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Abstract
This paper is devoted to new results about the scaffolding problem, an integral problem of genome

inference in bioinformatics. The problem consists in finding a collection of disjoint cycles and paths covering
a particular graph called the “scaffold graph”. We examine the difficulty and the approximability of the
scaffolding problem in special classes of graphs, either close to trees, or very dense. We propose negative and
positive results, exploring the frontier between difficulty and tractability of computing and/or approximating
a solution to the problem. Also, we explore a new direction through related problems consisting in finding
a family of edges having a strong effect on solution weight.

1 Introduction
A lot of problems inspired by bioinformatics concerns may be formalized as combinatorial optimization problems
on graphs. We focus in this paper on the genome scaffolding problem, which is of great importance when produc-
ing a genomic sequence from the real DNA molecule. Sequencing produces a huge amount of small sequences on
the nucleotide alphabet {A, T,G,C}, called reads, whose overlaps are exploited to produce numerous sequences
of various length, called contigs, during the assembly process. To complete the whole genome sequence, those
contigs must be relatively ordered and oriented. In previous work on scaffolding, this problem has been modeled
as a combinatorial problem on graphs which is, unfortunately, computationally hard [8]. Some methods use
heuristic ways to simplify the graph [13], others use a decomposition of the problem into two separate steps
(orienting and ordering), whose difficulty could be bypassed under certain restrictions [11]. A good presentation
of the mainly used recent methods can be found in [16].

The following work is based on a simple formulation of input data and problem. We introduce the notion of
scaffold graph, that is, an undirected graph for which an initial perfect matching is given. Edges in the matching
represent the contigs, whereas other edges represent witnesses for the relative locations of the contigs. These
latter edges are weighted by a flexible confidence measure that can be read from the sequencing data or mixed
with, for example, ancestral support in a phylogenetic context. Then, the scaffolding problem consists in finding
at most a number of σp paths and σc cycles that, together, cover all matching edges (contigs). We formally
describe this problem in Section 2.

In previous works, we stated that the problem is NP-complete, even in bipartite and planar graphs, and
initiated the quest to the frontier between polynomial-time solvability and NP-completeness [7, 8]. The be-
ginnings of these results are presented in [21]. Aiming to circumvent the problem, we consider two classes of
graphs, described in Section 2.

Exploring the structure of the scaffold graphs on real instances, we noted that many vertices of the scaffold
graph have small degrees, leading to overall sparsity [22, 23]. We aim to exploit this property to design algorithms
tuned to instances occurring in practice. Since Scaffolding can be solved in polynomial time on graphs that
are close to trees by measure of "treewidth” [22], we are interested in other distance measures to trees. To
this end, we consider the class of graphs that can be turned into a (linear) forest by removing the edges of
the given perfect matching M∗ from it (“quasi forest”). In this paper, we consider Scaffolding on graphs G
such that G −M∗ is a linear forest, a forest, a tree, or a path and show that the problem remains NP-hard
even for very restricted inputs. We reduce the NP-complete Weighted 2-SAT problem to it, allowing the
inheritance of various hardness results of this problem. We are also tackling the problem from the angle of the
parameterized complexity, exploring the existence or non-existence of polynomial kernel for the problem in the
hope of developing an fixed-parameter tractable algorithm. Section 3.3 describes how cross-composition leads
to a negative result in quasi-forests.
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G ωmax = 1 ωmax = 0
σp, σc > 0 σc = 0 σp = 0 σp > 0 σp = 0

bipartite NPc (Theorem 2 & [8])
co-bipartite NPc (Corollary 2), no 2o(m)-time

algorithm (Corollary 3)
P (Theorem 8)

split open

quasi forest
NPc,W[1]-h wrt. k (Thm. 4)
no 2o(m)- or no(k)-time algo-
rithm (Corollary 5)

P (Cor. 9) open P (Cor. 9)

Table 1: Complexity results for Scaffolding on various graph classes depending on ωmax, σp, and σc.

G max min

clique, complete bipartite 2-approx. (Theorem 9) /∈ APX (Cor. 6 & [8]),
ωmax/ωmin-
approximation

co-bipartite, split open
quasi forest no n

1
2
−ε-approx. (Cor. 7) APX -hard (Cor. 8)

Table 2: Complexity to approximate Scaffolding.

We consider also dense graphs who we know are susceptible to polynomial-time approximation algorithms [7,
8]. We focus on dense graphs which are not entirely complete, yet allow encoding some structure, namely co-
bipartite and split graphs. On co-bipartite graphs, the unweighted version of the scaffolding problem becomes
polynomial-time solvable, which is a first step towards designing algorithms for the general problem on these
graphs. We consider a slightly relaxed version of the problem to improve the known approximation algorithm
on complete graphs [8] to a ratio of two.

To complete this overview of the various tracks allowing relevant results on the subject, we have also been
interested in variations of the problem, inspired by the work on the minimum spanning tree and other classical
combinatorial optimization problems [2, 3, 4]. These variants aim to detect critical subsets of edges or nodes
in the graph, which can be used to detect a skeleton that we do not further question, and decrease the time
consumption of an exact search on remaining edges. Unfortunately, we show that the problem to find such set
of edges is also a difficult problem in Section 5.

The complexity and approximation results are respectively summarized in Table 1 and Table 2. Next section
is devoted to formal description of problems.

The paper is organized as follows: Section 2 is devoted to a global presentation of problems, classes of
graphs and technical issues. In Section 3 overview of the problems which remains hard, even with very strong
constraints on parameters of the problem, structure of the graphs, or weights. After this depressing review, we
focus on the hopeful part of the work, in Section 4. Afterwards, we enlarge our point of view by considering
several variants of the problem, unfortunately all NP-complete, in Section 5.

2 Notation and problem description
Let G = (V,E) be a graph. For a vertex set V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′ and
let G − V ′ := G[V \ V ′]. Further, for any S ⊆ E, we define Gr(S) := (

⋃
e∈S e, S) and G − S := (V,E \ S).

An edge-set M∗ of a graph is called matching if no two of its edges intersect, that is, e1 ∩ e2 = ∅ for all
distinct e1, e2 ∈ M∗. A matching M∗ is perfect if it covers all the vertices, that is V =

⋃
e∈M∗ e. A pair

(G,M∗) where M∗ is a perfect matching on G is called a scaffold graph. For a matching M∗ and a vertex u,
we define M∗(u) as the unique vertex v with uv ∈ M∗ if such a v exists, and M∗(u) = ⊥, otherwise. We
abbreviate X − {x} =: X − x for any set X of elements of the same type as x. Slightly abusing notation,
we identify a path with the set of its edges. A path p is alternating with respect to a matching M∗ if, for all
vertices u of p, also M∗(u) is a vertex of p. Thus, alternating paths have an even number of vertices. If M∗
is clear from context, we do not mention it explicitly. For a function ω : E → N and a set S ⊆ E, we abbrevi-
ate

∑
e∈S ω(e) =: ω(S) and we let ωmax := maxe∈E ω(e). Thus, ωmax = 1 (resp. = 0) means that the weights

can take only two values (resp. one value). The center of this work is the following problem.

Scaffolding (SCA)

Input: G = (V,E), ω : E → N, perfect matching M∗ in G, σp, σc, k ∈ N
Question: Is there an S ⊆ E \M∗ such that Gr(S ∪M∗) is a collection of ≤ σp alternating paths

and ≤ σc alternating cycles and ω(S) ≥ k?

If ω is uniform, that is, all edges have same weight, then we call the problem unweighted Scaffolding
(USCA). The variant of the problem that asks for exactly σp paths and exactly σc cycles is called Strict
Scaffolding (SSCA). When we want to precise particular values for σp and σc, we refer to the problem as
(σp, σc)−Scaffolding. If we are looking for paths and cycles of fixed lengths `p and `c, we replace σp and
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Figure 1: An example of instance of Scaffolding. Matching edges are strong. With (σp, σc) = (2, 2), it is
positive for Scaffolding, but negative for Strict Scaffolding. A solution is given in gray.

σc by pairs (σp, `p) and (σc, `c) (length means the number of edges). We refer to the optimization variants
of Scaffolding that ask to minimize or maximize ω(S) as Min Scaffolding and Max Scaffolding,
respectively.

Classes of graphs. A graph is bipartite if it does not contain an odd cycle or, equivalently, if it admits a
proper vertex two-coloring. It is usually given by a partition X = X1 ] X2. A tripartite graph is similarly
defined as a graph which can be colored with three colors, so that no two endpoints of an edge have the same
color. A graph is co-bipartite if its complement is bipartite. Thus, a co-bipartite graph can also be considered
as a pair of disjoint cliques, with some edges between them. A co-tripartite graph is a graph whose complement
is tripartite. For disjoint I and C, a graph G = (I ∪ C,E) such that I is an independent set, and C induces a
clique in G, is called split graph. A scaffold graph (G,M∗) is called quasi-forest (resp. quasi-tree or quasi-path)
if G −M∗ is a forest (resp. tree or path). The scaffold graph on Figure 1 is a quasi-forest. A quasi-forest is
linear if it is a collection of paths.

Approximation algorithm. The main issue in approximation point of view consists in determining how close
a polynomial-time algorithm can approach the optimal solution. Such polynomial-time algorithms producing
solutions that are provably within a certain margin of the optimal are called approximation algorithms. Formally,
the approximation-ratio of an algorithm A for a maximization problem is defined as ρ := maxI

A(I)
OPT (I) , where

OPT (I) is the optimal value of the instance I.

