
HAL Id: hal-01833274
https://hal.science/hal-01833274v2

Preprint submitted on 12 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Nonasymptotic control of the MLE for misspecified
nonparametric hidden Markov models

Luc Lehéricy

To cite this version:
Luc Lehéricy. Nonasymptotic control of the MLE for misspecified nonparametric hidden Markov
models. 2018. �hal-01833274v2�

https://hal.science/hal-01833274v2
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Oracle inequality for misspecified NPHMMs

Nonasymptotic control of the MLE for misspecified
nonparametric hidden Markov models

Luc Lehéricy luc.lehericy@univ-cotedazur.fr

Laboratoire J. A. Dieudonné
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Abstract

Finite state space hidden Markov models are flexible tools to model phenomena with com-
plex time dependencies: any process distribution can be approximated by a hidden Markov
model with enough hidden states. We consider the problem of estimating an unknown pro-
cess distribution using nonparametric hidden Markov models in the misspecified setting,
that is when the data-generating process may not be a hidden Markov model. We show that
when the true distribution is exponentially mixing and satisfies a forgetting assumption,
the maximum likelihood estimator recovers the best approximation of the true distribution.
We prove a finite sample bound on the resulting error and show that it is optimal in the
minimax sense–up to logarithmic factors–when the model is well specified.

Keywords: misspecified model, nonparametric statistics, maximum likelihood estimator,
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1. Introduction

Let (Y1, . . . , Yn) be a sample following some unknown distribution P
∗. The maximum likeli-

hood estimator can be formalized as follows: let {Pθ}θ∈Θ, the model, be a family of possible
distributions; pick a distribution Pθ̂ of the model which maximizes the likelihood of the
observed sample.

In many situations, the true distribution may not belong to the model at hand: this is
the so-called misspecified setting. One would like the estimator to give sensible results even
in this setting. This can be done by showing that the estimated distribution converges to
the best approximation of the true distribution within the model. The goal of this paper is
to establish a finite sample bound on the error of the maximum likelihood estimator for a
large class of true distributions and a large class of nonparametric hidden Markov models.

In this paper, we consider maximum likelihood estimators (shortened MLE) based on
model selection among finite state space hidden Markov models (shortened HMM). A finite
state space hidden Markov model is a stochastic process (Xt, Yt)t where only the observa-
tions (Yt)t are observed, such that the process (Xt)t is a Markov chain taking values in a
finite space and such that the Ys are independent conditionally to (Xt)t with a distribution
depending only on the corresponding Xs. The parameters of a HMM (Xt, Yt)t are the initial
distribution and the transition matrix of (Xt)t and the distributions of Ys conditionally to
Xs.

HMMs have been widely used in practice, for instance in climatology (Lambert et al.,
2003), ecology (Boyd et al., 2014), voice activity detection and speech recognition (Couvreur and Couvreur,
2000; Lefèvre, 2003), biology (Yau et al., 2011; Volant et al., 2014)... One of their advan-
tages is their ability to account for complex dependencies between the observations: despite
the seemingly simple structure of these models, the fact that the process (Xt)t is hidden
makes the process (Yt)t non-Markovian.

Up to now, most theoretical work in the literature focused on well-specified and paramet-
ric HMMs, where a smooth parametrization by a subset of Rd is available, see for instance
Baum and Petrie (1966) for discrete state and observations spaces, Leroux (1992) for gen-
eral observation spaces and Douc and Matias (2001) and Douc et al. (2011) for general state
and observation spaces. Asymptotic properties for misspecified models have been studied
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recently by Mevel and Finesso (2004) for consistency and asymptotic normality in finite
state space HMMs and Douc and Moulines (2012) for consistency in HMMs with general
state space. Let us also mention Pouzo et al. (2016), who studied a generalization of hidden
Markov models in a semi-misspecified setting. All these results focus on parametric models.

Few results are available on nonparametric HMMs, and all of them focus on the well-
specified setting. Alexandrovich et al. (2016) prove consistency of a nonparametric max-
imum likelihood estimator based on finite state space hidden Markov models with non-
parametric mixtures of parametric densities. Vernet (2015a,b) study the posterior consis-
tency and concentration rates of a Bayesian nonparametric maximum likelihood estimator.
Other methods have also been considered, such as spectral estimators in Anandkumar et al.
(2012); Hsu et al. (2012); De Castro et al. (2017); Bonhomme et al. (2016); Lehéricy (2018)
and least squares estimators in de Castro et al. (2016); Lehéricy (2018). Besides Vernet
(2015b), to the best of our knowledge, there has been no result on convergence rates or
finite sample error of the nonparametric maximum likelihood estimator, even in the well-
specified setting.

The main result of this paper is an oracle inequality that holds as soon as the models
have controlled tails. This bound is optimal when the true distribution is a HMM taking
values in R. Let us give some details about this result.

Let us start with an overview of the assumptions on the true distribution P
∗. The first

assumption is that the observed process is strongly mixing. Strong mixing assumptions
can be seen as a strengthened version of ergodicity. They have been widely used to extend
results on independent observation to dependent processes, see for instance Bradley (2005)
and Dedecker et al. (2007) for a survey on strong mixing and weak dependence conditions.
The second assumption is that the process forgets its past exponentially fast. For hid-
den Markov models, this forgetting property is closely related to the exponential stability
of the optimal filter, see for instance Le Gland and Mevel (2000); Gerencsér et al. (2007);
Douc et al. (2004, 2009). The last assumption is that the likelihood of the true process
has sub-polynomial tails, or equivalently a finite moment. None of these assumptions are
specific to HMMs, thus making our result applicable to the misspecified setting.

To approximate a large class of true distributions, we consider nonparametric HMMs,
where the parameters are not described by a finite dimensional space. For instance, one
may consider HMMs with arbitrary number of states and arbitrary emission distributions.
Computing a maximizer of the likelihood directly in a nonparametric model may be hard
or result in overfitting. The model selection approach offers a way to circumvent this issue.
It consists in considering a countable family of parametric sets (SM )M∈M–the models-
–and selecting one of them. The larger the union of all models, the more distributions
are approximated. Several criteria can be used to select the model, such as bootstrap,
cross validation (see for instance Arlot and Celisse (2010)) or penalization (see for instance
Massart (2007)). We use a penalized criterion, which consists in maximizing the function

(S, θ ∈ S) 7−→ 1

n
log pθ(Y1, . . . , Yn)− penn(S),

where pθ is the density of (Y1, . . . , Yn) under the parameter θ and the penalty pen only
depends on the model S and the number of observations n.

Assume that the emission distributions of the HMMs–that is the distribution of the
observations conditionally to the hidden states–are absolutely continuous with respect to
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some known probability measure, and call emission densities their densities with respect to
this measure. The tail assumption ensures that the emission densities have sub-polynomial
tail:

∀v > e, P
∗
(

sup
γ
γ(Y1) > vCQ logn

)

6
1

v
,

where the supremum is taken over all emission densities γ in the models and for some
constant CQ > 0. For instance, this assumption holds when all densities are upper bounded
by eCQ logn. A key remark at this point is the dependency of the exponent with n: we
allow the models to depend on the sample size. Typically, taking a larger sample makes it
possible to consider larger models.

To stabilize the log-likelihood, we modify the models in the following way. First, only
keep HMMs whose transition matrix have entries that are neither too small nor too large:
when the HMM has K hidden states, the entries of the transition matrix should belong to
the interval [K/(Cγ log n),KCγ log n] for some constant Cγ > 0. Then, replace the emission
densities γ by a convex combination of the original emission densities and of the dominating
measure λ with a weight that decreases polynomially with the sample size. In other words,
replace γ by (1− n−a)γ + n−aλ for some a > 0. Taking a > 1 ensures that the component
λ is asymptotically negligible. Any a > 0 works, but the constants of the oracle inequality
depend on it.

A simplified version of our main result (Theorem 6) is the following oracle inequality:
there exist constants A and n0 such that if the penalty is large enough, the penalized
maximum likelihood estimator θ̂n satisfies for all t > 1, η ∈ (0, 1) and n > n0, with
probability larger than 1− e−t − n−2:

K(θ̂n) 6 (1 + η) inf
dim(S)6n

{

inf
θ∈S

K(θ) + 2penn(S)

}

+
A

η
t
(log n)10

n
,

where K(θ) can be seen as a Kullback-Leibler divergence between the distributions P∗ and
Pθ. In other words, the estimator recovers the best approximation of the true distribution
within the model, up to the penalty and the residual term.

In the case where the true distribution is a HMM, it is possible to quantify the ap-
proximation error infθ∈S K(θ). Using the results of Kruijer et al. (2010), we show that the
above oracle inequality is optimal in the minimax sense–up to logarithmic factors–for real-
valued HMMs, see Corollary 10. This is done by taking HMMs whose emission densities are
mixtures of exponential power distributions–which include Gaussian mixtures as a special
case.

The paper is organized as follows. We detail the framework of the article in Section 2.
In particular, Section 2.3 describes the assumptions on the true distribution, Section 2.4
presents the assumptions on the model and Section 2.5 introduces the Kullback Leibler
criterion used in the oracle inequality. Our main results are stated in Section 3. Section 3.1
contains the oracle inequality and Section 3.2 shows how it can be used to show minimax
adaptivity for real-valued HMMs. Section 4 lists some perspectives for this work.

One may wish to relax our assumptions depending on the setting. For instance, one
could want to change the tail conditions or the rate of forgetting. We give an overview of
the key steps of the proof of our oracle inequality in Section 5 to make it easier to adapt
our result.
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Some proofs are postponed the Appendices. Appendix A contains the proof of the
minimax adaptivity result and Appendix B contains the proof of the main technical lemma
of Section 5.

2. Notations and assumptions

We will use the following notations:

• a ∨ b is the maximum of a and b, a ∧ b the minimum;
• For x ∈ R, we write x+ = x ∨ 0;
• N

∗ = {1, 2, 3, . . . } is the set of positive integers;
• For K ∈ N

∗, we write [K] = {1, 2, . . . ,K};
• Y b

a is the vector (Ya, . . . , Yb);
• L2(A,A, µ) is the set of measurable and square integrable functions defined on the
measured space (A,A, µ). We write L2(A,µ) when the sigma-field is not ambiguous;

• log is the inverse function of the exponential function exp.

2.1 Hidden Markov models

Finite state space hidden Markov models (HMM in short) are stochastic processes (Xt, Yt)t>1

with the following properties. The hidden state process (Xt)t is a Markov chain taking value
in a finite set X (the state space). We denote by K the cardinality of X , and π and Q
the initial distribution and transition matrix of (Xt)t respectively. The observation pro-
cess (Yt)t takes value in a polish space Y (the observation space) endowed with a Borel
probability measure λ. The observations Yt are independent conditionally to (Xt)t with a
distribution depending only on Xt. In the following, we assume that the distribution of Yt
conditionally to {Xt = x} is absolutely continuous with respect to λ with density γx. We
call γ = (γx)x∈X the emission densities.

Therefore, the parameters of a HMM are its number of hidden states K, its initial
distribution π (the distribution of X1), its transition matrix Q and its emission densities
γ. When appropriate, we write p(K,π,Q,γ) the density of the process with respect to the
dominating measure under the parameters (K,π,Q, γ). For a sequence of observations Y n

1 ,
we denote by ln(K,π,Q, γ) the associated log-likelihood under the parameters (K,π,Q, γ),
defined by

ln(K,π,Q, γ) = log p(K,π,Q,γ)(Y
n
1 ).

We denote by P
∗ the true (and unknown) distribution of the process (Yt)t, E

∗ the
expectation under P

∗, p∗ the density of P∗ under the dominating measure and l∗n the log-
likelihood of the observations under P

∗. Let us stress that this distribution may not be
generated by a finite state space HMM.

2.2 The model selection estimator

Let (SK,M,n)K∈N∗,M∈M be a family of parametric models such that for all K ∈ N
∗ and

M ∈ M, the parameters (K,π,Q, γ) ∈ SK,M,n correspond to HMMs with K hidden states.
Note that the models SK,M,n may depend on the number of observations n. Let us see two
ways to construct such models.
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Mixture densities. Let {fξ}ξ∈Ξ be a parametric family of probability densities. Let M ⊂
N
∗. We choose SK,M,n to be the set of parameters (K,π,Q, γ) such that π and Q

are the initial distribution and transition matrix of a Markov chain on [K] and for all
x ∈ [K], γx is a convex combination of M elements of {fξ}ξ∈Ξ.

L2 densities. Let (EM )M∈M be a family of finite dimensional subspaces of L2(Y, λ). We
choose SK,M,n to be the set of parameters (K,π,Q, γ) such that π andQ are the initial
distribution and transition matrix of a Markov chain on [K] and for all x ∈ [K], γx is
a probability density such that γx = g ∨ 0 for a function g ∈ EM .

For all K ∈ N
∗ and M ∈ M, we define the maximum likelihood estimator on SK,M,n:

(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n) ∈ argmax
(K,π,Q,γ)∈SK,M,n

1

n
ln(K,π,Q, γ).

Since the true distribution does not necessarily correspond to a parameter of SK,M,n, tak-

ing a larger model SK,M,n will reduce the bias of the estimator (K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n).
However, larger models will make the estimation more difficult, resulting in a larger vari-
ance. This means one has to perform a bias-variance tradeoff to select a model with a
reasonable size. To do so, we select a number of states K̂n among a set of integers Kn

and a model index M̂n among a set of indices Mn such that the penalized log-likelihood is
maximal:

(K̂n, M̂n) ∈ argmax
K∈Kn,M∈Mn

(

1

n
ln(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n)− penn(K,M)

)

for some penalty penn to be chosen.
In the following, we use the following notations.

• Sn :=
⋃

K∈Kn,M∈Mn
SK,M,n is the set of all parameters involved with the construction

of the maximum likelihood estimator;

• S
(γ)
K,M,n = {γ | (K,π,Q, γ) ∈ SK,M,n} is the set of density vectors from the model

SK,M,n. S
(γ)
n is defined in the same way.

2.3 Assumptions on the true distribution

In this section, we introduce the assumptions on the true distribution of the process (Yt)t>1.
We assume that (Yt)t>1 is stationary, so that one can extend it into a process (Yt)t∈Z.

[A⋆tail] There exists δ > 0 such that

Mδ := sup
i,k

E
∗[(p∗(Yi|Y i−1

i−k ))
δ] <∞.

This assumption ensures that the true log-density rarely takes extreme values (see Lemma 14).

