with ⟨⋅, ⋅⟩X (Section 3.1, p. 18) by the equality ⟨⋅, ⋅⟩(R,τ)X =
⟨⋅, ⋅⟩X ○ (λ−1

X × idRX ).

The above duality pairing makes it possible to define orthogonal sets in
a rather usual way, as described below. Let S be a subset of (M,σ)′, and T
be a subset of M . Then define the following sets.

1. S⊥ ∶= {u ∈M ∶ `(u) = 0, ∀` ∈ S } = ⋂`∈S ker `, which is closed in (M,σ).

2. ⊥T ∶= { ` ∈ (M,σ)′∶ `(u) = 0, ∀u ∈ T } ⊆ (M,σ)′.

The following hold.

1. For each S ⊆ (M,σ)′, S ⊆ ⊥(S⊥).

2. S1 ⊆ S2 ⊆ (M,σ)′ implies S⊥2 ⊆ S⊥1 .

3. For each T ⊆M , T ⊆ (⊥T )⊥.

4. T1 ⊆ T2 ⊆M implies ⊥T2 ⊆ ⊥T1.

126 Lemma Let (k, τ) be a field with a ring topology. Let (M,σ) be an
object of TopFreeVect(k,τ). Let V be a subspace of (M,σ)′. Then, ⊥(V ⊥) =
V .

Proof: Since V ⊆ ⊥(V ⊥), only the converse assertion has to be checked.
Let B be a basis of V and let D be a basis of (M,σ)′ which extends B. Let
as in Remark 81 (p. 36), D∗ = {Γ−1

(M,σ)(d), d ∈ D }, which is a topological
basis of (M,σ). Let also B∗ ∶= {Γ−1

(M,σ)(b)∶ b ∈ B } ⊆D∗. Let d ∈D∖B. Then
for each b ∈ B, b(d∗) = Γ(M,σ)(d∗)(b) = d∗(b) = 0. Whence D∗ ∖B∗ ⊆ V ⊥.

Let ` ∈ ⊥(V ⊥). In particular, for each d ∈D∖B, `(d∗) = d∗(`) = 0 so that
` ∈ ⟨B⟩ = V . ◻

Let k be a field. Let (M,σ) be an object of TopFreeVect(k,d). Accord-
ing to Section 4.4.3 (p. 37), (M,σ) is a linearly compact k-vector space, and
as such admits a fundamental system of neighborhoods of zero consisting of
subvector spaces (see [4]).

127 Lemma Let k be a field. Let (M,σ) be an object of TopFreeVect(k,d).
Let V be a closed subspace of (M,σ). Let u ∈ M such that u /∈ V . Then,
there exists ` ∈ (M,σ)′ such that `(u) = 1 and `∣V = 0.
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Proof: Let W be an open subspace of (M,σ) such that (u +W ) ∩ V = ∅
(this is possible since σ has a fundamental system of neighborhoods of zero
consisting of subvector spaces). Then, V +W is a subspace of M which does
not contain u. Let ` ∈ M∗ such that `(u) = 1 and `∣V +W = 0. In particular,
W ⊆ ker ` so that ` ∈ (M,σ)′. ◻

128 Corollary Under the same assumptions as Lemma 127, if V is a closed
subspace of (M,σ), then, (⊥V )⊥ = V .

Proof: Since V ⊆ (⊥V )⊥, it suffices to prove that (⊥V )⊥ ⊆ V . Let u ∈
(⊥V )⊥ ∖ V . Since (⊥V )⊥ is closed, there exists by Lemma 127, ` ∈ (M,σ)′
such that `(u) = 1 and `∣

(⊥V )⊥
= 0. In particular, ` ∈ ⊥((⊥V )⊥) = ⊥V (by

Lemma 126). But then `(u) must be equal to zero, which is a contradiction.
◻

It follows from Lemma 126 and Corollary 128 that given an object (M,σ)
of TopFreeVect(k,d) for a field k, the operation ⊥(−) is an order isomor-
phism, with inverse (−)⊥, between the poset of all closed subspaces of (M,σ)
and the dual15 of the poset of all subspaces of (M,σ)′.

Actually ⊥(−) and (−)⊥ even transform infima into suprema as is shown
by the following result.

129 Proposition Let k be a field. Let (M,σ) be a topologically-free (k,d)-
vector space.

1. Let F be a family of closed subspaces of (M,σ). Then, ⊥ (⋂F ) =
∑V ∈F ⊥V . (In particular, if F is the empty family, then ⊥(⋂∅) = ⊥M =
(0).)

2. Given a family G of subspaces of (M,σ)′, (∑V ∈G V )⊥ = ⋂V ∈G V ⊥.

Proof:

A. Let F be a family of closed subspaces of (M,σ). Since for each V ∈ F ,
⋂F ⊆ V it follows that ⊥V ⊆ ⊥(⋂F ). Then, ∑V ∈F ⊥V ⊆ ⊥(⋂F ).

B. Now, let G be a family of subspaces of (M,σ)′. Since for each V ∈ G,
V ⊆ ∑V ∈G V , it follows that (∑V ∈G V )⊥ ⊆ V ⊥, and thus (∑V ∈G V )⊥ ⊆
⋂V ∈G V ⊥.

15The dual of a poset (P,≤) is the poset consisting of the same set P with the opposite
order ≤op defined by x ≤op y if, and only if, y ≤ x.
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1. An Application of item B. withG ∶= { ⊥V ∶V ∈ F } leads to (∑V ∈F ⊥V )⊥ ⊆
⋂V ∈F (⊥V )⊥ = ⋂V ∈F V , so that ⊥(⋂V ∈F V ) ⊆ ⊥((∑V ∈F ⊥V )⊥) = ∑V ∈F ⊥V .
Thus by A., ⊥ (⋂F ) = ∑V ∈F ⊥V as desired.

2. An application of item A. with F ∶= {V ⊥∶V ∈ G} leads to ∑V ∈G V =
∑V ∈G ⊥(V ⊥) ⊆ ⊥(⋂V ∈G V ⊥) so ⋂V ∈G V ⊥ = (⊥(⋂V ∈G V ⊥))⊥ ⊆ (∑V ∈G V )⊥.
Whence by B., ⋂V ∈G V ⊥ = (∑V ∈G V )⊥ as required.

◻

130 Lemma Let (V,σ) be a topologically-free (k,d)-vector space. Let W be
a closed subspace of (V,σ) with ⊥W finite-dimensional. Then, codim(W ) =
dim(⊥W ).

Proof: First, let W be a subspace of (V,σ)′. Then, one claims that
W ⊥ ≃ W † (see Eq. (43), p. 56) under Γ(V,σ)∶ (V,σ) ≃ ((V,σ)′)∗. Indeed, let
u ∈ W ⊥, then Γ(V,σ)(u)(`) = 0 for all ` ∈ W . Conversely, let L ∈ W †. Then,
L = Γ(V,σ)(u) for a unique u ∈ V , and Γ(V,σ)(u)(`) = L(`) = 0 for all ` ∈ W
so that u ∈W ⊥.

It follows in particular, that codim(W ⊥) = codim(W †). (Indeed, (V,σ) ≃
((V,σ)′)∗, whence V /W ⊥ ≃ ((V,σ)′)∗/W †.)

Secondly, letW be a closed subspace of (V,σ) with ⊥W finite-dimensional.
Since (⊥W )⊥ = W by Corollary 128, then codim(W ) = codim((⊥W )⊥) =
codim((⊥W )†) (by the above) = dim(⊥W ) (according to Lemma 121, p. 57).

◻

6.1.2 The second copy

Let (R, τ) be a rigid ring. Let (M,σ) be a topologically-free (R, τ)-module.

Let ⟨⋅, ⋅⟩⊗2
(M,σ)

∶= ((M,σ)′⊗R(M,σ)′)×((M,σ)⍟(R,τ)(M,σ))
Λ
(M,σ)′⊗R(M,σ)

′×id

ÐÐÐÐÐÐÐÐÐÐ→

((M,σ) ⍟(R,τ) (M,σ))′ × ((M,σ) ⍟(R,τ) (M,σ))
⟨⋅,⋅⟩

(M,σ)⍟
(R,τ)(M,σ)ÐÐÐÐÐÐÐÐÐÐÐ→ R, called

the second copy of ⟨⋅, ⋅⟩(M,σ). In other words, ⟨`1⊗`2, u⍟v⟩⊗2
(M,σ)

= `1(u)`2(v),
`i ∈ (M,σ)′, i = 1,2, u, v ∈M .

Now let ((M,σ),m, e) be an object of Mon(TopFreeMod(R,τ)). It fol-
lows directly from Example 105 (p. 50) that

⟨`,m(u⍟ v)⟩(M,σ) = ⟨δ(`), u⍟ v⟩⊗2
(M,σ). (48)

64



131 Remark For each ` ∈ (M,σ)′⊗R(M,σ)′, (M,σ)⍟(R,τ)(M,σ)
⟨`,⋅⟩⊗2

(M,σ)ÐÐÐÐÐ→
(R, τ) is linear and continuous (continuous since `0 ∶= Λ(M,σ)′⊗R(M,σ)′(`) ∈
((M,σ)⍟R (M,σ))′ and ⟨`, ⋅⟩⊗2

(M,σ)
= `0).

Moreover, `↦ ⟨`, ⋅⟩⊗2
(M,σ)

is a one-to-one map from (M,σ)′ ⊗R (M,σ)′ to
((M,σ)⍟(R,τ) (M,σ))′.

More generally one may define the nth copy ⟨⋅, ⋅⟩⊗n
(M,σ)

of ⟨⋅, ⋅⟩(M,σ), for
n ≥ 1, as follows. LetM⊗1 ∶=M , andM⊗n+1 ∶= (M⊗n)⊗RM and (M,σ)⍟1 ∶=
(M,σ) and (M,σ)⍟n+1 ∶= ((M,σ)⍟n) ⍟(R,τ) (M,σ), n ≥ 1. Let (M,σ)′ Λ1Ð→
(M,σ)′ ∶= id(M,σ)′ and ((M,σ)′)⊗n+1 Λn+1ÐÐÐ→ ((M,σ)⍟n+1)′ be the composi-

tion ((M,σ)′)⊗n+1
(Λn⊗Rid(M,σ)′)ÐÐÐÐÐÐÐÐ→ ((M,σ)⍟n)′ ⊗R (M,σ)′

Λ
((M,σ)⍟n)′⊗R(M,σ)

′

ÐÐÐÐÐÐÐÐÐÐÐ→

((M,σ)⍟n+1)′, n ≥ 1. Then, one defines ((M,σ)′)⊗n × (M,σ)⍟n
⟨⋅,⋅⟩⊗n

(M,σ)ÐÐÐÐÐ→
R ∶= ⟨⋅, ⋅⟩(M,σ)⍟n ○ (Λn × id), n ≥ 1.

6.2 The duality between closed ideals and subcoalgebras

In this section A = ((A,σ), µ, η) is an object of Mon(TopFreeVect(k,d)),
where k is a field.

By a closed (two-sided) ideal of A is meant a closed two-sided ideal of
TA(A) (see Section 5.3.2.4, p. 56), i.e., an ideal of the underlying algebra
UA(A) of A (see Definition 108, p. 51) which is closed in (A,σ). The defini-
tion of subcoalgebra is recalled in Appendix D.3 (p. 114).

The operations ⊥(−) and (−)⊥ establish a nice connection between closed
ideals of A and subcoalgebras of its topological dual coalgebra ̃(Topd

(k,d))op(A)
that we now explore.

132 Proposition Let I be closed subspace of (A,σ). If I is a closed two-
sided ideal of A, then ⊥I is a subcoalgebra of ̃(Topd

(k,d))op(A).

Proof: Let us assume that I is a (closed two-sided) ideal. One has to
prove that δ(⊥I) ⊆ ⊥I ⊗k

⊥I, where δ = Λ−1
(A,σ)′⊗R(A,σ)′

○ µ′ as in Example 105
(p. 50). Let ` ∈ (A,σ)′. Then, δ(`) = ∑ni=1 `i⊗ ri for some `i, ri ∈ (A,σ)′, and
one assumes that the `i’s are k-linearly independent. Let {ui∶ i = 1,⋯, n} be
a set of members of A such that `i(uj) = δi,j , i, j = 1,⋯, n ([7, Lemma 1.5.8,
p. 39]). Let u ∈ I. Then, for each i = 1,⋯, n, µ(ui ⍟ u) ∈ I so that `(µ(ui ⍟
u)) = 0. But 0 = `(µ(ui ⍟ u)) = ⟨µ(ui ⍟ u), `⟩(A,σ) = ⟨u ⍟ v, δ(`)⟩⊗2

(A,σ)
=
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∑nj=1⟨ui, `j⟩(A,σ)⟨u, rj⟩(A,σ) = ∑nj=1 `j(ui)rj(u) = ri(u). Whence ri ∈ ⊥I, and
δ(`) ∈ (A,σ)′ ⊗k

⊥I. Similarly we obtain δ(`) ∈ ⊥I ⊗k
⊥I. ◻

133 Proposition Let D be a subspace of (A,σ)′. If D is a subcoalgebra of
̃(Topd
(k,d))op(A), then D⊥ is a closed two-sided ideal of A.

Proof: Let u ∈ A, v ∈ D⊥ and ` ∈ D. We have `(µ(u ⍟ v)) = ⟨µ(u ⍟
v), `⟩(A,σ) = ⟨u ⍟ v, δ(`)⟩⊗2

(A,σ)
= ∑ni=1⟨u, `i⟩(A,σ)⟨v, ri⟩(A,σ) = 0 since δ(`) =

∑ni=1 `i ⊗ ri ∈ D ⊗k D, and v ∈ D⊥. Therefore µ(u ⍟ v) ∈ D⊥. Similarly,
µ(v ⍟ u) ∈D⊥. Thus D⊥ is a two-sided ideal. ◻

134 Corollary 1. Let I be a closed subspace of (A,σ). I is a two-sided
ideal if, and only if, ⊥I is a subcoalgebra of ̃(Topd

(k,d))op(A).

2. Let D be a subspace of (A,σ)′. D is a subcoalgebra of ̃(Topd
(k,d))op(A)

if, and only if, D⊥ is a closed two-sided ideal of A.

It follows from Corollary 134 that given a monoid A in TopFreeVect(k,d),
the operation ⊥(−) is an order isomorphism, with inverse (−)⊥, between the
poset of all closed two-sided ideals of A and the dual of the poset of all sub-
coalgebras of ̃(Topd

(k,d))op(A). In particular, there is a one-one correspon-
dence between closed maximal two-sided ideals and simple subcoalgebras
(see Appendix D.3, p. 114).

135 Theorem Let A be a monoid in TopFreeVect(k,d). Every closed maxi-
mal two-sided ideal m of A is finite-codimensional with codim(m) = dim(⊥m).
In particular if k is an algebraically closed field and A is a commutative
monoid, then every closed maximal ideal m of A has codimension 1.

Proof: ⊥m is a simple subcoalgebra of ̃(Topd
(k,d))op(A) (essentially) by

Corollary 134. Whence ⊥m is finite-dimensional.
Indeed, let D be a simple subcoalgebra of a coalgebra C. Let us assume

that dim(D) is not finite. Each member of D generates a finite-dimensional
subcoalgebra of D (by Theorem 191, p. 114, in Appendix D.3). In particular,
for a non-zero member of D, this would provide a proper (i.e., /= (0), /= D)
subcoalgebra of D, which contradicts simplicity of D.

Then, it follows from Lemma 130 that codim(m) = dim(⊥m) <∞.
Now, let us assume that k is an algebraically closed field and A is a com-

mutative monoid. In this case, ̃(Topd
(k,d))op(A) is a cocommutative coalge-

bra, and is pointed (see Appendix D.3, p. 114) by [1, Theorem 2.3.3, p. 80],
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i.e., dim(D) = 1 for each simple subcoalgebra D of ̃(Topd
(k,d))op(A). There-

fore by the first part of the proof codim(m) = 1 as soon as m is a closed
maximal ideal of A. ◻

7 Topological semisimplicity

In this final section of the presentation, all the notions introduced so far
and many of the results obtained beforehand, are exploited so as to get a
thorough understanding of the function algebra behaviour of a commutative
monoid in TopFreeVect(k,τ) for a field k with a ring topology τ . As a main
result is provided a characterization of the function algebras among these
monoids as suitably generalized von Neumann regular algebras, when k is
algebraically closed (Theorem 167).

Let us take the time to succinctly review the content of this section.
Among commutative algebras, function algebras Ak(X) (Section 2.4.2) or
even ring direct products ∏i∈I ki of fields, provides the most direct and ap-
parent access to their structure. Therefore a natural way to get information
on more general algebras is to represent them as function algebras; this is
precisely to what semisimplicity16 leads to with the canonical representa-
tion17 A

canAÐÐ→ ∏m∈Max(A)A/m of an algebra A (where Max(A) is the set of
all maximal ideals of A). The kernel of this representation (i.e., the Jacob-
son radical) measures what is missing for the algebra to be a subalgebra of
a function algebra.

Our topological setting gives access to several notions of semisimplicity
for a commutative monoid A in the monoidal category TopFreeVect(k,τ).

1. Cosemisimplicity of the topological dual coalgebra of A (Appendix D.3),

2. Jacobson semisimplicity of the underlying algebra UA(A),

3. Topological semisimplicity of TA(A) (Section 7.1.1.1), based on a rep-
resentation of A to a topological product of fields (with a separately
continuous multiplication),

4. Gelfand semisimplicity of A (Section 7.1.2), which measures how A
differs from a “subalgebra” of some M(k,τ)(X) (Example 100).

16In this presentation, “semisimplicity” means what is sometimes called “Jacobson
semisimplicity” or “semiprimitivity” elsewhere.

17Here by a “representation” is meant an algebra map A
fÐ→∏i∈I ki.
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Our objective is to understand the relations between the above notions be-
yond the trivial implications: A Gelfand semisimple ⇒ TA(A) topologically
semisimple ⇒ UA(A) semisimple.

As a summary of the results obtained in this section:

1. Corollary 141 which provides the equivalences 1⇔ 2⇔ 3 for a discrete
field (k,d), using the duality between closed ideals and subcoalgebras
developed in Section 6.

2. Corollary 156 which establishes the equivalence 3 ⇔ 4 for a discrete
algebraically closed field, thanks to Theorem 135 (p. 66) that states
that all the closed maximal ideals of A are one codimensional.

3. Corollary 161 tells us that the only Gelfand semisimple commutative
monoids are exactly those of the form M(k,τ)(X) for some set X.