Lower bounds. The Exponential-Time Hypothesis [17, 18] states that there is some c > 1 such that n-variable
3−Satisfiability cannot be solved in cn poly(n) time. Using polynomial reductions, it is possible to deduce some
lower bounds on time-complexity for other problems.

Parameterized algorithms. An interesting way to tackle NP-hard problems is parameterized complexity.
A parameterized problem Q is a subset of Σ∗ × N, where the second component is called the parameter of the
instance. A fixed-parameter tractable (FPT for short) problem is a problem for which there exists an algorithm
which, given (x, k) ∈ Σ∗ × N, decides whether (x, k) ∈ Q in time f(k)|x|O(1) for some computable function f .
Such an algorithm becomes efficient with an hopefully small parameter. A kernel is a polynomial algorithm
which, given (x, k) ∈ Σ∗×N, outputs an instance (x′, k′) such that (x, k) ∈ Q⇔ (x′, k′) ∈ Q and |x′|+k′ ≤ f(k)
for some computable function f . For decidable problems, the existence of a kernel is equivalent to the existence
of an FPT -algorithm. Nevertheless one can ask the function f to be a polynomial. If so, then the kernel is
called a polynomial kernel. If a problem admits a polynomial kernel, then it roughly means that we can, in
polynomial time, compress the initial instance into an instance of size poly(k) which contains all the hardness
of the instance.

3 When it is hard
In this section, we focus on hard cases that we met during our attempts to determine the frontier between
polynomiality andNP-completeness. In all those attempts to simplify the problem, we use polynomial reduction
from very well-known problems, such as Directed Hamiltonian Path, Partition into Triangle, or Weighted 2-SAT.

In the following paragraphs, we use a reduction from the Directed Hamiltonian Path (resp. Directed
Hamiltonian Cycle) ([14]) and some variations of this reduction. Thus, we define a basic construction that
is a starting point to other constructions.

Directed Hamiltonian Path/ Cycle (DHP / DNC)

Input: A directed graph G without self loop
Question: Does G contain a simple path visiting all vertices?
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Figure 2: Example of Construction 1, transforming the left instance of Directed Hamiltonian Cycle to
the right graph with edges of M∗ in bold and edges of the form v4i v

1
j dashed. A corresponding solution is

highlighted.

Construction 1. Let G = (V = {v1, v2, . . . , vn}, A) be an instance of DHC. We construct G′ = (V1 ]V2, E) as
follows (see Figure 2).

V1 := {v1i , v3i | vi ∈ V } V2 := {v2i , v4i | vi ∈ V }

E := {v1i v2i , v2i v3i , v3i v4i | vi ∈ V } ∪ {v4i v1j | vivj ∈ A}.

Finally, let M∗ := {v1i v2i , v3i v4i | vi ∈ V }, let ω : E → {0}, and let k := 0.

3.1 To solve
3.1.1 Decision problem with strong constraints on (σp,`p) and (σc,`c)

In [8], we proved that, when the number of edges in the matching is equal to σp + 2σc, the (σp, σc)−Strict
Scaffolding problem is polynomial, because it forces cycles to have length four. We also proved that, for
cycle length equal to six, it is NP-complete. We investigate in this section the complexity of (σp, σc)−Strict
Scaffolding (decision problem) in planar bipartite graphs in presence of one path and cycles of length four.
We show that the problem remains NP-complete. The reduction relies on the following polynomial-time
transformation, based on Construction 1. Notice that DHP remainsNP-complete for planar directed maximum-
degree-3 graphs ([20]). Let K be an arbitrary constant.

Construction 2. Let G = (V,A) an instance of the Directed Hamiltonian Path problem. We construct the
following graph G′ = (V ′, E), obtained from G by Construction 1 and add cycles (y1j , y

2
j , y

3
j , y

4
j ),∀j ∈ {1, . . . ,K},

add arbitrary edges {{u1y1j },∀j ∈ {1, . . . ,K} to E, add edges {y1j , y2j } and {y3j , y4j } in M∗, ∀j ∈ {1, . . . ,K}

Theorem 1. The problem ((σp, `p), (σc, `c))−Strict Scaffolding with parameters (σp, `p) = (1, |V | −
4K − 1) and (σc, `c) = (K, 4)) is NP-complete, even if the graph is a planar cubic bipartite graph. As-
suming the Exponential-Time Hypothesis, there exists no hope to find a algorithm in O(2o(

√
n)) time for the

((σp, `p), (σc, `c))−Strict Scaffolding in presence of a bipartite planar graphs even with cycle of length four.

Proof. Since in the transformed instance there is no other cycles of length four than the added ones, it is
clear that it exists a positive solution for Directed Hamiltonian Path if and only if it exists a positive
solution for ((σp, `p), (σc, `c))−Strict Scaffolding with (σp, `p) = (1, |V | − 4K − 1) and (σc, `c) = (K, 4)).
Moreover, the previous polynomial-time transformation is linear which implies the results for subexponential-
time algorithm.

Corollary 1. There is no hope to find a polynomial-time approximation algorithm within a ratio ρ < 5/4 (resp.
a XP-algorithm for Scaffolding parameterized by number of cycles).

Again, using Construction 1, we can show that Scaffolding is NP-complete on a very restricted class of
graphs.

Theorem 2. Unweighted Scaffolding is NP-complete on bipartite planar graph with maximum degree three,
even if σp = 0 and σc = 1.

Proof. The problem is clearly in NP. We show that it is also NP-hard by proving that G has a Hamiltonian
cycle if and only if G′ has an alternating Hamiltonian cycle with respect to M∗.

“⇒”: Let C be a Hamiltonian cycle in G. Then, S := {v2i v3i | vi ∈ V } ∪ {v4i v1j | vivj ∈ C} is a feasible
solution, and Gr(S ∪M∗) is an alternating Hamiltonian cycle with respect to M∗.
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“⇐”: Let S′ be a matching in G′ −M∗ such that C′ := Gr(S ∪M∗) is an alternating Hamiltonian cycle
in G′ with respect to M∗. Since C′ contains v3i v4i for each vi ∈ V (because they are all in M∗) and C′ is a cycle,
we know that S′ contains n edges of the form v4i v

1
j for vivj ∈ A. Since S′ is a matching in G−M∗, no two of

these edges are adjacent. Now, C := {vivj | v4i v1j ∈ S′} is a collection of cycles covering all vertices of V in G.
However, if C induces more than one cycle in G, then so does S′ ∪M∗ in G′. Therefore, C is a Hamiltonian
cycle in G.

By construction, G′ is a bipartite planar graph with Max-Degree 3 according to Transformation 1 since
Directed Hamiltonian Cycle remains NP-complete for planar graph with Max-Degree 3 (see [20]).

3.1.2 Weighted cases in dense graphs

Note that we can change Construction 1 such that ω : E → {1} and k := 4n. This further enables us to add
any number of edges of weight 0 without affecting the correctness argument. This implies that Scaffolding
is NP-complete on, for example, split graphs and co-bipartite graphs.

Corollary 2. Let G be a class of graphs such that, for each bipartite graph G there is a supergraph of G in G.
Scaffolding is NP-complete on G, even if σp = 0 and σc = 1 and ωmax = 1.

Construction 1 also implies subexponential lower bounds for our problems based on the widely believed complexity-
theoretic hypothesis known as the “Exponential-Time Hypothesis”1 (ETH, see [18, 24]). In fact, the lower
bound is established directly from the fact that (planar) Directed Hamiltonian Cycle does not admit a
O(2o(|E(G)|))-time algorithm [19, Theorem 3.5] and that Construction 1 only linearly blows up the instance size.

Corollary 3. Let G be a class of graphs such that, for each bipartite graph G there is a supergraph of G in G.
Assuming ETH, there is no 2o(|E(G)|)-time algorithm for Scaffolding on G, even if σp = 0 and σc = 1
and ωmax = 1.

3.1.3 Weighted cases in sparse graphs

The hardness of Scaffolding for dense graphs proved by Theorem 2 motivates the search for tractable cases
among classes of sparse graphs. It is known that Scaffolding is polynomial-time solvable on graphs that
are close to being a forest (constant treewidth) [22], so we consider a different sparsity measure here. We
investigate whether Scaffolding becomes polynomial-time solvable if the result of removing the given perfect
matching M∗ from G forms a forest. We call this class of graphs “quasi forests”. Remark that real scaffold
graphs are not always quasi-forest, however this is a first step towards their structure. We start off by modifying
Construction 1 to make the resulting graph a quasi tree (see Construction 3 and Figure 3). Unfortunately, this
requires fixing the length of the sought Hamiltonian cycle. To circumvent this, we present another construction,
reducing the NP-complete Weighted 2-SAT to Scaffolding, that does not require fixing the lengths.

Construction 3. Let G = (V,A) be an instance of Directed Hamiltonian Cycle, with V = {v1, v2, . . . , vn}.
We construct G′ = (V ′, E) from G as follows:

• For each u ∈ V , we construct a "vertex-path” P4,u = (u1, u2, u3, u4), and we call {u2, u3} an inner edge.
The set of all such paths is denoted by P4 =

⋃
u∈V P4,u

• For each (u, v) ∈ A, we construct an "edge-path" with four vertices, denoted PE4,uv = (uv1, uv2, uv3, uv4)
and the two edges {u4, uv1}, {uv4, v}.

• We add a path Z = (z1, z2, z3, z4) plus the edges {z1, z3} and {z2, z4}.

