
HAL Id: hal-01833514
https://hal.science/hal-01833514v1

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Framework for Implicate Generation Modulo
Theories

Mnacho Echenim, Nicolas Peltier, Yanis Sellami

To cite this version:
Mnacho Echenim, Nicolas Peltier, Yanis Sellami. A Generic Framework for Implicate Generation
Modulo Theories. IJCAR, Jul 2018, Oxford, United Kingdom. �hal-01833514�

https://hal.science/hal-01833514v1
https://hal.archives-ouvertes.fr

A Generic Framework for Implicate Generation
Modulo Theories

Mnacho Echenim, Nicolas Peltier, and Yanis Sellami

Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France
[Mnacho.Echenim|Nicolas.Peltier|Yanis.Sellami]@univ-grenoble-alpes.fr

Abstract. The clausal logical consequences of a formula are called its
implicates. The generation of these implicates has several applications,
such as the identification of missing hypotheses in a logical specification.
We present a procedure that generates the implicates of a quantifier-
free formula modulo a theory. No assumption is made on the considered
theory, other than the existence of a decision procedure. The algorithm
has been implemented (using the solvers MiniSAT, CVC4 and Z3) and
experimental results show evidence of the practical relevance of the pro-
posed approach.

1 Introduction

We present a novel approach based on the usage of a generic SMT solver as a
black box to generate ground implicates of a formula modulo a theory. Formally,
the implicates of a formula φ modulo a theory T are the ground clauses C such
that every model of T that satisfies φ also satisfies C; in other words, these
are the clausal T -consequences of φ. The problem of generating such implicates
(up to logical entailment) is of great practical relevance, since for any implicate∨n
i=1 li, the formula

∧n
i=1 ¬li ∧ φ is T -unsatisfiable. The set {¬li | i ∈ [1, n]}

can thus be viewed as a set of hypotheses under which φ is T -unsatisfiable
or, dually, ¬φ is provable. This means that generating implicates can permit
to identify missing hypothesis in a theorem, such as omitted lemmata or side
conditions. Such hypotheses are useful to correct mistakes in specifications, but
also to quickly spot why a given statement is not provable. They can be far more
informative than counter-examples in this respect, since the latter are hard to
analyze and can be clouded with superfluous information.

Consider for example the simple program over an array defined in Algorithm
1. It turns out that the postcondition of the program is not verified. This can
be evidenced by translating the preconditions, the algorithm and the negation
of the post-condition into a conjunction of logical formulas, and using an SMT
solver to construct a model for this conjunction; this model can then be analyzed
to determine what precondition is missing. The obtained model, however, will
generally contain a hard to read array definition, and the missing precondition
will not be explicitly returned. For instance, the model returned by the Z3 SMT
solver [6] is (using our notations):

Algorithm 1: Example(Array[Int] T , Int a, Int b)

1 requires ∀x, y ∈ [a, b], x ≤ y =⇒ T [x] ≤ T [y];
2 requires T [a] ≥ 0;
3 let T [b + 1] = T [b− 1] + T [b] ;
4 ensures ∀x, y ∈ [a, b + 1], x ≤ y =⇒ T [x] ≤ T [y];

a : 533, b : 533,
f : x 7→ x ≥ 533 ? (x ≥ 534 ? 534 : 533) : 532,
g : x 7→ x = 533 ? 535 : (x = 534 ? 19 : −516),
T : x 7→ g(f(x)).

Implicate generation on the other hand permits to identify the missing precon-
dition in a more efficient manner. The first step consists in selecting the literals
that can be used to generate potential explanations; these are called abducible
literals. In this example, the natural literals to consider are all the (negations
of) equalities and inequalities constructed using constants a and b, along with
additional predefined constants such as 0 and 1. The second step simply consists
in invoking our system, GPiD, to generate the potential missing preconditions.
For this example, GPiD plugged with Z3 generates the missing precondition
a 6= b in less than 0.2 seconds. If abducible literals can be constructed using also
the function symbol T , then our tool generates the other potential precondition
T [b− 1] ≥ 0 in the same amount of time.

In previous work [8,9,10,12], we devised refinements of the superposition cal-
culus specially tuned to derive such implicates for quantifier-free formula mod-
ulo equality with uninterpreted function symbols. We proved the soundness and
deductive-completeness of the obtained procedures, i.e., we showed that the pro-
cedure derives all implicates up to redundancy. In the present work, we inves-
tigate a different approach. We provide a generic algorithm for generating such
implicates, relying only on the existence of a decision procedure for the underly-
ing theory, possibly augmented with counter-example generation capabilities to
further restrict the search space. The main advantage of this approach is that
it is possible to use efficient SMT solvers as black boxes, instead of having to
develop specific systems for the purpose of implicate generation. Our method
is based on decomposition, in the spirit of the DPLL approach. The generated
implicates are constructed on a given set of candidate literals, called abducible
literals, which is assumed to be fixed before the beginning of the search, e.g.,
by a human user. As far as flexibility is concerned, the algorithm also permits
to only generate implicates satisfying so-called ⊆-closed predicates without any
post-processing step. We show that the algorithm is sound and complete, and
we provide experimental results showing that the obtained system is much more
efficient than the previous one based on superposition. We also devise generic
approaches to store sets of implicates efficiently, while removing implicates that
are redundant modulo the considered theory. Again, the proposed procedure
relies only on the possibility of deciding validity in the underlying theory.