4. Theorem 167 which definitively settles the question by providing the
equivalences 1 ⇔ 2 ⇔ 3 ⇔ 4 for an algebraically closed field (k, τ)
with a ring topology. The equivalence cMon(TopFreeVect(k,d)) ≃
cMon(TopFreeVect(k,τ)) from Corollary 104, p. 49, plays a decisive
rôle as an argument of the proof.

7.1 Various notions of topological semisimplicity

7.1.1 Topological Jacobson radical and topological semisimplicity

7.1.1.1 Definitions

Let (R, τ) be a topological ring. Let us denote as illustrated in the commu-
tative diagram below some obvious forgetful functors (which are faithful).

Top 1,c,sepTopAlg(R,τ)
∣⋅∣alg
oo

∣⋅∣top
//
1,cAlgR

1,cTopAlg(R,τ)
∣⋅∣alg

ii

?�

OO

∣⋅∣top

44
(49)

(The abbreviations in the index of the forgetful functors correspond to the
part of the structure which is forgotten.) Whence for a separately continuous
algebra A = ((A,σ),mA,1A), ∣A∣top = (A,mA,1A) and ∣A∣alg = (∣A∣, σ) (where
TopMod(R,τ)

∣⋅∣Ð→ Top is the forgetful functor).

136 Remark Let (R, τ) be a rigid ring, and A = ((A,σ),m, e) be a com-
mutative monoid in TopFreeMod(R,τ). Then, ∣TA(A)∣alg = (A,σ) while
∣TA(A)∣top = UA(A) (see Section 5.3.2.3, p. 53, for the definition of TA).
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1. Let R be a ring. Let A be an object of 1,cAlgR. LetMax(A) be the set
of all maximal ideals of A, and let J(A) ∶= ⋂m∈Max(A)m = ⋂Max(A)
be the Jacobson radical of A. (In particular, if Max(A) = ∅, then
J(A) = A.) A is said to be (Jacobson) semisimple when J(A) = (0).

Let A
canAÐÐ→ ∏m∈Max(A)A/m be the canonical map canA(x) = (x +

m)m∈Max(A).

Of course, ker canA = J(A) and thus A is semisimple if, and only if,
canA is one-to-one.

2. Let (R, τ) be a topological ring. Let A be an object of 1,c,sepTopAlg(R,τ)
(or 1,cTopAlg(R,τ)). Let ClMax(A) be the set of all closed maximal
ideals of A (i.e., maximal ideals of the algebra ∣A∣top which are closed as
subset of the topological space ∣A∣alg). The topological Jacobson radical
Jtop(A) of A is the closed ideal of A defined as ⋂ClMax(A). (Again,
if ClMax(A) = ∅, then Jtop(A) = A.) A is said to be topologically
semisimple when Jtop(A) = (0).

Let ∣A∣top
canAÐÐ→ ∏m∈ClMax(A) ∣A∣top/m be the canonical map, which is

an algebra map. It is continuous from A to ∏m∈ClMax(A)A/m when,
as in Appendix E (p. 118), the product denotes a topological product
space and each factor A/m corresponds to ∣A∣top/m with the quotient
topology, as for m ∈ ClMax(A) and x ∈ A, πm(canA(x)) = x + m =
πm(x).
Whence ker canA = Jtop(A) and A is topologically semisimple if, and
only if, canA is one-to-one.

3. Let us assume that (R, τ) is rigid, and let A be a commutative monoid
in TopFreeMod(R,τ). One defines ClMax(A) ∶= ClMax(TA(A)) and
Jtop(A) ∶= Jtop(TA(A)). A is said to be topologically semisimple if
TA(A) is so.

137 Remark Let (R, τ) be a topological ring. Let A be an object of the cat-
egory 1,c,sepTopAlg(R,τ) (or 1,cTopAlg(R,τ)). As ClMax(A) ⊆Max(∣A∣top)
it follows that J(∣A∣top) ⊆ Jtop(A) and thus if A is topologically semisimple,
then ∣A∣top is semisimple.

The following lemma will be used rather frequently in what follows, with-
out further ado. (Its proof essentially follows from the fact that if A

fÐ→ B
is an isomorphism, then it induces a bijection ClMax(A) → ClMax(B),
m↦ f(m).)
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138 Lemma Let (R, τ) be a topological ring. Let A,B be isomorphic objects
of 1,c,sepTopAlg(R,τ) (or 1,cTopAlg(R,τ)). A is topologically semisimple if,
and only if, B so is. In particular, when (R, τ) is rigid, topological semisim-
plicity of objects of cMon(TopFreeMod(R,τ)) is preserved by isomorphisms.

7.1.1.2 Topological semisimplicity and cosemisimplicity

See Section D.3 (p. 114) for some recalls about cosemisimplicity of coalgebras.

139 Proposition Let (k, τ) be a field with a ring topology and let C =
(C, δC, εC) be a counital cocommutative coalgebra. C is cosemisimple if, and
only if, O(D̃∗(C)) is semisimple if, and only if, UA(Ãlg(k,τ)(C)) is semisim-
ple.

Proof: Recall from Eq. (43), p. 56, that for a coalgebra C, (corad(C))† ∶=
{ ` ∈ C∗∶ `(x) = 0, ∀x ∈ corad(C) }. It is clear that (corad(C))† = (0) if, and
only if, corad(C) = C.

Let us assume that C is a cosemisimple (cocommutative) coalgebra.
One has D̃∗(C) = Ã(Ãlg(k,τ)(C)) (see Section 5.3.2.2, p. 52), and accord-
ing to [1, Theorem 2.3.9, p. 84], J(O(D̃∗(C))) = corad(C)†. But O(D̃∗(C)) =
UA(Ãlg(k,τ)(C)) so that the algebra UA(Ãlg(k,τ)(C)) is semisimple if, and
only if, the algebra O(D̃∗(C)) is semisimple if, and only if, (corad(C))† =
J(O(D̃∗(C))) = (0) if, and only if, corad(C) = C if, and only if, C is
cosemisimple. ◻

140 Corollary Let (k, τ) be a field with a ring topology, let A = ((A,σ), µ, η)
be an object of cMon(TopFreeVect(k,τ)). Let C ∶= ̃(Topd

(k,τ))op(A). UA(A)
is semisimple if, and only if, O(D̃∗(C)) is semisimple if, and only if, C
is cosemisimple. In particular, if A is topologically semisimple, then C is
cosemisimple.

Proof: It suffices to apply Proposition 139 since D̃∗(C) = Ã(Ãlg(k,τ)(C)) ≃
Ã(A) (Corollary 104, p. 49) and thus O(D̃∗(C)) ≃ UA(A). The last assertion
is due to Remark 137. ◻

141 Corollary Let k be a field. Let A = ((A,σ), µ, η) be an object of

cMon(TopFreeVect(k,d)) and let C ∶= ̃(Topd
(k,d))op(A). A is topologically

semisimple if, and only if, UA(A) is semisimple if, and only if, C is cosemisim-
ple.
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Proof: By Corollary 140 the last equivalence holds. It remains to prove the
first one. One already knows by Remark 137 that A topologically semisimple
implies UA(A) semisimple.

Let us assume that C is cosemisimple. Let simpl(C) be the collection of
all simple subcoalgebras of C. One has (A,σ)′ = corad(C) = ∑D∈simpl(C)D =
∑D∈simpl(C)

⊥(D⊥) = ⊥(⋂D∈simpl(C)D
⊥) (according to Proposition 129, p. 63)

= ⊥(⋂m∈ClMax(A)m) (since (−)⊥ provides a one-one correspondence between
closed maximal ideals of A and simple subcoalgebras of C; see Section 6.2,
p. 65) = ⊥Jtop(A). Whence Jtop(A) = ((A,σ)′)⊥ = (0), i.e., A is topologically
semisimple. ◻

7.1.2 Gelfand semisimplicity

7.1.2.1 Definition

Let (R, τ) be a rigid ring.
One observes easily that ((R, τ), µ(R,τ), idR) is a commutative monoid

in TopFreeMod(R,τ), where (R, τ) ⍟(R,τ) (R, τ)
µ
(R,τ)ÐÐÐ→ (R, τ) is defined by

µ(R,τ)(1R ⍟ 1R) ∶= 1R (or alternatively, µ(R,τ)(α ⍟ β) ∶= mR(α,β), α,β ∈ R,
and R × R mRÐÐ→ R is the bilinear multiplication of R). Moreover, it is clear
that TA((R, τ), µ(R,τ), idR) = (R, τ).

Let A = ((A,σ), µ, η) be a commutative monoid in TopFreeMod(R,τ). Let
X(R,τ)A ∶= cMon(TopFreeMod(R,τ))(A, ((R, τ), µ(R,τ), idR)) be the set of all
continuous characters of A.

Since according to Remark 118 (p. 55), TA is fully faithful, its restric-
tion X(R,τ)(A) → 1,c,sepTopAlg(R,τ)(TA(A), (R, τ)) is a bijection. In what
follows both sets are treated as equal.

142 Remark When τ = d, then X(R,d)(A) ≃ 1,cTopAlg(R,d)(TA(A), (R,d))
since in this case TA(A) has a jointly continuous multiplication (see Sec-
tion 5.3.2.3, p. 53).

Let (R, τ) be a rigid ring. Let A = ((A,σ), µ, η) be an object of the
category cMon(TopFreeMod(R,τ)). One defines the morphism of separately

continuous algebras TA(A) GAÐ→ A(R,τ)(X(R,τ)(A)) by GA(u)(χ) ∶= χ(u),
u ∈ A, χ ∈ X(R,τ)(A). (It is continuous since for each χ ∈ X(R,τ)(A),
πχ ○GA = χ. Moreover, ((GA ○ µ)(u ⍟ v))(χ) = χ(µ(u ⍟ v)) = χ(u)χ(v) =
(GA(u)(χ))(GA(v)(χ)) for each u, v ∈ A and χ ∈ X(R,τ)(A), and one also
has (GA(η(1R)))(χ) = χ(η(1R)) = 1R.)
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Since by Remark 118, TA is fully faithful, there is a unique monoid mor-
phism A

GAÐ→M(R,τ)(X(R,τ)(A)) such that TA(GA) = GA. (See Example 100,
p. 47, for the definition of M(R,τ)(X).)

143 Definition The monoid morphism GA is referred to as the Gelfand
transform of A. Moreover, A is said to be Gelfand semisimple when GA is
one-to-one.

144 Remark kerGA = ⋂χ∈X
(R,τ)(A)

kerχ is a closed ideal of A. Of course,
Jtop(A) ⊆ kerGA, and thus if A is Gelfand semisimple, then it is topologically
semisimple.

7.1.2.2 Functoriality and naturality

145 Lemma Let (R, τ) be a rigid ring. Let X be a set. Then, {πx∶x ∈
X } ⊆ X(R,τ)(M(R,τ)(X)). If moreover R has no non-trivial idempotents
(i.e., E(R) = {0,1R }), then X(R,τ)(M(R,τ)(X)) = {πx∶x ∈X }. In particular
the last assertion holds for a field (k, τ) with a ring topology.

Proof: Clearly {πx∶x ∈X } ⊆ X(R,τ)(M(R,τ)(X)). Assume that the unique
idempotents of R are 0 and 1R. Let χ ∈ 1,cTopAlg(R,τ)(A(R,τ)(X), (R, τ)).
(Recall from Example 119, p. 56, that TA(M(R,τ)(X)) = A(R,τ)(X).) In
particular, χ(δx) is an idempotent of R for each x ∈X since χ(δx) = χ(δ2

x) =
χ(δx)χ(δx), whence χ(δx) ∈ {0,1R } for each x. Since χ(1A

(R,τ)(X)
) = 1R,

and 1A
(R,τ)(X)

= ∑x∈X δx, it follows (since R is non-trivial by Conventions 1)
that there is at least one xχ ∈ X such that χ(δxχ) = 1R. Let x ∈ X ∖ {xχ }
such that χ(δx) = 1R. Then, 0 = χ(0) = χ(δxδxχ) = χ(δx)χ(δxχ) = 1R which
is a contradiction. Whence there is a unique xχ ∈X with χ(δxχ) = 1R. Now,
χ(f) = χ(∑x∈X f(x)δx) = ∑x∈X f(x)χ(δx) = f(xχ) = πxχ(f), f ∈ RX . ◻

146 Example Let (k, τ) be a field with a ring topology. Let X be a set.
Then, M(k,τ)(X) is Gelfand semisimple. (It suffices to use Lemma 145 to
see that kerGM

(k,τ)(X)
= (0).)

147 Lemma Let (R, τ) be a rigid ring. X(R,τ)(A) extends to a functor from
cMon(TopFreeMod(R,τ))op to Set.

Proof: Let A
fÐ→ B be a morphism in cMon(TopFreeMod(R,τ)). Then, with

X(R,τ)(B)
X
(R,τ)(f)ÐÐÐÐÐ→ X(R,τ)(A), χ ↦ χ ○ f , one obtains the expected functor.

◻
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148 Lemma Let (R, τ) be a rigid ring. G ∶= (GA)A∶ idcMon(TopFreeMod
(R,τ))

⇒
M(R,τ) ○Xop

(R,τ)
∶ cMon(TopFreeMod(R,τ)) → cMon(TopFreeMod(R,τ)). (Re-

call from Remark 101, p. 48, that M(R,τ) is functorial.)

Proof: Let A
fÐ→ B be a morphism in cMon(TopFreeMod(R,τ)). One has

to check that the following diagram commutes.

A

f

��

GA //M(R,τ)(Xop
(R,τ)
(A))

M
(R,τ)(X

op
(R,τ)

(f))

��

B
GB

//M(R,τ)(Xop
(R,τ)
(B))

(50)

Let χ ∈ X(R,τ)(B) and let u ∈ A. Then, (GB(f(u)))(χ) = χ(f(u)), while
(M(R,τ)(Xop

(R,τ)
(f))(GA(u)))(χ) = (GA(u) ○ Xop

(R,τ)
(f))(χ) = GA(u)(χ ○ f) =

χ(f(u)). ◻

149 Proposition Let (R, τ) be a rigid ring. Then the functor Set
Mop
(R,τ)ÐÐÐ→

cMon(TopFreeMod(R,τ))op is a left adjoint of the continuous characters

functor cMon(TopFreeMod(R,τ))op
X
(R,τ)ÐÐÐ→ Set.

Proof: Let X
fÐ→ X(R,τ)(B) be a set-theoretic map where B = ((B,γ),m, e)

is an object of cMon(TopFreeMod(R,τ)). Let (B,γ) f̂Ð→ (R, τ)X be the
unique continuous linear map such that for each x ∈ X, πx ○ f̂ = f(x).
Let u, v ∈ B, and x ∈ X. Then, (f̂(m(u ⍟ v)))(x) = πx(f̂(m(u ⍟ v)) =
f(x)(m(u ⍟ v)) = f(x)(u)f(x)(v) = (f̂(u))(x)(f̂(v))(x), and moreover

(f̂(e(1R)))(x) = πx(f̂(e(1R))) = f(x)(e(1R)) = 1R. Therefore, TA(B) f̂Ð→
A(R,τ)(X) is a morphism of separately continuous algebras, whence by Re-

marks 118 (p. 55) and 120 (p. 56), B
f̂Ð→ M(R,τ)(X) is a morphism in

cMon(TopFreeMod(R,τ)).
◻

150 Remark The unit of the adjunction Mop
(R,τ)

⊣ X(R,τ) is given by X
πXÐÐ→

X(R,τ)(Mop
(R,τ)
(X)), πX(x) ∶= πx, while the counit is the opposite Gop∶Mop

(R,τ)
○

X(R,τ) ⇒ id∶ cMon(TopFreeMod(R,τ))op → cMon(TopFreeMod(R,τ))op of the
Gelfand transform (see Facts 172, p. 88, in Appendix A for the definition of
the opposite natural transformation).
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151 Remark It is possible to compare the adjunctions P op
(R,τ)

⊣ Top(R,τ) ○
∣ ⋅ ∣∶Set → TopFreeModop

(R,τ)
(Proposition 89, p. 40) and Mop

(R,τ)
⊣ X(R,τ)

for a rigid ring (R, τ). Let A be a commutative monoid in TopFreeMod(R,τ),

and X be a set. Let X
gÐ→ ∣Um(A)′∣ be a map (where, as in Proposition 177,

p. 95, Appendix B.3, cMon(TopFreeMod(R,τ))
UmÐÐ→ TopFreeMod(R,τ) is

the obvious forgetful functor). The unique continuous (R, τ)-linear map

Um(A)
g♯Ð→ P(R,τ)(X) = Um(M(R,τ)(X)) (Proposition 86, p. 39) lifts to a

morphism of monoid A
g♭Ð→ M(R,τ)(X), i.e., Um(g♭) = g♯, if, and only if, g

factors has X → X(R,τ)(A) ↪ ∣Um(A)′∣. (It suffices to compare the explicit
definition of g♯ given in Remark 87, p. 39, with the construction of a monoid
morphism f̂ given in the proof of Proposition 149.)

152 Remark The proof of Proposition 149 can be adapted to show that

Set
Aop
(R,τ)ÐÐÐ→ 1,cTopAlgop

(R,τ)
is a left adjoint to the contravariant hom-functor

1,cTopAlgop
(R,τ)

1,cTopAlg
(R,τ)(−,(R,τ))ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Set, where for a category C, and a

C-object D, Cop C(−,D)ÐÐÐÐ→ Set is given by C ↦C(C,D) ([17, pp. 34–35]).

7.1.2.3 Relations between different “maximal ideal spaces”

153 Definition Let (k, τ) be a field with a ring topology. Let A be a commu-
tative monoid in TopFreeVect(k,τ). One defines ClMax(A)1 as the subset
of ClMax(A) consisting of closed maximal ideals of codimension one.

154 Proposition Let (R, τ) be a rigid ring. Let A = ((A,σ),m, e) be an ob-
ject of cMon(TopFreeMod(R,τ)). Let C ∶= ̃(Topd

(R,τ))op(A) be its topological
dual coalgebra.

1. X(R,τ)A = G(C) (cf. Appendix D.2, p. 112, for the definition of the set
GC of group-like elements of a coalgebra C).

2. If (R, τ) = (k, τ) is a field with a ring topology, then X(k,τ)A
kerÐ→

ClMax(A)1 is one-to-one.