[A⋆forget] There exist two constants C∗ > 0 and ρ∗ ∈ (0, 1) such that for all i ∈ Z, for all
k, k′ ∈ N

∗ and for all yii−(k∨k′) ∈ Y(k∨k′)+1,

| log p∗(yi|yi−1
i−k)− log p∗(yi|yi−1

i−k′)| 6 C∗ρ
k∧k′−1
∗
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Let us recall the definition of the ρ-mixing coefficient. Let (Ω,F , P ) be a measured space
and A ⊂ F and B ⊂ F be two sigma-fields. Let

ρmix(A,B) = sup
f∈L2(Ω,A,P )

g∈L2(Ω,B,P )

|Corr(f, g)|.

The ρ-mixing coefficient of (Yt)t is defined by

ρmix(n) = ρmix(σ(Yi, i > n), σ(Yi, i 6 0)).

[A⋆mix] There exist two constants c∗ > 0 and n∗ ∈ N
∗ such that

∀n > n∗, ρmix(n) 6 4e−c∗n.

Assumption [A⋆forget] ensures that the process forgets its initial distribution exponentially
fast. This assumption is especially useful for truncating the dependencies in the likelihood.
[A⋆mix] is a usual mixing assumption and is used to obtain Bernstein-like concentration
inequalities. Note that [A⋆mix] implies that the process (Yt)t>1 is ergodic.

Even if [A⋆forget] is analog to a ψ-mixing condition (see Bradley (2005) for a sur-
vey on mixing conditions) and is proved using the same tool [A⋆mix] in hidden Markov
models–namely the geometric ergodicity of the hidden state process–these two assumptions
are different in general. For instance, a Markov chain always satisfies [A⋆forget] but not
necessarily [A⋆mix]. Conversely, there exist processes satisfying [A⋆mix] but not [A⋆forget].

Lemma 1 Assume that (Yt)t is generated by a HMM with a compact metric state space X
(not necessarily finite) endowed with a Borel probability measure µ. Write Q∗ its transition
kernel and assume that Q∗ admits a density with respect to µ that is uniformly lower bounded
and upper bounded by positive and finite constants σ∗− and σ∗+. Write (γ∗x)x∈X its emission
densities and assume that they satisfy

∫

γ∗x(y)µ(dx) ∈ (0,+∞) for all y ∈ Y.
Then [A⋆forget] and [A⋆mix] hold by taking ρ∗ = 1 − σ∗

−

σ∗+
, C∗ = 1

1−ρ∗ , c∗ =
− log(1−σ∗

−
)

2

and n∗ = 1.

Proof This lemma follows from the geometric ergodicity of the HMM.
For [A⋆forget], see for instance Douc et al. (2004), proof of Lemma 2.
For [A⋆mix], the Doeblin condition implies that for all distributions π and π′ on X ,

∫

|p∗(Xn = x|X0 ∼ π)− p∗(Xn = x|X0 ∼ π′)|µ(dx) 6 (1− σ∗−)
n‖π − π′‖1.

Let A ∈ σ(Yt, t > k) and B ∈ σ(Yt, t 6 0) such that P∗(B) > 0. Taking π the stationary
distribution of (Xt)t and π

′ the distribution of X0 conditionally to B in the above equation
implies

|P∗(A|B)− P
∗(A)| =

∣

∣

∣

∣

∫

P
∗(A|Xn = x)(p∗(Xn = x)− p∗(Xn = x|B))µ(dx)

∣

∣

∣

∣

6

∫

|p∗(Xn = x)− p∗(Xn = x|B)|µ(dx)

6 2(1 − σ∗−)
n.
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Therefore, the process (Yt)t>1 is φ-mixing with φmix(n) 6 2(1 − σ∗−)
n, so that it is ρ-

mixing with ρmix(n) 6 2(φmix(n))
1/2 6 2

√
2(1 − σ∗−)

n/2 (see e.g. Bradley (2005) for the
definition of the φ-mixing coefficient and its relation to the ρ-mixing coefficient). One can
check that the choice of c∗ and n∗ allows to obtain [A⋆mix] from this inequality.

2.4 Model assumptions

We now state the assumptions on the models. Let us recall that the distribution of the
observed process is not assumed to belong to one of these models.

Consider a family of models (SK,M,n)K∈N∗,M∈M such that for each K and M , the
elements of SK,M,n are of the form (K,π,Q, γ) where π is a probability density on [K],
Q is a transition matrix on [K] and γ is a vector of K probability densities on Y with
respect to λ.

The first assumption is standard in maximum likelihood estimation. It ensures that the
process forgets the past exponentially fast, which implies that the difference between the
normalized log-likelihood 1

n ln and its limit converges to zero with rate 1/n in supremum
norm.

[Aergodic] There exists CQ > 1 such that for all (K,π,Q, γ) ∈ Sn,

∀x, x′ ∈ [K], (CQ log n)−1
6 KQ(x, x′) 6 CQ log n

and ∀x ∈ [K], (CQ log n)−1
6 Kπ(x) 6 CQ log n.

For all γ ∈ S
(γ)
n and y ∈ Y, let

bγ(y) = log

(

K−1
∑

x

γx(y)

)

.

When (K,π,Q, γ) ∈ Sn, assumption [Aergodic] implies that under the parameters
(K,π,Q, γ), for all x ∈ [K], the probability to jump to state x at time t is at least
(CQ log n)−1K−1, whatever the past may be. This implies that the density p(K,π,Q,γ)(Yt|Y t−1

1 )
is lower bounded by (CQ log n)−1K−1

∑

x γx(Yt). For the same reason, it is upper bounded
by CQ(log n)K

−1
∑

x γx(Yt). Thus, it is enough to bound bγ to control p(K,π,Q,γ) without
having to handle the dependency in past observations.

The following assumption ensures that the log-likelihood rarely takes extreme values.

[Atail] There exists Cγ > 1 such that

∀u > 1, P
∗
[

sup
γ∈S(γ)

n

|bγ(Y1)| > Cγ(log n)u

]

6 e−u.

In practice, it is enough to check the upper deviations, as shown in the following lemma.

Lemma 2 Assume that there exists C > 1 such that

∀u > 1, P
∗
[

sup
γ∈S(γ)

n

bγ(Y1) > C(log n)u

]

6 e−u.
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Consider a new model where all γ are replaced by γ′ = (1 − n−a)γ + n−a for a fixed
constant a > 0. Then [Atail] holds for this new model with Cγ = C ∨ a.

Changing the densities as in the lemma amounts to adding a mixture component (with
weight n−a and distribution λ) to the emission densities to make sure that they are uniformly
lower bounded. We shall see in the following that if a > 1, then this additional component
changes nothing to the approximation properties of the models, see the proof of Corollary 10.
This is in agreement with the fact that this component is asymptotically never observed as
soon as a > 1.

The following assumption means that as far as the bracketing entropy is concerned,
the set of emission densities of the model SK,M,n behaves like a parametric model with
dimension mM .

[Aentropy] There exists a function (M,K,D, n) 7−→ Caux(M,K,D, n) > 1 and a sequence
(mM )M∈M ∈ N

M such that for all δ > 0, M , K, n and D,

N













y 7→ γx(y)1 sup

γ′∈S
(γ)
n

|bγ′ (y)|6D







γ∈S(γ)
K,M,n,x∈[K]

, d∞, δ







6 max

(

Caux(M,K,D, n)

δ
, 1

)mM

, (1)

where d∞ is the supremum norm distance and N (A, d, ǫ) is the smallest number of
brackets of size ǫ for the distance d needed to cover A. Let us recall that the bracket
[a, b] is the set of functions f such that a(·) 6 f(·) 6 b(·), and that the size of the
bracket [a, b] is d(a, b).

Note that we allow the models to depend on the sample size n, which can make Caux grow
to infinity with n. The following assumption ensures that the models do not grow absurdly
fast.

[Agrowth] There exist ζ > 0 and ngrowth such that for all n > ngrowth,

sup
K,M s.t. K6n and mM6n

logCaux(M,K, 3Cγ (log n)
2, n) 6 nζ .

A typical way to check [Aentropy] is to use a parametrization of the emission densities, for

instance a lipschitz application [−1, 1]mM −→ S
(γ)
K,M,n. This reduces the construction of a

bracket covering on S
(γ)
K,M,n to the construction of a bracket covering of the unit ball of RmM .

In this case, Caux depends on the lipschitz constant of the parametrization. Baring models

S
(γ)
n that grow so fast with respect to n that [Aentropy] becomes essentially meaningless,

[Agrowth] is usually immediately checked once [Aentropy] is established. An example of
this approach is given in Section 3.2 for mixtures of exponential power distributions.

2.5 Limit and properties of the normalized log-likelihood

In this section, we focus on the convergence of the normalized log-likelihood.

9



L. Lehéricy

Lemma 3 (Barron (1985)) Assume that the process (Yt)t>1 is ergodic, then there exists
a quantity l∗ > −∞ such that

1

n
l∗n −→

n→∞
l∗ a.s.

and
l∗ = lim

n→∞
E
∗[log p∗(Yn|Y n−1

1 )].

The second result follows from Theorem 2 of Leroux (1992).

Lemma 4 (Leroux (1992)) Let K be a positive integer, γ a vector of K probability den-
sities, Q a transition matrix of size K and π a probability measure on [K]. Assume that
the process (Yt)t>1 is ergodic and that π(x) > 0 and E

∗| log γx(Y1)| < +∞ for all x ∈ [K].
Then there exists a finite quantity l(K,Q, γ) which does not depend on π such that

1

n
ln(K,π,Q, γ) −→

n→∞
l(K,Q, γ) P

∗-a.s. and in L1(P∗).

In particular, l(K,Q, γ) = limn E[
1
n ln(K,π,Q, γ)].

When appropriate, we define K(K,Q, γ) by

K(K,Q, γ) := l∗ − l(K,Q, γ).

Note that K(K,Q, γ) > 0 since it is the limit of a sequence of Kullback-Leibler diver-
gences: under the assumptions of Lemma 4,

K(K,Q, γ) = lim
n→∞

1

n
KL(P∗

Y n
1
‖PY n

1 |(K,π,Q,γ))

where P
∗
Y n
1

(respectively PY n
1 |(K,π,Q,γ)) is the distribution of Y n

1 under P
∗ (respectively

P(K,π,Q,γ)). We will see in the proofs that with some notation abuses:

K(K,Q, γ) = E
∗
[

log

(

p∗(Y1|Y 0
−∞)

p(K,Q,γ)(Y1|Y 0
−∞)

)]

= E
∗
Y 0
−∞

[

KL(P∗
Y1|Y 0

−∞

‖PY1|Y 0
−∞

,(K,Q,γ))
]

.

Thus, K(K,Q, γ) can be seen as a Kullback Leibler divergence that measures the dif-
ference between the distribution of Y1 conditionally to the whole past under the parameter
(K,Q, γ) and under the true distribution. In a way, it is a prediction error under the
parameter (K,Q, γ).

In the particular case where the true distribution of (Yt)t comes from a finite state
space hidden Markov model, K characterizes the true parameters, up to permutation of the
hidden states, provided the emission densities are all distinct and the transition matrix is
invertible, as shown in the following result.

Lemma 5 (Alexandrovich et al. (2016), Theorem 5) Assume (Yt)t is generated by a
finite state space HMM with parameters (K∗, π∗,Q∗, γ∗). Assume Q∗ is invertible and
ergodic, that the emission densities (γ∗x)x∈[K∗] are all distinct and that E∗ [(log γ∗x(Y1))

+] <
∞ for all x ∈ [K∗] (so that l∗ <∞).

Then for all K 6 K∗, for all transition matrices Q of size K and for all K-uples
of probability densities γ, K(K,Q, γ) = 0 if and only if (K,Q, γ) = (K∗,Q∗, γ∗) up to
permutation of the hidden states.

10
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3. Main results

3.1 Oracle inequality for the prediction error

The following theorem states an oracle inequality on the prediction error of our estimator.
It shows that with high probability, our estimator performs as well as the best model of the
class in terms of Kullback Leibler divergence, up to a multiplicative constant and up to an
additive term decreasing as (logn)···

n , provided the penalty is large enough.

Theorem 6 Assume [A⋆forget], [A⋆mix], [A⋆tail], [Aergodic], [Atail], [Aentropy] and [Agrowth]
hold.

Let (wM )M∈M be a nonnegative sequence such that
∑

M∈M e−wM 6 e − 1. For all K
and M , let

(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n) ∈ argmax
(K,π,Q,γ)∈SK,M,n

1

n
ln(K,π,Q, γ),

(K̂, M̂) ∈ argmax
K6n

M s.t. mM6n

(

1

n
ln(K, π̂K,M,n, Q̂K,M,n, γ̂K,M,n)− penn(K,M)

)

and let (K̂, π̂, Q̂, γ̂) = (K̂, π̂K̂,M̂,n, Q̂K̂,M̂,n, γ̂K̂,M̂,n) be the nonparametric maximum likeli-
hood estimator.

Then there exist constants A and Cpen depending only on CQ, Cγ, n∗ and c∗ and a
constant n0 depending only on CQ, Cγ , n∗, ζ, ngrowth, C∗, ρ∗, δ and Mδ such that for all
n > n0, t > 1 and η 6 1, with probability at least 1− e−t − 2n−2,

K(K̂, Q̂, γ̂) 6 (1 + η) inf
K6n

M s.t. mM6n

{

inf
(K,π,Q,γ)∈SK,M,n

K(K,Q, γ)

+ 2penn(K,M)

}

+
A

η
t
(log n)10

n

as soon as

penn(K,M) >
Cpen

η

(log n)10

n

{

wM + (log n)4(mMK +K2 − 1)

×
(

(log n)3 log log n+ logCaux(M,K, 3Cγ (log n)
2, n)

)

}

.

The proof of this theorem is presented in Section 5. Its structure and main steps are
detailed in Section 5.1, and the proof of these steps are gathered in Section 5.2.

Note that this theorem is not specific to one choice of the parametric models SK,M,n:
one may choose the type of model that suits the density one wants to estimate best. In the
following section, we use mixture models to estimate densities when Y is unbounded. If Y
is compact, we could use L2 spaces and this oracle inequality would still hold.

The powers of log n come from:

11
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• The limitation of the dependency to the log n most recent observations,

• The dependency of the bounds CQ log n and Cγ log n on n in assumptions [Aergodic]
and [Atail],

• Truncating the emission log-densities (possible thanks to assumptions [Atail] and
[A⋆tail]),

• The use of a Bernstein inequality for exponentially α-mixing processes.

3.2 Minimax adaptive estimation using location-scale mixtures

In this section, we show that the oracle inequality of Theorem 6 allows to construct an
estimator that is adaptive and minimax up to logarithmic factors when the observations
are generated by a finite state space hidden Markov model. To do so, we consider models
whose emission densities are finite mixtures of exponential power distributions, and use an
approximation result by Kruijer et al. (2010).