Related work. The implicate generation problem has been thoroughfully inves-
tigated in the context of propositional logic (see for instance [19]). Earlier ap-
proaches are based mainly on refinements of the Resolution rule [15,16,26,30],
and they focus on the definition of efficient strategies to generate saturated clause
sets and of compact data structures for storing the generated sets of implicates
[5,14,23,29]. Other approaches use decomposition-based methods, in the style of
the DPLL procedure, for generating trie-based representations of sets of prime
implicates [20,21]. Recently [25], a new approach that outperforms previous al-
gorithms has been proposed, based on max-satisfiability solving and problem
reformulation. Our algorithm can be used for propositional implicate generation
but it is not competitive with this new approach. Our aim with this work was
rather to extend the scope of implicate generation to more expressive logics.
Indeed, there have been only very few approaches dealing with logics other than
propositional. Some extensions have been considered in modal logics [3,4], and
algorithms have been proposed for first-order formulas, based on first-order reso-
lution [17,18] or tableaux [22,24]. However, none of these approaches is capable of
handling equality efficiently. More recently, algorithms were devised to generate
sets of implicants of formulas interpreted in decidable theories [7], by combining
quantifier-elimination for discarding useless variables, with model building to
construct sufficient conditions for satisfiability.

The rest of the paper is structured as follows. In Section 2, basic definitions
and notations are introduced. Section 3 contains the definition of the algorithm
for generating implicates, starting with a straightforward, naive algorithm and
refining it to make it more efficient. In Section 4 data-structures and algorithms
are presented to store implicates efficiently modulo redundancy. Section 5 con-
tains the description of the implementation and experimental results, and Section
6 concludes the paper. Due to space restrictions, some of the proofs are omitted.
The full version is available on arXiv.

2 Preliminary notions

Ground terms and non-quantified formulas are built inductively as usual on a
sorted signature Σ. The notions of validity, models, satisfiability, etc. are defined
as usual. The set of literals built on Σ is denoted by L. Let T be a theory. A set
of formulas S is T -satisfiable if there exists an interpretation I such that I |= S
and I |= T . We assume that the T -satisfiability problem is decidable, i.e., that
there exists an SMT solver that, given a formula φ with no quantifier, can decide
whether φ is T -satisfiable.

We consider clauses as unordered disjunctions of literals with no repetition.
Thus, when we write C ∨D, we implicitly assume that C and D share no literal.
We also identify unit clauses with the literal they contain. For every literal l, l
denotes the literal complementary of l. The empty clause is denoted by false.
If Q = {l1, . . . , ln} is a set of literals, then we denote by Q the clause l1∨· · ·∨ ln.
Conversely, given a clause C = l1 ∨ · · · ∨ ln, we denote by C the set of literals
(or unit clauses)

{
l1, . . . , ln

}
.

We consider a finite set of abducible literals A. We assume that each of these
literals is T -satisfiable. Given a set of clauses S, we call a clause C a (T ,A)-
implicate of S if C ⊆ A and S |=T C. We say that C is a prime (T ,A)-implicate
of S if C is a (T ,A)-implicate of S and for every (T ,A)-implicate D of S, if
D |=T C then C |=T D. The set of (T ,A)-implicates of S is denoted by IA(S),
and the set of prime (T ,A)-implicates of S is denoted by PA(S).

Given a set of clauses S and a clause C, we write S ET C if there is a clause
D ∈ S such that D |=T C. If S′ is a set of clauses, then we write S ET S′ if for
all C ∈ S′, we have S ET C. We write S ∼ S′ if S ET S′ and S′ ET S (i.e., S
and S′ are identical modulo T -equivalence).

Proposition 1. Let l be a literal and let C,D be clauses. The following state-
ments hold:

1. l ∨ C |=T D iff l |=T D and C |=T D.
2. C |=T l ∨D iff C ∧ l |=T D.

We assume an order ≺ is given on clauses built on A that agrees with inclu-
sion, i.e., such that C (D ⇒ C ≺ D.

Definition 2. A T -tautology is a clause that is satisfied by every model of T .
Given a set of clauses S, we denote by SubMin(S) the set obtained by deleting
from S all clauses D such that either D is a T -tautology, or there exists C ∈ S
such that C |=T D and (D 6|=T C or C ≺ D).

Note that in particular, we have PA(S) ∼ SubMin(IA(S)).

3 On the generation of prime (T ,A)-implicates

3.1 A basic algorithm

We present a simple and intuitive algorithm that permits to generate the (T ,A)-
implicates of a set of formulas S. This algorithm is based on the fact that a clause
C is a (T ,A)-implicate of S if and only if C ⊆ A and S ∪ C |=T false. It will
thus basically consist in enumerating the subsets of A and searching for those
whose union with S is T -unsatisfiable. This may be done by starting with an
empty set of hypotheses M and repeatedly and nondeterministically adding new
abductible literals to M until S ∪M is T -unsatisfiable. This algorithm is naive,
as the same clauses will be produced multiple times, but it forms the basis of
the more efficient algorithm in Section 3.2.

Definition 3. Let S be a set of formulas. Let M,A be sets of literals such that
M ∪A ⊆ A. We define

IM,A(S) =
{
C ∈ IA(S)

∣∣ ∃Q ⊆ A, C = M ∨Q
}
,

PM,A(S) = SubMin(IM,A(S)).