(a) Moreover, if τ is the discrete topology, then X(k,d)A
kerÐ→ ClMax(A)1

is onto, whence X(k,d)A ≃ ClMax(A)1.
(b) If k is an algebraically closed field, then

GC = X(k,d)(A) ≃ ClMax(A)1 = ClMax(A).
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Proof:

1. Let χ ∈ X(R,τ)A. Eq. (48), p. 64, shows that for each u, v ∈ A, ⟨χ⊗χ,u⍟
v⟩⊗2
(A,σ)

= ⟨χ,u⟩(A,σ)⟨χ, v⟩(A,σ) = χ(u)χ(v) = χ(m(u ⍟ v)) = ⟨χ,m(u ⍟
v)⟩(A,σ) = ⟨δ(χ), u ⍟ v⟩⊗2

(A,σ)
. Whence ⟨δ(`) − ` ⊗ `, ⋅⟩⊗2

(A,σ)
= 0 on {u ⍟

v∶u, v ∈ A} which spans a dense subset in (A,σ) ⍟(R,τ) (A,σ). By
continuity and linearity, this implies that ⟨δ(`)−`⊗`, ⋅⟩⊗2

(A,σ)
= 0 on the

whole (A,σ)⍟(R,τ)(A,σ), so that δ(`) = `⊗` according to Remark 131,
p. 65. Moreover, ε(χ) = ⟨χ, e(1R)⟩ = 1R, whence χ ∈ G(C).
Conversely, let us assume that χ ∈ G(C). Then, χ(e(1R)) = ε(χ) =
1R, and for each u, v ∈ A, ⟨δ(χ), u ⍟ v⟩⊗2

(A,σ)
= ⟨χ ⊗ χ,u ⍟ v, `⟩⊗2

(A,σ)
=

⟨χ,u⟩(A,σ)⟨χ, v⟩(A,σ) = χ(m(u⍟ v)) = ⟨χ,m(u⍟ v)⟩(A,σ), i.e., χ(m(u⍟
v)) = χ(u)χ(v). Whence χ ∈ 1,c,sepTopAlg(R,τ)(TA(A), (R, τ)), so
that χ ∈ X(R,τ)(A).

2. Let us assume that (k, τ) is a field with a ring topology. In this sit-
uation, given χ ∈ X(k,τ)(A), kerχ is a closed ideal of A with codi-
mension one, so kerχ ∈ ClMax(A)1. Let χ1 ∈ X(k,τ)(A) such that
m ∶= kerχ = kerχ1. Since codim(m) = 1, each member of A may
be expressed uniquely as u = αe(1R) + v, α ∈ R and v ∈ m. As
χ(e(1R)) = 1R = χ1(e(1R)), χ(u) = α + χ(v) = α = α + χ1(v) = χ1(u).
Whence χ = χ1, and X(k,τ)A

kerÐ→ ClMax(A)1 is one-to-one.

(a) Let us furthermore assume that τ is the discrete topology of k.
Let m ∈ ClMax(A)1. Then, the quotient field UA(A)/m is an
extension field of k. Since dim(UA(A)/m) = codim(m) = 1, it
follows that UA(A)/m ≃ k.
Moreover, the quotient topological algebra TA(A)/m, i.e., the al-
gebra UA(A)/m with the final topology induced by the canonical
epimorphism UA(A) πmÐ→ UA(A)/m, is isomorphic to (k,d). In-
deed, (A,σ) is a topologically-free (k,d)-vector space, whence a
linearly compact k-vector space. m being both closed and finite-
codimensional, it is also open ([13, p. 95]). Therefore, the quotient
topology is the discrete topology by [23, Theorem 5.7, p. 34].
All of this implies that πm may be identified with a member of
X(k,d)(A), and since kerπm = m, ker is onto.

(b) For each field k, one has already GC = X(k,d)(A) ≃ ClMax(A)1 ⊆
ClMax(A). Let us assume that k is algebraically closed. With
Theorem 135 (p. 66) one also has ClMax(A) ⊆ ClMax(A)1.

75



◻

155 Remark From Proposition 154.1 one easily deduces that for each rigid
ring (R, τ), X(R,τ) = G ○ ( ̃(Topd

(R,τ))op)op. Since G has for left adjoint CR

(Lemma 189, p. 113, in Appendix D.2) and ( ̃(Topd
(R,τ))op)op also has a

left adjoint, namely ( ̃Alg(R,τ))
op
, it follows, in view of Proposition 149, that

Mop
(R,τ)

is naturally equivalent to ( ̃Alg(R,τ))
op ○CR.

In fact (ρX)X ∶M(R,τ) ⇒ Ãlg(R,τ)○Cop
R ∶Setop → cMon(TopFreeMod(R,τ))

is a natural isomorphism.

Naturality is due to the following equalities, with Y
fÐ→ X, g ∈ RX and

p ∈ R(Y ).

((CRf)∗(ρX(g)))(p) = ρX(g)((CRf)(p))
= ρX(g) (∑x∈X(∑y∈f−1({x}) p(y))δx)
= ∑x∈X (∑y∈f−1({x}) p(y)) g(x)
= ∑y∈Y p(y)g(f(y))
= (ρY (g ○ f))(p)
= ((ρY ○M(R,τ)(f))(g))(p).

(51)

That ρX is a morphism of monoids from M(R,τ)(X) = ((R, τ)X , µX , ηX)
(see Example 100, p. 47) to Ãlg(R,τ)(Cop

R (X)) = Ãlg(R,τ)(R(X), dX , eX) =
(((R(X))∗,w∗

(R,τ)), d
∗
X ○ (ΛR(X) ⊗R ΛR(X))∗, e∗X ○φ) may be checked by hand.

156 Corollary Let k be an algebraically closed field. Let A = ((A,σ), µ, η)
be an object of cMon(TopFreeVect(k,d)). A is Gelfand semisimple if, and
only if, A is topologically semisimple.

Proof: One knows from Remark 144 that A Gelfand semisimple implies A
topologically semisimple.

So let us assume that A is topologically semisimple. Whence the con-
tinuous algebra map TA(A)

canTA(A)ÐÐÐÐÐ→ ∏m∈ClMax(A) TA(A)/m is one-to-one.
∣TA(A)/m∣top = UA(A)/m is a field extension of k. By Theorem 135 (p. 66),
m has codimension one, and thus UA(A)/m ≃ k, since k is algebraically
closed. In details: by Proposition 154 (p. 74), ker∶X(k,d)(A) ≃ ClMax(A).
So for each χ ∈ X(k,d)(A), each member u of A is written uniquely as
u = χ(u)η(1k) + uχ, uχ ∶= χ(u)η(1k) − u ∈ kerχ. Then, an isomorphism
φχ∶UA(A)/kerχ ≃ k is given by φχ(u) ∶= χ(u) with inverse φ−1

χ (α) ∶=
αη(1k) + kerχ, α ∈ k.
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Since (A,σ) is a linearly compact vector space, and m is closed and is
of finite codimension, it is also open ([13, p. 95]). Whence TA(A)/m ≃
(k,d) (under φker−1 m) according to [23, Theorem 5.7, p. 34]. Therefore,
∏m∈ClMax(A) TA(A)/m ≃ A(k,d)(ClMax(A)) in 1,cTopAlg(k,d), under Φ((u+
m)m)∶m ∈ ClMax(A)↦ φker−1 m(u) = (ker−1 m)(u).

Because cMon(TopFreeVect(k,d))
TAÐÐ→ 1,cTopAlg(k,d) is fully faithful,

there is a unique morphism of monoids A
canAÐÐ→ M(k,d)(ClMax(A)) with

TA(canA) = Φ ○ canTA(A).
One observes that for each u ∈ A, χ ∈ X(k,d)(A), (canA(u))(kerχ) =

χ(u) = GA(u)(χ). Therefore the following diagram commutes in the category
cMon(TopFreeVect(k,d)).

A
canA //

GA ((

M(k,d)(ClMax(A))

M
(k,d)(ker)

M(k,d)(X(k,d)(A))

(52)

Since A is assumed topologically semisimple, canTA(A) is one-to-one, and so
is Φ ○ canTA(A) and thus also canA, whence according to Diag. (52), GA is
one-to-one, i.e., A is Gelfand semisimple. ◻

7.1.2.4 The Gelfand transform is onto

Let (k, τ) be a field with a ring topology. Let A = ((A,σ),m, e) be an
object of cMon(TopFreeVect(k,τ)). Let us consider two algebra maps,

UA(A) gA∶=UA(GA)ÐÐÐÐÐÐ→ UA(M(k,τ)(X(k,τ)A)) = Ak(X(k,τ)(A)) (see Example 110,

p. 52) and also TA(A) GA=TA(GA)ÐÐÐÐÐÐ→ TA(M(k,τ)(X(k,τ)A)) = A(k,τ)(X(k,τ)(A))
(as already defined). Of course, ∣GA∣top = gA.

157 Lemma The map gA is onto.

Proof: By Proposition 154, X(k,τ)(A) = G(C) where C = ̃(Topd
(R,τ))op(A).

By Fact 187 (p. 112, Appendix D.2), GC is k-linearly independent. Let
C = (A,σ)′ be the underlying vector space of C. Let B be a basis of C
which extends GC. Therefore B∗ is a topological basis of (A,σ) (see Re-
mark 81, p. 36). One defines a linear section of gA as follows: let f ∈
kX
(k,τ)(A), then let s(f) ∶= ∑χ∈X

(k,τ)(A)
f(χ)χ∗ ∈ A (sum of a summable fam-

ily). Since TA(A) GA=TA(GA)ÐÐÐÐÐÐ→ TA(M(k,τ)(X(k,τ)A)) = A(k,τ)(X(k,τ)(A)) is
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continuous, and because the underlying algebra map ∣GA∣top of GA is gA, it
follows that gA(s(f)) = ∑χ∈X

(k,τ)(A)
f(χ)gA(χ∗) = ∑χ∈X

(k,τ)(A)
f(χ)gA(χ∗) =

∑χ∈X
(k,τ)(A)

f(χ)δχ (since gA(χ∗)(χ1) = χ1(χ∗) = χ∗(χ1) (by Remark 81)
= δχ(χ1), for each χ1 ∈ X(k,τ)A). Whence gA(s(f)) = f . ◻

According to Lemma 157, one may define a unique algebra isomorphism
UA(A)/ker gA

g̃AÐ→ Ak(X(k,τ)(A)) such that g̃A ○ πker gA = gA, where one de-

notes by UA(A)
πkergAÐÐÐ→ UA(A)/ker gA the canonical epimorphism. Whence

TA(A)/kerGA is a separately continuous algebra (under the quotient topol-
ogy induced by πkerGA

; see Appendix E, p. 118). Since g̃A ○ πkerGA
= gA

and ∣TA(A)/kerGA∣top = UA(A)/ker gA, it follows that one has a continuous
algebra map G̃A∶TA(A)/kerGA → A(k,τ)(X(k,τ)(A)) with ∣G̃A∣top = g̃A.

158 Lemma g̃−1
A is a continuous algebra map from A(k,τ)(X(k,τ)(A)) to

TA(A)/kerGA. Whence G̃A∶TA(A)/kerGA → A(k,τ)(X(k,τ)(A)) is an iso-
morphism in 1,c,sepTopAlg(k,τ).

Proof: Let kX
(k,τ)(A)

sÐ→ A be the k-linear section of gA as defined in the
proof of Lemma 157. One observes that πkerGA

○ s is the inverse g̃−1
A of g̃A.

(Indeed, g̃A(πkerGA
(s(f))) = gA(s(f)) = f for each f ∈ kX

(k,τ)(A).)
The section s is actually a continuous map (k, τ)X(k,τ)(A) sÐ→ (A,σ). In-

deed, first recall that B is a basis of (A,σ)′ which extends G(C), with
C = ̃(Topd

(R,τ))op(A)). So the topology σ on A is the same as the initial

topology induced by (A (b∗)′=bÐÐÐÐ→ (k, τ))b∈B since B∗ is a topological basis
of (A,σ) (Remark 81, p. 36). So let b ∈ B, and let us consider the map
b ○ s∶kX

(k,τ)(A) → k, given by f ↦ b(s(f)) = b(∑χ∈X
(k,τ)(A)

f(χ)χ∗). Thus,
b(s(f)) = ∑χ∈X

(k,τ)(A)
f(χ)b(χ∗) = ∑χ∈X

(k,τ)(A)
f(χ)χ∗(b) = 0 if b /∈ X(k,τ)(A)

and is equal to f(b) if b ∈ X(k,τ)(A). In other terms b ○ s = 0 whenever
b /∈ X(k,τ)(A) and b ○ s = πb when b ∈ X(k,τ)(A), which shows that b ○ s is
continuous for each b, and so is s.

Whence (k, τ)X(k,τ)(A)
g̃−1A =πkerGA

○s
ÐÐÐÐÐÐÐ→ (A,σ)/kerGA is continuous too (where

(A,σ)/kerGA has the quotient topology), and thus is a continuous algebra

map A(k,τ)(X(k,τ)(A))
g̃−1AÐÐ→ TA(A)/kerGA. ◻

159 Corollary Let (k, τ) be a field with a ring topology. Let A be an object
of cMon(TopFreeVect(k,τ)). The Gelfand transform GA is an isomorphism
in cMon(TopFreeVect(k,τ)) if, and only if, A is Gelfand semisimple.
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Proof: Let us assume that kerGA = (0). By Lemma 158, TA(A) GAÐ→
TA(M(k,τ)(X(k,τ)(A))) = A(k,τ)(X(k,τ)(A)) is an isomorphism in the cat-

egory 1,c,sepTopAlg(k,τ). Since TA is fully faithful, it follows that A
GAÐ→

M(k,τ)(X(k,τ)(A)) is an isomorphism in cMon(TopFreeVect(k,τ)). ◻

160 Remark The adjunction from Proposition 149 (p. 73)

Mop
(k,τ) ⊣ X(k,τ)∶Set→ cMon(TopFreeVect(k,τ))op

provides an equivalence of categories between Set and the opposite of full
subcategory of cMon(TopFreeVect(k,τ)) spanned by the Gelfand semisimple
commutative monoids (according to Corollary 159, Lemma 145 (p. 72) and
Remark 150 (p. 73)).

161 Corollary (k, τ) be a field with a ring topology. Let A be an object
of cMon(TopFreeVect(k,τ)). A is Gelfand semisimple if, and only if, A ≃
M(k,τ)(X) for some set X.

Proof: According to Corollary 159, if A is Gelfand semisimple, then
A ≃ M(k,τ)(X(k,τ)(A)). Conversely, let us assume that A ≃ M(k,τ)(X) in
cMon(TopFreeVect(k,τ)) for some set X. Let φ be such an isomorphism.
Since the Gelfand transform is natural (Lemma 148, p. 73), the following
diagram commutes.

A
φ

//

GA

��

M(k,τ)(X)
GM

(k,τ)(X)

��

M(k,τ)(X(k,τ)(A))M
(k,τ)(X(k,τ)(φ))

//M(k,τ)(X(k,τ)(M(k,τ)(X)))

(53)

Example 146 (p. 72) tells us that M(k,τ)(X) is Gelfand semisimple, and
thus by Corollary 159, GM

(k,τ)(X)
is an isomorphism. Since by functoriality,

M(k,τ)(X(k,τ)(φ)) is an isomorphism too, it follows that GA is an isomor-
phism, whence A is Gelfand semisimple. ◻

162 Remark Corollary 161 states that, for a field (k, τ) with a ring topol-
ogy, the essential image (see Section 4.4.4, p. 38) of M(k,τ) is equivalent
to the full subcategory of cMon(TopFreeVect(k,τ)) spanned by the Gelfand
semisimple monoids and thus also to Setop by Remark 160.
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7.2 Von Neumann regular monoids and (topological) semisim-
plicity

When k is an algebraically closed field, a commutative finite-dimensional
(unital) k-algebra A is (Jacobson) semisimple if, and only if, it is of the form
Ak(X) (see Section 2.4.2, p. 15) for a finite set X.

Indeed a finite-dimensional algebra A is artinian18, whence has finitely
many maximal ideals [11, Theorem 7.13, p. 425], and when it is also Jacobson
semisimple the canonical map A

canAÐÐ→∏m∈Max(A)A/m, which thus is one-to-
one, is also onto by [5] since maximal ideals are mutually coprime19, and thus
provides an isomorphism. Now, each m being maximal, A/m is an extension
field of k. By finite-dimensionality of A, A/m certainly is finite-dimensional
too, and k being assumed algebraically closed, A/m is isomorphic to k so
that A ≃ Ak(Max(A)).

Our next goal is to provide a similar characterization for topologically
semisimple commutative monoids in TopFreeVect(k,τ).

Let (k, τ) be a field with a ring topology. Let us consider the full subcat-
egory of cMon(TopFreeVect(k,τ)) spanned by those monoids A whose un-
derlying algebra UA(A) is a (commutative) regular von Neumann k-algebra
with a unit (Definition 37, p. 23), i.e., for each u ∈ A, there exists v ∈ A
with u = uvu. This category is denoted by cVN(k,τ). Its objects are also
referred to as von Neumann regular monoids (the adjective “commutative”
being dropped).

163 Remark cVN(k,τ) is isomorphism-closed, i.e., given an isomorphism

A
fÐ→ B in cMon(TopFreeVect(k,τ)) where either A or B is an object of

cVN(k,τ), then the other also is. (It suffices to transport the weak inverse
map along the isomorphism.)

164 Example Let k be a field, and let τ be a ring topology on k. Then, for
each set X, M(k,τ)X is an object of cVN(k,τ). (Indeed, UA(M(k,τ)(X)) =
Ak(X) and Ak(X) is von Neumann regular, cf. Example 39, p. 23)). There-
fore, M(k,τ) co-restricts as a functor from Setop to cVN(k,τ).

165 Lemma Let (R, τ) be a rigid ring. Let C be an object of ε,cocCoalgR

(see Appendix D, p. 111). Then, X(R,τ)(Ãlg(R,τ)(C)) ≃ GC.
18Equivalently, having the descending chain condition on ideals (i.e., there does not exist

an infinite strictly descending chain of ideals).
19I.e., m1 +m2 = A for each m1,m2 ∈Max(A), m1 /= m2.
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Proof: X(R,τ)(Ãlg(R,τ)(C)) = G(
̃(Topd
(R,τ))op(Ãlg(R,τ)(C))) (by Remark 155,

p. 76) ≃ GC by Theorem 102 (p. 48), since G is a functor. ◻
One already knows from Example 124 (p. 60) that for a rigid ring (R, τ),

CRX ≃ ̃(Topd
(R,τ))op(M(R,τ)(X)) for each set X. Actually this isomorphism

relation is natural in the set X.

166 Lemma Let (R, τ) be a rigid ring. Let X be a set. Then, CR ≃
( ̃(Topd

(R,τ))op)op ○Mop
(R,τ)

.