Assume that (Yt)t>1 is generated by a stationary HMM with parameters (K∗,Q∗, γ∗),
which we call the true parameters. Without loss of generality, we identify the true hidden
state space with [K∗]. We consider the case Y = R endowed with the probability λ with
density Gλ : y 7−→ (π(1 + y2))−1 with respect to the Lebesgue measure.

In order to quantify the approximation error by location-scale mixtures, we use the
following assumptions from Kruijer et al. (2010).

(C1) Smoothness. For all x ∈ [K∗], log(γ∗xGλ) is locally β-Hölder with β > 0, i.e. there
exist a polynomial L and a constant R > 0 such that if r is the largest integer smaller
than β, one has for all x ∈ [K∗],

∀y, y′ s.t. |y − y′| 6 R,
∣

∣

∣

∣

∂r log(γ∗xGλ)
∂yr

(y)− ∂r log(γ∗xGλ)
∂yr

(y′)

∣

∣

∣

∣

6 r!L(y)|y − y′|β−r.

(C2) Moments. There exists ǫ > 0 such that for all x ∈ [K∗],

∀j ∈ {1, . . . , r},
∫
∣

∣

∣

∣

∂j log(γ∗xGλ)
∂yj

(y)

∣

∣

∣

∣

2β+ǫ
j

(γ∗xGλ)(y)dy <∞
∫

L(y)
2β+ǫ

β (γ∗xGλ)(y)dy <∞

(C3) Tail. There exist positive constants c and τ such that for all x ∈ [K∗],

γ∗xGλ = O(e−c|y|
τ
).

(C4) Monotonicity. For all x ∈ [K∗], (γ∗xGλ) is positive and there exists ym < yM such
that for all x ∈ [K∗], (γ∗xGλ) is nondecreasing on (−∞, ym) and nonincreasing on
(yM ,+∞).

12
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All these assumptions refer to the functions (γ∗xGλ), which are the densities of the true
emission distributions with respect to the Lebesgue measure. Hence, the choice of the
dominating measure λ does not matter as far as regularity conditions are concerned.

Note that Kruijer et al. (2010) only assumed (C3) outside of a compact set. However,
since the regularity assumption (C1) implies that (γ∗xGλ) is continuous, one may assume
(C3) for all y without loss of generality.

It is important to note that even though we require some regularity on the emission
densities, for instance through the polynomial L and the constants β and τ , we do not need
to know them to construct our estimator, thus making it adaptive.

We consider the following models. Let p > 2 be an even integer and

ψ(y) =
1

2Γ
(

1 + 1
p

)e−y
p
.

Let M = N
∗. We take SK,M,n as the set of parameters (K,π,Q, γ) such that

• [Aergodic] holds with Cσ = 1,

• For all x ∈ [K], there exist (sx,1, . . . , sx,M) ∈ [ 1n , n]
M , (µx,1, . . . , µx,M ) ∈ [−n, n]M and

wx = (wx,1, . . . , wx,M ) ∈ [0, 1]M such that
∑

iwx,i = 1 and for all y ∈ R,

γx(y) =
1

n2
+

(

1− 1

n2

)

1

Gλ(y)

M
∑

i=1

wx,i
1

sx,i
ψ

(

y − µx,i
sx,i

)

.

In other words, the emission densities are mixtures of λ (with weight n−2) and of M
translations and dilatations of ψ.

Lemma 7 (Checking the assumptions) Assume infQ∗ > 0, then:

• [A⋆forget] and [A⋆mix] hold.

• Assume (C3), then [A⋆tail] holds.

• [Atail] holds for all n > 3 by taking Cγ = 10.

• [Aentropy] and [Agrowth] hold for any ζ > 0 by takingmM = 2M and Caux(M,K,D, n) =
4pn3, for instance ζ = 2 and ngrowth = 4p.

Proof The first point follows from Lemma 1. The second point follows from the fact that
the densities γ∗x are uniformly bounded under (C3).

See Section A.1.1 for the proof of the last two points.

Remark 8 The results of this section remain the same when the weight of λ in the emission
densities of SK,M,n is allowed to be larger than n−2 instead of being exactly n−2.

Lemma 4 from Kruijer et al. (2010) implies the following result.
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Lemma 9 (Approximation rates) Assume (C1)-(C4) hold. Then there exists sequences
of mixtures (gM,x)M for each x ∈ [K∗] such that for M large enough and all n > M ,

(n−2 + (1− n−2)gM,x)x∈[K∗] ∈ S
(γ)
K∗,M,n and

max
x∈[K∗]

KL(γ∗x‖gM,x) = O(M−2β(logM)2β
p
τ ).

Proof Proof in Section A.1.2.

Corollary 10 (Minimax adaptive estimation rates) Assume (C1)-(C4) hold. Also
assume that infQ∗ > 0. Then there exists a constant C > 0 such that for all M > 3 and
n >M ,

inf
(K∗,π,Q,γ)∈SK∗,M,n

K(K∗,Q, γ) 6 C(log n)2
(

1

n
+M−2β(logM)2β

p
τ

)

Hence, using Theorem 6 with penn(K,M) = (KM + K2)(log n)18/n, there exists a
constant C such that almost surely, there exists a (random) n0 such that

∀n > n0, K(K̂n, Q̂n, γ̂n) 6 Cn
−2β
2β+1 (log n)18+

p
τ
− 16+

p
τ

2β+1

6 Cn
−2β
2β+1 (log n)18+

p
τ .

Proof Proof in Section A.1.3.

This result shows that our estimator reaches the minimax rate of convergence proved
by Maugis-Rabusseau and Michel (2013) for density estimation in Hellinger distance, up to
logarithmic factors. Since estimating a density is the same thing as estimating a one-state
HMM, this means that our result is adaptive and minimax up to logarithmic factors when
K∗ = 1. As far as we know, it is still unknown whether increasing the number of states
improves the minimax rates of convergence. It seems reasonable to think that it doesn’t,
which would imply that our estimator is in general adaptive and minimax.

4. Perspectives

The main result of this paper is a guarantee that maximum likelihood estimators based on
nonparametric hidden Markov models give sensible results even in the misspecified setting,
and that their error can be controlled nonasymptotically. Two properties of both the models
and the true distributions are at the core of this result: a mixing property and a forgetting
property, which can be seen as a local dependence property.

These two properties are not specific to hidden Markov models. Therefore, it is likely
that our result can be generalized to many other models and distributions. To name
a few, one could consider hidden Markov models with continuous state space as stud-
ied in Douc and Matias (2001) or Douc et al. (2011), or more generally partially observed
Markov models, see for instance Douc et al. (2020) and reference therein. Special cases of
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partially observed Markov models are HMMs with autoregressive properties (Douc et al.,
2004) and models with time inhomogeneous Markov regimes (Pouzo et al., 2016). One could
also consider hidden Markov fields (Kunsch et al., 1995) and graphical models to generalize
to more general distributions than time processes.

Another interesting approach is to consider other forgetting and mixing assumptions.
For instance, Le Gland and Mevel (2000) state a more general version of the forgetting as-
sumption where the constant is replaced by an almost surely finite random variable, and
Gerencsér et al. (2007) give conditions under which the moments of this random variable are
finite. Other mixing and weak dependence conditions have also been introduced in the lit-
terature with the hope of describing more general processes, see for instance Dedecker et al.
(2007).

5. Proof of the oracle inequality (Theorem 6)

5.1 Overview of the proof

By definition of (K̂, π̂, Q̂, γ̂), one has for all K 6 n, for all M such that mM 6 n and for
all (K,πK,M ,QK,M , γK,M ) ∈ SK,M,n:

1

n
l∗n −

1

n
ln(K̂, π̂, Q̂, γ̂) 6

1

n
l∗n −

1

n
ln(K,πK,M ,QK,M , γK,M)

+ penn(K,M) − penn(K̂, M̂ )

where K̂ and M̂ are the selected number of hidden states and model index respectively.

Let

ν(K,π,Q, γ) :=

(

1

n
l∗n −

1

n
ln(K,π,Q, γ)

)

−K(K,Q, γ),

then

K(K̂, Q̂, γ̂) 6 K(K,QK,M , γK,M ) + 2penn(K,M)

+ ν(K,πK,M ,QK,M , γK,M)− penn(K,M)

− ν(K̂, π̂, Q̂, γ̂)− penn(K̂, M̂).

Now, assume that with high probability, for all K, M and (K,π,Q, γ) ∈ SK,M,n,

|ν(K,π,Q, γ)| − penn(K,M) 6 ηK(K,Q, γ) +Rn (2)

for some constant η ∈ (0, 12), some penalty penn and some residual term Rn. The above
inequality leads to

(1− η)K(K̂, Q̂, γ̂) 6 (1 + η)K(K,QK,M , γK,M) + 2penn(K,M) + 2Rn,

and the oracle inequality follows by noticing that 1+η
1−η 6 1+4η and 1

1−η 6 2 when η ∈ (0, 12).

Let us now prove equation (2). For all i ∈ Z, k ∈ N
∗, let

L∗
i,k = log p∗(Yi|Y i−1

i−k ), (3)
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where the process (Yt)t>1 is extended into a process (Yt)t∈Z by stationarity. Likewise, for
all i ∈ Z, k ∈ N

∗, (K,π,Q, γ) ∈ Sn and for all probability distributions µ on [K], let

Li,k,µ(K,Q, γ) = log p(K,Q,γ)(Yi|Y i−1
i−k ,Xi−k ∼ µ),

where p(K,Q,γ)(·|Xi−k ∼ µ) is the density of a HMM with parameters (K,Q, γ) starting at
time i − k with the distribution µ. When µ is the stationary distribution of the Markov
chain under the parameter (K,Q, γ), we write Li,k(K,Q, γ). The following remark will be
useful in our proofs: since

p(K,π,Q,γ)(Xk = x|Y k−1
1 ) =

∑

x′∈[K]

p(K,π,Q,γ)(Xk−1 = x′|Y k−2
1 )Q(x′, x)γx′(Yk−1)

∑

x′∈[K]

p(K,π,Q,γ)(Xk−1 = x′|Y k−2
1 )γx′(Yk−1)

∈ [(CQ log n)−1K−1, CQ(log n)K
−1]

using [Aergodic], one has for all k, µ and (K,π,Q, γ) ∈ Sn

|Li,k,µ(K,Q, γ) − bγ(Yi)| 6 log(CQ log n). (4)

Assume from now on that n > exp(CQ). For all k, k′ ∈ N
∗, for all µ, µ′ probability

distributions and for all (K,π,Q, γ), (K ′, π′,Q′, γ′) ∈ Sn,






|Li,k,µ(K,Q, γ) − Li,k′,µ′(K
′,Q′, γ′)| 6 4 log log n+ |bγ(Yi)|+ |bγ′(Yi)|,

|Li,k,µ(K,Q, γ) − L∗
i,k′| 6 2 log log n+ |bγ(Yi)|+ |L∗

i,k′ |.
(5)

Let k > 1 and D > 0. Approximate ν(K,π,Q, γ) by the deviation

ν̄k(t
(D)
(K,Q,γ)) :=

1

n

n
∑

i=1

t
(D)
(K,Q,γ)(Y

i
i−k)− E

∗[t(D)
(K,Q,γ)(Y

0
−k)]

where
t
(D)
(K,Q,γ) : Y

0
−k 7−→ (L∗

0,k − L0,k,µt(K,Q, γ))1|L∗

0,k |∨
(

sup
γ′∈S

(γ)
n

|bγ′ (Y0)|
)

6D

for a fixed measure µt, for instance the uniform measure on [K]. Note that ‖t(D)
(K,Q,γ)‖∞ 6

2(D + log log n) by equation (5).

Considering these functions t
(D)
(K,Q,γ) has two advantages. The first one is to limit the

time dependency on the past to only k observations, which makes it possible to use the
forgetting property of the process (Yt)t∈Z. The second one is to consider bounded functionals
of this process, for which Bernstein-like concentration inequalities apply. The error of this
approximation is given by the following lemma.

Lemma 11 Assume [Atail], [Aergodic], [A⋆tail] and [A⋆forget] hold. Then there exists n0
depending on CQ, C∗, ρ∗,Mδ and δ such that for all n > n0, for all u > 1, with probability
greater than 1− 2ne−u, for all (K,π,Q, γ) ∈ Sn,

∣

∣

∣ν(K,π,Q, γ) − ν̄k(t
(Cγ(log n)u)
(K,Q,γ) )

∣

∣

∣ 6 10Cγ(log n)ue
−u +

2

nρ(1− ρ)2
+

4ρk−1

1− ρ
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where ρ = 1− (CQ log n)−2. In particular, if k > C2
Q(log n)

3 and n > n0 ∨
√

30Cγ , for all

D > 3Cγ(log n)
2, with probability greater than 1− 2n−2,

∣

∣

∣ν(K,π,Q, γ) − ν̄k(t
(D)
(K,Q,γ))

∣

∣

∣ 6 13C4
Q

(log n)4

n
. (6)

Proof Proof in Section 5.2.1.

The following theorem is our main technical result. It shows that ν̄k(t
(D)
(K,Q,γ)) can be

controlled uniformly on all models with high probability.

Theorem 12 Assume [Aergodic], [Aentropy] and [A⋆mix]. Also assume that D > log n,
that k > n∗+1 and that there exists n1 such that for all n > n1, for all K 6 n and M such
that mM 6 n,

14π (mMK +K2 − 1)e−4D(log n)2(k + logCaux(M,K,D, n)) 6 n. (7)

Let (wM )M∈M be a sequence of positive numbers such that
∑

M e−wM 6 e − 1. Then
there exist constants Cpen and A depending on n∗ and c∗ and a numerical constant n0 such
that for all ǫ > 0 and n > n1 ∨ n0, the following holds.

Let penn be a function such that for all K 6 n and M such that mM 6 n,

penn(K,M) >
Cpen

n
k2
(

1

ǫ
∨ D(log n)2

k

)

×
(

wM + (mMK +K2 − 1)D(log n)2(D + k log log n+ logCaux)
)

. (8)

Then for all s > 0, with probability larger than 1 − e−s, for all K 6 n and M such that
mM 6 n and for all (K,π,Q, γ) ∈ SK,M,n,

|ν̄k(t(D)
(K,Q,γ))| − penn(K,M) 6 ǫE[t

(D)
(K,Q,γ)(Y

0
−k)

2]

+Ak2
(

1

ǫ
∨ D(log n)2

k

)

s

n
. (9)

Proof Proof in Section B.

The last step is to control the variance term E[t
(D)
(K,Q,γ)(Y

0
−k)

2] by K(K,Q, γ).

Lemma 13 Assume [Atail], [Aergodic], [A⋆tail] and [A⋆forget] hold. There exists a con-
stant n0 depending on Mδ, δ, ρ∗, C∗ and CQ such that for all n > n0, k > CQ(log n)

3,
D > 0 and (K,π,Q, γ) ∈ Sn,

1

44C2
γ (log n)

4
E
∗[t(D)

(K,Q,γ)(Y
i
i−k)

2] 6 K(K,Q, γ) +
22

n
.
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Proof Proof in Section 5.2.2.