Intuitively, a clause M ∨Q thus belongs to IM,A(S) if and only if Q is a (T ,A)-
implicate of S ∪M .

Proposition 4. Let S be a set of formulas, M and A be sets of literals such that
M ∪A ⊆ A. If M is T -satisfiable, then S ∪M is T -unsatisfiable iff PM,A(S) =
{M}. If M is T -unsatisfiable, then PM,A(S) = ∅.

It is clear that it is useless to add a new hypothesis l into M both if M∪{l} is
T -unsatisfiable (because the obtained (T ,A)-implicate would be a T -tautology),
or if this set is equivalent to M (because the (T ,A)-implicate would not be
minimal). This motivates the following definition:

Definition 5. Let S be a set of formulas and let M,A be two sets of literals.
We denote by fix(S,M,A) a set obtained by deleting from A some literals l such
that either M ∪ S |=T l or M |=T l.

The use of this definition aims to reduce the number of abducible hypotheses
to try, and thus the search space of the algorithm. Still, we do not assume that
all the literals l satisfying the condition above are deleted because, in practice,
such literals may be hard to detect. However, we assume that no element from
M is in fix(S,M,A).

Proposition 6. Consider a set of formulas S and two sets of literals M,A such
that PM,A(S) 6=

{
M
}

. The following equalities hold:

1. PM,A(S) = SubMin(
⋃
l∈APM∪{l},A(S)).

2. PM,A(S) = PM,fix(S,M,A)(S).

The results above lead to a basic algorithm for generating (T ,A)-implicates
which is described in Algorithm 2. As explained above, the algorithm works by
adding literals from A as hypotheses until a contradiction can be derived. The
return statement at Line 5 avoids enumerating the subsets that contain M ,
once it is known that S ∪M is T -unsatisfiable.

Algorithm 2: bp(S,M,A)

1 if M is T -unsatisfiable then
2 return ∅;
3 else
4 if S ∪M is T -unsatisfiable then

5 return
{
M
}

;

6 else
7 B = fix(S,M,A);
8 foreach l ∈ B do
9 let Pl = bp(S,M ∪ {l} , B);

10 return SubMin(
⋃

l∈B Pl);

Lemma 7. PM,A(S) = bp(S,M,A).

Proof. The result is proved by a straightforward induction on card(A \M). By
Proposition 4, PM,A(S) = ∅ if M is T -unsatisfiable, and PM,A(S) =

{
M
}

if M
is T -satisfiable and S∪M is T -unsatisfiable. Otherwise, by Proposition 6(2), we
have PM,A(S) = PM,fix(S,M,A)(S) = PM,B(S). By the induction hypothesis,
for each l ∈ A, Pl = PM∪{l},B(S), and by Proposition 6(1), Pl = PM∪{l},A(S);
we deduce that PM,A(S) = SubMin(

⋃
l∈A Pl). Note that at each recursive call,

a new element is added to M , since fix(S,M,A) is assumed not to contain any
element from M .

Theorem 8. If S is a set of formulas then PA(S) = bp(S, ∅,A).

Although the algorithm described above computes all the prime (T ,A)-
implicates of any clause set as required, it is very inefficient, in particular because
of the large number of useless and redundant recursive calls that are made. In
what follows we present several improvements to the algorithm in order to gen-
erate implicates as efficiently as possible.

3.2 Restricting the set of candidate hypotheses

It is obvious that the algorithm bp makes a lot of redundant calls: for example,
if l1 ∨ l2 is a prime (T ,A)-implicate of a clause set S, then this (T ,A)-implicate
will be generated twice, first as l1∨l2, and then as l2∨l1. Such redundant calls are
quite straightforward to avoid by ensuring that every invocation of the algorithm
contains a distinct set of literals M . This can be done by fixing an ordering <
among literals in A, and by assuming that hypotheses are always added in this
order. Another way of restricting the set of candidate hypotheses is to exploit
information extracted from the previous satisfiability test. For example, if S∪{l1}
is satisfiable for some literal l1, and that a model of this set satisfies another
literal l2, then S ∪ {l2} is also satisfiable and it is not necessary to consider l2
as a hypothesis. In particular, if a model of S ∪ {l1} validates all the literals in
A, then PM,A(S) is necessarily empty and no literal should be selected. We can
thus take advantage of the existence of a model of S ∪M in order to guide the
choice of the next literals in A. However, observe that this refinement interferes
with the previous one based on the order <. Indeed, non-minimal hypotheses
will have to be considered if all the smaller hypotheses are dismissed because
they are true in the model. We formalize these principles below.

Definition 9. In what follows, we consider a total ordering1 < on the elements

of A. For A ⊆ A and l ∈ A, we define A[l]
def
= {l′ ∈ A | l < l′}. If I is a set of

literals then we denote by AI [l] the set
{
l′ ∈ A

∣∣ l′ < l ∧ l′ 6∈ I
}
∪A[l].

Example 10. Assume that A = {pi,¬pi | i = 1, . . . , 6} and that for all literals
l ∈ {pi,¬pi} and l′ ∈ {pj ,¬pj}, l < l′ if and only if either i < j or (i = j,
l = pi and l′ = ¬pi). Then A[p4] = {¬p4, p5,¬p5, p6,¬p6}. If I = {p1,¬p2}, then
AI [p4] = {p1,¬p2, p3,¬p3,¬p4, p5,¬p5, p6,¬p6}.
1 Note that this ordering is not necessarily related to the ordering ≺ on clauses.