Proof: By Remark 155 (p. 76), Mop
(R,τ)

≃ ( ̃Alg(R,τ))
op ○ CR, and thus

( ̃(Topd
(R,τ))op)op ○Mop

(R,τ)
≃ ( ̃(Topd

(R,τ))op)op ○ ( ̃Alg(R,τ))
op ○CR ≃ CR. ◻

We are now in position to state the main result of this section.

167 Theorem Let (k, τ) be a field with a ring topology. Let A be an object
of cMon(TopFreeVect(k,τ)). Let us consider the following assertions.

1. A is Gelfand semisimple.

2. A is topologically semisimple.

3. UA(A) is semisimple.

4. ̃(Topd
(k,τ))op(A) is cosemisimple.

5. A is an object of cVN(k,τ).

The following implications hold: 1 ⇒ 2 ⇒ 3⇔ 4 and 1 ⇒ 5 ⇒ 3. Under the
additional assumption that k is algebraically closed, all the above assertions
are equivalent.

Proof: Remark 144 (p. 72) states that 1⇒2.
Remark 137 (p. 69) provides 2⇒3.
Corollary 140 (p. 70) gives 3⇔4.
Corollary 161 (p. 79) establishes the implication 1⇒5 since by Exam-

ple 164 (p. 80), M(k,τ)(X) is an object of cVN(k,τ), and cVN(k,τ) is an
isomorphism-closed category (Remark 163, p. 80).

That 5 ⇒ 3 follows from the definition of cVN(k,τ) and the fact that
any von Neumann regular (unital) algebra (commutative or not) is Jacobson
semisimple. (Indeed, let A = (A,m,1A) be a von Neumann regular algebra.
Let x ∈ J(A). Let y ∈ A such that x = xyx. Then, x(1A − yx) = 0. But
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−yx ∈ J(A) (since J(A) is a two-sided ideal). Since by [10, Proposition 2.9,
p. 64], for each z ∈ J(A), 1 + z is invertible, it follows that x = 0.)

It remains to prove that 3⇒1 for instance, under the assumption that
k is algebraically closed. So let us assume that UA(A) is semisimple. By
Corollary 140 (p. 70), this is equivalent to O(D̃∗(C)) semisimple, with C ∶=
̃(Topd
(k,τ))op(A). But D̃∗(C) = Ã(Ãlg(k,d)(C)) (section 5.3.2.2, p. 52) so

that O(D̃∗(C)) = O(Ã(Ãlg(k,d)(C))) = UA(Ãlg(k,d)(C)), and thus by Corol-
lary 141 (p. 70), Ãlg(k,d)(C) is topologically semisimple. By Corollary 156,
p. 76 (since k is assumed algebraically closed) this equivalently means that
Ãlg(k,d)(C) is Gelfand semisimple. Therefore according to Corollary 159,
p. 78, Ãlg(k,d)(C) ≃M(k,d)(X(k,d)(Ãlg(k,d)(C))).

But

M(k,d)(X(k,d)(Ãlg(k,d)(C))) ≃ M(k,d)(G(C))
(by Lemma 165)

= M(k,d)(X(k,τ)(A))
(according to Proposition 154, p. 74)

≃ Ãlg(k,d)(Ck(X(k,τ)(A))).
(by Remark 155, p. 76)

(54)
Therefore, ̃(Topd

(k,τ))op(A) = C ≃ Ck(X(k,τ)(A)) (since Ãlg(k,d), as any

equivalence, reflects isomorphisms) ≃ ̃(Topd
(k,τ))op(M(k,τ)(X(k,τ)(A))) (by

Lemma 166). Since ̃(Topd
(k,τ))op also reflects isomorphisms, it follows that

A ≃ M(k,τ)(X(k,τ)(A)). Finally, by Corollary 161 (p. 79), A is Gelfand
semisimple, i.e., 1 holds. ◻

As a first corollary one recovers the result recalled at the beginning of
Section 7.2 by considering the discrete topology on the base field.

168 Corollary Let k be an algebraically closed field. Let A be an object of
cMon(FinDimVectk). The finite-dimensional commutative algebra UA(A)
is semisimple if, and only if, O(A) ≃ Ak(Max(O(A))).

169 Corollary Let (k, τ) be an algebraically closed field with a ring topol-
ogy. Then, the essential image (see Section 4.4.4, p. 38) EssIm(M(k,τ)) of
M(k,τ) is equal to cVN(k,τ) and the equivalence cMon(TopFreeMod(k,τ)) ≃
ε,cocCoalgop

k from Corollary 104 (p. 49) restricts to an equivalence cVN(k,τ) ≃
ε,cocCSCoalgop

k (see Definition 196, p. 115, in Appendix D.3). In particular,
cVN(k,τ) ≃ Setop for each ring topology τ on an algebraically closed field k.
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Proof: Theorem 167, together with Remark 162, provides the equality
EssIm(M(k,τ)) = cVN(k,τ).

Proposition 139 states that if C is a cosemisimple (cocommutative) coal-
gebra, then Ãlg(k,τ)(C) is semisimple, whence is an object of cVN(k,τ) by
Theorem 167. By Theorem 167 again, if A is an object of cVN(k,τ), then

the topological dual coalgebra ̃(Topd
(k,τ))op(A) is cosemisimple.

To conclude, the equivalence with Setop follows from Corollary 199,
p. 116 (Appendix D.3). ◻

170 Remark An equivalence of categories cVN(k,τ) ≃ Setop for an alge-
braically closed field with a ring topology (k, τ), whose existence is guaranteed

by Corollary 169, is given by the (restricted) functor cVN(k,τ)
Xop
(k,τ)ÐÐÐ→ Setop

with equivalence inverse the (co-restricted) functor Setop
M
(k,τ)ÐÐÐ→ cVN(k,τ).

Moreover, one also notices that the underlying topologically-free (k, τ)-
vector space Um(A) of a von Neumann regular monoid A has a canonical
topological basis, namely (X(k,τ)(A))∗ = (GC)∗ (with C ∶= ̃(Topd

(k,τ))op(A)).
E.g., (X(k,τ)(M(k,τ)(X))∗ = { (πx)∗∶x ∈X } = { δx∶x ∈X }.

171 Remark Another interpretation of Corollary 169 goes as follows. Let

(R, τ) be a rigid ring. One notices that Setop
P
(R,τ)ÐÐÐ→ FreeTopMod(R,τ)

(Remark 12, p. 14) provides a strong symmetric monoidal functor (see Ap-

pendix B.3, p. 93) Setop
P
(R,τ)ÐÐÐ→ FreeTopMod(R,τ), with coherence components

the isomorphism (R, τ)X ⍟(R,τ) (R, τ)Y
ΩX,YÐÐÐ→ (R, τ)X×Y from Remark 91

(p. 43) and (R, τ) ωÐ→M(R,τ)(1) = (R, τ)1, ω(1R)(∅) ∶= 1R (where, as in Re-
mark 174, p. 92, in Appendix B.2, Set = (Set,×,1) and 1 ∶= {∅}). There-

fore one has an induced functor cocComon(Set)op = cMon(Setop)
P̃
(R,τ)ÐÐÐ→

cMon(TopFreeMod(R,τ)). This functor factors as indicated in the following
diagram (see Remark 174 for the definition of ∆).

cocComon(Setop)
P̃
(R,τ)
//
cMon(TopFreeMod(R,τ))

Setop

∆op

M
(R,τ)

44
(55)

By Corollary 169, for an algebraically closed field (k, τ) with a ring topol-
ogy, there is no other structure of (Gelfand or topologically) semisimple
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monoid than the one corresponding, by means of P̃(k,τ), to the unique di-
agonal cosemigroup on a set (see Remark 174 in Appendix B.2).
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A Category theory

This appendix is about basic and standard concepts from category theory.
One does not worry about size issues and in this presentation “category”
means a locally small category while “set” loosely means both small and
large set.

A.1 Standard notions

One assumes that the reader is familiar with basic notions from category the-
ory among subcategories, (full, faithful) functors, natural transformations,
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natural isomorphisms, equivalence of categories, categorical product, termi-
nal object, left/right adjoints, unit and counit of an adjunction. Only some
notations and terminology about them are introduced. Of course [17] is a
fundamental reference for this subject.

1. Given a category C, an object C of C is also referred to as a C-
object and a morphism of C may be equally called a C-morphism. The
identity at C is usually denoted by idC or just by id. Given C-objects
C,D, C(C,D) denotes the hom-set, i.e., the set of all C-morphisms
from C to D. The identity functor idC, or id, of C is the functor
which is both the identity on objects and on morphisms. As usually
by a C-isomorphism or simply an isomorphism (in C) is meant a C-
morphism f ∈ C(C,D) such that there is a C-morphism g ∈ C(D,C)
with f ○ g = idD and g ○ f = idC . This uniquely defined g is denoted by
f−1 ∶= g. One writes C ≃D to denote isomorphic objects.

2. Some categories: Let R be a non-trivial commutative ring with a unit.

(a) Set the category of sets with set-theoretic maps.

(b) Top the category of Hausdorff topological spaces with continuous
maps.

(c) ModR the category of unital left-R-modules with R-linear maps
(where unital means that the scalar action of the unit of R is the
identity on the module). When R is a field k one uses Vectk

instead.

(d) AlgR the category of (associative) R-algebras and with algebra
maps. (The multiplicationmA of an algebra A thus is in particular
a R-bilinear map A ×A mAÐÐ→ A.)

(e) 1AlgR, cAlgR, and 1,cAlgR are the categories of unital alge-
bras, commutative algebras, and unital and commutative alge-
bras, where in the unital cases the algebra maps are assumed
unit-preserving.

3. A concrete category C over D is a pair (C,C UÐ→D) with U a faithful
functor. Given concrete categories (Ci, Ui), i = 1,2, over D, by a
concrete functor (C1, U1)

FÐ→ (C2, U2) is meant an ordinary functor
C1

FÐ→ C2 such that the following diagram commutes. Such a functor
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is necessarily faithful.

C1
F //

U1
''

C2

U2
ww

D

(56)

4. A functor C
FÐ→ D is essentially surjective when each object D in D

is isomorphic to an object of the form FC, for some object C in C.
Whence an equivalence of categories is a fully faithful and essentially
surjective functor.

5. By an embedding (or embedding functor) C
FÐ→ D is meant a faithful

functor F which is injective on objects. For instance, given a subcate-
gory C of D, the canonical inclusion functor of C in D is an embedding
denoted by C↪D. By a full subcategory is meant a subcategory C of
D such that its embedding functor C↪D is full.

6. Observe that given a category C, each subset X of the objects of C
determines uniquely a full subcategory of C called the full subcategory
of C spanned by X, namely the subcategory CX whose set of objects
is X and CX(C,D) =C(C,D), C,D ∈X.

7. The notation α∶F ⇒ G∶C → D means that α is a natural trans-
formation between two functors C

F,GÐÐ→ D. Given a C-object C,
αC ∈ D(F (C),G(C)) denotes the component at C of α. Thus (αC)C
will be another notation for α. For each functor C

FÐ→ D, there is an
identity at F , idF ∶F ⇒ F ∶C→D with (idF )C ∶= idF (C).

8. A natural isomorphism α∶F ⇒ G∶C → D is a natural transforma-
tion the components of which are isomorphisms in D. Two functors
F,G∶C → D are said to be naturally isomorphic, which is denoted
F ≃ G, if there is a natural isomorphism α∶F ⇒ G∶C→D.

9. C ≃ D means that the categories C and D are equivalent, i.e., that
there is an equivalence of categories C

FÐ→ D. In this situation an
equivalent inverse (or quasi-inverse) of F is a functor D

GÐ→ C such
that there are two natural isomorphisms η∶ idC ⇒ G ○ F ∶C → C and
ε∶F ○G⇒ idD∶D→D.

One observes that an equivalence of categories C FÐ→D reflects isomor-
phisms, i.e., F (C) gÐ→ F (C ′) is a D-isomorphism if, and only if, the
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unique C-morphism C
fÐ→ C ′ such that F (f) = g is a C-isomorphism

([2, Proposition 3.31, p. 35]).

10. The product C×D of two categories C,D, is the category with objects
(C,D), where C is a C-object and D is D-object, and with

C ×D((C1,D1), (C2,D2)) =C(C1,C2) ×D(D1,D2).

Composition is component-wise. By a bifunctor is meant a functor
with domain a product of two categories.

11. The opposite category Cop is the category with the same objects and
morphisms as C but with opposite composition. In other words one
has Cop(D,C) = C(C,D). fop denotes the C-morphism f considered
as a Cop-morphism.

172 Facts (a) (C ×D)op =Cop ×Dop.

(b) Let C
FÐ→ D be a functor. Then, Cop F op

ÐÐ→ Dop is just the functor
F , called the opposite of F . In details, for a C-morphism f ,
F op(fop) = F (f)op. Actually the opposite construction provides a
functor of the meta-category of categories. In particular, idopC =
idCop, and (G ○ F )op = Gop ○ F op for composable functors G,F .

(c) A natural transformation α∶F ⇒ G∶C → D may be also inter-
preted as a natural transformation αop∶Gop ⇒ F op∶Cop → Dop

with the same components but considered as Dop-morphisms. In
details, (αop)C = αop

C for each C-object C. αop is the opposite of
α. In particular, C ≃D if, and only if, Cop ≃Dop.

12. By F ⊣ G∶C → D is meant an adjunction with left adjoint C
FÐ→ D

and right adjoint D GÐ→C.

A.2 The Proof of Lemma 85, p. 38

Proof: Let c be a C-object. Let c
ηcÐ→ G(F (c)) in C be the unit of the

adjunction F ⊣ G∶C→D. One observes that c
ηcÐ→ G(F (c)) = G(E(F0(c))).

Now, let c
fÐ→ G(E(d)) be a C-morphism, with d a EssIm(F )-object. Then,

there exists a unique D-morphism F (c) = E(F0(c))
f ♯Ð→ E(d) such that the
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following diagram commutes.

G(F (c)) G(f
♯)
// G(E(d))

c
f

77

ηc

OO
(57)

Since E is fully faithful, there is a unique EssIm(F )-morphism F0(c)
f̃Ð→ d

such that E(f̃) = f ♯. Of course, the following diagram commutes.

G(F (c)) = G(E(F0(c)))
G(E(f̃))=G(f ♯)

// G(E(d))

c
f

55

ηc

OO
(58)

Since f ♯ = E(f̃) is unique with this property, it follows that f̃ is unique too
with this property. In order to conclude, by applying [17, Theorem 2.(i),
p. 83], it remains to check that η∶ idC ⇒ G ○ E ○ F0∶C → C is a natural
transformation, but this is immediate because G ○E ○ F0 = G ○ F . ◻

B Monoidal categories and functors

This appendix contains basic facts about monoidal categories and monoidal
functors, and a part of it is reprinted from [19]. See [17, Chap. VII] for more
details.

B.1 Monoidal categories and coherence conditions

Throughout C = (C,−⊗−, I, α, λ, ρ) denotes a monoidal category with α the
associativity and λ and ρ the left and right unit constraints (they are referred
to as coherence constraints). These constraints have to make commute some
diagrams to ensure coherence of the monoidal category (see [17, Chap. VII,
p. 165]). The coherence conditions are recalled below.

1. Coherence of associativity: for each C-objects A,B,C,D, the following
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diagram commutes.

((A⊗B)⊗C)⊗D
αA⊗B,C,D

��

αA,B,C⊗idD
// (A⊗ (B ⊗C))⊗D

αA,B⊗C,D
// A⊗ ((B ⊗C)⊗D)
idA⊗αB,C,D

��

(A⊗B)⊗ (C ⊗D) αA,B,C⊗D
// A⊗ (B ⊗ (C ⊗D))

(59)

2. Coherence of left and right units: for eachC-objects A,B, the following
diagram commutes.

(A⊗ I)⊗B

ρA⊗idB &&

αA,I,B
// A⊗ (I ⊗B)

idA⊗λBxx

A⊗B

(60)

A monoidal category is usually abbreviated into C = (C,−⊗−, I) or even
C = (C,− ⊗ −). If C even is symmetric monoidal, the symmetry will be
denoted by σ = (C ⊗D

σC,DÐÐÐ→ D ⊗ C)C,D. Symmetry requires the following
supplementary coherence conditions.

1. Unit coherence for symmetry: for each C-object A, the following dia-
gram commutes.

A⊗ I
σA,I

//

ρA
""

I ⊗A

λA||
A

(61)

2. Associativity coherence for symmetry: for each C-objects A,B,C, the
following diagram commutes.

(A⊗B)⊗C
σA,B⊗idC

//

αA,B,C

��

(B ⊗A)⊗C
αB,A,C

��

A⊗ (B ⊗C)
σA,B⊗C

��

B ⊗ (A⊗C)
idB⊗σA,C
��

(B ⊗C)⊗AαB,C,A
// B ⊗ (C ⊗A)

(62)

3. Inverse law for symmetry: for eachC-objectsA,B, σB,A○σA,B = idA⊗B.
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When C has finite products, then with the tensor product given by the
categorical product and the unit given by the terminal object of C, the above
coherence conditions are automatically fulfilled, and the symmetric monoidal
category thus provided is referred to as cartesian.

If C is a (symmetric) monoidal category, then so is Cop ∶= (Cop,− ⊗op

−, I, (α−1)op, (%−1)op, (λ−1)op), called the dual monoidal category of C.

B.2 Monoids and comonoids

A monoid in C is a triple (C,C ⊗C mÐ→ C, I
eÐ→ C) such that the diagrams

(C ⊗C)⊗C
αC,C,C

��

m⊗idC // C ⊗C

m

��

C ⊗ (C ⊗C)
idC⊗m

��

C ⊗C m
// C

C ⊗ I idC⊗e//

ρC
%%

C ⊗C
m
��

I ⊗Ce⊗idCoo

λCyy
C

commute, while a monoid morphism (C,m, e) Ð→ (C ′,m′, e′) is any f ∶C →
C ′ making the diagrams

C ⊗C m //

f⊗f
��

C

f
��

C ′ ⊗C ′

m′

// C ′

I
e //

e′ ��

C

f
��

C ′

commutative. This defines the category MonC of monoids in C.
The category ComonC of comonoids over C is defined to be (MonCop)op,
the opposite of the category of monoids in Cop. Comonoids thus are triples
(C,C µÐ→ C ⊗C, C εÐ→ I) such that the diagrams

C
µ

//

µ

��

C ⊗C
idC⊗µ
��

C ⊗ (C ⊗C)
α−1C,C,C
��

C ⊗C
µ⊗idC
// (C ⊗C)⊗C

C ⊗ I

ρ−1C %%

C ⊗CidC⊗εoo
ε⊗idC // I ⊗C

C

µ

OO

λ−1C
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commute, while a comonoid morphism (C,µ, ε)Ð→ (C ′, µ′, ε′) is any f ∶C →
C ′ making the diagrams

91



C
µ
//

f
��

C ⊗C
f⊗f
��

C ′

µ′
// C ′ ⊗C ′

C
ε //

f
��

I

C ′
ε′

??

commute.
A monoid (C,m, e) is called commutative if, and only if,m =m○σC,C with

σC,C ∶C⊗C → C⊗C the symmetry; dually, a comonoid (C,µ, ε) is called co-
commutative, provided that µ = σC,C ○µ. By cMonC and cocComonC we de-
note the categories of commutative monoids and cocommutative comonoids
respectively, with all (co)monoid morphisms as morphisms. Of course, one
has cocComonC = (cMonCop)op.