Take u = 3 log n in order to have ne−u 6 n−2 in Lemma 11. Note that u > 1 for all
n > e. Based on Lemma 11 and 13, also take

{

D = Cγ(log n)u = 3Cγ(log n)
2,

k = C2
Q(log n)

3.

In the following, we assume n > e ∨ exp([(n∗ + 1)/C2
Q]1/3), so that k > n∗ + 1 and

D > log n. Let η 6 1. In order to get ǫE∗[t(D)
(K,Q,γ)(Y

i
i−k)

2] 6 ηK(K,Q, γ) + 22η
n using

Lemma 13, take
1

ǫ
=

1

η
44C2

γ (log n)
4.

When assumption [Agrowth] holds and mM 6 n and K 6 n, equation (7) is implied by

28πn2(log n)2e−12Cγ (logn)2(C2
Q(log n)3 log log n+ nζ) 6 n

for all n > ngrowth, which is true for n > n1 for a constant n1 depending only on ngrowth,
CQ and ζ.

Moreover, there exists a constant Cǫ depending only on CQ and Cγ such that for all n,

1

ǫ
∨ D(log n)2

k
6
Cǫ
η
(log n)4.

Thus, there exists an integer n′′0 depending on CQ and Cγ (for instance exp(3Cγ/C
2
Q))

such that for all n > n′′0 equation (8) is implied by

penn(K,M) >
Cpen

n
C4
Q(log n)

6Cǫ
η
(log n)4

×
[

wM + 6Cγ(log n)
4(mMK +K2 − 1)

×
(

C2
Q(log n)

3 log log n+ logCaux(M,K, 3Cγ(log n)
2, n)

)

]

,

so if in addition n is larger than the thresholds of Theorem 12 and Lemma 13, equation (9)
and Lemma 13 imply for all s > 0, with probability at least 1− e−s, for all K 6 n and M
such that mM 6 n and all (K,π,Q, γ) ∈ SK,M,n,

|ν̄k(t(D)
(K,Q,γ))|−penn(K,M)

6 ηK(K,Q, γ) +
22η

n
+AC4

Q(log n)
6Cǫ
η
(log n)4

s

n

6 ηK(K,Q, γ) + 23AC4
Q(log n)6

Cǫ
η
(log n)4

s

n
(10)
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since we may assume A > 1 without loss of generality. Therefore, putting together equa-
tions (6) and (10) shows

|ν(K,π,Q, γ)|−penn(K,M)

6 ηK(K,Q, γ) +
23AC4

QCǫ

η
s
(log n)10

n
+ 13C4

Q

(log n)4

n

6 ηK(K,Q, γ) +
36AC4

QCǫ

η
s
(log n)10

n

which is equation (2) with the appropriate residual terms for Theorem 6.

5.2 Proofs

Let us first state two lemmas that will be of use in subsequent proofs.

Lemma 14 Assume [Atail] and [A⋆tail]. Then there exists a constant n0 depending on δ
and Mδ such that for all n > n0, for all i, k, and for all u > 1,

P
∗[|L∗

i,k| > Cγ(log n)u] 6 e−u

where L∗
i,k = log p∗(Yi|Y i−1

i−k ) as defined in (3), and writing D = Cγ(log n)u,

E

[

sup
γ∈S(γ)

n

|bγ(Y1)| 1sup
γ∈S

(γ)
n

|bγ(Y1)|>D

]

∨ E

[

|L∗
i,k|1|L∗

i,k|>D
]

6 2De−u,

E

[

sup
γ∈S(γ)

n

|bγ(Y1)|2 1sup
γ∈S

(γ)
n

|bγ(Y1)|>D

]

∨ E

[

|L∗
i,k|21|L∗

i,k|>D
]

6 5D2e−u.

Proof Let i ∈ Z, k ∈ N and v > 0. By [A⋆tail] and Markov’s inequality,

P
∗ [L∗

i,k > v
]

= P
∗ [p∗(Yi|Y i−1

i−k ) > ev
]

6 e−δvE∗
[

(p∗(Yi|Y i−1
i−k ))

δ
]

6 elogMδ−δv.

On the other hand,

P
∗ [L∗

i,k 6 −v
]

= P
∗ [p∗(Yi|Y i−1

i−k ) 6 e−v
]

= E
∗
[
∫

1p∗(y|Y i−1
i−k )6e−vp

∗(y|Y i−1
i−k )λ(dy)

]

6 e−v.

Thus, there exists B∗ > 1 such that if u > 1, P
∗[|L∗

i,k| > B∗u] 6 e−u. Therefore,
for all n > exp(B∗), the first equation holds, and under [Atail], the variables |L∗

i,k| and
sup

γ∈S(γ)
n

|bγ(Y1)| are dominated by Cγ(log n)(W ∨ 1) where W is an exponential random

variable with parameter 1. To conclude, note that for all u > 0,

E
∗[W1W>u] 6 (1 + u)e−u 6 2ue−u,

E
∗[W 21W>u] 6 (u2 + 2u+ 2)e−u 6 5u2e−u.
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Lemma 15 Assume [Aergodic] and [A⋆forget].

1. Let ρ = 1− (CQ log n)−2. Then for all i, k, k′, µ and µ′,

sup
(K,π,Q,γ)∈Sn

|Li,k,µ(K,Q, γ) − Li,k′,µ′(K,Q, γ)| 6 ρk∧k
′−1/(1− ρ)

and there exists a process (Li,∞)i∈Z such that for all i, k and µ,

sup
(K,π,Q,γ)∈Sn

|Li,k,µ(K,Q, γ) − Li,∞(K,Q, γ)| 6 ρk−1/(1− ρ).

2. For all i, k and k′, |L∗
i,k−L∗

i,k′| 6 C∗ρk∧k
′−1

∗ and there exists a process (L∗
i,∞)i∈Z such

that for all i and k,
|L∗
i,k − L∗

i,∞| 6 C∗ρ
k−1
∗ .

3. Under P∗, the processes (L∗
i,∞)i∈Z and (Li,∞(K,Q, γ))i∈Z are stationary for all (K,π,Q, γ) ∈ Sn.

Assume [A⋆mix], [Atail] and [A⋆tail], then they are also ergodic, integrable and

l(K,Q, γ) = E
∗[L1,∞(K,Q, γ)] and l∗ = E

∗[L∗
1,∞].

Proof The first point is a result from Douc et al. (2004).
The second point follows directly from [A⋆forget].
The third point follows from the ergodicity of (Yt)t>1 under [A⋆mix], from the integra-

bility of Li,∞ and L∗
i,∞ under [Atail] and [A⋆tail] by Lemma 14 and from Lemmas 3 and 4

for the definition of l and l∗.

5.2.1 Proof of Lemma 11

Let t(K,Q,γ) : Y
0
−k 7−→ L∗

0,k − L0,k,µt(K,Q, γ). Then

ν(K,π,Q, γ) − ν̄k(t(K,Q,γ))

=
1

n

n
∑

i=1

(L∗
i,i−1 − L∗

i,k)−
1

n

n
∑

i=1

(Li,i−1,π(K,Q, γ) − Li,k,µt(K,Q, γ))

− E[L∗
0,∞ − L∗

0,k] + E[L0,∞(K,Q, γ) − L0,k,µt(K,Q, γ)].

Thus, by Lemma 15,

|ν(K,π,Q, γ) − ν̄k(t(K,Q,γ))|

6
1

n

n
∑

i=1

ρ(i−1)∧k−1

1− ρ
+ C∗

1

n

n
∑

i=1

ρ
(i−1)∧k−1
∗ +

ρk−1

1− ρ
+ C∗ρ

k−1
∗

6
1

nρ(1− ρ)2
+

2ρk−1

1− ρ
+ C∗

(

1

nρ∗(1− ρ∗)
+ 2ρk−1

∗

)

6
2

nρ(1− ρ)2
+

4ρk−1

1− ρ
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as soon as ρ∗ 6 ρ and C∗ 6 1/(1 − ρ), which holds when CQ log n > (C∗ ∨ (1 − ρ∗)−1)1/2,
in particular when log n > (C∗ ∨ (1− ρ∗)−1)1/2.

Let u > 1 and D = Cγ(log n)u and assume that n > n0 from Lemma 14. Then

ν̄k(t(K,Q,γ))− ν̄k(t
(D)
(K,Q,γ)) =

1

n

n
∑

i=1

t(K,Q,γ)(Y
i
i−k)1|L∗

i,k|∨(supγ′∈S
(γ)
n

|bγ′ (Yi)|)>D

− E
∗[t(K,Q,γ)(Y

0
−k)1|L∗

0,k |∨(supγ′∈S
(γ)
n

|bγ′ (Y0)|)>D].

We restrict ourselves to the event
⋂n
i=1{|L∗

i,k| ∨ (sup
γ′∈S(γ)

n
|bγ′(Yi)|) 6 D}, which occurs

with probability greater than 1 − 2ne−u using assumption [Atail] and Lemma 14. On this
event,

1

n

n
∑

i=1

t(K,Q,γ)(Y
i
i−k)1|L∗

i,k |∨(supγ′∈S
(γ)
n

|bγ′ (Yi)|)>D = 0.

Moreover,

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

= E
∗[|t(K,Q,γ)(Y 0

−k)|1|L∗

0,k |∨(supγ′∈S
(γ)
n

|bγ′ (Y0)|)>D].

Equation (5) ensures that |t(K,Q,γ)(Y 0
−k)| 6 |L∗

0,k|+sup
γ′∈S(γ)

n
|bγ′(Y0)|+2 log log n when

n > exp(CQ), so that

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

6 E
∗



|L∗
0,k|



1|L∗

0,k |>D + 1|L∗

0,k |6D< sup

γ′∈S
(γ)
n

|bγ′ (Y0)|









+ E
∗



 sup
γ′∈S(γ)

n

|bγ′(Y0)|



1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|6D<|L∗

0,k|









+ 2(log log n)E∗







1|L∗

0,k|>D + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D







 .

Thus, by Lemma 14,

|E∗[t(K,Q,γ)(Y
0
−k)− t

(D)
(K,Q,γ)(Y

0
−k)]|

6 2De−u +DP
∗
(

sup
γ′∈S(γ)

n

|bγ′(Y0)| > D

)

+ 2De−u +DP
∗(|L∗

0,k| > D)

+ 2(log log n)

(

P
∗
(

sup
γ′∈S(γ)

n

|bγ′(Y0)| > D

)

+ P
∗(|L∗

0,k| > D)

)

6 6De−u + 4(log log n)e−u.
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Finally, using log log n 6 log n 6 Cγ log nu when u > 1 concludes the proof of the first
equation.

For the second equation, take u = 3 log n. Since ρk 6 n−1 when k > C2
Q(log n)

3 and

u 7−→ ue−u is nonincreasing on [1,+∞), for all D > 3Cγ(log n)
2,

∣

∣

∣ν(K,π,Q, γ) − ν̄k(t
(D)
(K,Q,γ))

∣

∣

∣

6 10Cγ(log n)(3 log n)e
−3 logn +

2(CQ log n)4

nρ
+

4(CQ log n)2

nρ

6 30Cγ
(log n)2

n3
+

12(CQ log n)4

n
6

13(CQ log n)4

n

for n >
√

30Cγ (using ρ 6 1/2 for the second line).

5.2.2 Proof of Lemma 13

Lemma 16 Assume [Atail], [Aergodic] and [A⋆tail] hold. Let

V(K,Q, γ) := E
∗ [(L∗

0,∞ − L0,∞(K,Q, γ))2
]

.

Then for all n > e4 ∨ exp(CQ),

1

44C2
γ (log n)

4
V(K,Q, γ) 6 K(K,Q, γ) +

11

n
.

Proof We need the following lemma:

Lemma 17 (Shen et al. (2013), Lemma 4) For any two probability measures P and Q
with density p and q and any λ ∈ (0, e−4],

EP

(

log
p

q

)2

6 H(P,Q)2

(

12 + 2

(

log
1

λ

)2
)

+ 8EP

[

(

log
p

q

)2

1

(

p

q
>

1

λ

)

]

where H(P,Q) is the Hellinger distance between P and Q:

H(P,Q)2 = −2EP [(q/p)
1/2 − 1] =

∫

(
√
p−√

q)2dλ.

Let n ∈ N
∗ and D′ = Cγ(log n)

2. Take P = P
∗
Y0|Y −1

−∞

and Q = PY0|Y −1
−∞

,(K,Q,γ), so that

EP (log
p
q )

2 = V(K,Q, γ). Using equation (5) for n > exp(CQ),

(

log
p

q

)2

6

(

sup
γ′∈S(γ)

n

|bγ′(Y0)|+ |L∗
0,∞|+ 2 log log n

)2

6 3 sup
γ′∈S(γ)

n

|bγ′(Y0)|2 + 3|L∗
0,∞|2 + 12(log log n)2
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Let λ > 0 be such that 2D′ = log 1
λ − 2 log log n. Note that λ 6 e−4 when n > e4. By

equation (5),

1

(

p

q
>

1

λ

)

6 1

(

sup
γ′∈S(γ)

n

|bγ′(Y0)|+ |L∗
0,∞| > log

1

λ
− 2 log log n

)

6 1

(

sup
γ′∈S(γ)

n

|bγ′(Y0)| ∨ |L∗
0,∞| > D′

)

,

hence

8EP

[

(

log
p

q

)2

1

(

p

q
>

1

λ

)

]

6 24E∗



|L∗
0,∞|2



1|L∗

0,∞|>D′ + 1|L∗

0,∞|6D′< sup

γ′∈S
(γ)
n

|bγ′ (Y0)|









+ 24E∗



 sup
γ′∈S(γ)

n

|bγ′(Y0)|2


1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D′ + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|6D′<|L∗

0,∞|









+ 96(log log n)2E∗



1|L∗

0,∞|>D′ + 1 sup

γ′∈S
(γ)
n

|bγ′ (Y0)|>D′



 ,

and by Lemma 14 (for n large enough)

8EP

[

(

log
p

q

)2

1

(

p

q
>

1

λ

)

]

6 24

(

5D′2

n
+
D′2

n

)

+ 24

(

5D′2

n
+
D′2

n

)

+ 96
2(log log n)2

n

6
480

n
D′2

using log log n 6 D′ for n > e. Therefore, by Lemma 17,

V(K,Q, γ) 6 E
∗
Y −1
−∞

[

H(P∗
Y0|Y −1

−∞

,PY0|Y −1
−∞

,(K,Q,γ))
2
]

(12 + 2(2D′ + 2 log log n)2)

+
480

n
D′2

6 E
∗
Y −1
−∞

[

KL(P∗
Y0|Y −1

−∞

‖PY0|Y −1
−∞

,(K,Q,γ))
]

(12 + 32D′2) +
480

n
D′2

using that the Kullback Leibler divergence is lower bounded by the Hellinger distance.
Finally, since E

∗
Y −1
−∞

[KL(P∗
Y0|Y −1

−∞

‖PY0|Y −1
−∞

,(K,Q,γ))] = K(K,Q, γ),

V(K,Q, γ) 6 44D′2K(K,Q, γ) +
480

n
D′2.
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Next, letD > 0 and let us bound the difference betweenV(K,Q, γ) and E
∗[t(D)

(K,Q,γ)(Y
i
i−k)

2].