• For each vertex u ∈ V , we add the edges {u1, z1}, {u2, z1}, {u4, z1}. For each (u, v) ∈ A, we add the edge
{uv2, z1}.

• M∗ := {{u1, u2}, {u3, u4} | u ∈ V } ∪ {{uv1, uv2}, {uv3, uv4} | (u, v) ∈ A} ∪ {{z1, z2}, {z3, z4}}.

Lemma 1. G′ −M∗ is a tree.

Proof. First, G′−M∗ is a connected graph since all vertices, except z1 are connected to z1. To show that G′−M∗
has no cycles, we count the number of edges in G′ −M∗. For each v ∈ V , we have the edges {z1, v1}, {v2, v3},
{z1, v2}, and {z1, v4}, and for each (u, v) ∈ A we have the edges {u4, uv1}, {z1, uv2}, {z1, uv3}, {uv4, v1}.
Finally, we have the edges {z1, z3}, {z2, z4}, {z2, z3}. Therefore, |E| = 4n+ 4|A|+ 3 = |V ′| − 1. So G′ −M∗ is
a tree.

Theorem 3. Scaffolding with (σp, `p) = (|E|−n+1, 3) and (σc, `c) = (1, 8n) is NP-complete on quasi-trees.
1The ETH states: there is a constant c > 1 such that no O(cn)-time algorithm for n-variable 3-SAT exists.
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Figure 3: Illustration of Construction 3.

x1

x5

u31
v31

u31 v31v21 u41

v21 u41ε31

ε31e31

C3

a31
d31

b31 c31
b35 c35

a35 d35

(a) x1 ∨ x5 satisfied by x1 = 1.
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(b) x1 ∨ x5 satisfied by x1 = 1 and x5 = 0.

Figure 4: Example of Construction 4 for the clause x1 ∨ x5. Bold edges are in M∗. Gray paths are solution
paths corresponding to the respective assignments.

Proof. Clearly, the problem is in NP. We show that Construction 3 is correct, that is, G has a Hamiltonian
cycle if and only if (G′,M∗) can be covered by |E| − n+ 1 paths of length 3 and 1 cycle of length 8n.

"⇒”: Let C = (v1, v2, . . . , vn) be a directed Hamiltonian cycle in G. We construct a solution for the
Scaffolding-instance as follows: The alternating cycle of length 8n consists of the vertex-paths P4,vi for all
i ≤ n and the edge-paths PE4,uv with (u, v) ∈ C. A path of length 3 is given by Z, the remaining paths are
given by the paths-edges PE4,uv such that (u, v) /∈ C.

"⇐”: Suppose there is a set of one alternating cycle C of length 8n and |E| − n + 1 alternating paths of
length 3. Clearly, the vertices of Z are not in C and therefore, they are included in a path of length 3. Thus, the
edges {z1, x} for each x ∈ V ′ \ {z2, z3, z4} cannot be used in the covering. By construction, vertex-paths (resp.
edge-paths) cannot appear consequently in C. Since each vertex- and edge- path contains exactly four vertices
and C has 8n vertices, C alternately contains n vertex-paths and n edge-paths. Then, a Hamiltonian cycle in G
is given by the order of the vertex-paths in C.

Note that we had to fix the lengths of the paths and cycles we are looking for in the Scaffolding-instance.
To show that Scaffolding is also hard on quasi-forests without restricting the lengths, we give another
reduction from the NP-complete Weighted 2-SAT problem (see [1]) to Scaffolding.

Weighted 2-SAT

Input: n variables xi with weights wi ≥ 0, m size-two clauses, k ∈ N
Question: Is there a truth assignment β s.t.,

∑
i | β(xi)=1

wi ≥ k?

The optimization variants of Weighted 2-SAT that ask to find a satisfying assignment β that minimizes or
maximizes

∑
i | β(xi)=1 wi are called Min W2SAT and Max W2SAT, respectively.

Construction 4. Let (ϕ, k) be an instance of Weighted 2-SAT with n variables x0, x1, . . . , xn−1 and m
clauses C0, C1, . . . , Cm−1. We produce the following instance (G,ω,M∗, n, 0, k) of Scaffolding (see Figure 4),
that we denote Γ(ϕ, k). For each variable xi and for each 0 ≤ j ≤ m, introduce
• vertices uji , u

j
i , v

j−1
i ,vj−1i ,
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• edges ujiu
j
i ,v

j−1
i vj−1i that are also added to M∗,

• edges εj−1i := vj−1i uji , and ε
j−1
i := vj−1i uji .

• for j < m, if Cj contains xi, the edge eji := ujiv
j
i , otherwise, e

j
i := ujiv

j
i .

For each clause Cj on the variables x`0 and x`1 , introduce
• for each i ∈ {`0, `1},

– vertices aji , b
j
i , c

j
i , d

j
i

– edges aji b
j
i and cjid

j
i that are added to M∗ and bji c

j
i ,

– if Cj contains xi, edges u
j
ia
j
i , v

j
id
j
i , otherwise, u

j
ia
j
i , v

j
i d
j
i ,

• edges aj`0c
j
`1
, cj`0a

j
`1
, bj`0d

j
`1
, and dj`0b

j
`0
.

Finally, set ω(εm−1i ) := 1 for each variable xi and set the weights of all other edges to 0.

Lemma 2. Construction 4 is correct, that is, ϕ has a satisfying assignment of weight k if and only if (G,ω,M∗, n, 0, k)
is a yes-instance of Scaffolding.

Proof. “⇒”: Let β denote a solution for (ϕ, k). Then, we construct a solution S for (G,ω,M∗, n, 0, k) as
follows. For each variable xi and each 0 ≤ j ≤ m, if β(xi) = 1 then include {eji , ε

j
i} ∩ E(G) in S, otherwise

include {eji , ε
j
i} ∩ E(G) in S. For all clauses Cj , if exactly one of its literals is true, include edges according

to Figure 4a, if both its literals are true, include edges according to Figure 4b in S. Then, S ∪M∗ contains
exactly 1 alternating path for each of the n variables and, since εm−1i ∈ S for each xi with β(xi) = 1, the weight
of S equals the weight of β, which is at least k.

“⇐”: Let S be a solution for (G,ω,M∗, n, 0, k). Note that S ∪M∗ contains at most n paths and no cycles.
Since Gr(S ∪M∗) does not contain cycles, for each i < n and j ≤ m we have εji /∈ S or εji /∈ S. This implies
that, for each i < n there is a path ending at umi or umi and there is a path ending at v−1i or v−1i . Since there
are at most n paths in Gr(S ∪M∗), the “or” above are exclusive and all other vertices have degree exactly two
in Gr(S ∪M∗), implying that

all other vertices are incident to exactly one edge in S. (1)

Next, we show for all i < n and j < m that

ujia
j
i ∈ S ⇐⇒ vji d

j
i ∈ S. (2)

To show ujia
j
i ∈ S ⇒ vji d

j
i ∈ S, assume ujia

j
i ∈ S and vji d

j
i /∈ S. Then, either bji c

j
i ∈ S or bjid

j
` ∈ S for

some ` 6= i. In the first case, we have dji b
j
` ∈ S and, thus, cj` cannot have an incident edge in S without violating

(1). In the second case, note that the only edges incident to cji and d
j
i that could be in S without violating (1)

are cjia
j
` and dji b

j
` , respectively. However, if both are in S, then Gr(S ∪M∗) contains a forbidden cycle. The

direction vji d
j
i ∈ S ⇒ ujia

j
i ∈ S can be shown analogously.

Next, we show for each i < n and j ≤ m, that εji ∈ S or εji ∈ S, implying

εji ∈ S ⇐⇒ εji /∈ S. (3)

This is easy to see for j = m since one of umi and umi has degree 2 in Gr(S∪M∗). So let the claim hold for j+ 1

but not for j, that is, εji , ε
j
i /∈ S. If xi is not contained in Cj , this means that both ej+1

i and ej+1
i are in S,

forming a forbidden cycle. Thus, by symmetry, let Cj contain xi non-negated. Then, S contains both ej+1
i

and uj+1
i aj+1

i and, by (2), also vj+1
i dj+1

i . Then, by (1), none of εj+1
i and εj+1

i are in S, contradicting that the
claim holds for j + 1. Thus, (3) holds by induction.

Next, we show for each i < n and j < m that

εji ∈ S ⇐⇒ εj−1i ∈ S. (4)

Note that, by (3) it is sufficient to prove εji ∈ S ⇒ εj−1i ∈ S and εji ∈ S ⇒ εj−1i ∈ S. Consider some i < n

and j < m such that εji ∈ S. Then, by (1), we have vjid
j
i /∈ S and eji /∈ S. By (2), it follows that ujia

j
i /∈ S and,

thus, by (1), εj−1i ∈ S. Note that εji ∈ S ⇒ εj−1i ∈ S can be shown analogously.
Finally, we define the assignment β for ϕ as β(xi) = 1 ⇐⇒ εm−1i ∈ S. Then, since ω(εm−1i ) = 1 for

all i < n, we know that β assigns 1 to at most k variables. It remains to show that β satisfies ϕ. To this end,
assume that a clause Cj is not satisfied and let xi and x` denote the variables occuring in Cj . Note that at least
one of the edges ujia

j
i , u

j
i , u

j
`a
j
` , and u

j
`a
j
` is in S since, otherwise, none of the n paths ending in the variable

gadgets can visit the clause gadget of Cj . Since the prove is symmetric in all four cases, let us assume ujia
j
i ∈ S.