The following are well-known examples of these concepts.

173 Example 1. If C is the (cartesian) monoidal category Set of sets
and maps, then MonC is (isomorphic to) the category of ordinary
monoids.

2. If C is the monoidal category ModR of R-modules and R-linear maps for
a commutative unital ring R with its usual tensor product ⊗R, then:

(a) MonC is isomorphic to the category 1AlgR of unital R-algebras.
Indeed, a unital R-algebra A = (A,mA,1A) corresponds to the
monoid (A,µA, ηA), with A ⊗R A

µAÐ→ A the unique R-linear map
such that µA(x⊗ y) =mA(x, y), x, y ∈ A, and R

ηAÐ→ A is given by
ηA(1R) = 1A. Conversely from a monoid (A,µ, η) one obtains a
unital algebra (A,µbil, η(1R)), where A × A µbilÐÐ→ A is the unique
R-bilinear map associated with A⊗R A

µÐ→ A.
The correspondence O∶ (A,µ, η) ↦ (A,µbil, η(1R)) defines a func-
torial isomorphism Mon(ModR) ≃ 1AlgR, which is the identity
on arrows, and is concrete over ModR (for the obvious forget-
ful functors). (“O” stands for “ordinary” since from O(A) is an
ordinary unital algebra.)

(b) Likewise cMon(ModR) ≃ 1,cAlgR under the (co-)restriction of O
as above.

(c) ComonC is the category εCoalgR of counital R-coalgebras (see
Appendix D, p. 111, for more details).

174 Remark Let C = (C,− × −,1) be a cartesian monoidal category. Let

C
∆CÐÐ→ C × C be the diagonal of the C-object C, i.e., πi ○ ∆C = idC , where
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C ×C πiÐ→ C is the canonical projection, i = 1,2. Let C
!CÐ→ 1 be the terminal

arrow. Then, (C,∆C , !C) is a cocommutative comonoid in C, called the diag-
onal comonoid on C. As a matter of fact C ≃ cocComon(C) under the func-
tor ∆∶C ↦ (C,∆C , !C), with inverse the forgetful functor cocComon(C) →
C. (See [20, p. 5].)

This happens in particular with C ∶= Set, and in such case ∆(X) =
(X,∆X , !X) with ∆X(x) = (x,x), !X(x) = ∅, x ∈X (with 1 ∶= {∅}).

B.3 Monoidal functors and their induced functors

We briefly recall the following definitions and facts, too, which are funda-
mental for this note. See e.g. [3, 22] for a more detailed treatment and for
the missing proofs.

175 Definition Let C = (C,− ⊗ −, I) and C′ = (C′,− ⊗′ −, I ′) be monoidal
categories. A lax monoidal functor from C to C′ is a triple F ∶= (F,Φ, φ),
where F ∶C→C′ is a functor, ΦC1,C2 ∶FC1⊗′FC2 → F (C1⊗C2) is a natural
transformation and φ∶ I ′ → FI is a C-morphism, subject to certain coher-
ence conditions (see the diagrams below). A lax monoidal functor is called
strong monoidal (resp. strict monoidal ), if Φ and φ are isomorphisms (resp.
identities). Φ, φ are the coherence constraints of F.

1. Associativity coherence: for each C-objects A,B,C the following dia-
gram commutes.

(FA⊗′ FB)⊗′ FC
ΦA,B⊗

′idFC
��

α′FA,FB,FC
// FA⊗′ (FB ⊗′ FC)

idA⊗
′ΦB,C

��

F (A⊗B)⊗′ FC
ΦA⊗B,C

��

FA⊗′ F (B ⊗C)
ΦA,B⊗C
��

F ((A⊗B)⊗C)
F (αA,B,C)

// F (A⊗ (B ⊗C))

(63)

2. Left unit coherence: for each C-object B, the following diagram com-
mutes.

I ′ ⊗′ FBφ⊗′idFB//

λ′FB
��

FI ⊗′ FB
ΦI,B
��

FB F (I ⊗B)
FλB

oo

(64)
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3. Right unit coherence: for each C-object A, the following diagram com-
mutes.

FA⊗′ I ′idFA⊗
′φ
//

ρ′FA
��

FA⊗′ FI
ΦA,I
��

FB F (B ⊗ I)
FρA

oo

(65)

Let C,C′ be symmetric. A monoidal functor F∶C → C′ is said to be
symmetric when furthermore the following diagram commutes for each C-
objects A,B.

FA⊗′ FB
σ′FA,FB

//

ΦA,B
��

FB ⊗′ FA
ΦB,A
��

F (A⊗B)
FσA,B

// F (B ⊗A)

(66)

176 Facts Let C ∶= (C,⊗, I), C′ ∶= (C′,⊗′, I ′) and C′′ ∶= (C′′,⊗′′, I ′′) be
(symmetric) monoidal categories.

1. idC ∶= (idC, id−⊗−, idI) is a monoidal functor from C to itself, and
serves as a unit for the composition of monoidal functors given below.
If no ambiguities arise, one let id ∶= idC.

2. Given (symmetric) monoidal functors F = (F,Φ, φ)∶C → D and G =
(G,Ψ, ψ)∶D → E, one defines a (symmetric) monoidal functor G ○ F ∶=
H = (H,Θ, θ)∶C→ E with

(a) H = G ○ F .
(b) Given objects C1,C2 of C, ΘC1,C2 is the composite C′′-morphism

G(F (C1))⊗′′GF (C2)
ΨF (C1),F (C2)ÐÐÐÐÐÐÐ→ G(F (C1)⊗′F (C2))

G(ΦC1,C2
)

ÐÐÐÐÐÐ→
G(F (C1 ⊗C2)).

(c) θ ∶= I ′′ ψÐ→ G(I ′) G(φ)ÐÐÐ→ G(F (I)).

By a (symmetric) monoidal subcategory of a (symmetric) monoidal category
C = (C,−⊗−, I) we mean a subcategory C′ of C, closed under tensor prod-
ucts, containing I, and the coherence constraints of C between C′-objects.
(The last condition is automatically fulfilled when C′ is a full subcategory.)
The embedding EC′ of C′ into C then is a strict monoidal functor EC′ .
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Let F = (F,Φ, φ)∶C → D be a monoidal functor, and let C′ and D′ be
monoidal subcategories of C and D, respectively. By a restriction of F to these
subcategories is meant a monoidal functor F′ = (F ′,Φ′, φ′)∶C′ → D′ such that
(a) F ′C = FC for all C′-object C, (b) Φ′

A,B = ΦA,B for all C′-objects A,B,
and (c) φ′ = φ. This is equivalent to saying that F ○ EC′ = ED′ ○ F′.

177 Proposition Let F = (F,Φ, φ)∶C→ C′ be a lax monoidal functor.

F̃(M,m, e) = (FM,FM ⊗ FM
ΦM,MÐÐÐ→ F (M ⊗M) FmÐÐ→ FM, I ′

φÐ→ FI
FeÐ→

FM) and F̃f = Ff define an induced functor F̃∶MonC→MonC′, such that
the diagram

MonC F̃ //

Um

��

MonC′

U ′

m

��

C
F

// C′

commutes (with forgetful functors Um and U ′
m).

178 Remark 1. When F is symmetric, then F̃ also provides a functor
cMonC to cMonC′ with similar properties as above.

2. ĩdC = idMon(C).

3. G̃ ○ F = G̃ ○ F̃.

The data F = (F,Φ, φ) consisting of a functor C
FÐ→ C′, and, for each

C-objects C1,C2, C′-morphisms

1. ΦC1,C2 ∶F (C1 ⊗C2)→ F (C1)⊗′ F (C2),

2. F (I) φÐ→ I ′

such that (F op,Φop, φop)∶Cop ⇒ C′op is a monoidal functor, is referred to
as an opmonoidal functor from C to C′. The construction of the opposite
monoidal functor F↦ Fop ∶= (F op,Φop, φop) of an opmonoidal functor clearly
is a one-one correspondence between opmonoidal functors from C to C′ and
monoidal functors from Cop to C′op. The opposite opmonoidal functor Fop

of a monoidal functor F is defined similarly.
An opmonoidal functor F is said lax, strong, strict, symmetric if Fop is so

as a monoidal functor. Moreover opmonoidal functors compose in the dual
way as monoidal functors do.
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179 Remark By duality an opmonoidal functor F from C to C′ induces a
functor Fm ∶= F̃opop∶ComonC → ComonC′, commuting with the forgetful
functors as in the diagram above.

A strong monoidal functor F = (F,Φ, φ)∶C → C′ may also be considered
as a strong opmonoidal functor Fd ∶= (F,Φ−1, φ−1)∶C → C′, the dual of F.
Thus it also induces a functor Fd

m∶ComonC→ComonC′.
Of course, one may also define the dual of a strong opmonoidal functor

F = (F,Φ, φ)∶C→ C′ as Fd ∶= (F,Φ−1, φ−1)∶C→ C′ which is a strong monoidal
functor.

Observe that

1. idd
C = idC.

2. If G∶C′ → C′′ is also a strong monoidal functor, then G ○ F is strong,
and (G ○ F)d = Fd ○Gd.

3. (Fd)d = F.

4. (Fop)d = (Fd)op.

180 Definition Let F = (F,Φ, φ) and G = (G,Ψ, ψ) be monoidal functors
from C to C′. A natural transformation α∶F ⇒ G∶C → C′ is a monoidal
transformation α∶F ⇒ G∶C → C′ when the following diagrams commute, for
every C-objects C1,C2.

FC1 ⊗′ FC2

αC1
⊗′αC2//

ΦC1,C2
��

GC1 ⊗′ GC2

ΨC1,C2
��

F (C1 ⊗C2)αC1⊗C2

// G(C1 ⊗C2)

(67)

and
I ′

φ
//

ψ   

FI

αI
��

GI

(68)

181 Remark 1. Let α∶F⇒ G∶C→ C′ be a monoidal transformation. Let
α̃(C,m,e) ∶= αC for a monoid (C,m, e) in C. Then, α̃∶ F̃⇒ G̃∶MonC →
MonC′.
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2. Let α∶F⇒ G∶C→ C′ be a monoidal transformation between symmetric
monoidal functors. Then, α̃ as above provides a natural transformation
F̃⇒ G̃∶ cMonC→ cMonC′. In other words, a monoidal transformation
between symmetric monoidal functors, is automatically “symmetric”.

3. By duality, when α∶Fop ⇒ Gop∶Cop → C′op is a monoidal transfor-
mation, between opmonoidal functors F,G from C to C′, one defines
(αm)(C,µ,ε) ∶= αop

C for a comonoid (C,µ, ε) in C, and then αm∶Gm ⇒
Fm∶ComonC → ComonC′. When furthermore F and G are symmet-
ric, αm∶Gm ⇒ Fm∶ cocComonC→ cocComonC′.

4. Let α∶F ⇒ G∶C → C′ be a monoidal transformation between strong
monoidal functors, then αop∶Gop → F op∶Cop → C′op also provides
a monoidal transformation αd∶ (Gd)op → (Fd)op∶Cop → C′op between
strong monoidal functors, called the dual of α.

A monoidal isomorphism is a monoidal transformation which is a natural
isomorphism.

182 Remark Let α∶F ⇒ G∶C → C′ be a monoidal isomorphism. Since for
each C-objects C1,C2, (αC1⊗′αC2)−1 = α−1

C1
⊗′α−1

C2
and (αC1⊗C2)−1 = α−1

C1⊗C2
,

Diag. (67) and (68) still commute when α is replaced by α−1, and thus
α−1∶G⇒ F∶C→ C′ is also a monoidal isomorphism.

Accordingly, the induced natural transformation α̃∶ F̃ ⇒ G̃∶Mon(C) →
Mon(C′) is a natural isomorphism with inverse (α̃)−1 = (̃α−1).

A monoidal equivalence of monoidal categories is given by a monoidal
functor F such that there are a monoidal functor G and monoidal isomor-
phisms η∶ id⇒ G ○F and ε∶F ○G⇒ id. If F∶C→ C′ is a monoidal equivalence,
then C and C′ are monoidally equivalent.

183 Remark If F is a monoidal equivalence, then F̃ is an equivalence be-
tween the corresponding categories of monoids.

184 Remark Let F,G∶C′ → C be strong monoidal functors. Let η∶ id⇒ G○F
and ε∶F ○ G ⇒ id be monoidal isomorphisms. Whence ηd∶ (Fd)op ○ (Gd)op =
((G ○ F)d)op ⇒ (idd

C)op = idCop and εd∶ idC′op = ((idC′)d)op ⇒ (Gd)op ○ (Fd)op

are also monoidal isomorphisms, and this provides a monoidal equivalence
between Cop and C′op.
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C Monoidality of ⍟(R,τ) and its consequences: the
proofs

In what follows (R, τ) is a rigid ring.

C.1 Proof of Proposition 98, p. 47

C.1.1 Notations

The coherence constraints of FreeModR are those of ModR, and are given by
(M⊗RN)⊗RP

αM,N,PÐÐÐÐ→M⊗R(N⊗RP ), (u⊗v)⊗w ↦ u⊗(v⊗w) (associativity),
R ⊗R N

λNÐÐ→ N , 1R ⊗ v ↦ v (left unit), M ⊗R R
ρMÐÐ→ M , u ⊗ 1R ↦ u (right

unit) and M ⊗R N
σM,NÐÐÐ→ N ⊗RM , u⊗ v ↦ v ⊗ u (symmetry).

C.1.2 Associativity constraint

C.1.2.1 Definition

Let (M,σ), (N,γ) and (P,µ) be topologically-free (R, τ)-modules. One

defines an isomorphism ((M,σ) ⍟(R,τ) (N,γ)) ⍟(R,τ) (P,µ)
α
(M,σ),(N,γ),(P,µ)ÐÐÐÐÐÐÐÐÐÐ→

(M,σ)⍟(R,τ)((N,γ)⍟(R,τ)(P,µ)) by α(M,σ),(N,γ),(P,µ) ∶= ((Λ(M,σ)′⊗R(N,γ)′⊗R

id(P,µ)′) ○ α−1
(M,σ)′,(N,γ)′,(P,µ)′ ○ (id(M,σ)′ ⊗R Λ−1

(N,γ)′⊗R(P,µ)′
))∗.

C.1.2.2 Explicit form

Let (M,σ), (N,γ) and (P,µ) be topologically-free (R, τ)-modules with re-
spective topological bases, B,D,E. As already known by Proposition 96
(p. 45), (b ⍟ d)(b,d)∈B×E is a topological basis of (M,σ) ⍟(R,τ) (N,γ), and
((b⍟d)⍟e)(b,d,e)∈B×D×E is a topological basis of ((M,σ)⍟(R,τ) (N,γ))⍟(R,τ)
(P,µ).

Likewise (b⍟ (d⍟ e))(b,d,e)∈B×D×E is a topological basis for (M,σ)⍟(R,τ)
((N,γ)⍟(R,τ) (P,µ)).

According to Lemma 55 (p. 28), one has an isomorphism, and only one,
in TopMod(R,τ), given by

θ∶ (b⍟ d)⍟ e↦ b⍟ (d⍟ e),

(b, d, e) ∈ B ×D ×E.

185 Example Let u ∈ M , v ∈ N , and w ∈ P . Then, θ((u ⍟ v) ⍟ w) =
u⍟ (v ⍟w).
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One claims that
θ = α(M,σ),(N,γ),(P,µ). (69)

Eq. (69) is equivalent to

(id(M,σ)′ ⊗R Λ(N,γ)′⊗R(P,µ)′)∗ ○ θ
= ((Λ(M,σ)′⊗R(N,γ)′ ⊗R id(P,µ)′) ○ α−1

(M,σ)′,(N,γ)′,(P,µ)′)
∗.

(70)

According to Corollary 54 (p. 28) it suffices to check the equality on a topo-
logical basis of ((M,σ)⍟(R,τ) (N,γ))⍟(R,τ) (P,µ).

Let us first compute ((id(M,σ)′ ⊗R Λ(N,γ)′⊗R(P,µ)′)∗ ○ θ)((b ⍟ d) ⍟ e) =
(b⍟ (d⍟ e)) ○ (id(M,σ)′ ⊗R Λ(N,γ)′⊗R(P,µ)′) for b ∈ B, d ∈D and e ∈ E.

One has for `1 ⊗ (`2 ⊗ `3) ∈ (M,σ)′ ⊗R ((N,γ)′ ⊗R (P,µ)′),

((b⍟ (d⍟ e)) ○ (id(M,σ)′ ⊗R Λ(N,γ)′⊗R(P,µ)′))(`1 ⊗ (`2 ⊗ `3))
= (b⍟ (d⍟ e))(`1 ⊗Λ(N,γ)′⊗R(P,µ)′(`2 ⊗ `3))
= `1(b)(Λ(N,γ)′⊗R(P,µ)′(`2 ⊗ `3))(d⍟ e)
= `1(b)((d⍟ e)(`2 ⊗ `3))
= `1(b)(`2(d)`3(e)).

(71)

Secondly, let us compute for b ∈ B, d ∈D and e ∈ E,

((Λ(M,σ)′⊗R(N,γ)′ ⊗R id(P,µ)′) ○ α−1
(M,σ)′,(N,γ)′,(P,µ)′)

∗((b⍟ d)⍟ e)
= ((b⍟ d)⍟ e) ○ (Λ(M,σ)′⊗R(N,γ)′ ⊗R id(P,µ)′) ○ α−1

(M,σ)′,(N,γ)′,(P,µ)′
(72)

One has for (`1 ⊗ (`2 ⊗ `3) ∈ (M,σ)′ ⊗R ((N,γ)′ ⊗R (P,µ)′),

(((b⍟ d)⍟ e) ○ (Λ(M,σ)′⊗R(N,γ)′ ⊗R id(P,µ)′) ○ α−1(M,σ)′,(N,γ)′,(P,µ)′)(`1 ⊗ (`2 ⊗ `3))
= (((b⍟ d)⍟ e) ○ (Λ(M,σ)′⊗R(N,γ)′ ⊗R id(P,µ)′))((`1 ⊗ `2)⊗ `3)
= ((b⍟ d)⍟ e)((Λ(M,σ)′⊗R(N,γ)′(`1 ⊗ `2))⊗ `3)
= (Λ(M,σ)′⊗R(N,γ)′(`1 ⊗ `2))(b⍟ d)`3(e)
= ((b⍟ d)(`1 ⊗ `2))`3(e)
= `1(b)`2(d)`3(e).