Taking t(K,Q,γ) : Y
0
−k 7−→ L∗

0,k − L0,k,x(K,Q, γ), by definition of t
(D)
(K,Q,γ)

E
∗[t(D)

(K,Q,γ)(Y
i
i−k)

2] 6 E
∗[t(K,Q,γ)(Y

i
i−k)

2].

Then,

|E∗[t(K,Q,γ)(Y
i
i−k)

2]−V(K,Q, γ)|
=
∣

∣E
∗ [(L∗

0,k − L0,k,x(K,Q, γ))
2
]

− E
∗ [(L∗

0,∞ − L0,∞(K,Q, γ))2
]∣

∣

6 E
∗|((L∗

0,k − L∗
0,∞)− (L0,k,x − L0,∞)(K,Q, γ))

× ((L∗
0,k − L0,k,x(K,Q, γ)) + (L∗

0,∞ − L0,∞(K,Q, γ)))|

6 2
ρk−1

1− ρ

(

E
∗
[

2 sup
γ′∈S(γ)

n

|bγ′(Y0)|+ |L∗
0,k|+ |L∗

0,∞|
]

+ 4 log log n

)

by Lemma 15 and equation (5), provided ρ∗ 6 ρ and C∗ 6 1/(1 − ρ) (which is ensured
by log n > (C∗ ∨ (1 − ρ∗)−1)1/2). Note that the condition k > C2

Q(log n)
3 ensures that

ρk 6 n−1, and that ρ 6 1/2 when n > e4. The expectation can be upper bounded using
Lemma 14 with u = 1:

|E∗[t(K,Q,γ)(Y
i
i−k)

2]−V(K,Q, γ)| 6 2

nρ(1− ρ)
(8Cγ log n+ 4 log log n)

6
48C2

QCγ

n
(log n)3.

Therefore, under the assumptions of Lemma 16, if D > Cγ(log n)
2,

E
∗[t(D)

(K,Q,γ)(Y
i
i−k)

2]

44C2
γ(log n)

4
6 K(K,Q, γ) +

11

n
+

1

44C2
γ (log n)

4

48C2
QCγ

n
(log n)3

6 K(K,Q, γ) +
11

n
+

48C2
Q

44n log n

6 K(K,Q, γ) +
22

n

for n larger than a constant that only depends on CQ, which concludes the proof.
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Clémentine Prieur. Weak dependence: With examples and applications. Springer, 2007.

Randal Douc and Catherine Matias. Asymptotics of the maximum likelihood estimator for
general hidden Markov models. Bernoulli, 7(3):381–420, 2001.
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Appendix A. Proofs for the minimax adaptive estimation

A.1 Proofs for the mixture framework

A.1.1 Proof of Lemma 7 (checking the assumptions)

Checking [Atail] By definition of the emission densities, bγ(y) > −2 log n for all γ ∈ S
(γ)
n .

Moreover, for all y ∈ Y and γ ∈ S
(γ)
K,M,n,

bγ(y) 6 log





1

K

∑

x∈[K]

(

1 ∨ maxµ,s
1
sψ
(y−µ

s

)

Gλ(y)

)





6 0 ∨
(

max
µ,s

log
1

s
ψ

(

y − µ

s

)

− logGλ(y)

)

6 0 ∨
(

max
µ,s

{

log
1

s
−
(

y − µ

s

)p}

+ log(1 + y2) + log
π

2Γ(1 + 1/p)

)

6 0 ∨
(

log n− n−pmin
µ

(y − µ)p + log(1 + y2) + log π

)

,

where we recall that the maximum is taken over µ ∈ [−n, n] and s ∈ [ 1n , n].
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If y ∈ [−n, n],
bγ(y) 6 0 ∨

(

log n+ log(1 + y2) + log π
)

6 log n+ 1 + 2 log n+ log π since n > 1

6 3 log n+ log(πe) 6 5 log n

as soon as n > 3. Otherwise, one can take y > n and then

bγ(y) 6 0 ∨ (log n− n−p(y − n)p + log(1 + y2) + log π)

6 0 ∨ (log n− n−p(y − n)p + log(1 + 2(y − n)2 + 2n2) + log π)

6 0 ∨ (log n− n−pY p + log(1 + 2Y 2) + 1 + log 2n2 + log π)

by writing Y = y− n and using that log(a+ b) 6 log a+ log(1+ b) 6 log a+1+ log b when
a, b > 1. Thus, writing Y ′ = Y/n,

bγ(y) 6 3 log n+ log(2eπ) + 0 ∨ (−(Y ′)p + log(1 + 2n2(Y ′)2))

6

{

3 log n+ log(2eπ) + log(1 + 2n2) if Y ′ 6 1

3 log n+ log(2eπ) + 0 ∨ (−(Y ′)p + 1 + log(2n2(Y ′)2)) otherwise

6 5 log n+ log(4e2π) + 0 ∨ (−(Y ′)p + 2 log(Y ′))

6 5 log n+ log(4e2π),

so that bγ(y) 6 10 log n as soons as n > 3.

Checking [Aentropy] and [Agrowth] Let us first assume that there exists a constant

Lp such that the function (µ, s) 7−→ s−1ψ(s−1(y−u))
Gλ(y)

is Lp-Lipschitz for all y (where the

origin space is endowed with the supremum norm). Then a bracket covering of size ǫ of
([n, n] × [ 1n , n])

M provides a bracket covering of {γx}γ∈S(γ)
n ,x∈[K]

of size Lpǫ. Since there

exists a bracket covering of size ǫ of [n, n] × [ 1n , n] for the supremum norm with less than
(4nǫ ∨ 1)2 brackets, one gets [Aentropy] by taking Caux(M,K,D, n) = 4Lpn and mM = 2M .

Let us now check that this constant Lp exists.
∣

∣

∣

∣

∣

∂

∂µ

1
sψ
(y−µ

s

)

Gλ(y)

∣

∣

∣

∣

∣

=
1

2πΓ(1 + 1
p)(1 + y2)

∣

∣

∣

∣

∂

∂µ

1

s
exp

(

−
(

y − µ

s

)p)∣
∣

∣

∣

=
1

2πΓ(1 + 1
p)(1 + y2)s2

∣

∣

∣

∣

y − µ

s

∣

∣

∣

∣

p−1

exp

(

−
(

y − µ

s

)p)

6
1

s2
Y p−1 exp(−Y p)

6 n2Z1−1/pe−Z 6 n2

by writing Y = |y − µ|/s and Z = Y p. Likewise,
∣

∣

∣

∣

∣

∂

∂s

1
sψ
(y−µ

s

)

Gλ(y)

∣

∣

∣

∣

∣

=
1

2πΓ(1 + 1
p)(1 + y2)

∣

∣

∣

∣

− 1

s2
+ p

1

s

(y − µ)p

sp+1

∣

∣

∣

∣

exp

(

−
(

y − µ

s

)p)

6
1

s2
|pZ − 1|e−Z

6 n2
p

2
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as soon as p > 2. Thus, one can take Lp = pn2 and Caux(M,K,D, n) = 4pn3. With this
Caux, checking [Agrowth] is straightforward for all ζ > 0: with n > 4p, it is ensured by
log n4 6 nζ , which is always true for ζ = 2 for instance.

A.1.2 Proof of Lemma 9 (approximation rates)

Let F (y) = e−c|y|
τ
. Lemma 4 of Kruijer et al. (2010) ensures that there exist c′ > 0

and H > 6β + 4p such that for all x ∈ [K∗] and s > 0, there exists a mixture gs,x
with O(s−1| log s|p/τ ) components, each with density 1

sψ(
·−µ
s ) with respect to the Lebesgue

measure for some µ ∈ {y |F (y) > c′sH}, such that gs,x approximates the emission density γ∗x:

max
x

KL(γ∗x‖gs,x) = O(s−2β).

For M large enough, the condition M > O(s−1| log s|p/τ ) (number of components) is
ensured by s−1 6 cM(logM)−p/τ for some small enough constant c > 0. Take this s in the
following and gM,x = gs,x.

Let us now check that (n−2 + (1 − n−2)gM,x)x∈[K∗] ∈ S
(γ)
K∗,M,n. When M 6 n is large

enough that s 6 1, this s is indeed in [ 1n , n]. When |µ| > s−1, F (µ) 6 exp(−cs−τ ) = o(c′sH).
Thus, for s small enough (i.e. for M large enough), all translation parameters µ belong to
[−s−1, s−1], which is indeed in [−n, n] when M 6 n.

A.1.3 Proof of Corollary 10 (minimax adaptive estimation rate)

Denote by h the Hellinger distance, defined by h(p, q)2 = EP [(
√

q/p−1)2] for all probability
densities p and q associated to probability measures P and Q. Let

H2(K,Q, γ) = E
∗
Y 0
−∞

[

h2(p∗Y1|Y 0
−∞

, pY1|Y 0
−∞

,(K,Q,γ))
]

be the Hellinger distance between the distributions of Y1 conditionally to Y 0
−∞ under the

true distribution and under the parameters (K,Q, γ) (see Lemma 15 for the definition of
these conditional distributions).

The following lemma shows that the Kullback-Leibler divergence and the Hellinger dis-
tance are equivalent up to a logarithmic factor and a small additive term.

Lemma 18 Assume that [A⋆tail], [A⋆forget], [Atail] and [Aergodic] hold. Then there exists
a constant n1 depending on Cγ, CQ, δ and Mδ such that for all n > n1, for all (K,Q, γ) ∈
Sn,

H2(K,Q, γ) 6 K(K,Q, γ) 6 7Cγ(log n)
2

(

H2(K,Q, γ) +
2

n

)

.

Proof The lower bound comes from the fact that the square of the Hellinger distance is
smaller than the Kullback-Leibler divergence. For the upper bound, we use Lemma 4 of
Shen et al. (2013): for all v > 4 and for all probability measures P and Q with densities p
and q,

KL(p‖q) 6 h2(p, q) (1 + 2v) + 2EP

[(

log
p

q

)

1

{

log
p

q
> v

}]

.
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Take p = p∗
Y1|Y 0

−∞

and q = pY1|Y 0
−∞

,(K,Q,γ). Then by equation (4), log p
q 6 |bγ | +

|L∗
1,∞| + log(CQ log n) where L∗

1,∞ is as in Lemma 15 and 1
{

log p
q > v

}

6 1{|bγ | >

1
2(v − log(CQ log n))} ∨ 1{|L∗

1,∞| > 1
2(v − log(CQ log n))}. There exists n1 depending only

on Cγ and CQ such that for all n > n1, log(CQ log n) 6 Cγ(log n)
2. Assume n > n1 and

take v = 3Cγ(log n)
2, then 1

2(v − log(CQ log n)) > (Cγ log n)
2 and 1 + 2v 6 7Cγ(log n)

2, so
that

K(K,Q, γ) 6 7Cγ(log n)
2H2(K,Q, γ)

+2Cγ(log n)
2
{

P
∗(|bγ | > Cγ(log n)

2) + P
∗(|L∗

1,∞| > Cγ(log n)
2)
}

+2E∗[(|L∗
1,∞|+ |bγ |)

× (1{|L∗
1,∞| > Cγ(log n)

2} ∨ 1{|bγ | > Cγ(log n)
2})].

By Lemma 14, which also holds for L∗
1,∞ using the uniform convergence of Lemma 15,

P
∗(|L∗

1,∞| > Cγ(log n)
2) 6 exp(− log n) 6 n−1 for n > n0 where n0 is defined in Lemma 14

(and depends on δ and Mδ). Likewise, by [Atail], P∗(|bγ | > Cγ(log n)
2) 6 n−1.

The last expectation of the above equation can be written as

2E∗[(a+ b)1{a ∨ b > Cγ(log n)
2}]

where a = |L∗
1,∞| and b = |bγ |. Then,

2E∗[a1{a ∨ b > Cγ(log n)
2})]

=2E∗[a1{a > Cγ(log n)
2})] + 2E∗[a1{b > Cγ(log n)

2 > a})]
6 4Cγ(log n)

2e− logn + 2Cγ(log n)
2
P
∗[b > Cγ(log n)

2]

6 6Cγ
(log n)2

n

by Lemma 14 for the first term and [Atail] for the second one. Likewise,

2E∗[b1{a ∨ b > Cγ(log n)
2})] 6 6Cγ

(log n)2

n
,

so that finally

K(K,Q, γ) 6 7Cγ(log n)
2H2(K,Q, γ) + 14Cγ

(log n)2

n
,

which concludes the proof.

Let M ∈ N
∗. Let gM,x be the approximating densities given by Lemma 9 and write

γM,x = n−2 + (1 − n−2)gM,x for all x ∈ [K∗]. The following lemma controls the error
H(K∗,Q∗, (γM,x)x) coming from the approximation of the densities.

Lemma 19 Let σ∗ > 0 be such that σ∗ 6 K∗Q∗(x, x′) 6 (σ∗)−1 for all x, x′ ∈ [K∗]. Then

H2(K∗,Q∗, (γM,x)x) 6

(

2 +
32(K∗)3

(σ∗)11

)

∑

x∈[K∗]

h2(γ∗x, γM,x)
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Proof Let p∗x = p∗(X1 = x|Y 0
−∞) and px = p(K∗,Q∗,(γM,x)x)(X1 = x|Y 0

−∞). The Cauchy-

Schwarz inequality implies that (
√
∑

x ax −
√
∑

x bx)
2 6

∑

x(
√
ax −

√
bx)

2, so that

h2

(

∑

x

p∗xγ
∗
x,
∑

x

pxγM,x

)

=

∫





√

∑

x

p∗xγ∗x −
√

∑

x

pxγM,x





2

dλ

6

∫

∑

x

(
√

p∗xγ∗x −
√
pxγM,x)

2dλ

6 2

∫

∑

x

(

px(
√

γ∗x −
√
γM,x)

2 + (
√
px −

√

p∗x)
2γ∗x
)

dλ

6 2
∑

x

pxh
2(γ∗x, γM,x) + 2

∑

x

(
√

p∗x −
√
px)

2

6 2
∑

x

h2(γ∗x, γM,x) + 2
∑

x

(
√

p∗x −
√
px)

2

Thus, one needs to control the expectation of the second term. Since px and p∗x belong
to [ σ

∗

K∗ ,
1

K∗σ∗ ] by assumption on Q∗,

∑

x

(
√
px −

√

p∗x)
2 ∈

[

K∗σ∗

4
,
K∗

4σ∗

]

∑

x

(px − p∗x)
2.