Then, Cj contains xi non-negated. By (1), we have εj−1i /∈ S, which, by (3) implies εj−1i ∈ S and, by (4), we
arrive at εm−1i ∈ S. Thus, β(xi) = 1 and, thus, Cj is satisfied by β.

Since Weighted 2-SAT is known to be W[1]−hard with respect to k (that is, an algorithm that is expo-
nential only in k is unlikely to exist [12]), by Lemma 2, so is Scaffolding.

7



Theorem 4. Scaffolding is NP-hard and W[1]-hard with respect to k, even on bipartite graphs G with
G−M∗ being a linear forest, ωmax = 1 and σc = 0.

Construction 4 can be modified to restrict the problem even further: consider two paths p = (v0, v1, . . .)
and q := (u0, u1, . . .) in G−M∗. We can add new vertices αj , βj , γj with j ∈ {u, v} with matching edges αuαv,
βuγu, βvγv and non-matching edges γuγv, v0αv, u0αu of weight 0 and non-matching edges αuβu, αvβv of
weight n + 1. Finally, we ask for a solution of weight 2n(n + 1) + k containing σp := 2n paths. Then, since
all solutions have to contain the heavy edges αuβu and αvβv, no solution can contain either u0αu or v0αv and,
thus, any solution contains a solution for the original instance.

Corollary 4. Scaffolding is NP-hard and W[1]-hard with respect to k, even on bipartite cubic graphs G
with G−M∗ being a path, ω being tristate, and σc = 0.

In analogy with Corollary 3, Construction 4 implies subexponential-time lower bounds for exact algorithms.

Corollary 5.
• Assuming ETH, there is no 2o(|E(G)|)-time algorithm for Scaffolding, and,
• assuming W[1] 6= FPT , there is no no(k)-time algorithm for Scaffolding,

even if σc = 0, ωmax = 1, and G−M∗ is a linear forest.

Proof. Wemodify Construction 4 slightly such that the gadget for each variable xi contains a “module” (subgraph
induced by uji , u

j
i , v

j
i , and vji ) only for the clauses it is actually contained in. Thus, the number of vertices

and edges in the produced instance can be bounded linearly in the number of clauses of the Weighted 2-SAT
instance. Then, since Independent Set does not have a 2o(m)-time algorithm [18] (with m denoting the
number of edges), Scaffolding does not have a 2o(m)-time algorithm (unless the ETH fails).

Furthermore, note that k-Independent Set ≡ k-Weighted 2-SAT and that k-Weighted 2-SAT reduces
to k-Scaffolding by Construction 4. Thus, since Independent Set does not have an no(k)-time algorithm [9],
Scaffolding does not have an no(k)-time algorithm (unless W[1] = FT P).

Note that all results in this section hold for any numbers σp ≥ n and σc ≥ 0 since we can add more paths
artificially by adding isolated matching edges and we can add more cycles by adding new 4-cycles. Clearly, the
isolated matching edges must constitute isolated paths. Further, if any isolated 4-cycle is covered by two paths,
there are only (n−2) paths and a cycle to cover all of the umi , umi , v−1i , v−1i , which can be seen to be impossible.

3.2 To approximate
Furthermore, we derive inapproximability of Scaffolding from Construction 1.

Corollary 6. Let G be a class of graphs such that, for each bipartite graph G there is a supergraph of G in G.
For all ρ ∈ N, Min Scaffolding on G is NP-hard to approximate to within a factor of ρ, even if σp = 0
and σc = 1 and ωmax = 1.

Proof. Suppose that there is a polynomial-time approximation algorithm A for this problem with approximation
ratio ρ > 1. Let G = (V,E) be an instance of Directed Hamiltonian Cycle with |V | = n. We use
Construction 1 to construct a bipartite graph G′ with matchingM∗. Then, we let ω : E′ → N such that ω(E1) =
0 and set k := 0. Then, we can add any number of edges of weight 1 and no solution computed by A can contain
any of these edges. Then, replacing 4n by 0 in 3.1.2 yields a proof for Corollary 6. Indeed, if G has a Hamiltonian
cycle, then A finds a solution of weight ρ · 0 = 0. Conversely, if G does not have a Hamiltonian cycle, then
at least one edge of weight 1 must be taken in a solution produced by A. Thus, A decides the NP-complete
Directed Hamiltonian Cycle problem in polynomial time.

While there is little hope of finding a constant-factor polynomial-time approximation algorithm for Min
Scaffolding, there is a linear-time algorithm with approximation ratio ωmax

wmin
(where ωmax and ωmin denote

the respective maximum and minimum edge weights) on complete bipartite graphs with σp = 0 and σc = 1.
This algorithm repeatedly chooses the lowest weighted edge that does not close the cycle.

Since Max W2SAT is NP-hard to approximate to within a factor of n1−ε for any ε > 0 [1, 15] and the
number of vertices in the instance produced by Construction 4 is bounded in the number of variables, we
conclude that, in contrast to the factor-3 approximation for Scaffolding in complete graphs [8] (and the
factor-2 approximation presented in subsubsection 4.1.1), the problem is hard to approximate in the restricted
class described above.

Corollary 7. Max Scaffolding is NP-hard to approximate to within a factor of n
1
2−ε for any ε > 0, even

on bipartite graphs G with G−M∗ being a linear forest, ωmax = 1 and σc = 0.

For the minimization version, Min Scaffolding, we derive approximation hardness as well. To see this,
note that Construction 4 is an S-reduction (see [10]) and Min W2SAT is APX -complete [1]. Thus, Min
Scaffolding is APX -hard.

8



Corollary 8. Min Scaffolding is APX -hard even on bipartite cubic graphs G with G −M∗ being a linear
forest, ωmax = 1 and σc = 0.

Curiously, the approximation hardness result for Min Scaffolding is weaker than that for Max Scaffolding,
which contrasts earlier observations on general graphs [8]. Thus, we suspect that Corollary 8 can be strengthened
to at least the same hardness-level as we have for Max Scaffolding (Corollary 7). To this end, we conjecture
existence of a gap-preserving reduction from an NP-complete problem Π to Min Scaffolding with a non-
constant gap.

3.3 To find a polynomial kernel
In order to rule out polynomial kernels, we will use the recent technique of cross-composition [5]. Roughly
speaking, a cross-composition is a polynomial reduction from t instances of a (non-parameterized) problem A
to a single instance of a parameterized problem B such that the constructed instance is positive if and only if
one of the input instances is positive. In addition, the parameter of the constructed instance must be of size
polynomial in maximum size of the input instances and logarithm of t. It is known that if A is NP-hard and
A cross-composes into B, then B cannot admit a polynomial kernel unless NP ⊆ coNP/poly2.

Definition 1 (Polynomial equivalence relation [5]). An equivalence relation R on Σ∗ is called a polynomial
equivalence relation if both following conditions hold:

• There is an algorithm that given two strings x, y ∈ Σ∗, decides whether x and y belong to the same
equivalence class in (|x|+ |y|)O(1) time.

• For any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S into at most (maxx∈S |x|)O(1)

classes.

Definition 2 (OR-cross-composition (resp. AND) [5]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a
parameterized problem. We say that L OR-cross-composes (resp. AND-cross-composes) into Q if there is a
polynomial equivalence relation R and an algorithm which, given t strings belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

• (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t (resp. for all 1 ≤ i ≤ t)

• k∗ is bounded by a polynomial in maxti=1|xi|+ log t

Theorem 5 ([5]). If a set L ⊆ Σ∗ is NP-hard and L AND-cross-composes into the parameterized problem Q,
then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

We now consider the following problem, which is a variant of Weighted 2-SAT, called Global Verification,
in which we want to find a solution for a given value k, which is not a solution for k − 1:

Weighted 2-SAT(GV)

Input: ϕ a formula in 2− CNF n variables xi with weights wi ≥ 0, m size-two clauses, k ∈ N
Question: Is there a truth assignment β s.t.,

∑
i | β(xi)=1

wi ≤ k and such that (ϕ, ω, k − 1) /∈Weighted 2-SAT?

Lemma 3. The problem Weighted 2-SAT(GV) is NP-complete.

Proof. The proof is based on a reduction from the NP-complete problem Vertex Cover(GV).

Vertex Cover(GV)

Input: G = (V,E) a graph, k ∈ N, and s.t. 6 ∃|V C(G)| ≤ k − 1
Question: Is there a vertex-cover V C(G) ⊆ V s.t. |V C(G)| ≤ k?

The NP-completeness of Vertex Cover(GV) cames from a reduction from the classic problem 3−SAT :
let I be a instance of 3− SAT , and G = R(ϕ) the graph with 2n+ 3m vertices, one vertex labelled in positive
(resp. negative) form for each variable in 3 − SAT , and one triangle for one clause and n + 6m edges: 3m for
triangles, n for the two labelled-joined vertices and 3m for the relation between vertices-triangles and labelled
vertices such that if x occurs in clause C then it exists a edge (x, y) with y ∈ C-triangle. With this construction
Vertex Cover(GV) is NP-complete by considering k = 2m+ n.

Now, we will prove the NP-completeness of Weighted 2-SAT(GV). Let G = (V,E) be a graph with
n = |V | and m = |E| and k ∈ N∗. An instance of Weighted 2-SAT(GV) is constructed the following way:

2coNP/poly is the class of decision problems refutable by a family of polynomial-size Boolean circuits.
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∀v ∈ V we create a weighted boolean variable ω(xv) = c. ∀(u,w) ∈ E we add a clause of length two (xu ∨ xw).
The instance admits n variables and m clauses of length two. Notice that an instance may be designed as
monotone Weighted 2-SAT(GV).