(73)

C.1.2.3 Coherence of the associativity constraint

In view of Eq. (69), by definition of θ, coherence of the associativity con-
straint (i.e., that Diag. (59), p. 90, commutes) is easily checked: it suf-
fices to compute both arrows of Diag. (59) on a topological basis of say
(((M,σ) ⍟(R,τ) (N,γ)) ⍟(R,τ) (P,µ)) ⍟(R,τ) (Q,ω), and then apply Corol-
lary 54, p. 28.
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C.1.3 Left unit constraint

Let (R, τ)′ ψÐ→ R be the isomorphism given by ψ(`) = `(1R) and ψ−1(1R) =
idR.

The left unit constraint λ(M,σ) for (M,σ) a topologically-free (R, τ)-
module, is defined as illustrated in the following diagram.

(R, τ)⍟(R,τ) (M,σ)
(ψ−1⊗Rid(M,σ)′)

∗

��

λ
(M,σ)

// (M,σ)

(R⊗R (M,σ)′)∗
(λ−1
(M,σ)′

)∗
// ((M,σ)′)∗

Γ−1
(M,σ)

OO
(74)

Let B be a topological basis of (M,σ). Let ϑ∶ (R, τ) ⊗(R,τ) (M,σ) ≃
(M,σ) be given by θ(1 ⍟ b) = b, b ∈ B. One claims that ϑ = λ(M,σ). To see
this it suffices to check that

Γ(M,σ) ○ ϑ = ((ψ−1 ⊗R id(M,σ)) ○ λ−1
(M,σ)′)

∗.

Let b ∈ B and let ` ∈ (M,σ)′. Then,

(Γ(M,σ)(θ(1R ⍟ b)))(`) = (Γ(M,σ)(b))(`) = `(b).

One also has

(((ψ−1 ⊗R id(M,σ)′) ○ λ−1
(M,σ)′)

∗(1R ⍟ b))(`)
= ((1R ⍟ b) ○ (ψ−1 ⊗R id(M,σ)′) ○ (λ−1

(M,σ)′))(`)
= (1R ⍟ b)((ψ−1 ⊗R id(M,σ)′)(1R ⊗ `))
= (1R ⍟ b)(ψ−1(1R)⊗ `)
= (1R ⍟ b)(idR ⊗ `)
= idR(1R)`(b)
= `(b).

(75)

C.1.4 Right unit constraint

The right unit constraint ρ(M,σ) for (M,σ) a topologically-free (R, τ)-module,
is defined as illustrated in the following diagram.

(M,σ)⍟(R,τ) (R, τ)
(id
(M,σ)′⊗Rψ

−1)∗

��

ρ
(M,σ)

// (M,σ)

((M,σ)′ ⊗R R)∗
(ρ−1
(M,σ)′

)∗
// ((M,σ)′)∗

Γ−1
(M,σ)

OO
(76)
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Let B be a topological basis of (M,σ). Let ω∶ (M,σ) ⍟(R,τ) (R, τ) ≃
(M,σ) be defined by ω(b ⍟ 1R) = b, b ∈ B. One claims that ρ(M,σ) = ω. To
see this it suffices to check that Γ(M,σ) ○ω = (ρ−1

(M,σ)′)
∗ ○ (id(M,σ)′ ⊗R ψ

−1)∗ =
((id(M,σ)′ ⊗R ψ

−1) ○ ρ−1
(M,σ)′)

∗.
Let b ∈ B, and let ` ∈ (M,σ)′. Then,

(Γ(M,σ)(ω(b⍟ 1R)))(`) = (Γ(M,σ)(b))(`) = `(b).

One also has

(((id(M,σ)′ ⊗R ψ
−1) ○ ρ−1

(M,σ)′)
∗(b⍟ 1R))(`)

= ((b⍟ 1R) ○ (id(M,σ)′ ⊗R ψ
−1) ○ ρ−1

(M,σ)′)(`)
= (b⍟ 1R)(id(M,σ)′ ⊗R ψ

−1)(`⊗ 1R)
= (b⍟ 1R)(`⊗ ψ−1(1R))
= (b⍟ 1R)(`⊗ idR)
= `(b)idR(1R)
= `(b).

(77)

C.1.5 Coherence of the left and right unit constraints

One has to check that the following diagram commutes for every topologically-
free (R, τ)-modules (M,σ), (N,γ) (where ⍟ is an abbreviation for ⍟(R,τ)).

((M,σ)⍟ (R, τ))⍟ (N,γ)

ρ(M,σ)⍟id(N,γ) ++

α(M,σ),(R,τ),(N,γ)
// (M,σ)⍟ ((R, τ)⍟ (N,γ))

id(M,σ)⍟λ(N,γ)ss

(M,σ)⍟ (N,γ)

(78)

Let B,D be respective topological bases of (M,σ) and (N,γ). Let (b, d) ∈
B ×D. One has

(id(M,σ) ⍟(R,τ) λ(N,γ))(α(M,σ),(R,τ),(N,γ)((b⍟ 1R)⍟ d))
= (id(M,σ) ⍟(R,τ) λ(N,γ))(b⍟ (1⍟ d))
= b⍟ d.

(79)

One also has (ρ(M,σ) ⍟(R,τ) id(N,γ))((b⍟ 1)⍟ d) = b⍟ d.

C.1.6 Symmetry constraint

C.1.6.1 Explicit form

Let (M,σ), (N,γ) be two topologically-free (R, τ)-modules. The symmetry
constraint σ(M,σ),(N,γ)∶ (M,σ)⍟(R,τ) (N,γ)→ (N,γ)⍟(R,τ) (M,σ) is defined
as σ∗

(N,γ)′,(M,σ)′ .
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Let B (resp. D) be a topological basis of (M,σ) (resp. (N,γ)). Let
o∶ (M,σ) ⍟(R,τ) (N,γ) = ((M,σ)′ ⊗R (N,γ)′)∗ → (N,γ) ⍟(R,τ) (M,σ) =
((N,γ)′ ⊗R (M,σ)′)∗ be given by o(b⍟ d) = d⍟ b, (b, d) ∈ B ×D.

One claims that σ(M,σ),(N,γ) = o. Let `1 ∈ (M,σ)′ and `2 ∈ (N,µ)′.
One has (σ(M,σ),(N,γ)(b ⍟ d))(`2 ⊗ `1) = (σ∗(N,γ)′,(M,σ)′(b ⍟ d))(`2 ⊗ `1) =
(b⍟d)(σ(N,γ)′,(M,σ)′(`2⊗ `1)) = (b⍟d)(`1⊗ `2) = `1(b)`2(d) = `2(d)⊗ `1(b) =
(d⍟ b)(`2 ⊗ `1) = (o(b⍟ d))(`2 ⊗ `1).

C.1.6.2 Coherence of the symmetry constraint

First σ(N,γ)○σ(M,σ) = id(M,σ)⍟
(R,τ)(N,γ)

since one has (σ(N,γ)(σ(M,σ)(b⍟d)) =
σ(N,γ)(d⍟ b) = b⍟ d, (b, d) ∈ B ×D.

Secondly, one has to check that the following diagram commutes for
topologically-free (R, τ)-modules (M,σ), (N,γ) and (P,µ) (where again ⍟
stands for an abbreviation of ⍟(R,τ)).

((M,σ)⍟ (N,γ))⊗(R,τ) (P,µ)
α
(M,σ),(N,γ),(P,µ)

��

σ
(M,σ),(N,γ)⍟id(P,µ)

// ((N,γ)⍟ (M,σ))⍟ (P,µ)
α
(N,γ),(M,σ),(P,µ)

��

(M,σ)⍟ ((N,γ)⍟ (P,µ))
σ
(M,σ),(N,γ)⍟(P,µ)

��

(N,γ)⍟ ((M,σ)⍟ (P,µ))
id
(N,γ)⍟σ(M,σ),(P,µ)

��

((N,γ)⍟ (P,µ))⍟ (M,σ)α
(N,γ),(P,µ),(M,σ)

// (N,γ)⍟ ((P,µ)⍟ (M,σ))

(80)

Let B,D,E be respective topological bases of (M,σ), (N,γ) and (P,µ).
Let (b, d, e) ∈ B ×D × E. The top-right sequence of arrows acts as follows:
(b⍟ d)⍟ e↦ (d⍟ b)⍟ e↦ d⍟ (b⍟ e)↦ d⍟ (e⍟ b), whereas the left-bottom
sequence of arrows acts as follows: (b⍟ d)⍟ e ↦ b⍟ (d⍟ e) ↦ (d⍟ e)⍟ b ↦
d⍟ (e⍟ b).

Thirdly, it remains to check commutativity of the following diagram for
each topologically-free (R, τ)-module (M,σ) which is almost immediate by
computing the corresponding morphisms at the level of a topological basis
(b⍟ 1R)b∈B of (M,σ)⍟(R,τ) (R, τ), where B is a topological basis of (M,σ).

(M,σ)⍟(R,τ) (R, τ)

ρ
(M,σ)

((

σ
(M,σ),(R,τ)

// (R, τ)⍟(R,τ) (M,σ)

λ
(M,σ)vv

(M,σ)

(81)
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C.2 Proof of Theorem 102, p. 48

C.2.1 Alg(R,τ) is a strong symmetric monoidal functor

Let M,N be free R-modules. Let B (resp. D) be a linear basis of M (resp.
N). Then by Lemma 56 (p. 28), B∗ (resp. D∗) is a topological basis of
(M∗,w∗

(R,τ)) (resp. (N
∗,w∗

(R,τ))). It follows that { b
∗ ⍟ d∗∶ (b, d) ∈ B ×D } is

a topological basis of (M∗,w∗
(R,τ))⍟ (N

∗,w∗
(R,τ)).

Let b ∈ B, d ∈D. Let v ∈M and w ∈ N . Then,

ΦM,N(b∗ ⍟ d∗)(v ⊗w) = (b∗ ⍟ d∗)((ΛM ⊗R ΛN)(v ⊗w))
= (b∗ ⍟ d∗)(ΛM(v)⊗ΛN(w))
= (ΛM(v)(b∗))(ΛN(w))(d∗)
= b∗(v)d∗(w)
= (b⊗ d)∗(v ⊗w).

(82)

Whence
ΦM,N(b∗ ⍟ d∗) = (b⊗ d)∗, b ∈ B,d ∈D. (83)

Now to prove that

Alg(R,τ) = (Alg(R,τ),Φ, φ)∶FreeModop
R → TopFreeMod(R,τ)

is symmetric monoidal, one has to prove that the following diagrams com-
mute. (That it is strong will follow since all coherence maps are isomor-
phisms.) In the diagrams below, M∗,N∗, ... abbreviate (M∗,w∗

(R,τ)),
(N∗,w∗

(R,τ)), ..., and ⍟ stands for ⍟(R,τ).

(M∗ ⍟N∗)⍟ P ∗
αM∗,N∗,P∗

//

ΦM,N⍟idP∗

��

M∗ ⍟ (N∗ ⍟ P ∗)
idM∗⍟ΦN,P
��

(M ⊗R N)∗ ⍟ P ∗

ΦM⊗RN,P

��

M∗ ⍟ (N ⊗R P )∗

ΦM,N⊗RP

��

((M ⊗R N)⊗R P )∗
(α−1M,N,P )

∗

// (M ⊗R (N ⊗R P ))∗

(84)

M∗ ⍟ (R, τ)
ρM∗

��

idM∗⍟φ
//M∗ ⍟R∗

ΦM,R
��

M∗ (M ⊗R R)∗
(ρ−1M )

∗

oo

(85)
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(R, τ)⍟N∗

λN∗

��

φ⍟idN∗

// R∗ ⍟N∗

ΦR,N
��

N∗ (R⊗R N)∗
(λ−1N )

∗

oo

(86)

and
M∗ ⍟N∗

ΦM,N
��

σM∗,N∗

// N∗ ⍟M∗

ΦN,M
��

(M ⊗R N)∗
σ∗N,M

// (N ⊗RM)∗

(87)

Let E be a free basis of P .

1. Let (b, d, e) ∈ B × D × E. The top-right sequence of arrows acts as
follows: (b∗ ⍟ d∗) ⍟ e∗ ↦ b∗ ⍟ (d∗ ⍟ e∗) ↦ b∗ ⍟ (d ⊗ e)∗ (according to
Eq.(83)) ↦ (b ⊗ (d ⊗ e))∗. The right-bottom sequence of arrows acts
as: (b∗ ⍟ d∗)⍟ e∗ ↦ (b⊗ d)∗ ⍟ e∗ ↦ ((b⊗ d)⊗ e)∗ ↦ (b⊗ (d⊗ e))∗.

2. One has for v ∈M and b ∈ B, ((ρ−1
M )∗((ΛM ⊗R ΛR)∗((idM∗ ⍟ φ)(b∗ ⍟

1R))))(v) = (((ΛM ⊗RΛR)○ρ−1
M )∗((idM∗⍟φ)(b∗⍟1R)))(v) = ((idM∗⍟

φ)(b∗⍟1R))((ΛM ⊗R ΛR) ○ρ−1
M )(v) = (b∗⍟φ(1R))(ΛM(v)⊗ΛR(1R)) =

(b∗ ⍟ idR)(ΛM(v) ⊗ ΛR(1R)) = (ΛM(v))(b∗)(ΛR(1R))(idR) = b∗(v) =
(ρM∗(b∗ ⍟ 1R))(v).

3. Given w ∈ N and d ∈D,

(((λ−1
N )∗ ○ (ΛR ⊗R ΛN)∗ ○ (φ⍟ idN∗))(1R ⊗(R,τ) d∗))(w)

= ((φ⍟ idN∗)(1R ⍟ d∗))((ΛR ⊗R ΛN)(λ−1
N (w)))

= (φ(1R)⍟ idN∗(d∗))((ΛR ⊗R ΛN)(1⊗w))
= (idR ⍟ d∗)(ΛR(1R)⊗ΛN(w))
= (ΛR(1R))(idR)(ΛN(w))(d∗)
= idR(1R)d∗(w)
= d∗(w)
= (λN∗(1R ⍟ d∗))(w).

(88)

4. Let (b, d) ∈ B ×D and let (u, v) ∈M ×N . One has

((ΛN ⊗R ΛM)∗(σM∗,N∗(b∗ ⍟ d∗)))(v ⊗ u)
= (σM∗,N∗(b∗ ⍟ d∗))(ΛN(v)⊗ΛM(u))
= (d∗ ⍟ b∗)(ΛN(v)⊗ΛM(u))
= d∗(v)b∗(u).

(89)
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One also has (σ∗N,M((ΛM⊗RΛN)∗(b∗⍟d∗)))(v⊗u) = ((ΛM⊗RΛN)∗(b∗⍟
d∗))(σN,M(v⊗u)) = ((ΛM⊗RΛN)∗(b∗⍟d∗))(u⊗v) = (b∗⍟d∗))(ΛM(u)⊗
ΛN(v)) = b∗(u)d∗(v).

C.2.2 Top(R,τ) is a strong symmetric monoidal functor

One claims that Top(R,τ) = (Top(R,τ),Ψ, ψ) is a strong symmetric monoidal
functor from TopFreeModop

(R,τ)
to FreeModR.

To see this one needs to check that the following diagrams commute
for each topologically-free (R, τ)-modules (M,σ), (N,γ), (P,µ). (Below ⍟
stands for ⍟(R,τ) and ⊗ means ⊗R.)

((M,σ)′ ⊗ (N,γ)′)⊗ (P,µ)′

Ψ
(M,σ),(N,γ)⊗id(P,µ)′

��

α
(M,σ)′,(N,γ)′,(P,µ)′

// (M,σ)′ ⊗ ((N,γ)′ ⊗ (P,µ)′)
id
(M,σ)′⊗Ψ

(N,γ),(P,µ)

��

((M,σ)⍟ (N,γ))′ ⊗ (P,µ)′

Ψ
(M,σ)⍟(N,γ),(P,µ)

��

(M,σ)′ ⊗ ((N,γ)⍟ (P,µ))′

Ψ
(M,σ),(N,γ)⍟(P,µ)

��

(((M,σ)⍟ (N,γ))⍟ (P,µ))′
(α−1
(M,σ),(N,γ),(P,µ)

)′
// ((M,σ)⍟ ((N,γ)⍟ (P,µ)))′

(90)

(M,σ)′ ⊗R
ρ
(M,σ)′

��

id
(M,σ)′⊗ψ

// (M,σ)′ ⊗ (R, τ)′

Ψ
(M,σ),(R,τ)

��

(M,σ)′ ((M,σ)⍟ (R, τ))′
(ρ−1
(M,σ)

)′
oo

(91)

R⊗ (N,γ)′

λ
(N,γ)′

��

ψ⊗id
(N,γ)′
// (R, τ)′ ⊗ (N,γ)′

Ψ
(R,τ),(N,γ)

��

(N,γ)′ ((R, τ)⍟ (N,γ))′
(λ−1
(N,γ)

)′
oo

(92)

and
(M,σ)′ ⊗ (N,γ)′

σ
(M,σ)′,(N,γ)′

//

Ψ
(M,σ),(N,γ)

��

(N,γ)′ ⊗R (M,σ)′

Ψ
(N,γ),(M,σ)

��

((M,σ)⍟ (N,γ))′
σ′
(N,γ),(M,σ)

// ((N,γ)⍟ (M,σ))′

(93)
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Let B,D,E be respective topological bases of (M,σ), (N,γ) and (P,µ).
By Lemma 62 (p. 29), B′,D′ and E′ are respective linear bases of (M,σ)′,
(N,γ)′ and (P,µ)′.