The following equation follows from a careful reading of the proof of Proposition 2.1 of
De Castro et al. (2017) by noticing that the roles of γ∗ and γM are symmetrical in their
proof and that their reasoning works with ρ⋆ = 1−minQ⋆/maxQ⋆.

∑

x

|px − p∗x| 6
4K∗

(σ∗)3

+∞
∑

i=0

(1− (σ∗)2)i
maxx |γ∗x(Y−i)− γM,x(Y−i)|
∑

x γ
∗
x(Y−i) ∨

∑

x γM,x(Y−i)
.

Therefore, using Cauchy-Schwarz’s inequality:

∑

x

(px − p∗x)
2
6

(

∑

x

|px − p∗x|
)2

6
16(K∗)2

(σ∗)8

+∞
∑

i=0

(1− (σ∗)2)i
(

maxx |γ∗x(Y−i)− γM,x(Y−i)|
∑

x γ
∗
x(Y−i) ∨

∑

x γM,x(Y−i)

)2

.

Since |a−b|
2
√
a∨b 6 |√a−

√
b|,

E
∗
(

maxx |γ∗x(Y )− γM,x(Y )|
∑

x γ
∗
x(Y ) ∨

∑

x γM,x(Y )

)2

6

∫

maxx(γ
∗
x(y)− γM,x(y))

2

∑

x γ
∗
x(y) ∨

∑

x γM,x(y)
dλ(y)

6
∑

x

∫

(γ∗x(y)− γM,x(y))
2

γ∗x(y) ∨ γM,x(y)
dλ(y)

6 4
∑

x

∫
(

√

γ∗x(y)−
√

γM,x(y)

)2

dλ(y)

= 4
∑

x

h2(γ∗x, γM,x),
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so that

E
∗
[

∑

x

(
√

p∗x −
√
px)

2

]

6
K∗

4σ∗
E
∗
[

∑

x

(px − p∗x)
2

]

6
16(K∗)3

(σ∗)11
∑

x

h2(γ∗x, γM,x),

which concludes the proof of the lemma.

Finally, since |
√
a+ b−√

c| 6 |√a−√
c| +

√

|b| for all b ∈ R, a > (−b) ∨ 0 and c > 0,
for all x,

h2(γ∗x, γM,x) 6 2h2(γ∗x, gM,x) +
4

n2

6 2KL(γ∗x‖gM,x) +
4

n2
.

Therefore,

K(K∗,Q∗, (γM,x)x) 6 14Cγ
(log n)2

n

+ 7Cγ(log n)
2

(

2 +
32(K∗)3

(σ∗)11

)

∑

x∈[K∗]

(

4

n2
+ 2KL(γ∗x, gM,x)

)

.

Thus, there exists a constant C such that for all n > 3,

K(K∗,Q∗, (γM,x)x) 6 C(log n)2
(

1

n
+M−2β(logM)2β

p
τ

)

by definition of the densities gM,x.

The choice of penalty verifies the lower bound of Theorem 6. Thus, the oracle inequality
of Theorem 6 with η = 1, α = 2 and t = 2 log n entails that for n large enough and for any
sequence (Mn)n such that K∗ 6Mn 6 n/2 for all n:

K(K̂, Q̂, γ̂) 6 2K(K∗,Q∗, (γMn,x)x) + 4penn(K
∗,Mn) +A

(log n)10

n

6 2C(log n)2
(

1

n
+M−2β

n (log n)2β
p
τ

)

+ 4K∗ (log n)
18

n
Mn + 2A

(log n)10

n
.

Taking Mn ∼ n
1

2β+1 (log n)
2βp/τ−16

2β+1 leads to the desired rate.

Appendix B. Proof of the control of ν̄k (Theorem 12)

Let us give an overview of the proof of the control of ν̄k.
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The first step of the proof is to obtain a Bernstein inequality on ν̄k(t) for a single function
t. This is done using the mixing properties of the process (Yi)i and by noticing that ν̄k(t)
is the deviation of an empirical mean.

The second step is to transform the inequality on one function t into an inequality on the
supremum over all function t belonging to a given class. This step involves the bracketing
entropy of the aforementionned class. The control of this entropy is where the shape of the
penalty appears.

At this stage, one is able to upper bound the supremum of ν̄k(t
(D)
(K,Q,γ)) over all parame-

ters (K,π,Q, γ) ∈ SK,M,n. However, this upper bound is of order n−1/2 (up to logarithmic
factors), which is suboptimal. The third step of the proof gets rid of the n−1/2 term by
considering the processes

WK,M,n := sup
(K,π,Q,γ)∈SK,M,n

|ν̄k(t(D)
(K,Q,γ))|

E∗[t(D)
(K,Q,γ)(Z0)2] + x2K,M,n

for some constants xK,M,n. The last step of the proof consists in taking appropriate xK,M,n

in order to have with high probability and for all K and M

{

WK,M,n 6 ǫ

WK,M,nx
2
K,M,n 6 penn(K,M) +Rn

for a residual term Rn depending on the probability, which leads to the desired inequality

∀(K,π,Q, γ) ∈ SK,M,n, |ν̄k(t(D)
(K,Q,γ))| − penn(K,M) 6 ǫE∗[t(D)

(K,Q,γ)(Z0)
2] +Rn.

The concentration results are stated in Section B.1. The control of the bracketing
entropy is done in Section B.2. Finally, the choice of xK,M,n and the synthesis of the proof
are done in Section B.3.

Without loss of generality, we assume n > exp(CQ) and D > log n so that ‖t(D)
(K,Q,γ)‖∞ 6

4D for all (K,π,Q, γ) ∈ SK,M,n by equation (5) and n larger than the constant n0 from
Lemma 14.

Changes of notations. In the rest of this section, we omit the dependency of WK,M ,
xK,M and SK,M on n in the notations. We also introduce the notation θ ∈ Sn instead of
(K,π,Q, γ) ∈ Sn to make the notation shorter. Given θ ∈ Sn, we write πθ, Qθ and γθ its
components. To avoid multiple subscripts, we write γθ(y|x) instead of γθ,x(y).

B.1 Concentration inequality

First, let us introduce some notations. Let D > 0, K > 1, M ∈ M and k > 1. For all
i ∈ Z, let Zi = Y i

i−k. Define for all σ > 0 the sets

Bσ = {θ ∈ SK,M | E∗[t(D)
θ (Z0)

2] 6 σ2}.

Let dk be the semi-distance defined by d2k(t1, t2) = E
∗[(t1 − t2)

2(Z0)]. For any semi-
distance d, write N(A, d, ǫ) = eH(A,d,ǫ) the minimal cardinality of a covering of A by brackets
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of size ǫ for the semi-distance d, that is by sets [t1, t2] = {t : Yk 7−→ R , t1(·) 6 t(·) 6 t2(·)}
such that d(t1, t2) 6 ǫ. H(A, d, ·) is called the bracketing entropy of A for the semi-distance
d.

The first step of the proof is to obtain a Bernstein inequality for the deviations of a
single t(D)(Zi).

Theorem 20 Assume [A⋆mix] holds. Then there exists a constant Cmix depending on c∗
and n∗ such that the following holds.

Let t be a real valued, measurable bounded function on Yk+1 and let V = E
∗[t2(Z0)].

Then for all λ ∈ (0, 1
Cmix(n∗+k+1)‖t‖∞(log n)2 ) and for all n ∈ N:

φ(λ) := logE∗ exp

[

λ
n
∑

i=1

(t(Zi)− E
∗t(Zi))

]

6
C2
mix(n∗ + k + 1)2(nV + ‖t‖2∞)λ2

1− Cmix(n∗ + k + 1)‖t‖∞(log n)2λ

Proof The following result is a Bernstein inequality for exponentially α-mixing processes.

Lemma 21 (Merlevède et al. (2009), Theorem 2) Let (Ai)i>1 be a stationary sequence
of centered real-valued random variables such that ‖A1‖∞ 6M and whose α-mixing coeffi-
cients satisfy, for a certain c > 0,

∀n ∈ N, αmix(n) 6 e−2cn.

Then there exist positive constants C1 and C2 depending on c such that for all n > 2
and all λ ∈ (0, 1

C1M(logn)2
),

logE exp

[

λ

n
∑

i=1

Ai

]

6
C2λ

2(nv +M2)

1− C1λM(log n)2
,

where v is defined by

v = Var(A1) + 2
∑

i>1

|Cov (A1, Ai)|.

Assumption [A⋆mix] implies that the α-mixing coefficients of (Yi)i satisfy αmix(n) 6

e−c∗n for all n > n∗ since 4αmix(n) 6 ρmix(n) (see for instance Bradley (2005)). However,
this is not enough to apply the previous result: one needs the inequality to hold for all n
(and not for n larger than some constant) and for the process (Zi)i. To do so, we partition
the process (Zi)i into several processes for which the above result applies, and then gather
the inequalities.

Consider the processes (Zi(n∗+k+1)+j)i with α-mixing coefficients αZ,j(n). By construc-
tion, they satisfy αZ,j(n) 6 e−c∗n∗n for all n > 1 and j ∈ {1, . . . , n∗ + k + 1}. Apply
Lemma 21, one gets that there exist two positive constants C1 and C2 depending on c∗ and
n∗ such that for all functions t, all λ ∈ (0, 1

C1M(logn)2 ) and all n ∈ N:

φj(λ) := logE∗ exp

[

λ
n
∑

i=1

(t(Zi(n∗+k+1)+j)− Et(Zi(n∗+k+1)+j))

]

6
C2λ

2(nv + ‖t‖2∞)

1− C1λ‖t‖∞(log n)2

34



Oracle inequality for misspecified NPHMMs

where, denoting V = E
∗t2(Z0):

v = Var(t(Zj)) + 2
∑

i>1

|Cov (t(Zj), t(Zi(n∗+k+1)+j)|

6 V + 2V
∑

i>1

|Corr (t(Zj), t(Zi(n∗+k+1)+j)|

6 V

(

1 + 8
∑

i>1

e−c∗n∗i

)

6
8V

1− e−c∗n∗

using [A⋆mix]. Finally, using that E
∏k
i=1Ai 6

∏k
i=1(EA

k
i )

1/k for any positive integer k
and any positive random variable (Ai)16i6k,

φ(λ) 6
1

n∗ + k + 1

n∗+k+1
∑

j=1

φj((n∗ + k + 1)λ),

so that

φ(λ) 6
8C2

1−e−c∗n∗
(n∗ + k + 1)2λ2(nV + ‖t‖2∞)

1− C1(n∗ + k + 1)λ‖t‖∞(log n)2
,

which concludes the proof.

The following result follows mutatis mutandis from the proof of Theorem 6.8 of Massart
(2007) using the previous theorem.

Lemma 22 Assume [A⋆mix] holds. Then there exists a constant C∗ > 1 depending on n∗
and c∗ such that the following holds.

Let T be a class of real valued and measurable functions on Yk+1 such that T is separable
for the supremum norm. Also assume that there exist positive numbers σ and b such that
for all t ∈ T , ‖t‖∞ 6 b and E

∗t2(Z0) 6 σ2 and assume that N(T , dk, δ) is finite for all
δ > 0.

Then for all measurable sets A such that P∗(A) > 0:

E
∗
(

sup
t∈T

|ν̄k(t)|
∣

∣

∣A

)

6 C∗(n∗ + k + 1)

[

E

n
+ σ

√

1

n
log

(

1

P∗(A)

)

+
b(log n)2

n
log

(

1

P∗(A)

)

]

where

E =
√
n

∫ σ

0

√

H(T , dk, u) ∧ ndu+ b(log n)2H(T , dk, σ).

By taking T = {t(D)
θ |θ ∈ Bσ} and b = 4D, one gets the following lemma from Lemma

4.23 and Lemma 2.4 of Massart (2007):

35



L. Lehéricy

Lemma 23 Assume that there exist a function ϕ and constants C and σK,M such that

x 7→ ϕ(x)
x is nonincreasing and

∀σ > σK,M E 6 Cϕ(σ)
√
n. (11)

Then for all xK,M > σK,M and z > 0, with probability greater than 1− e−z:

WK,M := sup
θ∈SK,M

∣

∣

∣

∣

∣

∣

|ν̄k(t(D)
θ )|

E∗[t(D)
θ (Z0)2] + x2K,M

∣

∣

∣

∣

∣

∣

6 4C∗(n∗ + k + 1)

[

C
ϕ(xK,M )

x2K,M
√
n

+

√

z

x2K,Mn
+ 4D

z(log n)2

x2K,Mn

]

. (12)

The two remaining steps are the control of the bracketing entropy which will lead to equa-
tion (11) (see Section B.2) and the choice of the parameters xK,M and z (see Section B.3).

B.2 Control of the bracketing entropy

In this section, we show that for all k > 2 and ǫ > 0,

H(ǫ) 6 2(mMK +K2 − 1) logmax

(

95De2D
(√

2CQ log n
)k+3/2√

kKCaux
′

ǫ
,

14
(√

2CQ log n
)k+1/2√

kKCaux
′
)

where Caux
′ = (Cauxe

D) ∨ (K − 1).

B.2.1 Reduction of the set

For all θ ∈ SK,M , let gθ = (gθ,x)x∈[K] where

gθ,x(y
k
0 ) =







pθ(Xk = x, Yk = yk|Y k−1
0 = yk−1

0 ) if |L∗
k,k| ∨ sup

θ′∈Sn

|bθ′(yk)| 6 D,

0 otherwise.

In order to control the bracketing entropy of {t(D)
θ | θ ∈ Bσ}, we control the bracketing

entropy of the set G := {gθ | θ ∈ SK,M} for the distance

dG(gθ1 ,gθ2) = E
∗
Y k−1
0

[

∑

x∈[K]

∫

|gθ1,x(Y k−1
0 , yk)− gθ2,x(Y

k−1
0 , yk)|

× 1|L∗

k,k|∨supθ′∈Sn
|bθ′(yk)|6Ddλ(yk)

]

.
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Remark 24 In the rest of Section B.2, we always assume that

|L∗
k,k| ∨ sup

θ′∈Sn

|bθ′(yk)| 6 D (13)

since if this is not the case, then t
(D)
θ (yk) = t

(D)
θ′ (yk) = 0. This means that only the yk

satisfying equation (13) are relevant for the construction of the brackets.