So, it is obvious that it ∃V C(G) ≤ k and 6 ∃V C(G) ≤ k − 1 if and only if there is a truth assignment β s.t.,∑
i | β(xi)=1

ω(xi) ≥ k × c by considering V C = {v ∈ V |xv = 1}.

Construction 5. Let F = {(ϕ1, k), (ϕ2, k), ..., (ϕt, k)} a set of t equivalent instances of Weighted 2-SAT(GV)
(according to Definition 1). We use the Γ-transformation defined in Construction 4, in order to obtain the set
of graphs S = {S1, S2, ..., St}, with ∀i ∈ [1, t], Si = Γ(ϕi, k). We note S = Λ(F), and G(S) =

⋃t
i=1 Si.

Lemma 4. Let F = {(ϕ1, k), (ϕ2, k), ..., (ϕt, k)} and S = Λ(F).
Then (ϕi, k) ∈ Weighted 2-SAT(GV) ∀i ∈ [1, t] iff G(S) ∈ Scaffolding with σp = n × t, σc = 0 and
cost = k × t.
Proof. By definition of Weighted 2-SAT(GV), we know that ∀i, (ϕi, k − 1) is not satisfiable. Moreover,
(ϕ, k) ∈Weighted 2-SAT(GV) if and only if Γ(ϕ, k) ∈ Scaffolding with σp = n × t, σc = 0 and cost = k
since Γ is a S-réduction, which is a strict reduction preserving the optimal cost (see Construction 4).

Therefore, we have Γ(ϕ, k − 1) /∈ Scaffolding with σp = n× t, σc = 0 and cost = k − 1.

• If (ϕi, k) ∈Weighted 2-SAT(GV), ∀i ∈ [1, t], then Γ(ϕi) ∈ Scaffolding, ∀i ∈ [1, t] with σp = n, σc = 0
k = ki, and obviously G(S) ∈ SCA with σp = n, σc = 0, cost = k × t.

• If G(S) ∈ Scaffolding with σp = n × t, σc = 0 and cost = k × t: consider costs ki with Γ(ϕi) ∈
Scaffolding with σp = n, σc = 0, cost = ki, and

∑t
i=1 ki = k×t. Since (ϕi, k−1) /∈Weighted 2-SAT(GV), ki ≥

k, then ∀i, ki = k in order to satisfy the sum.

Theorem 6. Scaffolding in quasi-trees does not admit a polynomial kernel parameterized by treewidth, unless
NP ⊆ coNP/poly.
Proof. Let F = {(ϕ1, k), (ϕ2, k), ..., (ϕt, k)} be a set of t instances of Weighted 2-SAT(GV), equivalent
according to Definition 1. Using Construction 4, we obtain the set of graphs S = {S1, S2, ..., St}, with
Si = Γ(ϕi),∀i ∈ [1, t], and the graph G(S) = ∪ti=1Si. The graph G(S being the union of disjoint connected
components, we have tw(G(S)) = maxi∈[t] tw(Si). The Γ-transformation ensures that for a formula ϕi with n
variables and m clauses, then Si possesses 4(n+m) vertices. Since all treewidth may be bounded by the number
of vertices (minus one), and the size of a formula instance of Weighted 2-SAT(GV) polynomially depends
on the number of clauses/variables, we have, for a polynomial P (·, ·), tw(G(S)) ≤ P (maxi∈[t] |ϕi|, log t).

Definition 3. A connector is a polynomial operator which connects two disjoints paths p1 and p2 of G, such
that p1 et p2 belong to a same path.

The connector ⊕ is defined for two paths p1 and p2 of a quasi-tree, where P = (p1 ⊕ p2) is a path such that
p1, p2 ⊆ P and P respects the property of the quasi-tree.

Theorem 7. There is no hope to find a connector ⊕ for Scaffolding unless NP ⊆ coNP/poly.
Proof. Let F = {(ϕ1, k), (ϕ2, k), . . . , (ϕt, k)} a set of t instances of Weighted 2-SAT(GV), equivalent accord-
ing to Definition 1, and G(S) the graph obtained by Construction 4. Each Si possesses exactly n paths, since
∀i ∈ {1, . . . , t}, ϕi admits a solution of weight at least k. Thus there are n× t paths in G(S, and pji designates
the jth path of Si.

Suppose that it exists a connector ⊕ which connect two paths respecting the quasi-tree property. Therefore,
we may extend the process for all G(S)-paths. Gc(S) is the resulting graph, with only one path P containing
all paths pji ,∀i, j.

Thus ∀i, (ϕi, k) ∈ Weighted 2-SAT(GV) iff Γ(ϕ) ∈ Scaffolding with σp = 1, σp = 0 and cost =
k. Since all instances in F are equivalent according to Rkn, and σp = 1 is polynomial in maxi=1,...,t |xi| +
log∑ t, Scaffolding does not admit a polynomial kernel in σp on the quasi-tree, unless NP ⊆ coNP/poly.
Nevertheless, for σp = c ∈ IN it exists a polynomial-time algorithm for the Scaffolding in presence in quasi-
tree. So there is no hope to find a connector.

4 There is still hope to find

4.1 Polynomial cases
4.1.1 In dense graphs

To solve Strict Scaffolding (decision) in nearly complete graphs, we use a maximummatching in an auxiliary
graph. In the following, let G be a co-bipartite graph and M∗ a perfect matching in G. Let H be the graph
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Weighted 2-SAT-formula

ϕ1 ϕ2 . . . ϕt
cross-composition

Scaffolding-instance

S1 S2
. . . St

•
•

• • •

• •
•

Figure 5: Illustration of the Cross-composition with a connector.

on the vertex set M∗ that contains an edge (uv, xy) if and only if G[uvxy] contains an alternating cycle of
length four. Note that, since G is co-bipartite with partition X ]Z = V (G), we know that H is co-tripartite on
partition EX ]EY ]EZ = V (H) with EX =

(
X
2

)
∩M∗, EZ =

(
Z
2

)
∩M∗, and EY = {uv | u ∈ X ∧ v ∈ Z}∩M∗.

In the following, let MH be a maximum matching in H.

3

1

2

4
5

X Z

(a) Original co-bipartite graph G. Edges in M∗ are strong.

1 2

3

4

5
EX EY EZ

(b) Transformed co-tripartite graph H. Edges in MH ap-
pears in gray.

Figure 6: Transformation of a co-bipartite graph G with a perfect matching M∗(left) into a co-tripartite graph
H (right) on the vertex set M∗.

Observation 1. Let H be a co-tripartite graph and let MH be a maximal matching in H. Then, MH covers
all but at most three vertices: one in each set of the partition.

Proposition 1. A maximum matching in a co-tripartite graph can be found in O(n+m) time.

Sketch. Clearly, a maximal matching M ′H in a co-tripartite graph H can be computed in linear time. Further,
by Observation 1, at most one vertex in each partition is not covered by M ′H . Then, by the graph structure of
H, if M ′H is augmentable, it can be augmented by an easy-to-find augmenting path.

Lemma 5. Let H be a co-tripartite graph and let MH be a maximum matching in H. Let u and v be vertices
of H that are uncovered by MH . Then, H does not contain an edge between the partition of u and the partition
of v. Further, if a third vertex is uncovered by MH , then H consists of three disjoint cliques.

Proof. We suppose that u and v are uncovered by MH . If there is an edge xy between the partition of u and
the partition of v, with x in the partition of u and y in the partition of v, we consider both following cases:

• if the edge xy is in MH , then uxyv would be an augmenting 3-path, contradicting optimality of MH .

• if the edge xy is not in MH : if u 6= x, then there is some z matched with x by MH and, by the first part,
z is in the same partition as x and u. Thus, there is an alternating (wrt. MH) path from u to y in H
ending with xy. By symmetry, there is an alternating path from v to x in H ending with xy. Thus, there
is also an alternating path from u to v in H, contradicting optimality of MH .

If a third vertex of H is uncovered by MH , it implies that all three cliques are disjoint.

Observation 2. Let (G,M∗, σp, σc) be a yes-instance. Then, |V (G)| ≥ 4σc + 2σp.

Note that MH corresponds to a set of alternating 4-cycles in G and, by Observation 1, at most three edges
of M∗ are not covered by these 4-cycles: one in each of EX , EY and EZ .

Lemma 6. Let (G,M∗, σp, σc) be a yes-instance, let H and MH be as defined above and let σc > |MH |. Then,
σc = |MH | + 1, σp = 0 and G contains an alternating 6-cycle intersecting EX , EY and EZ . Moreover, the
result of removing any such 6-cycle from G and MH can be covered with exactly σc − 1 alternating 4-cycles.

Proof. Assume that G can be covered by a collection S of > |MH | alternating cycles and any number of
alternating paths. Note that, by optimality of MH , at least one of the cycles of S contains at least 6 vertices
of G. Thus, S covers at least 4|MH | + 6 vertices of G. But by Observation 1, we have |V (G)| ≤ 4|MH | + 6,
implying that S contains no paths, |MH | 4-cycles, and one 6-cycle C of G. Furthermore, MH covers all but
exactly three vertices of H.
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1 2 3 4

X Z

(a) Original graph G.

1

2

3

4
EX EY EZ

(b) Graph H. The covering after the covering procedure is in gray.

Figure 7: Case where σc ≤ |MH | and σp 6= 0 and there are uncovered M∗-edges. Notice that it is a no-instance
for σp = 1, σc = 0, even if |V (G)| ≥ 4σc + 2σp.