Definition 11. Let S be a set of clauses. A set of literals I is S-compatible
with respect to A (or simply S-compatible) if every prime (T ,A)-implicate of
S contains a literal l such that l ∈ I.

Intuitively, an S-compatible set I consists of literals l such that l will be
allowed to be added as a hypothesis to generate (T ,A)-implicates of S (see
Lemma 16 below). The set I can always be defined by taking the negations of
all the abducible literals from A. In this case, all literals will remain possible
hypotheses. It is possible, however, to restrict the size of I when a model of S is
known, as evidenced by the following proposition:

Proposition 12. If S is a set of clauses and J is a model of S, then the set

I
def
= {l ∈ L | J |= l} is S-compatible.

Proof. Let Q be a set of literals such that Q is a prime (T ,A)-implicate of S,
and assume that for all l ∈ Q, l 6∈ I, i.e., that for all l ∈ Q, J 6|= l. Then J |= l
holds for every l ∈ Q, hence J |= S ∪Q and Q cannot be a (T ,A)-implicate of
S.

Note that the condition of having a model of S was not added to Definition 11
because in practice, such a model cannot always be constructed efficiently.

Being able to derive unit consequences of the set of axioms (for instance by
using unit propagation), can pay off if this additional information can be used
to simplify the formula at hand. This motivates the following definition.

Definition 13. Let S be a set of formulas and M ⊆ A. We denote by UM (S)

the set of unit clauses logically entailed by S ∪ M modulo T , i.e., UM (S)
def
=

{l ∈ L | S ∪M |=T l}. Given a set U such that M ⊆ U ⊆ UM (S), we denote by
SU,M the formula obtained from S by replacing some (arbitrarily chosen) literals
l′ by false if U |=T l′ and by true if M |=T l′.

Note that U is not necessarily identical to UM (S), because in practice the latter
set is hard to generate. Similarly we do not assume that all literals l′ are replaced
in Definition 13 since testing logical entailment may be costly. Lemma 14 shows
that the (T ,A)-implicates of a set S and those of SU,M are identical.

Lemma 14. Let S be a set of formulas and M ⊆ A. Consider a set of literals
U such that M ⊆ U ⊆ UM (S). Then IM,A(S) = IM,A(SU,M)

Definition 15. Let U,M,A be sets of literals. We define: GU,A,M (S)
def
={

M ∨ l
∣∣ l ∈ A ∧ l ∈ U}.

The lemma below can be viewed as a refinement of Proposition 6. It is based
on the previous results, according to which, when adding a new hypothesis l,
it is possible to remove from the set of abducible literals A every literal that
is strictly smaller than l, provided its complementary is in I (because we can
always assume that the smallest available hypothesis is considered first). This is
why the recursive call is on AI [l] instead of A. Note also that the use of semantic
guidance interferes with the use of the ordering <: the smaller the set I, the
larger AI [l].

Lemma 16. Assume that S ∪ M is T -satisfiable and let I be an (S ∪ M)-
compatible set of literals. Let U be a set of literals such that M ⊆ U ⊆ UM (S).
We have

PM,A(S) = SubMin

GU,A,M (S) ∪
⋃

l∈A,l∈I

PM∪{l},AI [l](S)

 .

Proof. First note that PM,A(S) 6=
{
M
}

, since S ∪M is T -satisfiable. We first
prove that PM,A(S) ⊆ GU,A,M (S)∪

⋃
l∈A,l∈I PM∪{l},AI [l](S). Let C ∈ PM,A(S).

By hypothesis, C is of the form M ∨Q, where ∅ 6= Q ⊆ A. Since I is (S ∪M)-
compatible, Q necessarily contains a literal l ∈ A such that l ∈ I. Assume that l
is the smallest literal in Q satisfying this property. We distinguish the following
cases.

Assume that Q contains a literal l′ such that l′ ∈ U . In this case, since U ⊆
UM (S), S∪M |=T l′. Since Q ⊆ A, we also have l′ ∈ A, and since PM,A(S) 6={
M
}

, we deduce that M ∨ l′ ∈ PM,A(S). Since M ∨ l′ |=T C and C ∈
PM,A(S), C must be smaller or equal to M ∨ l′, which is possible only if
C = M ∨ l′. We deduce that C ∈ GU,A,M (S).

Otherwise, we show that Q \ {l} ⊆ AI [l]. By Definition 9, we have A[l] =
{l′ ∈ A | l < l′} and AI [l] = {l′ ∈ A | l′ < l ∧ l′ 6∈ I} ∪ A[l]. Let l′ ∈ Q, with
l′ 6= l. If l′ > l then l′ ∈ A[l] ⊆ AI [l]. If l′ 6> l, then since > is total and
l 6= l′, necessarily l > l′. Since l is the smallest literal in Q such that l ∈ I,
we deduce that l′ 6∈ I. Thus l′ < l and l′ 6∈ I, which entails that l′ ∈ AI [l].
Consequently, Q \ {l} ⊆ AI [l]. Since C = M ∪ {l}∨Q \ {l}, this entails that
C ∈ PM∪{l},AI [l](S).