For all θ ∈ SK,M ,
∑

x∈[K]

gθ,x =
∑

x,x′∈[K]

pθ(Yk = yk|Xk = x)Qθ(x
′, x)pθ(Xk−1 = x′|Y k−1

0 = yk−1
0 )

∈
[

(CQ log n)−1K−1
∑

x∈[K]

pθ(Yk = yk|Xk = x),

CQ(log n)K
−1
∑

x∈[K]

pθ(Yk = yk|Xk = x)

]

=
[

(CQ log n)−1ebθ(yk), CQ(log n)ebθ(yk)
]

,

so that for all θ ∈ SK,M ,

(CQ(log n)e
D)−1

6
∑

x∈[K]

gθ,x 6 CQ(log n)e
D. (14)

Let [a, b] be a bracket of size ǫ for G with the distance dG such that

(2CQ(log n)eD)−1
6
∑

x

ax 6
∑

x

bx 6 2CQ(log n)e
D. (15)

Then
(

log
∑

x

ax − log
∑

x

bx

)2

6 2 log
(

2CQ(log n)eD
)

∣

∣

∣

∣

∣

log
∑

x

ax − log
∑

x

bx

∣

∣

∣

∣

∣

6 8D × 2CQ(log n)e
D
∑

x

|ax − bx|

when n > e2 using that | log a− log b| 6 |a− b|/(a ∧ b). Therefore,

dk

(

log
∑

x

ax, log
∑

x

bx

)2

= E
∗
Y k−1
0





∫

(

log
∑

x

ax − log
∑

x

bx

)2

(Y k−1
0 , yk)p

∗(Yk = yk|Y k−1
0 )λ(dyk)





6 16DCQ(log n)e
D
E
∗
Y k−1
0

[

∫

∑

x

|ax − bx|(Y k−1
0 , yk) exp(L

∗
k,k)λ(dyk)

]

6 16DCQ(log n)e
2DdG(a, b),
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so that

N({t(D)
θ | θ ∈ Bσ}, dk, ǫ) 6 N̄

(

G, dG ,
(

ǫ

16DCQ(log n)e2D

)2
)

(16)

where N̄ is the minimal cardinality of a bracket covering of G such that all brackets [a, b]
satisfy equation (15).

B.2.2 Decomposition into simple sets

The aim of this section is to prove the following lemma.

Lemma 25 Assume k > 2 and let ǫ ∈
(

0,
70

168

)

. Then

N̄ (G, dG , ǫ) 6 N

(

{πθ}θ∈SK,M
, d∞,

ǫ

70k
(√

2CQ log n
)2k+1

K

)

×N

(

{Qθ}θ∈SK,M
, d∞,

ǫ

70k
(√

2CQ log n
)2k+1

K

)

×N

(

{γθ}θ∈SK,M
, d∞,

ǫ e−D

70k
(√

2CQ log n
)2k+1

K

)

where d∞ is the distance of the supremum norm and where γθ denotes the function (x, y) 7−→
γθ(y|x).

Let:

• [a, b] be a bracket of {πθ}θ∈SK,M
of size ǫ for the supremum norm;

• [p, q] be a bracket of {Qθ}θ∈SK,M
of size ǫ pour the supremum norm;

• [u, v] be a bracket of {γθ}θ∈SK,M
of size ǫe−D for the supremum norm.

Without loss of generality, we assume (CQ log n)−1K−1 6 a(x) 6 b(x) 6 CQ(log n)K−1 and
(CQ log n)−1K−1 6 p(x, x′) 6 q(x, x′) 6 CQ(log n)K−1 for all x, x′ ∈ [K] since all elements
of {πθ}θ∈SK,M

and {Qθ}θ∈SK,M
satisfy these inequalities. We also assume that the brackets

aren’t empty: there exists θ ∈ SK,M such that πθ ∈ [a, b], Qθ ∈ [p, q] and γθ ∈ [u, v]. Under
this assumption, for all y ∈ Y,

Ke−D(1− ǫ) 6
∑

x

u(y|x) 6
∑

x

v(y|x) 6 K(eD + ǫe−D). (17)

Using the approach of Appendix A of De Castro et al. (2017), one can write gθ,x as the
following product of matrices

gθ,x(y
k
0 ) =

(

µθ0|k−1F
θ
1|k−1 . . . F

θ
k−1|k−1Qθ

)

x
γθ(yk|x)
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where

βi|k(xi) =
∑

xki+1∈[K]k−i

Qθ(xi, xi+1)γθ(yi+1|xi+1) . . .Qθ(xk−1, xk)γθ(yk|xk),

for 0 6 i 6 k − 1 and βk|k(x) = 1 for all x ∈ [K],

µθ0|k(x) =
πθ(x)β0|k(x)γθ(y0|x)

∑

x′∈[K] πθ(x
′)β0|k(x′)γθ(y0|x′)

and F θi|k(xi−1, xi) =
βi|k(xi)Qθ(xi−1, xi)γθ(yi|xi)

∑

x∈[K] βi|k(x)Qθ(xi−1, x)γθ(yi|x)
.

To clarify the role of these quantities, observe that

βi|k(xi) = pθ(Y
k
i+1|Xi = xi),

µθ0|k(x) = Pθ(X0 = x|Y k
0 ),

F θi|k(xi−1, xi) = Pθ(Xi = xi|Y k
i ,Xi−1 = xi−1),

so that
(

µθ0|kF
θ
1|k . . . F

θ
k|k

)

x
= Pθ(Xk = x|Y k

0 ).

Now, let






























αi|k(xi) =
∑

xki+1∈[K]k−i

p(xi, xi+1)u(yi+1|xi+1) . . . p(xk−1, xk)u(yk|xk)

δi|k(xi) =
∑

xki+1∈[K]k−i

q(xi, xi+1)v(yi+1|xi+1) . . . q(xk−1, xk)v(yk|xk)

for 0 6 i 6 k − 1 and αk|k(x) = δk|k(x) = 1 for all x ∈ [K],



























ν(x) =
a(x)α0|k(x)u(y0|x)

∑

x′∈[K] b(x
′)δ0|k(x′)v(y0|x′)

ω(x) =
b(x)δ0|k(x)v(y0|x)

∑

x′∈[K] a(x
′)α0|k(x′)u(y0|x′)

,

and


























fi|k(xi−1, xi) =
αi|k(xi)p(xi−1, xi)u(yi|xi)

∑

x∈[K] δi|k(x)q(xi−1, x)v(yi|x)

gi|k(xi−1, xi) =
δi|k(xi)q(xi−1, xi)v(yi|xi)

∑

x∈[K]αi|k(x)p(xi−1, x)u(yi|x)

.

[ν, ω] and [fi|k, gi|k] are brackets of {µθ0|k}θ∈SK,M
and {F θi|k}θ∈SK,M

for all i ∈ {1, . . . , k}.
Moreover, if one has a bracket covering of the sets {πθ}θ∈SK,M

, {Qθ}θ∈SK,M
and {γθ}θ∈SK,M

,
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then this construction gives a bracket covering of {µθ0|k}θ∈SK,M
and {F θi|k}θ∈SK,M

for all

i ∈ {1, . . . , k}.
The next step of the proof is to control the size of these new brackets.

Lemma 26 Assume ǫ 6 1
2 , then

sup
06i6k

∑

x∈[K] |αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|
∑

x∈[K]αi|k(x)u(yi|x)
6 4

(√
2CQ log n

)2k+1
Kǫ.

Proof Using minimalist notations,

∑

x∈[K]

|αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|

6

k
∑

j=i+1

∑

xki ∈[K]k−i+1

uip
i+1
i ui+1 . . . uj−1|pjj−1 − qjj−1|vj . . . qkk−1vk

+

k
∑

j=i

∑

xki ∈[K]k−i+1

uip
i+1
i ui+1 . . . p

j
j−1|uj − vj |qj+1

j . . . qkk−1vk.

Then, note that for all j ∈ {i+ 1, . . . , k},

∑

xki ∈[K]k−i+1

uip
i+1
i . . . pj−1

j−2uj−1|pjj−1 − qjj−1|vjq
j+1
j . . . qkk−1vk

6 ǫ(CQ(log n)K
−1)k−j

∑

xj−1
i ∈[K]j−i

uip
i+1
i . . . pj−1

j−2uj−1

×
∑

xj∈[K]

(uj + ǫe−D) · · ·
∑

xk∈[K]

(uk + ǫe−D)

and for all j ∈ {i, . . . , k} (with a special case for j = i),

∑

x∈[K]

αi|k(x)u(yi|x) =
∑

xki ∈[K]k−i+1

uip
i+1
i . . . pj−1

j−2uj−1p
j
j−1ujp

j+1
j . . . pkk−1uk

> (CQ(log n)K)−(k−j+1)
∑

xj−1
i ∈[K]j−i

uip
i+1
i . . . pj−1

j−2uj−1

∑

xj∈[K]

uj · · ·
∑

xk∈[K]

uk.
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so that
∑

xki ∈[K]k−i+1 uip
i+1
i . . . uj−1|pjj−1 − qjj−1|vj . . . qkk−1vk

∑

xki ∈[K]k−i+1 uip
i+1
i . . . uj−1p

j
j−1uj . . . p

k
k−1uk

6 ǫK(CQ log n)2(k−j)+1
k
∏

ℓ=j

Kǫe−D +
∑

xℓ
uℓ

∑

xℓ
uℓ

6 ǫK(CQ log n)2(k−j)+1
k
∏

ℓ=j

(

1 +
Kǫe−D

Ke−D(1− ǫ)

)

6 ǫK
(CQ log n)2(k−j)+1

(1− ǫ)k−j+1
.

Likewise, for all j ∈ {i, . . . , k},
∑

xki ∈[K]k−i+1 uip
i+1
i . . . pjj−1|uj − vj|qj+1

j . . . qkk−1vk
∑

xki ∈[K]k−i+1 uip
i+1
i . . . uj−1p

j
j−1uj . . . p

k
k−1uk

6 ǫK
(CQ log n)2(k−j)+1

(1− ǫ)k−j+1
.

Therefore, when ǫ 6 1/2,
∑

x∈[K] |αi|k(x)u(yi|x)− δi|k(x)v(yi|x)|
∑

x∈[K]αi|k(x)u(yi|x)
6 2

ǫK

CQ log n

k
∑

j=i

(

2(CQ log n)2
)k−j+1

6 4ǫKCQ(log n)

(

2(CQ log n)2
)k−i − 1

2(CQ log n)2 − 1

6 4ǫK
(√

2CQ log n
)2(k−i)+1

since n > e2, which gives the desired result.

Lemma 27 Assume ǫ 6 1
2 , then

‖ν − ω‖1 6 6
(√

2CQ log n
)2k+3

Kǫ

and

sup
06i6k

sup
x∈[K]

‖fi|k(x, ·) − gi|k(x, ·)‖1 6 6
(√

2CQ log n
)2k+3

Kǫ. (18)

Proof With minimalist notations,

∑

|ν − ω| =
∑

∣

∣

∣

∣

aαu
∑

bδv
− bδv
∑

aαu

∣

∣

∣

∣

6

∑ |aαu− bδv|
∑

bδv
+
∑

|bδv|
∣

∣

∣

∣

1
∑

aαu
− 1
∑

bδv

∣

∣

∣

∣

6

∑

|aαu− bδv|
∑

bδv
+

∑

|aαu− bδv|
∑

aαu

6 2CQ(log n)K

∑

|aαu− bδv|
∑

αu
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using (CQ(log n)K)−1 6 a 6 b 6 CQ(log n)K−1, 0 6 α 6 δ and 0 6 u 6 v. Thus,

∑

|ν − ω| 6 2CQ(log n)K

(∑

b|αu− δv|
∑

αu
+

∑

|a− b|αu
∑

αu

)

6 2CQ(log n)K

(

CQ(log n)K
−1

∑ |αu− δv|
∑

αu
+ ǫ

)

6 2CQ(log n)K

(

CQ(log n)4
(√

2CQ log n
)2k+1

ǫ+ ǫ

)

(Lemma 26)

6 6
(√

2CQ log n
)2k+3

Kǫ.

The control of
∑

x′∈[K] |gi|k − fi|k|(x, x′) is the same after replacing a and b by p and q.

Write η = 6
(√

2CQ log n
)2k+3

Kǫ. Equation (18) implies that as soon as η < 1, it is
possible to enlarge the bracket [fi|k, gi|k] into a bracket [f ′i|k, g

′
i|k] of size smaller than 3η for

the norm of Lemma 27 such that f ′i|k/(1 − η) and g′i|k/(1 + η) are transition matrices.
Let















Ax(y
k
0 ) =

(

νf ′1|k−1 . . . f
′
k−1|k−1p

)

x
u(yk|x)

Bx(y
k
0 ) =

(

ωg′1|k−1 . . . g
′
k−1|k−1q

)

x
v(yk|x)

.

[A,B] is a bracket of G, and this construction gives a bracket covering of G.

Lemma 28 Assume ǫ 6 1

12k(
√
2CQ logn)

2k+3
K
. Then for all yk0 ,

∑

x∈[K]

|(νf ′1|k . . . f ′k|k)x − (ωg′1|k . . . g
′
k|k)x| 6 7kη = 42k

(√
2CQ log n

)2k+3
Kǫ

and
∑

x∈[K]

|(νf ′1|k . . . f ′k|kp)x − (ωg′1|k . . . g
′
k|kq)x| 6 64k

(√
2CQ log n

)2k+3
Kǫ.

Proof First,
∑

x∈[K]

|(νf ′1|k . . . f ′k|k)x − (ωg′1|k . . . g
′
k|k)x| 6

∑

x∈[K]

|((ν − ω)f ′1|k . . . f
′
k|k)x|

+
k
∑

j=1

∑

x∈[K]

|(ωg′1|k . . . g′j−1|k(g
′
j|k − f ′j|k)f

′
j+1|k . . . f

′
k|k)x|.

Then, since f ′i|k/(1 − η) and g′i|k/(1 + η) are transition matrices (and thus are 1-Lipschitz

linear operators of L1([K])),

‖νf ′1|k . . . f ′k|k − ωg′1|k . . . g
′
k|k‖1 6 ‖ω − ν‖1(1− η)k

+

k
∑

j=1

‖ω‖1(1 + η)j−1

(

sup
16i6k

sup
x∈[K]

‖f ′i|k(x, ·)− g′i|k(x, ·)‖1
)

(1− η)k−j .
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By Lemma 27, ‖ω‖1 6 1+η (since the bracket [ν, ω] contains a probability distribution µθ0|k
for some θ ∈ SK,M) and sup16i6k supx∈[K] ‖f ′i|k(x, ·) − g′i|k(x, ·)‖1 6 3η, so that

‖νf ′1|k . . . f ′k|k − ωg′1|k . . . g
′
k|k‖1 6 η + (1 + η)

k
∑

j=1

(1 + η)j−13η

6 η



1 + 3(1 + η)

k−1
∑

j=0

(1 + η)j





6 η

(

1 + 3(1 + η)
(1 + η)k − 1

η

)

6 η + 3(1 + η)(ekη − 1).