Assume that C does not intersect EY . Then, |EY | is even since S \ C is a collection of 4-cycles. But, since
MH covers all but one edge of EY , it covers an odd number of edges in EY . But then, some edge in EY is
matched with an edge of EX or EZ by MH , contradicting Lemma 5. Assume that C does not intersect EX .
Then, since C intersects EY , all but one vertex of C are in EZ , implying that G has an alternating 4-cycle
intersecting EY and EZ , contradicting Lemma 5.

Finally, we show that the result of removing any 6-cycle C ′ intersecting EX , EY and EZ can be covered by
σc−1 alternating cycles. To this end, it suffices to observe that, by Lemma 5, |EX \C ′|, |EY \C ′| and |EZ \C ′|
are all even and each induces a clique in H.

Since we can find a 6-cycle as described in Lemma 6 in linear time, we can solve Strict Scaffolding in
linear time if σc > |MH |. Thus, in the following, we assume σc ≤ |MH |.

In a first step, we extend the cycles represented by MH to cover the edges represented by the uncovered
vertices in H. To this end, we first slightly modify MH :

1. If u ∈ EX (or EZ) is not covered by MH and H has an alternating (wrt. MH) path from u to some
z ∈ EY , then flip this path with respect to MH .

2. If u ∈ EX (or EZ) is not covered byMH and H has an alternating (wrt.MH) path from u to some z ∈ EZ
not intersecting EY , and with an edge between EX and EZ not in MH , then flip this path.

3. If H has an alternating (wrt. MH) 4-cycle intersecting
(
EY

2

)
, but not

(
EY

2

)
∩MH , then flip this 4-cycle.

As the result is also a maximum matching in H, we assume in the following that MH has been modified in
this way. Further, these modifications can also be done in linear time.

With this modification, we can discuss the case where σp 6= 0. We define the following covering procedure:
1. If σc < |MH | and there is an edge in MH incident with a vertex of EY , then remove this edge from MH .
2. If σc < |MH | and no edge in MH is incident with a vertex of EY , arbitrarily remove edges from MH until

reaching σc.
At this step, there is exactly σc cycles of length four covered by MH . We set C this set of cycles. Since
|V (G)| ≥ 4σc + 2σp, we have at least σp edges in M∗ which are still uncovered.

3. Cover σp of these edges of M∗ by one path each, beginning with edges in EY .
4. If there is some uv ∈ EY that is not covered by MH , then we cover all edges of M∗ ∩ EY that are not

covered by MH using a single alternating path by extending one initial covered path uv ∈ EY .
At this step, either EY is entirely covered, or it is empty and there are still σp paths to cover.

5. The following cases occur only if EY is empty: If X is totally uncovered, then cover one matching edge in
X. If Z is totally uncovered and their remains at least one path available, cover one matching edge in Z.

6. If we have just covered k < σp distinct paths yet, thus the k covered paths are constituted each by a
single matching edge, and there remains sufficiently uncovered matching edge. We cover σp − k of them
arbitrarily.

7. If there is an uncovered edge uv in EX (resp EZ), and an extremity of a covered path ending in X (resp.
Z), then extend this path with uv.

8. If there is uncovered edge uv in EX (resp EZ), and a non-matching edge xy of a covered path or cycle
entirely in X (resp. Z), then switch xy with xuvy to cover uv.

After this last step, the only case where there is still uncovered matching edge is when X and Z are disjoint,
σc = 0 and σp = 1. Thus, the instance is a no-instance.

In the following, we assume σp = 0. We design the second covering procedure as follows: Let C be initialized
as the set of alternating (wrt. M∗) cycles in G that correspond to MH . We extend C to cover the edges of M∗
that have not been covered by MH . Next, for each edge uv ∈ EX ∪EZ that is not covered by MH , find a 3-path
uxyv in G −M∗ such that xy is in a cycle C ∈ C. Then, augment C by uv, that is, exchange xy for ux, uv,
and vy in C. If, after this, there is at most one edge in EX ∪ EZ that is not covered by C, then repeat this
procedure for an edge uv ∈ EY that is not covered by MH .

Lemma 7. Let C be the result of the above augmentation procedure and let σc ≤ |MH |. If there is at least one
edge of M∗ that is not covered by C, then the instance is a no-instance.

Proof. Let S be a solution for (G,M∗, σp, |MH |). We consider cases depending on σp.
Case 1: σp = 0. Let uv be an edge of M∗ that is not covered by C and let C be a cycle of S containing uv.
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Figure 8: Case where σc ≤ |MH | and σp = 0 and there are uncovered M∗-edges. Notice that it is a no-instance
for σp = 0, σc = 1, even if |V (G)| ≥ 4σc + 2σp.

• If uv is in X, and at least one other edge in M∗ is in X, say xy, then xy is covered by MH . Let zt ∈M∗
be a neighbour of xy (wrt MH). If zt is in EX , then by the augmenting procedure above, uv would have
been covered byMH . If zt is in EY , then by the first modification ofMH , the path uv−xy−zt would have
been flipped, and uv covered by MH . If zt is in EZ , again by the first modification of MH , uv would have
been covered by MH . Thus, uv is the lonely edge in EX (resp. EZ). Let xy and zt be the neighbours of
uv in M∗ ∩C. We suppose that ux ∈ E(G) and vz ∈ E(G). We have to consider the following excluding
cases:

1. xy = zt and this edge is in EZ . Then EX is connected to EZ , and the edge xy is covered by MH .
It neighbour by MH is either in EZ , then by the second modification of MH , the path between xy
and this edge would have been flipped, and xy covered by MH , or it is in EY , and then by first
modification of MH , again this path would have been flipped. In any case, xy would have been
covered by MH .

2. xy ∈ EZ , zt ∈ EZ , and xy 6= zt. Thus by the augmenting procedure, they are covered by MH .
Indeed, the argument is similar as above. If they belong to a same cycle of C, then the edge xz is
such uxzv ∈ G \M∗ and xz is in a cycle. Thus by above augmenting procedure, uv would have been
covered by MH .

3. xy ∈ EY and zt ∈ EY . Then, one of them is covered by MH , say xy. If its neighbour by MH is in
EY , then without loss of generality, we can suppose that it is zt, since this neighbour is then also
connected to uv. In this case, by augmenting procedure above, uv would have been covered by MH .
If the neighbour is not in EY , then it is in EZ , and then by the second augmenting procedure, zt
would have been included in the cycle. By first augmenting procedure, so does uv.

4. xy ∈ EZ , zt ∈ EY (and symmetric case). If none of xy and zt is covered by MH , it means |MH | = 0,
which is not possible since σc ≥ 1 and σc ≤ |MH | by hypothesis. Again, if zt is covered by MH , by a
similar discussion as above, we conclude that uv would have been covered by MH through one of the
augmenting procedure. Suppose now that zt is not covered by MH , and that xy is covered by MH .
If it neighbour is in EY , we can also conclude, since it is also connected to uv. If its neighbour is in
EZ , then by the second augmenting procedure, zt would have been covered by MH . In any case, it
leads to a contradiction.

• The case where uv ∈ EZ is totally symmetric.

• If uv ∈ EY , we use a very similar discussion. Indeed, xy and zt may be equal or one in EX and one in
EZ , and we find again a case like above.

In any case, it leads to a contradiction, so uv can not be in a solution and the instance is a no-instance.
Case 2: σp 6= 0. We suppose that there is at least one edge not covered by C. Let uv be an edge of M∗

that is not covered by C. We saw above that the only case where there are uncovered edges in M∗ is when X
and Z are disjoint, σc = 0 and σp = 1, and the instance is a no-instance.

Theorem 8. Unweighted Scaffolding can be solved in O(n+m) time on co-bipartite graphs.

4.1.2 In sparse graphs

We show that, if G is a quasi forest and σp = 0, then Scaffolding, and even Strict Scaffolding, can be
solved in linear time. To this end, we employ the following reduction rule.

Rule 1. Let u be a leaf in G−M∗ such that the parent v of u in G−M∗ is not a leaf. Then, delete all edges
incident with v in G−M∗ that are not uv.

Correctness of Rule 1. The proof is based on the argument that any solution S for G is a perfect matching (that
is, Gr(S ∪M∗) has no degree-1 vertices). Since uv is the only edge of G −M∗ incident with u, it is apparent
that uv ∈ S and, thus, no other edge incident with v is in S.
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Algorithm 1: A 2-approximation for Max Scaffolding on complete bipartite graphs.
1 S ← a maximal-cardinality maximum-weight matching in G−M∗;
2 C ← the set of cycles in Gr(S ∪M∗);
3 X ←

⋃
C∈C argmin{ω(uv) | uv ∈ C \M∗};

4 while |X| > σc + σp do
5 e, e′ ← argmin{ω(e), ω(e′) | e, e′ ∈ X ∧ e 6= e′};
6 Y ← a maximum-weight 4-cycle containing e and e′ in G;
7 S ← S∆Y ;
8 e∗ ← argmin{ω(e∗) | e∗ ∈ S ∩ Y };
9 X ← (X \ {e, e′}) + e∗;

10 while |X| > σc do
11 e← argmin{ω(e) | e ∈ X};
12 S ← S − e;
13 X ← X − e;
14 return S;

e e′

Figure 9: An example with σc = 1 for which Algorithm 1 gives a solution of half optimal weight. Drawn edges
(solid and dashed) have weight 1, all other edges have weight 0. The solid edges are a maximal-cardinality
maximum-weight matching. Left: Algorithm 1 replaces e and e′ to form the highlighted solution of weight 2.
Right: an optimal solution of weight 4.