1. Let b, b1 ∈ B, d, d1 ∈D and e, e1 ∈ E. One has

((Ψ(M,σ),(N,γ)⍟(P,µ) ○ (id(M,σ)′ ⊗Ψ(N,γ),(P,µ))((b′⊗d′)⊗ e′))(b1⍟ (d1⍟
e1)) = ((Λ(M,σ)′⊗((N,γ)⍟(P,µ))′ ○ (id(M,σ)′ ⊗ Λ(N,γ)′⊗(P,µ)′)(b′ ⊗ (d′ ⊗
e′)))(b1 ⍟ (d1 ⍟ e1)) = ((Λ(M,σ)′⊗((N,γ)⍟(P,µ))′(b′ ⊗ Λ(N,γ)′⊗(P,µ)′(d′ ⊗
e′)))(b1 ⍟ (d1 ⍟ e1)) = (b1 ⍟ (d1 ⍟ e1))(b′ ⊗ Λ(N,γ)′⊗(P,µ)′(d′ ⊗ e′)) =
b′(b1)((d1 ⍟ e1)(Λ(N,γ)′⍟(P,µ)′(d′ ⊗ e′))) = b′(b1)d′(d1)e′(e1).
Let F ∶= Ψ(M,σ)⍟(N,γ),(P,µ) ○ (Ψ(M,σ),(N,γ) ⊗ id(P,µ)′). One has

(((α−1
(M,σ),(N,γ),(P,µ))

′ ○ F )(b′ ⊗ d′)⊗ e′))(b1 ⍟ (d1 ⍟ e1))
= (F ((b′ ⊗ d′)⊗ e′))((b1 ⍟ d1)⍟ e1)
= ((b1 ⍟ d1)⍟ e1)((Λ(M,σ)′⊗(N,γ)′ ⊗ id(P,µ)′)((b′ ⊗ d′)⊗ e′))
= ((b1 ⍟ d1)⍟ e1)(Λ(M,σ)′⊗(N,γ)′(b′ ⊗ d′)⊗ e′)
= b′(b1)d′(d1)e′(e1).

(94)

2. Let b ∈ B and v ∈ M . One has (ρ−1
(M,σ))

′(Λ(M,σ)′⊗(N,γ)′((id(R,τ)′ ⊗
ψ)(b′⊗ 1R)))(u) = (Λ(M,σ)′⊗(N,γ)′(b′⊗ψ(1R)))(u⍟ 1R) = (u⍟ 1R)(b′⊗
idR) = b′(u)idR(1R) = b′(u), and (ρ(M,σ)′(b′ ⊗ 1R))(u) = b′(u).

3. Let d ∈D and v ∈ N . One has
((λ−1

(N,γ))
′(Λ(R,τ)′⊗(N,γ)′((ψ ⊗ id(N,γ)′)(1R ⊗ d′))))(v)

= (Λ(R,τ)′⊗(N,γ)′(ψ(1R)⊗ d′))(1R ⍟ v)
= (1R ⍟ v)(idR ⊗ d′) = idR(1R)d′(v)
= d′(v)

(95)

and (λ(N,γ)′(1R ⊗ d′))(v) = d′(v).

4. Let b, b1 ∈ B and d, d1 ∈D. One has

(Λ(N,γ)′⊗(M,σ)′(σ(M,σ)′,(N,γ)′(b′ ⊗ d′)))(d1 ⍟ b1)
= (Λ(N,γ)′⊗(M,σ)′(d′ ⊗ b′))(d1 ⍟ b1)
= (d1 ⍟ b1)(d′ ⊗ b′)
= d′(d1)b′(b1),

(96)

and
((σ(N,γ),(M,σ))′(Λ(M,σ)′,(N,γ)′(b′ ⊗ d′)))(d1 ⍟ b1)

= (Λ(M,σ)′,(N,γ)′(b′ ⊗ d′))(b1 ⍟ d1)
= (b1 ⍟ d1)(b′ ⊗ d′)
= b′(b1)d′(d1).

(97)
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C.2.3 Λop∶ (Topd
(R,τ))op ○ Alg(R,τ) ⇒ id is a monoidal isomorphism

By Corollary 73 (p. 33),

Λ ∶= Λ(R,τ)∶ idFreeModR
⇒ Top(R,τ) ○Algop(R,τ)∶FreeModR → FreeModR

is a natural isomorphism, thus so is its opposite Λop∶Topop
(R,τ)

○ Alg(R,τ) ⇒
idFreeModop

R
. Since (Topd

(R,τ))op = (Topop
(R,τ)

, (Ψ−1)op, (ψ−1)op) is a (strong)
monoidal functor from TopFreeMod(R,τ) to FreeModop

R (Remark 179, p. 96),
it suffices to check that Λop is a monoidal transformation (Definition 180,
p. 96) from (Topd

(R,τ))op○Alg(R,τ) to idFreeModop
R
. By definition of the composi-

tion of monoidal functors (Facts 176, p. 94), and according to the definitions
of Φ and Ψ, this is equivalent to the commutativity of the following two
diagrams for each free modules M,N .

M ⊗R N

ΛM⊗RN

  

ΛM⊗RΛN// (M∗)′ ⊗R (N∗)′
Λ
(M∗)′⊗R(N

∗)′

))

(M∗ ⍟(R,τ) N∗)′

((Λ−1
M⊗RΛ−1

N )
∗)′uu

((M ⊗R N)∗)′

(98)

and
R

(φ−1)′○Ψ ""

idR // R

ΛR
��

(R∗)′

(99)

1. Commutativity of the first above diagram is equivalent to the equality
((ΛM ⊗R ΛN)∗)′ ○ΛM⊗RN = Λ(M∗)′⊗R(N∗)′ ○ (ΛM ⊗R ΛN).
Let u ∈M , v ∈ N , `1 ∈M∗ and `2 ∈ N∗. Then,

((((ΛM ⊗R ΛN)∗)′ ○ΛM⊗RN)(u⊗ v))(`1 ⍟ `2)
= ((ΛM⊗RN)(u⊗ v))((ΛM ⊗R ΛN)∗(`1 ⍟ `2))
= ((ΛM⊗RN)(u⊗ v))((`1 ⍟ `2) ○ (ΛM ⊗R ΛN))
= (`1 ⍟ `2)((ΛM ⊗R ΛN)(u⊗ v))
= (`1 ⍟ `2)(ΛM(u)⊗ΛN(v))
= (ΛM(u)(`1))(ΛN(v)(`2))
= `1(u)`2(v).

(100)
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One also has

((Λ(M∗)′⊗R(N∗)′ ○ (ΛM ⊗R ΛN))(u⊗ v))(`1 ⍟ `2)
= (Λ(M∗)′⊗R(N∗)′(ΛM(u)⊗ΛN(v)))(`1 ⍟ `2)
= (`1 ⍟ `2)(ΛM(u)⊗ΛN(v))
= `1(u)`2(v).

(101)

2. Concerning the second above diagram, one has (ΛR(1R))(`) = `(1R)
and ((φ−1)′(ψ(1R)))(`) = (ψ(1R) ○ φ−1)(`) = idR(`(1R)) = `(1R).

C.2.4 Γ∶ id⇒ Alg(R,τ) ○ (Topd
(R,τ))op is a monoidal isomorphism

By Lemma 77 (p. 35),

Γ ∶= Γ(R,τ)∶ id⇒ Alg(R,τ)○Topop(R,τ)∶TopFreeMod(R,τ) → TopFreeMod(R,τ)

is natural isomorphism.
Since (Topd

(R,τ))op = (Topop
(R,τ)

, (Ψ−1)op, (ψ−1)op) is a (strong) monoidal
functor from TopFreeMod(R,τ) to FreeModop

R , it suffices to check that Γ is a
monoidal transformation from id to Alg(R,τ) ○ (Topd

(R,τ))op.
This turns out to be equivalent to the commutativity of the following

diagrams, for each topologically-free (R, τ)-modules (M,σ) and (N,γ).

(M,σ)⍟ (N,γ)

Γ
(M,σ)⍟(N,γ)

$$

Γ
(M,σ)⍟Γ

(N,γ)
// ((M,σ)′)∗ ⍟ ((N,γ)′)∗

(Λ
(M,σ)′⊗(N,γ)′)

∗

**

((M,σ)′ ⊗ (N,γ)′)∗

(Λ−1
(M,σ)′⊗(N,γ)′

)∗tt

(((M,σ)⍟ (N,γ))′)∗
(102)

and
(R, τ)
φ

��

id // (R, τ)
Γ
(R,τ)

��

R∗

(ψ−1)∗
// ((R, τ)′)∗

(103)

1. Commutativity of the first diagram is equivalent to the equality

Λ∗
(M,σ)′⊗R(N,γ)′

○ Γ(M,σ)⍟
(R,τ)(N,γ)

= (Λ(M,σ)′ ⊗R Λ(N,γ)′)∗ ○ (Γ(M,σ) ⍟(R,τ) Γ(N,γ)).
(104)
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Let B,D be respective topological bases of (M,σ) and (N,γ). Let
b, b1 ∈ B and let d, d1 ∈D. One has

((Λ∗
(M,σ)′⊗R(N,γ)′

○ Γ(M,σ)⍟
(R,τ)(N,γ)

)(b⍟ d))(b′1 ⊗ d′1)
= ((Γ(M,σ)⍟

(R,τ)(N,γ)
)(b⍟ d))(Λ(M,σ)′⊗R(N,γ)′(b′1 ⊗ d′1))

= (Λ(M,σ)′⊗R(N,γ)′(b′1 ⊗ d′1))(b⍟ d)
= (b⍟ d)(b′1 ⊗ d′1)
= b′1(b)d′1(d).

(105)

One also has

((Λ(M,σ)′ ⊗R Λ(N,γ)′)∗((Γ(M,σ) ⍟(R,τ) Γ(N,γ))(b⍟ d)))(b′1 ⊗ d′1)
= ((Γ(M,σ) ⍟(R,τ) Γ(N,γ))(b⍟ d))(Λ(M,σ)′(b′1)⊗Λ(N,γ)′(d′1))
= (Γ(M,σ)(b)⍟ Γ(N,γ)(d))(Λ(M,σ)′(b′1)⊗Λ(N,γ)′(d′1))
= (Λ(M,σ)′(b′1))(Γ(M,σ)(b))(Λ(N,γ)′(d1)′)(Γ(N,γ)(d))
= (Γ(M,σ)(b))(b′1)(Γ(N,γ)(d))(d′1)
= b′1(b)d′1(d).

(106)

2. Concerning the second diagram, one has to check that Γ(R,τ) = (ψ−1)∗○
φ. One first observes that 1′R = idR. (Indeed, 1′R(1R) = 1R.) One has
(Γ(R,τ)(1R))(1′R) = 1′R(1R) = 1R, and

((ψ−1)∗(φ(1R)))(1′R) = (φ(1R))(ψ−1(1′R))
= idR(ψ−1(idR))
= 1R.

(107)

C.3 Proof of Lemma 107, p. 51

One first observes that idR∶R ≃ ∥(R, τ)∥ = R.
Secondly, let us check that Ξ is a natural transformation

∥−∥⊗R∥−∥⇒ ∥−⍟(R,τ)−∥∶TopFreeMod(R,τ)×TopFreeMod(R,τ) →ModR.

Let (Mi, σi)
fiÐ→ (Ni, γi) be a continuous (R, τ)-linear map, i = 1,2. Let

u ∈M1 and v ∈M2. Then, (f1 ⍟(R,τ) f2)(ΞM1,M2(u⊗ v)) = (f1 ⍟(R,τ) f2)(u⍟
v) = f1(u)⍟f2(v) (by Eq. (32), p. 46). Likewise ΞN1,N2((f1⊗R f2)(u⊗v)) =
ΞN1,N2(f1(u)⊗ f2(v)) = f1(u)⍟ f2(v). Therefore naturality is obtained.

It remains to check compatibility with the coherence constraints. Let
(M,σ), (N,γ), (P,µ) be topologically-free (R, τ)-modules. One has to check
that the four diagrams below commute.
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(M ⊗N)⊗ P
Ξ
(M,σ),(N,γ)⊗idP

��

αM,N,P
//M ⊗ (N ⊗ P )

idM⊗Ξ
(N,γ),(P,µ)

��

∥(M,σ)⍟ (N,γ)∥⊗ ∥(P,µ)∥
Ξ
(M,σ)⍟(N,γ),(P,µ)

��

∥(M,σ)∥⊗ ∥(N,γ)⍟ (P,µ)∥
Ξ
(M,σ),(N,γ)⍟(P,µ)

��

∥((M,σ)⍟ (N,γ))⍟ (P,µ)∥
∥α
(M,σ),(N,γ),(P,µ)∥

// ∥(M,σ)⍟ ((N,γ)⍟ (P,µ))∥

(108)

∥(M,σ)∥⊗R R

ρM

��

idM⊗RidR// ∥(M,σ)∥⊗R ∥(R, τ)∥
Ξ
(M,σ),(R,τ)

��

∥(M,σ)∥ ∥(M,σ)⍟(R,τ) (R, τ)∥
∥ρ
(M,σ)∥

oo

(109)

R⊗R ∥(N,γ)∥

λN
��

idR⊗RidN// ∥(R, τ)∥⊗R ∥(N,γ)∥
Ξ
(R,τ),(N,γ)

��

∥(N,γ)∥ ∥(R, τ)⍟(R,τ) (N,γ)∥
∥λ
(N,γ)∥

oo

(110)

and
∥(M,σ)∥⊗R ∥(N,γ)∥

σM,N
//

Ξ
(M,σ),(N,γ)

��

∥(N,γ)∥⊗R ∥(M,σ)∥
Ξ
(N,γ),(M,σ)

��

∥(M,σ)⍟(R,τ) (N,γ)∥
∥σ
(M,σ),(N,γ)∥

// ∥(N,γ)⍟(R,τ) (M,σ)∥

(111)

Let u ∈M , v ∈ N and w ∈ P .
1. The top-left sequence of arrows of Diag. (108) acts as follows: (u⊗v)⊗
w ↦ u ⊗ (v ⊗w) ↦ u ⊗ (v ⍟w) ↦ u ⍟ (v ⍟w), while the right-bottom
sequence acts as follows: (u ⊗ v) ⊗ w ↦ (u ⍟ v) ⊗ w ↦ (u ⍟ v) ⍟ w ↦
u⍟ (v ⍟w).

2. One has ρM(u ⊗ 1R) = u and ρ(M,σ)(Ξ(M,σ),(R,τ)((idM ⊗R idR)(u ⊗
1R))) = ρ(M,σ)(Ξ(M,σ),(R,τ)(u⊗ 1R) = ρ(M,σ)(u⍟ 1R) = u.

3. One has λN(1R⊗v) = v and λ(N,γ)(Ξ(R,τ),(N,γ)((idR⊗RidN)(1R⊗v))) =
λ(N,γ)(Ξ(R,τ),(N,γ)(1R ⊗ v)) = λ(N,γ)(1R ⍟ v) = v.

4. One has Ξ(N,γ),(M,σ)(σM,N(u ⊗ v)) = Ξ(N,γ),(M,σ)(u ⍟ v) = v ⍟ u, and
σ(M,σ),(N,γ)(Ξ(M,σ),(N,γ)(u⊗ v)) = σ(M,σ),(N,γ)(u⍟ v) = v ⍟ u.
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D Coalgebras

D.1 Definitions

Let R be a ring. By a R-coalgebra (see [1]) is meant a pair C ∶= (C, δC) with
C a R-module, and C

δCÐ→ C⊗RC a R-linear map, called the comultiplication,
which is coassociative, i.e., which makes commute the following diagram
(where α is the associative constraint of ModR; see Appendix C.1.1, p. 98).

C ⊗R C

idC⊗RδC
��

C
δCoo

δC // C ⊗R C

δC⊗RidC
��

C ⊗R (C ⊗R C)
α−1C,C,C

// (C ⊗R C)⊗R C

(112)

A counit for a coalgebra C is a R-linear map C
εCÐ→ R such that the following

diagram commutes (where λ and ρ are the left and ring unit constraints of
ModR). A triple C = (C, δC, εC) consisting of a coalgebra with a counit is
called a counital coalgebra.

R⊗R C C ⊗R C
εC⊗RidCoo

idC⊗RεC// C ⊗R R

C
λ−1C

ff

εC

OO

ρ−1C

88
(113)

Given coalgebras C and D a morphism of coalgebras, also called a coal-

gebra map, C
fÐ→ D is a R-linear map C

fÐ→D such that the following diagram
commutes.

C

δC
��

f
// D

δD
��

C ⊗R C f⊗Rf
// D ⊗RD

(114)

CoalgR is the category of R-coalgebras with coalgebra maps.

When C,D both are counital, then a coalgebra map C
fÐ→ D is furthermore

assumed to be counit-preserving meaning that the following diagram also
commutes.

C
f

//

εC $$

D

εDyy
R

(115)
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εCoalgR is the category of counital R-coalgebras and (counit-preseving) coal-
gebra maps.

A coalgebra (counital or not) C is said to be cocommutative when σC,C ○
δC = δC, where σ is the symmetry constraint of ModR. One also defines
the full subcategories cocCoalgR of CoalgR and ε,cocCoalgR of εCoalgR

respectively, spanned by the cocommutative coalgebras.
By direct inspection one has (see Appendix B.2, p. 91)

1. εCoalgR =Comon(ModR),

2. ε,cocCoalgR = cocComon(ModR).

D.2 Group-like elements

Let C be a counital coalgebra over R. A member x ∈ C is a group-like when
δC(x) = x ⊗ x and εC(x) = 1R. Let GC be the set of all group-like elements
of C.

When R is a field, then the condition εC(x) = 1R for a group-like allows
to exclude zero from GC.

186 Lemma Let us assume that k is a field. Let x ∈ X. x is a group-like
if, and only if, δC(x) = x⊗ x and x /= 0.

Proof: The direct implication is immediate.
Let us assume that for a given x ∈ C ∖ {0}, one has δ(x) = x⊗ x. Since

εC is a counit, xε(x) = x. So (ε(x) − 1k)x = 0, and thus ε(x) = 1k, because
x /= 0. ◻

187 Fact Let k be a field, and let C be a counital k-coalgebra. Then, the set
GC of group-likes of C is k-linearly independent ([1, Theorem 2.1.2, p. 59]).

Let C
fÐ→ D be a coalgebra map between counital R-coalgebras. It is

clear that f(GC) ⊆ GD since if x ∈ GC, then δD(f(x)) = (f ⊗R f)(δC(x)) =
(f ⊗R f)(x⊗ x) = f(x)⊗ f(x), and εD(f(x)) = εC(x) = 1R.

Whence one has a group-like functor εCoalgR
GÐ→ Set.

In the opposite direction, one may define for a set X, a counital cocom-
mutative R-coalgebra CR(X) ∶= (R(X), dX , eX), called the group-like coalge-
bra on X, with dX(p) = ∑x∈X p(x)δx ⊗ δx and eX(p) = ∑x∈X p(x), x ∈ X.