We now prove that GU,A,M (S) ∪
⋃
l∈B,l∈I PM∪{l},BI [l](S) ⊆ IM,A(S).

Let C ∈ GU,A,M (S). By definition, C is of the form M ∪ l with l ∈ A∩U . Since
U ⊆ UM (S), we deduce that S∪M |=T l, i.e., that S |=T M ∨ l. Since l ∈ A,
this entails that M ∨ l ∈ IM,A(S), hence C ∈ IM,A(S).

Let C ∈ PM∪{l},AI [l](S) with l ∈ A, l ∈ I. By definition, C = M ∨ l ∨Q, with

Q ⊆ AI [l] and C ∈ IA(S). But AI [l] ⊆ A by definition, thus Q ∪ {l} ⊆ A
and C = M ∨ (Q ∨ l) ∈ IM,A(S).

Similarly to cSP (see [12, Sect. 4.2]), we parameterize our algorithm by
a predicate in order to filter the implicates that are generated. The goal of
this parametrization is to allow the user to restrict the form of the generated
implicates. Typically, one could want to generate implicates only up to a given
size limit, or only those satisfying some specific semantic constraints.

Definition 17. A predicate P on sets of literals is ⊆-closed if for all sets of
literals A such that P(A) holds, if B ⊆ A then P(B) also holds.

Examples of ⊆-closed predicates include cardinality constraints: Pk
def
=

λA. card(A) ≤ k, where k ∈ N, or implicant constraints: Pφ
def
= λA. φ |= A,

where φ is a formula. Note that ⊆-closed predicates can safely be combined by
the conjunction and disjunction operators.

An important feature of ⊆-closed predicates is that implicates verifying such
predicates can be generated on the fly without any post-processing step, thanks
to the following result:

Proposition 18. If P is ⊆-closed and P(M) does not hold, then for all sets of
literals A, P(M ∪A) does not hold either.

The inclusion of these improvements to the original algorithm results in the
one described in Algorithm 3.

Algorithm 3: imp(S,M,A,P)

1 if M is T -unsatisfiable or ¬P(M) then
2 return ∅;
3 if S ∪M is T -unsatisfiable then

4 return
{
M
}

;

5 let U ⊆ UM (S) such that M ⊆ U ;
6 let S = SU,M ;
7 let A = fix(S,M,A) ;
8 let I be an (S ∪M)-compatible set of literals ;

9 foreach l ∈ A such that l ∈ I do
10 let Pl = imp(S,M ∪ {l} , AI [l],P);

11 return SubMin(GU,A,M (S) ∪
⋃

l∈A Pl);

Lemma 19. If P is ⊆-closed then imp(S,M,A,P) = PM,A(S) ∩
{
A
∣∣A ∈ P}.

Proof. If one of M or S ∪M is T -unsatisfiable, or P(M) does not hold, then
the result follows from Propositions 4 and 18. Otherwise the result is proved by
induction on card(A \M), using Proposition 6 and Lemmata 16 and 14.

Theorem 20. If P is ⊆-closed then PA(S) ∩
{
A
∣∣A ∈ P} = imp(S, ∅,A,P).

4 On the storage of (T ,A)-implicates

The number of implicates of a given formula may be huge, hence it is essential in
practice to have appropriate data structures to store them in a compact way and
efficient algorithms to check that a newly generated implicate C is not redundant
(forward subsumption modulo T), and if so, to delete all the already generated
implicates that are less general than C (backward subsumption modulo T),
before inserting C into the stored implicates. In this section, we devise a trie-
like data-structure to perform these tasks. As in the previous section, we only
rely on the existence of a decision procedure for testing T -satisfiability.

Definition 21. Let <t be an order on the literals in A, possibly, but not neces-
sarily, equal to the order < used for literal ordering in the implicate generation
algorithm. An A-tree is inductively defined as ⊥ or a possibly empty set of pairs
{l1 : τ1, . . . , ln : τn}, where l1, . . . , ln are pairwise distinct literals in A and τi
(for i = 1, . . . , n) is an A-tree only containing literals that are strictly <t-greater
than li. An A-tree is associated with a set of A-clauses inductively defined as
follows:

S(⊥)
def
= {false},

S({l1 : τ1, . . . , ln : τn})
def
=
⋃n
i=1{li ∨ C | C ∈ S(τi)}.

In particular, S(∅) = ∅. Intuitively an A-tree may be seen as a tree in which the
edges are labeled by literals and the leaves are labeled by ∅ or ⊥, and represents
a set of clauses corresponding to paths from the root to ⊥. We introduce the
following simplification rule (which may be applied at any depth inside a tree,
not only at the root level):

Simp : τ ∪ {l : ∅} → τ

Informally, the rule deletes all leaves labeled by ∅ except for the root. It may be
applied recursively, for instance {l : {l1 : ∅, . . . , ln : ∅}} →n+1

Simp ∅. Termination is
immediate since the size of the tree is strictly decreasing.

Proposition 22. If τ →Simp τ
′ then τ ′ is an A-tree and S(τ) = S(τ ′).

The algorithm permitting the insertion of a clause in an A-tree is straight-
forward and thus omitted. The following lemma provides a simple algorithm to
check whether a clause is a logical consequence modulo T of some clause in S(τ)
(forward subsumption). The algorithm proceeds by induction on the A-tree.