If we maintain a list of leaves on each edge-deletion, we can apply Rule 1 exhaustively in linear time. Moreover,
if it is no longer applicable to G −M∗, then G −M∗ is a matching and checking whether G has the correct
number of cycles can be done in linear time. Finally, we can extend this idea to work for any σp and σc by
guessing all 2σp end points of paths in the solution and deleting the non-matching edges incident with them.
Clearly, the result of this operation remains a quasi-forest and all vertices having a parent in G −M∗ have
degree two in the solution, so the correctness of Rule 1 remains valid.

Corollary 9. Strict Scaffolding can be solved in O(n2σp+1) time on quasi forests.

4.2 Polynomial approximation algorithms
Unfortunately, Theorem 8 holds only for unweighted instances. As we have seen in 3.1.2, Scaffolding is
NP-hard if we allow weights to be 0 or 1. However, we can still show a simple factor-2 approximation, that is,
Algorithm 1 produces a solution of weight at least half the optimum weight, for Max Scaffolding in case G
is a complete graph or a complete bipartite graph.

Algorithm 1 starts with a maximal-cardinality maximum-weight matching S of G−M∗, implying that Gr(S∪
M∗) is a collection of cycles. Then, it merges cycles, two at a time. Finally, it turns cycles into paths until the
correct numbers of paths and cycles are reached.

Lemma 8. If G is a complete graph, Algorithm 1 produces a solution whose weight is at least half the optimum.

Proof. Let Sorg denote the set S as computed in line 1 and let S̃ denote the set S returned in line 14. First, we
show that S̃ is a solution. To this end, note that Sorg is a matching in G−M∗ and Gr(Sorg∪M∗) is a collection
of cycles since Sorg is maximal-cardinality (and, thus, perfect). Since the only times S changes is when its
symmetric difference with a 4-cycles is formed (line 7) or when edges are removed from S (line 12), the set S̃ is
a matching inG−M∗. Thus, Gr(S̃∪M∗) has maximum degree two. Further, note that “X ⊆ S” and “Gr(S∪M∗)
is a collection of cycles” are invariants of the first while loop. Since, in line 9, we know that Gr(S ∪M∗) has at
most σp + σc connected components, all of which are cycles, we conclude that Gr(S̃ ∪M∗) is a collection of at
most σp paths and at most σc cycles.

Next, we show that the weight of the set S returned in line 14 is at least half the weight of a maximum
matching in G −M∗, which is an upper bound on the solution weight and which is equal to ω(Sorg). To this
end, note that for all cycles C of Gr(Sorg ∪M∗), we selected a minimum-weight edge eC of C into X in line 3.
Thus, ω(C) ≥ |C|/2 · ω(eC) for each cycle C in Gr(Sorg ∪M∗). Finally, let Xorg denote the set X as computed
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in line 3. Then, since |C| ≥ 4 for each C,

ω(Xorg) = ω(
⋃
C

eC) ≤
∑
C

ω(eC) ≤
∑
C

2ω(C)/|C| ≤
∑
C

ω(C)/2 ≤ 1

2
ω(Sorg).

Since Algorithm 1 never touches any edge of Sorg except edges in Xorg, we know that Sorg ⊆ S̃ ∪ Xorg and,
thus, ω(S̃) ≥ ω(Sorg)− ω(Xorg) ≥ ω(Sorg)/2.

Note that all arguments remain valid for complete bipartite graphs. Furthermore, Figure 9 gives an example of
a configuration in which Algorithm 1 gives a solution of weight half the optimum, implying that the bound of
two is tight.

Theorem 9. If G is a complete bipartite graph or a clique, then Max Scaffolding can be approximated to
within a factor 2 in asymptotically the same time as it takes to compute a bipartite matching in G (currently
O(|V |3)). This factor is tight.

5 Variant problems for Scaffolding
When considering a weighted graph, we studied the problem of identifying a subset of edges whose removal
from the graph causes the largest cost increase. This problem is denoted as k most vital edges problem. A
dual problem consists of determining a set of edges of minimum cardinality whose removal causes the cost of
solution to become greater than a given a threshold. This problem is denoted by min edge blocker problem.
Those problems have been studied for various classes of combinatorial problems in [2, 3, 4]. The underlying idea
is that, for Scaffolding, it may be related to the quest of a "core partial solution", on which we may have
a greater confidence, since it has the most impact on the score of an optimal solution. This partial solution
may be extended further into a complete solution, by exhaustive exact search for instance. Unfortunately, the
problem is already difficult for constrained cases.

5.1 Hardness results for the k Most/Least vital edges Scaffolding
Here is the formal definition of the problem, adapted to Scaffolding.

k Most / Least vital edges of Scaffolding (k-MV / LV-Scaffolding)

Input: G, ω : E → N, perfect matching M∗ in G, σp ∈ N, σc ∈ N, k ∈ N.
Question: Does it exist a subset E′ ⊆ E, |E′| = k with G−E′ have a σp-σc-cover S′ (resp. G have

a σp-σc-cover S) with respect to M∗ such that (ω(S)− ω(S′)) is ≥ l / ≤ l ?

Notice that E′ ∩M∗ = ∅.
We first consider cases where the lengths of the cycles and paths are fixed, namely ((σp, `p ≥ 1), (σc, 6))-

Strict Scaffolding. We now consider a reduction from the Partition Into Triangles [14].

Partition Into Triangles (PT)

Input: G = (V,E), with |V | = 3q = n, q ∈ IN and |E| = m.
Question: Can the vertices of G be partitioned into q disjoints sets containing exactly three

vertices, T1, T2, . . . , Tq, such that for each Ti = {ui, vi, wi}, i ∈ {1, . . . , q}, all three edges
{ui, vi}, {ui, wi}, {wi, vi} belong to E?

We define a polynomial-time transformation from an instance of Partition Into Triangles to an instance
of ((σp, `p ≥ 1), (σc, 6))-Strict Scaffolding (see Figure 10).

Construction 6. Let G = (V,E) be an instance of Partition into Triangles. We consider the graph
G′ = (V ′ = V0 ∪ V1, E′ = E0 ∪ E1 ∪ E2 ∪ E3):

• We consider two copies of G denoted by G0 = (V0, E0) and G1 = (V1, E1) with vertices respectively denoted
by x0 and x1 for x ∈ V .

• ∀x ∈ V , {x0, x1} ∈ E2.

• ∀{x, y} ∈ E, {x0, y1} ∈ E3 and {x1, y0} ∈ E3.

The perfect matching M∗ consists in the edges of E2. We also add the following weights on edges outside M∗:
ω(e) = M, e ∈ E0 ∪ E1, otherwise ω(e) = M ′ with M ′ < M . We set k = 2m with m is the number of edges in
the graph G.
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(a) Original instance of Partition Into
Triangles

a0
b0

c0

a1
b1

c1

(b) Transformed instance of ((σp, `p ≥ 1), (σc, 6))-Strict Scaffolding.
Edges in M∗are strong. Plain edges have weight M , dotted edges have
weight M ′.

Figure 10: Illustration of Construction 6.

Theorem 10. The problem k-MV-((σp, `p ≥ 1), (σc, 6))-Strict Scaffolding is NP-complete, even if σp = 0.

Proof. The problem is clearly in NP. Let G = (V,E) be an instance of Partition Into Triangles, with
n = 3q vertices and m edges. We consider the graph G′ obtained from G by Construction 6. The number of
vertices (resp. edges) in G′ is 2n (resp. 4m + n). The graph G admits a partition into triangle if and only if
there exists two solutions S and S′ to ((σp, `p ≥ 1), (σc, 6))-Strict Scaffolding such that the gap between
S and S′ is 2q(M −M ′) i.e. ω(S)− ω(S′) = 2(M −M ′)q.

• Suppose there exists a positive solution for the problem k-MV-((σp, `p ≥ 1), (σc, 6))-Strict Scaffolding
such that ω(S)−ω(S′) = 2(M−M ′)q. Clearly in S at most two edges with weightM in each triangle may
be chosen. So ω(S) ≤ (2M + 4M ′)q. Moreover, ω(S′) = 6M ′q. Notice that ω(S) is equal to (2M + 4M ′)
if two edges of weight M are included in each cycle of length six, and the solution S uses the cycle
{x0, y0, y1, z0, z1, x1, x0} whereas S′ uses the cycle {x0, x1, y0, y1, z0, z1, x0}. The union of corresponding
triangles in G, ∪{x, y, z} is a G-cover.

• Conversely, we suppose that there exists in G a partition into triangles, let us construct a positive solution
for the k-MV-((σp, `p ≥ 1), (σc, 6))Strict Scaffolding in the graph G′.

1. The value of ω(S) = (2M + 4M ′)q iff G admits a partition into triangle. For a triangle {x, y, z}, we
consider the following alternating-cycle of length six: {x0, y0, y1, z0, z1, x1, x0}. It is clear that all
alternating-cycles cover the vertices of G′.

2. For any another solution S′ 6= S, we have ω(S′) ≥ 6qM ′, indeed it is sufficient to consider the
following alternating-cycle of length six: {x0, x1, y0, y1, z0, z1, x0}.

Therefore, we have ω(S)− ω(S′) = 2(M −M ′)q.

The previous result can be extended to the bipartite case, with `c = 12.