Given a map X
fÐ→ Y , the unique R-linear map R(X)

FR(f)ÐÐÐ→ R(Y ) given by
FR(f)(δx) = δf(x) (cf. Remark 12, p. 14), is a coalgebra map.
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Indeed, dY (FR(f)(δx)) = dY (δf(x)) = δf(x)⊗δf(x) = (FR(f)⊗RFR(f))(δx⊗
δx) = (FR(f) ⊗R FR(f))(dX(δx)), and eY (FR(f)(δx)) = eY (δf(x)) = 1R =
eX(δx), x ∈X.

Whence one has a functor Set
CRÐ→ ε,cocCoalgR, and the following dia-

gram commutes (the unnamed arrow is the evident forgetful functor).

Set
CR //

FR
((

ε,cocCoalgR

��

ModR

(116)

188 Remark Let X
δXÐ→ R(X) be the map x ↦ δRx as already introduced in

Remark 10 (p. 14). Then it corestricts as a one-to-one map X
δXÐ→ GCRX

since by definition of CR, δx ∈ GCRX for every x ∈X.

189 Lemma CR is a left adjoint of the restriction ε,cocCoalgR
GÐ→ Set of

εCoalgR
GÐ→ Set.

Proof: Let X be a set, let X
fÐ→ GC be a map, where C is a counital

cocommutative coalgebra. Let R(X)
f ♯Ð→ C be the unique R-linear map such

that f ♯(δx) = f(x), x ∈X. Let p ∈ R(X). Then,

δC(f ♯(p)) = δC(∑x∈X p(x)f(x))
= ∑x∈X p(x)δC(f(x))
= ∑x∈X p(x)f(x)⊗ f(x)

(since f(x) ∈ GC)
= ∑x∈X p(x)f ♯(δx)⊗ f ♯(δx)
= (f ♯ ⊗R f ♯)(∑x∈X p(x)δx ⊗ δx)
= (f ♯ ⊗R f ♯)(dX(p)).

(117)

Moreover, εC(f ♯(p)) = εC(∑x∈X p(x)f(x)) = ∑x∈X p(x) = eX(p). Whence
f ♯ is a coalgebra map from CRX to C.

Let us assume that CRX
hÐ→ C is a coalgebra map such that h(δx) = f(x),

x ∈X. Then, as linear maps, f ♯ = h, and so also as coalgebra maps. ◻

190 Remark The functor Set
FRÐ→ ModR (Remark 12, p. 14) provides a

strong symmetric monoidal functor

Set = (Set,×,1) FRÐ→ ModR = (ModR,⊗R,R)
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with coherence constraints FR(X × Y )
ΨX,YÐÐÐ→ FR(X) ⊗R FR(Y ) (as in the

proof of Lemma 90, p. 42), and R ≃ FR(1), 1R ↦ (∅ ↦ 1R) (recall that
1 ∶= {∅} is a terminal object of Set). Whence one has an induced functor

cocComon(Set)
(FdR)mÐÐÐ→ ε,cocCoalgR = cocComon(ModR) (cf. Appendix B.3,

p. 93). One recovers CR with the factorization CR = (Fd
R)m ○ ∆ (see Re-

mark 174, p. 92, in Appendix B.2 for the definition of ∆, and Remark 179,
p. 96, in Appendix B.3 for the definition of the functor Fm induced on cate-
gories of comonoids).

D.3 (Pointed) cosemisimple coalgebras

Let k be a field.
Let be a C counital k-coalgebra. By a subcoalgebra D of C is meant a

subspace D of C such that δC(D) ⊆D⊗kD. Then, under the co-restrictions
δD of δC and εD of εC, D = (D,δD, εD) is a k-coalgebra on its own right, and
the canonical injection D ↪ C is a coalgebra map D↪ C. One also says that
D as defined is a subcoalgebra of C.

For each subset E of a coalgebra C there is a least subcoalgebra of C
generated by E, namely the intersection of all subcoalgebras of C containing
E.

191 Theorem (Fundamental theorem of coalgebras) Let E be a finite subset
of a counital coalgebra C. The subcoalgebra of C generated by E is finite-
dimensional.

192 Corollary Each finite-dimensional subspace V of a counital coalgebra
C generates a finite-dimensional subcoalgebra of C.

Proof: See [15, Theorem 1.3.2, p. 21]. ◻
A subcoalgebra D of C is said to be simple if it does not have any sub-

coalgebras over than (0) and D. The sum of all simple subcoalgebras of C
is called the coradical of C, and is denoted by coradC. It is a subcoalgebra
of C, and C is cosemisimple when C = coradC. If all simple subcoalgebras of
C are one dimensional, then C is called a pointed k-coalgebra.

Of course, any one-dimensional coalgebra is automatically simple.

193 Remark Let C be a counital coalgebra over k. Since GC is k-linearly
independent (Fact 187), the subspace ⟨GC⟩ spanned by GC is isomorphic
to ⊕g∈GC kg = k(GC). It is clearly a cocommutative subcoalgebra of C de-
noted kGC (both as a coalgebra and a subcoalgebra, i.e., one denotes in the
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same way the corresponding coalgebra and its underlying subspace). More-
over G(kGC) = GC.

194 Facts 1. There is a one-one correspondence between the group-like
elements of C and its one-dimensional subcoalgebras ([9, Remark 1.9.8,
p. 13]).

2. Let X be a set. Then, X ≃ GCkX under X
δXÐ→ k(X) ([9, Exam-

ple 1.9.9, p. 13]).

3. kGC is cosemisimple (because it is a subcoalgebra of corad(C), corad(C)
is the largest cosemisimple subcoalgebra of C, and any subcoalgebra
of a cosemisimple coalgebra is itself cosemisimple ([7, Exercice 3.1.6,
p. 141])).

195 Lemma CkX is cosemisimple and pointed for each set X.

Proof: According to the above facts, GCkX ≃ X, whence kGCkX ≃ CkX.
Since kGCkX is cosemisimple, so is CkX.

Let S ↪ CkX be a simple subcoalgebra. Because CkX = ⊕x∈X kδx, and
each such one-dimensional subspace kδx is simple, it follows that S ↪ kδx
for some x ∈X. By semisimplicity, S = kδx. ◻

196 Definition Let ε,cocCSCoalgk be the full subcategory of ε,cocCoalgk

spanned by cosemisimple coalgebras.
Let ε,cocPtCSCoalgk be the full subcategory of ε,cocCSCoalgk spanned

by the pointed cosemisimple cocommutative coalgebras.

197 Remark The objects of ε,cocPtCSCoalgk are characterized by the re-
lation C ≃ CkGC (as coalgebras) among the objects C of εCoalgk.

Equivalently, C is pointed cosemisimple if, and only if, GC is a basis of
C.

Lemma 195 tells us that CkX is an object of ε,cocPtCSCoalgk for each

set X , and thus the functor Set
CkÐ→ ε,cocCoalgk corestricts as a functor

Set
CkÐ→ ε,cocPtCSCoalgk.

One also observes that when k is algebraically closed, then the cate-
gories ε,cocPtCSCoalgk and ε,cocCSCoalgk are the same (since over an al-
gebraically closed field, any cocommutative coalgebra is pointed according
to [1, Theorem 2.3.3, p. 80]).
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198 Lemma Set
CkÐ→ ε,cocPtCSCoalgk is an equivalence of categories, with

equivalence inverse ε,cocPtCSCoalgk
GÐ→ Set.

Proof: This is nearly immediate because δX ∶X ≃ GCkX for each set X,
and CkGC ≃ C under δg ↦ g, for each pointed cosemisimple coalgebra C. ◻

199 Corollary Let k be an algebraically closed field. Set
CkÐ→ ε,cocCSCoalgk

is an equivalence of categories, with equivalence inverse ε,cocCSCoalgk
GÐ→

Set.

D.4 Finite duality

Over a field, there is a nice duality between counital coalgebras and unital
algebras that is not briefly reviewed. See [7] for more details.

First of all, recall from Example 173 (p. 92, Appendix B.2) that one has
a functorial isomorphism O∶Mon(ModR) ≃ 1AlgR (concrete over ModR). In
particular, by an ideal of a monoid A in Mon(ModR) is meant an ideal of
the corresponding unital algebra O(A).

Secondly, let C be a counital R-coalgebra. Then, D̃∗(C) ∶= (C∗, δ∗C ○
ΘC,C , ε

∗
C ○θ) is a monoid in ModR, where Θ is as in Definition 92 (p. 44), and

θ∶R → R∗ is the isomorphism θ(1R) = idR (and θ−1(`) = `(1R)). Moreover

given a coalgebra map C
fÐ→ D one gets a morphism of monoids D̃∗(D)

f∗Ð→
D̃∗(C).

200 Remark Let (−)∗∶Modop
R →ModR be the usual algebraic dual functor.

Then, D∗ ∶= ((−)∗,Θ, θ) is a lax symmetric monoidal functor from Modop
R to

ModR. According to Appendix B.3 (p. 93), it induces a functor εCoalgop
R =

Comon(ModR)op
D̃∗Ð→Mon(ModR).

In the opposite direction, when k is a field, there is also a functor
Dfin∶Mon(Vectk)op → εCoalgk, the finite dual functor defined as follows.
Let A = (A,µA, ηA) be a monoid in Vectk. Let

A0 ∶= { ` ∈ A∗∶ker ` contains a finite-codimensional ideal of A}. (118)

Let also (A⊗k A)0 ∶= ΘA,A(A0 ⊗k A
0) ⊆ (A⊗k A)∗.
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The following diagram commutes, and one denotes by Θ0∶A0 ⊗k A
0 ≃

(A⊗k A)0 the corresponding co-restriction of ΘA,A.

A∗ ⊗k A
∗

ΘA,A
// (A⊗k A)∗

A0 ⊗k A
0

?�

OO

(A⊗k A)0
?�

OO
(119)

Moreover, the following diagram also commutes (of course, inclA0 is the

canonical inclusion), and one denotes by A0
µ0AÐ→ A0 ⊗k A

0 the corresponding
co-restriction of µ∗A.

A∗
µ∗A // (A⊗k A)∗

A0
?�

inclA0

OO

// (A⊗k A)0
?�

OO
(120)

Then, Dfin(A) ∶= (A0, (Θ0)−1 ○ µ0
A, θ

−1 ○ η∗A ○ inclA0) is a counital k-
coalgebra ([7, Proposition 1.5.3, p. 35]), called the finite dual coalgebra of

A. Moreover, given a monoid morphism A
fÐ→ B, then the following diagram

commutes, and we define B0 f0Ð→ A0 as the corresponding co-restriction.

B∗ f∗
// A∗

B0
?�

inclB0

OO

// A0
?�
inclA0

OO (121)

Then, Dfin(B)
f0Ð→ Dfin(A) is a coalgebra map by [7, Proposition 1.5.4,

p. 37]. In conclusion, this provides a functorDfin∶Mon(Vectk)op → εCoalgk.
Finally, the aforementioned duality is given by the following result.

201 Theorem ([7, Theorem 1.5.22, p. 44]) Dop
fin is a left adjoint of D̃∗.

202 Remark One observes that the above duality does directly provide an
equivalence of categories (as is the case of every adjunction; see e.g., [16,
Proposition 4.2, p. 16]) when one restricts the adjunction to the full sub-
categories of coreflexive coalgebras, i.e., those coalgebras C such that C ≃
Dop
fin(D̃∗(C)) under the natural inclusion C ↪ (C∗)0, u ↦ (` ↦ `(u)), and

of reflexive algebras, i.e., those monoids A such that A ≃ D̃∗(Dop
fin(A)) under

the linear map A→ (A0)∗, u↦ (`↦ `(u)).
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203 Corollary ([1, Corollary 2.3.17, pp. 88–89]) One has co-restrictions

cMon(Vectk)
Dop
finÐÐÐ→ ε,cocCoalgop

k and ε,cocCoalgop
k

D̃∗Ð→ cMon(Vectk), and
Dop
fin ⊣ D̃∗ still is an adjunction.

E Quotient and product of separately continuous
algebras

Let (R, τ) be a topological ring. Let, as in Remark 118, p. 55, 1,sepTopAlg(R,τ)
(resp. 1,c,sepTopAlg(R,τ)) be the category with objects A = ((A,σ),mA,1A)
such that (A,σ) is a topological (R, τ)-module, (A,mA,1A) is a unital R-
algebra (resp. unital continuous R-algebra) and (A,σ) × (A,σ) mAÐÐ→ (A,σ)
is separately continuous together with continuous (unit preserving) algebra
maps. One refers to such algebras with a topology as separately continuous
algebras.

The objective of this appendix is to check that 1,sepTopAlg(R,τ) (resp.
1,c,sepTopAlg(R,τ)) is closed under topological products and topological quo-
tients by closed two-sided ideals in the same ways 1TopAlg(R,τ) (resp.
1,cTopAlg(R,τ)) is (see [23]).

Let I be a two-sided ideal of a separately continuous algebra A. Let
us furthermore assume that I is closed in the topology σ. Let A

πIÐ→ A/I
be the canonical (R-linear) projection. The quotient topology of A/I ([23,
Definition 5.1, p. 33], denoted (A,σ)/I, is the strongest topology on A/I
for which πI is continuous. (According to (the proof of) [23, Theorem 5.7,
p. 34], (A,σ)/I is a Hausdorff space, because I is closed.) In other words,
the quotient topology is the final topology on A/I induced by πI (see [6]).
In particular, U is open in the quotient topology if, and only if, π−1

I (U) is
open in (A,σ).

It satisfies the following universal property: given a topological space
(Y, γ) and a map A/I fÐ→ Y . f is continuous if, and only if, πI○f is continuous
([23, Theorem 5.3, p. 33]).

204 Lemma Let A = ((A,σ),mA,1A) be an object of 1,sepTopAlg(R,τ) (resp.
1,c,sepTopAlg(R,τ)). Let I be a closed two-sided ideal of A. Then, (A,σ)/I
is an object of 1,sepTopAlg(R,τ) (resp. 1,c,sepTopAlg(R,τ)).

Proof: According to the proof of [23, Theorem 5.4, p. 33] it suffices to
prove that the quotient multiplication mI of A/I is separately continuous.
By definition,mI○(πI×πI) = πI○mA. Let Q ∈ A/I, and v ∈ A with πI(v) = Q.
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Let ρ(v)∶A → A, u ↦ mA(u, v) be the right multiplication by v on A, and
let ρI(Q)∶A/I → A/I be the corresponding right multiplication on A/I. By
the above, ρI(Q) ○ πI = πI ○ ρ(v), which is continuous by assumption on
A. Considering the universal property of (A,σ)/I, it follows that ρI(Q) is
continuous too. ◻

Let (Ai)i∈I be a family of separately continuous (R, τ)-algebras. Let
∏i∈I(Ai, σi) be the product topological (R, τ)-module. Then, ∏i∈I(Ai, σi) ×
∏i∈I(Ai, σi)

MÐ→∏i∈I(Ai, σi) is separately continuous, where by M is meant
the multiplication of the product algebra ∏i∈I(Ai,mAi ,1Ai). Indeed let i ∈
I. Then, πi(M(u, v)) = mAi(ui, vi) = mAi((πi(u), πi(v)). Let ρM(v) and
ρmAi
(vi) be the corresponding right multiplications. Then, πi ○ ρM(v) =

ρmAi
(vi)○πi, so that ρM(v) is continuous. Whence (∏i∈I(Ai, σi),M, (1Ai)i∈I)

turns out to be a separately continuous algebra, denoted ∏i∈I Ai.
One may summarize this result as follows.

205 Lemma A product of a family of separately continuous (R, τ)-algebras
is a separately continuous (R, τ)-algebra.

119



Index

(M,σ)′, 17
1R, 10
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Cocommutative, 92
Coefficient maps, 17
Coherence constraints, 93
ComonC, 91
cocComonC, 92
Comonoid, 91
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Cop, 91
coradC, 114
Coradical, 114
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D∗, 116
d, 12
dX , 112
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Dfin, 116
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Duality pairing, 18
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eX , 112
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F, 93
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J(A), 69
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Jacobson semisimple, 69
Jtop(A), 69
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Linearly compact k-vector space, 37

MX , 15
M(R,τ), 48
Max(A), 69
ModR, 86
Module topology, 11
MonC, 91
cMonC, 92
Monoid, 91
Monoidal equivalence, 97
Monoidal functor (lax, strong,

strict), 93
Monoidal isomorphism, 97
Monoidal subcategory, 94
Monoidal transformation, 96
Monoidally equivalent, 97

O, 92
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Opmonoidal functor, 95
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transformation), 88
Opposite monoidal functor, 95
Orthogonal sets, 62

PR, 13
px, 14
P(R,τ), 14
Pointed coalgebra, 114

Quotient topology, 118

R, 9
R, 9
(R, τ), 10
(R, τ)X , 13
R(X), 14
RX , 15
(R, τ)X , 15
Reflexive algebra, 117
Restriction of scalars along a map,

13
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19
Ring topology, 10

Second copy, 64
Separately continuous algebra, 55
Set, 86
Subcoalgebra, 114
supp(f), 14
Support, 14

TA, 53
Top(R,τ), 18
Top, 86
Top

(R,τ), 48
̃(Topd
(R,τ))op, 49

TopAlg
(R,τ), 11

1TopAlg
(R,τ), 11

cTopAlg
(R,τ), 11

1,cTopAlg
(R,τ), 11

1,sepTopAlg
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1,c,sepTopAlg
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TopFreeMod
(R,τ), 26

TopFreeMod
(R,τ), 47

TopFreeVect
(k,τ), 26

TopFreeVect
(k,τ), 47

TopMod
(R,τ), 11

Topological (k, τ)-vector space, 11
Topological (R, τ)-algebra, 11
Topological (R, τ)-module, 11
Topological algebra functor, 53
Topological basis, 26
Topological coefficient maps, 27
Topological dual, 17
Topological dual coalgebra, 50
Topological Jacobson radical, 69
Topological ring, 10
Topological tensor product, 42
Topologically semisimple, 69
Topologically-free (k, τ)-vector

space, 26
Topologically-free (R, τ)-module, 26
TopVect

(k,τ), 11

UA, 51
Um, 95
Underlying algebra, 51

V(E,τ)(x), 10
Vectk, 86
cVN(k,τ), 80
Von Neumann regular algebra, 23
Von Neumann regular monoid, 80
Von Neumann regular ring, 22

w∗

(R,τ), 16
Weak inverse, 22
Weak-∗ topology, 16

X(R,τ)(A), 71
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