Lemma 23. Let C be a clause and let τ be an A-tree. We have S(τ) ET C iff
one of the following conditions hold:

– τ = ⊥.
– τ = {l1 : τ1, . . . , ln : τn} and there exists i ∈ [1, n] such that li |=T C and
S(τi) ET C.

Proof. If τ = ⊥ then S(τ) = {false} ET C hence the equivalence holds. Oth-
erwise, let τ = {l1 : τ1, . . . , ln : τn}. By definition, S(τ) ET C holds iff there
exists a clause D ∈ S(τ) such that D |=T C. Since S({l1 : τ1, . . . , ln : τn}) =⋃n
i=1{li ∨E | E ∈ S(τi)}, the previously property holds iff there exists i ∈ [1, n]

and E ∈ S(τi) such that li ∨ E |=T C, i.e., such that li |=T C and E |=T C
by Proposition 1(1). By definition, ∃E (E |=T C ∧ E ∈ S(τi)) iff (S(τi) ET C).
Furthermore, li ET C holds iff C ∪ {li} is T -unsatisfiable, hence the result.

The following definition provides an algorithm to remove, in a given A-tree,
all branches corresponding to clauses that are logical consequences of a given
formula modulo T (backward subsumption).

Definition 24. Let φ be a formula and let τ be an A-tree. rm(τ, φ) denotes the
A-tree defined as follows:

– If φ is T -unsatisfiable, then rm(τ, φ)
def
= ∅.

– If φ is T -satisfiable, then:

• rm(⊥, φ)
def
= ⊥,

• rm({l1 : τ1, . . . , ln : τn}, φ)
def
=
⋃n
i=1{li : rm(τi, φ ∧ li)}.

Intuitively, starting with some clause C, the algorithm incrementally adds literals
l1, . . . , ln occurring in the clauses D = l1 ∨ · · · ∨ ln ∈ S(τ) and invokes the
SMT solver after each addition. If a contradiction is found then this means
that C |=T D, hence the branch corresponding to D can be removed. The calls
are shared among all common prefixes. Of course, this algorithm is interesting
mainly if the SMT solver is able to perform incremental satisfiability testing,
with “push” and “pop” commands to add and remove formulas from the set of
axioms (which is usually the case).

Lemma 25. Let φ be a formula and let τ be an A-tree. Then rm(τ, φ) is an
A-tree, and S(rm(τ, φ)) = {C ∈ S(τ) | φ 6|=T C}.

Remark 26. The A-trees may be represented as dags instead of trees. In this
case, it is clear that the complexity, defined as the number of satisfiability tests
of forward subsumption (as defined in Lemma 23) is of the same order as the
size of the dag, since the recursive calls only depend on the considered subtree.
For backward subsumption (see Definition 24) the situation is different since
the recursive calls have an additional parameter that is the formula φ, which
depends on the path in the A-tree. The maximal number of satisfiability tests
is therefore equal to the size of underlying tree, and not that of the dag. Note
that it would be necessary to make copies of some of the subtrees, if two pruning
operations are applied on the same (shared) subtree with different formulas.

5 Experimental evaluation

Algorithm 3 has been implemented in a C++ framework called GPiD. The
SMT solver is used as a black box and GPiD can thus be plugged with any tool
serving this purpose, provided an interface is written for it. As a consequence,
the handled theory is only restricted by the SMT solver. Three interfaces were
implemented, respectively for MiniSAT [13], CVC4 [1] and Z3 [6]. The impli-
cate generator used in the reported experiments is the one based on Z3, which
turned out to be more efficient on the considered benchmarks. All the tests
were run on one core of an Intel(R) Core(TM) i5-4250U machine running at
1,9 GHz with 1 GiB of RAM. The benchmarks are extracted from the SMTLib
[2] library, the considered theories are quantifier-free uninterpreted functions
(QF UF) and quantifier-free linear integer arithmetic with uninterpreted func-
tions (QF UFLIA). For obvious reasons, only satisfiable examples have been
kept for analysis. Abducible literals are part of the problem input, they are
generated by considering all ground equalities and disequalities with a maximal
depth provided by the user; all the experiments were conducted using a maximal
depth of 1 and the average number of abducible literals is around 13397 (min.

Table 1: Number of problems for which at least one (T ,A)-implicate of a given
maximal size can be generated in a given amount of time (in seconds), for the
QF UF SMTLib benchmark (2549 examples).

PPPPPPPSize
Time

[0, 0.5[[0.5, 1[[1, 1.5[[1.5, 2[[2, 5[[5, 10[[10, 35[None

1 2235 75 28 16 33 32 61 69

2 2236 81 27 16 30 23 67 69

3 2236 79 27 16 34 23 65 69

4 2230 84 23 18 33 24 68 69

5 2231 79 27 12 36 22 73 69

6 2234 73 29 15 30 24 75 69

7 2231 81 23 15 33 22 75 69

8 2233 78 23 16 33 21 76 69

Table 2: Number of problems for which at least one (T ,A)-implicate of a given
maximal size can be generated in a given amount of time (in seconds), for the
QF UFLIA SMTLib benchmark (400 examples).