For all x ∈ [0, 12 ], 3(1 + x)(ex − 1) 6 6x. Since kη 6
1
2 by the assumption on ǫ,

‖νf ′1|k . . . f ′k|k − ωg′1|k . . . g
′
k|k‖1 6 η + 6kη 6 7kη.

For the second part, note that
∑

x∈[K]

|(νf ′1|k . . . f ′k|kp)x − (ωg′1|k . . . g
′
k|kq)x|

6
∑

x

∑

x′

|(νf ′1|k . . . f ′k|k)x′px′,x − (ωg′1|k . . . g
′
k|k)x′qx′,x|

6
∑

x

∑

x′

|(νf ′1|k . . . f ′k|k)x′ − (ωg′1|k . . . g
′
k|k)x′ |qx′,x

+
∑

x

∑

x′

(νf ′1|k . . . f
′
k|k)x′ |px′,x − qx′,x|.

Since [p, q] is a non-empty bracket of {Qθ}θ∈SK,M
,
∑

x qx′,x 6 1 + Kǫ for all x′ and since
νf ′1|k . . . f

′
k|k is the lower bound of a non empty bracket of {pXk|Y k

1 ,θ
}θ∈SK,M

,
∑

x′(νf
′
1|k . . . f

′
k|k)x′ 6 1.

Hence,
∑

x∈[K]

|(νf ′1|k . . . f ′k|kp)x − (ωg′1|k . . . g
′
k|kq)x|

6 (1 +Kǫ)
∑

x′

|(νf ′1|k . . . f ′k|k)x′ − (ωg′1|k . . . g
′
k|k)x′ |+Kǫ

∑

x′

(νf ′1|k . . . f
′
k|k)x′

6 (1 +Kǫ)42
(√

2CQ log n
)2k+3

Kǫ+Kǫ (by the first part of the lemma)

6 64k
(√

2CQ log n
)2k+3

Kǫ

since ǫ 6 1
2K under the assumption of the lemma and k ∧ (

√
2CQ log n) > 1.

Lemma 29 Assume ǫ 6 1

12k(
√
2CQ logn)

2k+1
K
. Then

dG(A,B) 6 70k
(√

2CQ log n
)2k+1

Kǫ.
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Proof By definition,

dG(A,B) = E
∗
Y k−1
0

∑

x∈[K]

∫

|Ax(Y k
0 )−Bx(Y

k
0 )|λ(dYk).

Taking some fixed Y k−1
0 ,

∑

x

∫

|Ax(yk)−Bx(yk)|λ(dyk)

=
∑

x

∫

|u(yk|x)(νf ′1|k−1 . . . f
′
k−1|k−1p)x

− v(yk|x)(ωg′1|k−1 . . . g
′
k−1|k−1q)x|λ(dyk)

6
∑

x

∫

|u(yk|x)− v(yk|x)|(νf ′1|k−1 . . . f
′
k−1|k−1p)xλ(dyk)

+
∑

x

∫

v(yk|x)|(νf ′1|k−1 . . . f
′
k−1|k−1p)x − (ωg′1|k−1 . . . g

′
k−1|k−1q)x|λ(dyk).

Since the brackets are not empty, for all x ∈ [K],
∫

v(y|x)λ(dy) 6 1 + ǫe−D and
∑

x(νf
′
1|k−1 . . . f

′
k−1|k−1p)x 6 1 (it is the lower bound of a non empty bracket of {pXk |Y k−1

0 ,θ | θ ∈
SK,M}). Therefore, Lemma 28 entails

dG(A,B) 6 ǫe−D
∑

x

(νf ′1|k−1 . . . f
′
k−1|k−1p)x

+ (1 + ǫe−D)
∑

x

|(νf ′1|k−1 . . . f
′
k−1|k−1p)x − (ωg′1|k−1 . . . g

′
k−1|k−1q)x|

6 ǫe−D + (1 + ǫe−D)64(k − 1)
(√

2CQ log n
)2(k−1)+3

Kǫ

6 70k
(√

2CQ log n
)2k+1

Kǫ

since 1 + ǫe−D 6 13/12 under the assumption of the lemma.

Assume k > 2 and let η′ := 42(k−1)
(√

2CQ log n
)2k+1

Kǫ. Lemma 28 implies
∑

x |(νf ′1|k−1 . . . f
′
k−1|k−1)x−

(ωg′1|k−1 . . . g
′
k−1|k−1)x| 6 η′. Since the bracket [νf ′1|k−1 . . . f

′
k−1|k−1, ωg

′
1|k−1 . . . g

′
k−1|k−1] is

not empty, it contains a probability measure. Thus, using (CQ log n)−1K−1 6 p 6 q 6

CQ(log n)K
−1, for all x ∈ [K],

(CQ log n)−1K−1(1− η′) 6 (νf ′1|k−1 . . . f
′
k−1|k−1p)x

6 (ωg′1|k−1 . . . g
′
k−1|k−1q)x 6 CQ(log n)K−1(1 + η′).

Therefore, by equation (17),

(CQ log n)−1K−1(1− η′)e−DK(1− ǫ) 6
∑

x∈[K]

Ax

6
∑

x∈[K]

Bx 6 CQ(log n)K
−1(1 + η′)K(eD + ǫe−D).
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The inequality (2CQ(log n)eD)−16
∑

x∈[K]Ax 6
∑

x∈[K]Bx 6 2CQ(log n)eD required in

the definition of N̄ follows as soon as (1− η′)(1− ǫ) > 1/2 and (1 + η′)(1 + ǫe−2D) 6 2, for
instance when (1− η′)2 > 1/2 since η′ > ǫ and D > 0, which holds when η′ 6 1/4, in other
words when

ǫ 6
1

168(k − 1)
(√

2CQ log n
)2k+1

K
.

Thus, taking ǫ′ = 70k
(√

2CQ log n
)2k+1

Kǫ ensures that if ǫ′ 6 70
168 , then dG(A,B) 6 ǫ′.

Lemma 25 follows.

B.2.3 Control of the bracketing entropy of the simple sets and synthesis

Lemma 30 Let δ > 0, then

N
(

{πθ}θ∈SK,M
, d∞, δ

)

6 max

(

K − 1

δ
, 1

)K−1

,

N
(

{Qθ}θ∈SK,M
, d∞, δ

)

6 max

(

K − 1

δ
, 1

)K(K−1)

,

Let Caux
′ = Cauxe

D ∨ (K − 1), then by [Aentropy],

N
(

{γθ}θ∈SK,M
, d∞, δe

−D)
6 max

(

Caux
′

δ
, 1

)mMK

.

Then, Lemma 25 ensures that for all ǫ 6 70
168 ,

log N̄ (G, dG , ǫ) 6 (mMK +K2 − 1) log max

(

70k
(√

2CQ log n
)2k+1

KCaux
′

ǫ
, 1

)

,

so that using Equation (16) and letting H(u) = H({t(D)
θ | θ ∈ Bσ}, dk, u), one gets for all

ǫ 6 16DCQ(log n)e2D
√

70/168 and in particular for all ǫ 6 7D(
√
2CQ log n)e2D:

H(ǫ) 6 (mMK +K2 − 1) logmax

(

(16DCQ(log n)e2D)270k
(√

2CQ log n
)2k+1

KCaux
′

ǫ2
, 1

)

6 2(mMK +K2 − 1) log max

(

95De2D
(√

2CQ log n
)k+3/2√

kKCaux
′

ǫ
, 1

)

.

Thus, for all ǫ > 0,

H(ǫ) 6 2(mMK +K2 − 1) logmax

(

95De2D
(√

2CQ log n
)k+3/2√

kKCaux
′

ǫ
,

14
(√

2CQ log n
)k+1/2√

kKCaux
′
)

.
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B.3 Choice of parameters

The goal of this section is to find a function ϕ and a constant C for which equation (11)
holds, and to choose the weights xK,M of Lemma 23.

Lemma 31 Let A,B,C ∈ R
∗
+, H : x ∈ R

∗
+ 7→ A log max(Bx , C), and ϕ(x) : x ∈ R

∗
+ 7→

x
√
πA(1 +

√

logmax(Bx , C)). Then:







x2H(x) 6 ϕ(x)2,
∫ x

0

√

H(u)du 6 ϕ(x).

Let

ϕ(u) = u
√

2π(mMK +K2 − 1)

(

1+

{

log max

(

95De2D
(√

2CQ log n
)k+3/2√

kKCaux
′

u
,

14
(√

2CQ log n
)k+1/2√

kKCaux
′
)}1/2)

.

The function x 7→ ϕ(x)
x is nonincreasing, so x 7→ ϕ(x)

x2 is decreasing and one can define

σK,M as the unique solution of the equation (1+ 2
√
D log n)ϕ(x) =

√
nx2 with unknown x,

when a solution exists. By the definition of E in Lemma 22,

∀σ > σK,M , E 6
√
nϕ(σ) + 4D(log n)2

ϕ(σ)2

σ2

6

(

1 +
4D(log n)2

1 + 2
√
D log n

)

ϕ(σ)
√
n

6

(

1 + 2
√
D log n

)

ϕ(σ)
√
n.

Using equation (12), for all z > 0 and xK,M > σK,M , with probability larger than
1− e−z,

WK,M6 4C∗(n∗+ k + 1)



(1 + 2
√
D log n)

ϕ(xK,M )

x2K,M
√
n
+

√

z

x2K,Mn
+4D

z(log n)2

x2K,Mn





6 4C∗(n∗+ k + 1)





σK,M
xK,M

+

√

z

x2K,Mn
+ 4D(log n)2

z

x2K,Mn



 .

Let ǫ > 0, and let us take

xK,M =
1

θ

(

σK,M +

√

z

n

)

,
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where θ > 0 is such that 2θ + 4D(log n)2θ2 6 ǫ
4C∗(n∗+k+1) . Then

WK,M 6 4C∗(n∗ + k + 1)
[

θ + θ + 4D(log n)2θ2
]

6 ǫ

and

WK,Mx
2
K,M 6 4C∗(n∗ + k + 1)

[

σK,MxK,M +

√

z

n
xK,M + 4D(log n)2

z

n

]

6 4C∗(n∗ + k + 1)
[

θx2K,M + 4D(log n)2
z

n

]

6 8C∗(n∗ + k + 1)

[

1

θ
σ2K,M +

(

4D(log n)2 +
1

θ

)

t

n

]

.

Take z = s+wM+K, then since
∑

M e−wM 6 e−1, with probability larger than 1−e−s,
for all M , K and for all functions pen such that

penn(K,M) > 8C∗(n∗ + k + 1)

[

1

θ
σ2K,M +

(

4D(log n)2 +
1

θ

)

wM +K

n

]

,

it holds

WK,Mx
2
K,M − penn(K,M) 6 8C∗(n∗ + k + 1)

(

4D(log n)2 +
1

θ

)

s

n
.

A θ that satisfies 2θ + 4D(log n)2θ2 = ǫ
4C∗(n∗+k+1) is

θ =
1

4D(log n)2

(
√

1 +
ǫD(log n)2

C∗(n∗ + k + 1)
− 1

)

.

Let us take this θ. Since 1√
1+x−1

6 max(1, 3x) for all x > 0,

1

θ
6 12C∗(n∗ + k + 1)max

(

D(log n)2

3C∗(n∗ + k + 1)
,
1

ǫ

)

.

Therefore,

WK,Mx
2
K,M − penn(K,M)

6 96(C∗)2(n∗ + k + 1)2
(

D(log n)2

3C∗(n∗ + k + 1)
+

1

ǫ
∨ D(log n)2

3C∗(n∗ + k + 1)

)

s

n

6 192(C∗)2(n∗ + k + 1)2
(

1

ǫ
∨ D(log n)2

3C∗(n∗ + k + 1)

)

s

n

as soon as

penn(K,M) > 96(C∗)2(n∗ + k + 1)2
(

1

ǫ
∨ D(log n)2

3C∗(n∗ + k + 1)

)(

σ2K,M + 2
wM +K

n

)

.

The last step of the proof is to find an upper bound of σK,M .
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Lemma 32 Let A, B, C and E be functions N −→ [1,∞), and ϕn : x 7−→ xA(n)(1 +
√

logmax(B(n)
x , C(n))). Let σn be the only solution of the equation ϕn(x)

x2
√
n

= 1
E(n) with

unknown x ∈ R
∗
+. Let

f(n) =

[

A(n)C(n)E(n)

B(n)
(1 +

√

logB(n) + log n)

]2

.

Assume that there exists n1 such that for all n > n1, f(n) 6 n. Then

∀n > n1, σn 6
A(n)E(n)√

n
(1 +

√

logB(n) + log n).

In our case,






















A(n) =
√

2π(mMK +K2 − 1),

B(n) = 95De2D(
√
2CQ log n)k+3/2

√

kKCaux
′,

C(n) = 14(
√
2CQ log n)k+1/2

√

kKCaux
′,

E(n) = 1 + 2
√
D log n 6 3

√
D log n.

Hence

f(n) 6 18π (mMK +K2 − 1)D(log n)2
(

14

95De2D

)2
(

1 +
√

logB(n) + log n
)2

6
4

5
π (mMK +K2 − 1)(log n)2

e−4D

D

(

1 + log n+ log 95 + logD + 2D+

(

k +
3

2

)

log(
√
2CQ log n) +

1

2
log(kKCaux

′)

)

6
4

5
π (mMK +K2 − 1)(log n)2

e−4D

D

(

15D + 2k log log n+
1

2
logCaux

)

when log n >
√
2CQ > 1 by using that 1 6 k,K 6 n, log x 6 x for all x > 0, D > log n by

assumption and logCaux
′ 6 logCaux +D + logK. Thus,

f(n) 6 f̃K,M(n) := 14π (mMK +K2 − 1)e−4D(log n)2(k + logCaux).

Now, assume that there exists n1 such that f̃K,M(n) 6 n for all n > n1, then for all
n > n1,

σ2K,M 6
36π (mMK +K2 − 1)D(log n)2

n
(1 + log n+ logB)

6
36π (mMK +K2 − 1)D(log n)2

n

(

15D + 2k log log n+
1

2
logCaux

)

.

Therefore, there exists a numerical constant Cpen such that the condition on the penalty
is implied by

penn(K,M) >
Cpen

n
(n∗ + k + 1)2

(

1

ǫ
∨ D(log n)2

3C∗(n∗ + k + 1)

)

(

wM+

(mMK +K2 − 1)D(log n)2(D + k log log n+ logCaux)
)

.
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