Corollary 10. The problem k-MV-((σp, `p ≥ 1), (σc, 12))-Strict Scaffolding remains NP-complete for
bipartite graphs with bounded degree at most four.

Proof. The proof is very similar to the previous one, and is based on the slightly different Construction 7, which
construct a bipartite graph, where the bound on degree is same as in the original instance of Partition Into
Triangles. Notice that Partition Into Triangles remains NP-complete even for maximum degree at
most four, yielding this part of the result. This construction is illustrated by Figure 11.

Construction 7. Let G = (V,E) be an instance of Partition Into Triangles. We consider the graph
G′ = (V ′ = V0 ∪ V1, E′ = E0 ∪ E1 ∪ E2):

• We consider two copies of G denoted by G0 = (V0, E0) and G1 = (V1, E1) with vertices respectively denoted
by x0 and x1 for x ∈ V .

• For each edge e ∈ E0 ∪ E1, e is split into two edges by adding a new vertex i.e. ∀{x0, y0} ∈ E0 (resp.
∀{x1, y1} ∈ E1), we add x0y0 (resp. x1y1) and two new edges {x0, x0y0} and {x0y0, y0} (resp. {x1, x1y1}
and {x1y1, y1}). The set of vertices Vi, and edges Ei, i ∈ {0, 1} are updated.

• We add all the edges of the form {x0, x1} and {x0y0, x1y1} to the set of edges denoted E2.

The perfect matching consists in the edges of E2.We set the following weights: every edge e in G′ is incident
to a vertex xy0 or xy1. If ω(x0xy0) = M , we set ω(xy1y1) = M and ω(xy0y0) = ω(x1xy1) = M ′ with M ′ < M .
We let k = 2m where m is the number of edges in the graph G.

Clearly by construction the graph G′ is bipartite. It is sufficient to consider l = 2q(M −M ′).
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have weight M ′.

Figure 11: Illustration of Construction 7.

Corollary 11. k-MV-Strict Scaffolding remains NP-complete for bipartite planar graph with `c = 4 even
if σc = l ∈ IN and σp = 1 and `p ≥ 1.

Proof. The proof is based on Construction 2. We add to this construction, the set of edges E2 = {(y1j y4j ), (y3j y
2
j )},∀j ∈

[1, σc] ω(e) = M,∀e ∈ E1, ω(e) = M ′,∀e ∈ E2 with M > M ′, otherwise ω(e) = 1. Finally, we put k = 2σc. As
previously, there is a positive solution for Directed Hamiltonian Path if and only if there are two solutions
S and S′ of k-MV-Strict Scaffolding such that ω(S)− ω(S′) = 2(M −M ′)σc.

Notice that all previous results may be extended to the problem of k Least vital edges.

Corollary 12. The minimization problem for k-MV-Strict Scaffolding is non-approximable for all pre-
vious problems.

The following problem is close to previous ones, but aims to minimize the size of the removed edge set.

MIN/MAX Edge Blocker Scaffolding (Min/Max-EB-Scaffolding)

Input: G, ω : E → N, perfect matching M∗ in G, σp ∈ N, σc ∈ N, k ∈ N.
Question: A subset E′ ⊆ E of minimum cardinality with G−E′ have a σp-σc-cover S′ with respect

to M∗ such that ω(S′) is at least / most k i.e. ω(S′) ≥ k / ω(S′) ≤ k?

Both problems k-MV-Scaffolding and Min-EB-Scaffolding are polynomial-time equivalent.

Corollary 13. The problem k-MB-Scaffolding is NP-complete for bipartite graph and the result remains
true even if σp = 0.

Proof. It is sufficient to consider the E′-edges set of the solution given by S in the proof of Theorem 10 and
put k = 6qM ′.

5.2 Existence of two disjoints solutions
In the following, we consider the problem concerning the existence of two disjoints solutions. Two solutions S1

and S2 are edge-disjoint (disjoint in the following) according to a perfect matchingM∗ if (S1\M∗)∩ (S2\M∗) =
∅.

Two Disjoint Solutions for Scaffolding (2-Scaffolding)

Input: G = (V,E), ω : E → N, perfect matching M∗ in G, σp, σc, k ∈ N
Question: Is there an S1, S2 ⊆ E \M∗, two disjoint solutions such that Gr(Si ∪M∗), for i = 1, 2

is a collection of ≤ σp paths and ≤ σc cycles and ω(Si) ≥ k?

We consider the following polynomial-time construction from Directed Hamiltonian Path, illustrated
by Figure 12. Notice that the produced graph G′ is planar if G is planar.

Construction 8. Let G = (V,A) an instance of the Directed Hamiltonian Path problem. We construct
the following graph G′ = (V0 ∪ V1, E0 ∪ E1):

• ∀u ∈ V , we construct a graph with six vertices P6,u = (u1, u2, u3, u4, u5, u6) with edge between ui and ui+1

for i = 1, . . . , 5. This set of edges are denoted by E0. Moreover, we add to E0 these two edges (u2, u4)
and (u3, u5).
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(b) Transformed instance of the arc. Matching edges are strong.

Figure 12: Example of Construction 8.

• ∀(u, v) ∈ A, we construct a graph PEu,v with two vertices (u, v)0 and (u, v)1, and add following edges
{u6, (u, v)0}, {(u, v)0, (u, v)1}, {(u, v)1, v1}, {u6, (u, v)1} and {(u, v)0, v1}. Such vertices are in V1 and the
corresponding edges in E1.

We construct the perfect matchingM∗ on G′, consisting in the edges of the kind {u1, u2}, {u3, u4}, {u5, u6},∀u ∈
V and {(u, v)0, (u, v)1},∀(u, v) ∈ A.

Theorem 11. The problem 2-Scaffolding is NP-complete, even if the graph is planar and σc = 0. As-
suming the Exponential-Time Hypothesis, there exists no hope to find a algorithm in O(2o(

√
n)) time for the

2-Scaffolding in presence of a planar graph.

Proof. Clearly, there are two disjoint paths according to the perfect matching M∗ for the path P6,u i.e. u1 →
u2 → u3 → u4 → u5 → u6 (denoted by P̄6,u) and u1 → u2 → u4 → u3 → u5 → u6 (denoted by P̃6,u). Similarly,
for an edge-path of length three PE(u,v), we may consider the two disjoint paths u6 → (u, v)0 → (u, v)1 → v1

(denoted by P̄E(u,v)) or u6 → (u, v)1 → (u, v)0 → v1 (denoted by P̃E(u,v)).
Therefore according to previous discussion, it is clear that it exists a positive solution for Directed Hamil-

tonian Path if and only if it exists a positive solution for 2-Scaffolding, i.e. two disjoint solutions S1 and
S2. Indeed, each solution Si use the P̄6,u or P̃6,u and P̄E(u,v) or P̃E(u,v) paths.

Moreover, the previous polynomial-time transformation is linear which implies the results for subexponential-
time algorithm.

6 Conclusion
In this article, we presented an overview of the negative and positive results in terms of complexity and ap-
proximation for Scaffolding. Refining previously obtained results, we were particularly interested in different
classes of graphs, some of them because they have a resemblance to real scaffold graphs, particularly due to their
sparsity, and others because we hope to generalize in these "almost complete" graphs, the results of complexity
and approximation obtained in complete graphs. Negative results concern strong restrictions on the problem,
including the number of cycles, paths, their length, the maximum degree of the graph, and gives little hope of
finding a polynomial case whose configuration looks like a real graph. In addition, in the side of dense graphs,
but also in quasi-forest, we prove several NP-completeness results for the optimization problem as soon as
we allow two different weights on the edges of the graph. We complement these results with lower bounds
on the complexity of exact algorithms for these problems under the Exponential-Time-Hypothesis. Negative
results for approximation are also exposed, especially for the minimization problem, even in quasi-forests and
graphs containing a bipartite graph. Continuing the quest for effective angle of attack for the problem, we have
also been sought in FPT algorithms, in particular, we looked if there was a polynomial kernel to the problem
parameterized by treewidth. We proved that it could not exist.

However, we also found promising positive results. Regarding dense graphs, we proved that the decision
problem is polynomial for co-bipartite graphs, and exhibited an approximation algorithm with a factor of 2 for
scaffolding in the cliques and bipartite complete graphs.

Finally, we have shown that it is equally difficult to find a subset of "vital" edges for Scaffolding, as the
problem itself.

These results raise interesting new questions which have to be explored if we want to approach the boundaries
of the problem. Thus, we hope to get a result of polynomiality in split graphs for the decision problem, in a
manner similar to that obtained in co-bipartite graphs. From these results, we also wish to infer approximation
algorithms with a performance guarantee for Scaffolding in these graph classes, for example by adapting a
greedy strategy or using a maximum perfect matching like in the case of cliques. If these results are confirmed,
it is hoped to extend them in classes of graphs which generalize the concept of cliques and stable, that is
(r, l)-graphs, which are graphs which are decomposable into r independent sets and l cliques [6].

Also, results for approximation in complete graphs requires a series of tests, on real and simulated dataset,
to examine if the ratio obtained in practice would be better than 2. It is expected indeed that he is, since actual
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scaffold graphs are rather sparse and many edges will be of weight zero. On theoretical level, one wonders if
this approximation algorithm can be generalized to a PT AS.

As for FPT algorithms, we can look closer to other parameters, or search for FPT approximation algorithms
that would be a first step towards a practical tackling of the problem. It was also the underlying idea of
considering the k-Most Vital edges problems. These issues would deserve a little extra exploration, particularly
on sparse graphs.
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