PPPPPPPSize
Time

[0, 0.5[[0.5, 1[[1, 1.5[[1.5, 2[[2, 5[[5, 10[[10, 35[None

1 120 23 46 76 100 6 25 4

2 120 23 6 0 0 0 247 4

3 120 23 6 0 96 4 147 4

4 120 23 6 0 0 0 247 4

5 120 23 6 0 0 0 247 4

6 120 22 7 0 0 0 247 4

7 121 22 6 0 0 0 247 4

8 116 24 6 3 0 0 247 4

1741, max. 17.106). We chose not to apply unit propagation simplifications to
the considered sets of clauses. More precisely, this means that we let U = M at
line 5 of Algorithm 3 and delegate the simplifications that could occur in the
following line to the satisfiability checker. The reason for this decision is that ef-
ficiently performing such simplifications can be difficult and strongly depends on
the theory. We also define fix(, ,) as the complementation on literals and P as
either true or a predicate ensuring card(M) ≤ n to generate (T ,A)-implicates
of size at most n. In all the experiments, the prime implicates filter (SubMin)
was not active, so that implicates can be generated on the fly. Finally, if avail-
able, we recover models of S ∪M from the SMT solver in order to further prune
the set of abducibles (see Line 8 of Algorithm 3). Tables 1 and 2 show the
number of examples for which our tool generates at least one (T ,A)-implicate
for a given timespan, for the QF UF and QF UFLIA benchmarks respectively.

The results show that our tool is quite efficient, since it fails to generate any
(T ,A)-implicate within 35 seconds for only 2% (resp. 1%) of the QF UF (resp.
QF UFLIA) benchmarks. Figure 1 shows the proportion of the QF UFLIA set
for which GPiD generates an implicate in less than 15 seconds, depending on the
maximal size constraint. For the QF UF benchmark, the proportion decreases
from 97% for a maximal size constraint of 1 to 95% when there are no size
restrictions. We also point out that for 57% of the QF UF benchmark, we are
actually able to generate all the (T ,A)-implicates of size 1 in less than 15 seconds.

Fig. 1: Proportion (out of 100) of exam-
ples of the QF UFLIA benchmark where
GPiD generates at least one implicate
under 15 seconds.

1 2 3 4 5 6 7 8
Maximal implicate size (literal count)

0

20

40

60

80

Pr
op

or
tio

n
of

 e
xa

m
pl

es

We ran additional experiments to
compare this approach with a pre-
vious one based on a superposition-
based approach [11,12] and imple-
mented in the cSP tool. As far as
we are aware, cSP is the only other
available tool for implicate generation
in the theory of equality with unin-
terpreted function symbols. Previous
experiments (see, e.g., [11,12]) showed
that cSP is already more efficient
than approaches based on a reduction
to propositional logic for generating
implicates of ground equational for-
mulas, which is why we did not run
comparisons against tools for propo-
sitional implicate generation. cSP is
based on a constrained calculus de-
fined by the usual inference rules of
the superposition calculus together
with additional rules to dynamically assert new abducible hypotheses on de-
mand into the search space. The asserted hypotheses are attached to the clauses
as constraints and, when an empty clause is generated, the negation of these
hypotheses yields a (T ,A)-implicate. We chose to compare the tools by focusing
on their ability to generate at least one (T ,A)-implicate of a given size. In-
deed, generating all (prime) (T ,A)-implicates is unfeasible within a reasonable
amount of time except for very simple formulas, and comparing the raw number
of (T ,A)-implicates generated is not relevant because some of these may actually
be redundant w.r.t. non-generated ones2. We believe in practice, being able to
efficiently compute a small number of (T ,A)-implicates for a complex problem
is more useful than computing huge sets of (T ,A)-implicates but only for simple
formulas. The following experiments are only based on benchmarks that can be
solved by both prototypes, as cSP is not capable of handling integer arithmetics.
We represented on Figure 2 the number of examples for which both tools can

2 A refined comparison of the set of generated (T ,A)-implicates modulo theory en-
tailment is left for future work.

Fig. 2: Number of examples from the QF UF benchmark set for which GPiD
(on the left, darker color) and cSP (on the right, lighter color) generate at least
one (T ,A)-implicate within a given time (a) and generate at least one implicate
of a given maximal size under 15 seconds (b)

(a) (b)

03 05 10 15
Timeout (in seconds)

0

10

20

30

40

50

60

Pr
op

or
tio

n
of

 e
xa

m
pl

es

2 4 6 8 10 12 14 16
Maximal implicate size allowed

0

10

20

30

40

50

60

Pr
op

or
tio

n
of

 e
xa

m
pl

es

generate at least one (T ,A)-implicate with a given maximal size constraint for
various timeouts (a) and generate at least one (T ,A)-implicate within a given
time limit for various maximal size constraints (b).

6 Conclusion

We devised a generic algorithm to generate implicates modulo theories and
showed that the corresponding implementation is more efficient than a previ-
ous attempt based on superposition. This result was to be expected since the
DPLL(T) approach is more efficient than engines based on the Superposition
Calculus for testing the satisfiability of quantifier-free formulas with a large
combinatorial structure. Furthermore, the used superposition engine had to be
specifically tuned for implicate generation, and it is far less efficient than state-
of-the-art systems such as Vampire [27], E [28] or Spass [31] (this is of course
the advantage of having a generic algorithm using decision procedures as black
boxes). While our aim was to be completely generic, it is clear than the efficiency
of the procedure could be improved in practice by integrating theory-specific al-
gorithms for deriving consequences and normalizing formulas. For instance, in
the case of the theory of equality with uninterpreted function symbols, the impli-
cates could be normalized by replacing each term by its minimal representative,
as is done in [12]. Efficient, theory-dependent simplification procedures will also
be explored in future work. A combination between the superposition-based ap-
proach [12], in which the assertion of hypotheses is guided by the proof procedure
could also be beneficial. Our approach could also be combined with that of [7],
which is based on model building and quantifier-elimination.

References

1. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors,
Proceedings of the 23rd International Conference on Computer Aided Verification
(CAV ’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah.

2. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

3. M. Bienvenu. Prime implicates and prime implicants in modal logic. In Proceedings
of the National Conference on Artificial Intelligence, volume 22, page 379. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

4. P. Blackburn, J. Van Benthem, and F. Wolter. Handbook of Modal Logic. Studies
in logic and practical reasoning - ISSN 1570-2464 ; 3. Elsevier, 2007.

5. J. De Kleer. An improved incremental algorithm for generating prime implicates.
In Proceedings of the National Conference on Artificial Intelligence, pages 780–780.
John Wiley & Sons ltd, 1992.

6. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ra-
makrishnan and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340.
Springer, 2008.

7. I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum Satisfying Assignments
for SMT. In P. Madhusudan and S. A. Seshia, editors, Computer Aided Verification,
number 7358 in Lecture Notes in Computer Science, pages 394–409. Springer, 2012.

8. M. Echenim and N. Peltier. A Superposition Calculus for Abductive Reasoning.
Journal of Automated Reasoning, 57(2):97–134, 2016.

9. M. Echenim, N. Peltier, and S. Tourret. An approach to abductive reasoning in
equational logic. In Proceedings of IJCAI’13 (International Conference on Artificial
Intelligence), pages 3–9. AAAI, 2013.

10. M. Echenim, N. Peltier, and S. Tourret. A Rewriting Strategy to Generate Prime
Implicates in Equational Logic. In Proceedings of the International Joint Confer-
ence on Automated Reasoning (IJCAR’14). Springer, 2014.

11. M. Echenim, N. Peltier, and S. Tourret. Quantifier-free equational logic and prime
implicate generation. In A. P. Felty and A. Middeldorp, editors, Automated Deduc-
tion - CADE-25 - 25th International Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Com-
puter Science, pages 311–325. Springer, 2015.

12. M. Echenim, N. Peltier, and S. Tourret. Prime Implicate Generation in Equational
Logic. Journal of Artificial Intelligence Research, 60:827–880, 2017.

13. N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

14. E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

15. P. Jackson. Computing prime implicates incrementally. In Proceedings of the
11th International Conference on Automated Deduction, pages 253–267. Springer-
Verlag, 1992.

16. A. Kean and G. Tsiknis. An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation, 9(2):185–206, 1990.

17. E. Knill, P. T. Cox, and T. Pietrzykowski. Equality and abductive residua for
Horn clauses. Theoretical Computer Science, 120(1):1–44, Nov. 1993.

18. P. Marquis. Extending abduction from propositional to first-order logic. In Fun-
damentals of artificial intelligence research, pages 141–155. Springer, 1991.

19. P. Marquis. Consequence finding algorithms. In Handbook of Defeasible Reasoning
and Uncertainty Management Systems, pages 41–145. Springer, 2000.

20. A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Automated
Reasoning with Analytic Tableaux and Related Methods, pages 250–264, 2009.

21. A. Matusiewicz, N. Murray, and E. Rosenthal. Tri-based set operations and selec-
tive computation of prime implicates. Foundations of Intelligent Systems, pages
203–213, 2011.

22. M. C. Mayer and F. Pirri. First order abduction via tableau and sequent calculi.
Logic Journal of the IGPL, 1(1):99–117, 1993.

23. A. Mishchenko. An introduction to zero-suppressed binary decision diagrams.
Technical report, Proceedings of the 12th Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning, 2001.

24. H. Nabeshima, K. Iwanuma, K. Inoue, and O. Ray. SOLAR: An automated de-
duction system for consequence finding. AI Commun., 23(2):183–203, Jan. 2010.

25. A. Previti, A. Ignatiev, A. Morgado, and J. Marques-Silva. Prime compilation
of non-clausal formulae. In Proceedings of the 24th International Conference on
Artificial Intelligence, pages 1980–1987. AAAI Press, 2015.

26. W. Quine. A way to simplify truth functions. The American Mathematical Monthly,
62(9):627–631, 1955.

27. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In Proceedings
of the International Joint Conference on Automated Reasoning (IJCAR’01), pages
376–380. Springer LNCS 2083, 2001.

28. S. Schulz. System Description: E 1.8. In K. McMillan, A. Middeldorp, and
A. Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS.
Springer, 2013.

29. L. Simon and A. Del Val. Efficient consequence finding. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence, pages 359–370, 2001.

30. P. Tison. Generalization of consensus theory and application to the minimization
of boolean functions. Electronic Computers, IEEE Transactions on, 4:446–456,
1967.

31. C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt,
and D. Topic. System description: SPASS version 1.0.0. In Proceedings of the 16th
Conference on Automated Deduction (CADE-16), pages 378–382. Springer LNCS
1632, 2001.

	A Generic Framework for Implicate Generation Modulo Theories

