
HAL Id: hal-01833266
https://hal.science/hal-01833266v1

Submitted on 9 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Task-based Parallelism and Adaptive Mesh
Refinement Techniques in Molecular Dynamics

Simulations
Raphaël Prat, Laurent Colombet, Raymond Namyst

To cite this version:
Raphaël Prat, Laurent Colombet, Raymond Namyst. Combining Task-based Parallelism and Adaptive
Mesh Refinement Techniques in Molecular Dynamics Simulations. ICPP18, International Conference
on Parallel Processing., Aug 2018, Eugene, United States. �10.1145/3225058.3225085�. �hal-01833266�

https://hal.science/hal-01833266v1
https://hal.archives-ouvertes.fr

Combining Task-based Parallelism and Adaptive Mesh
Refinement Techniques in Molecular Dynamics Simulations

Raphaël Prat
Commissariat à l’Energie Atomique

Arpajon, France
raphael.prat@cea.fr

Laurent Colombet
Commissariat à l’Energie Atomique

Arpajon, France
laurent.colombet@cea.fr

Raymond Namyst
University of Bordeaux, Inria

Talence, France
raymond.namyst@u-bordeaux.fr

ABSTRACT

Modern parallel architectures require applications to generate mas-
sive parallelism so as to feed their large number of cores and their
wide vector units. We revisit the extensively studied classical Molec-
ular Dynamics N-body problem in the light of these hardware con-
straints. We use Adaptive Mesh Refinement techniques to store
particles in memory, and to optimize the force computation loop
using multi-threading and vectorization-friendly data structures.
Our design is guided by the need for load balancing and adaptivity
raised by highly dynamic particle sets, as typically observed in
simulations of strong shocks resulting in material micro-jetting.
We analyze performance results on several simulation scenarios,
over nodes equipped by Intel Xeon Phi Knights Landing (KNL) or
Intel Xeon Skylake (SKL) processors. Performance obtained with
our OpenMP implementation outperforms state-of-the-art imple-
mentations (LAMMPS) on both steady and micro-jetting particles
simulations. In the latter case, our implementation is 4.7 times faster
on KNL, and 2 times faster on SKL.

KEYWORDS

Adaptive Mesh Refinement, Task Parallelism, Molecular Dynamics
ACM Reference Format:

Raphaël Prat, Laurent Colombet, and Raymond Namyst. 2018. Combining
Task-based Parallelism and Adaptive Mesh Refinement Techniques in Molec-
ular Dynamics Simulations. In ICPP 2018: 47th International Conference on
Parallel Processing, August 13–16, 2018, Eugene, OR, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3225058.3225085

1 INTRODUCTION

The High Performance Computing community is currently wit-
nessing a significant increase of the number of cores in parallel
supercomputers, which are already featuring more than 10millions
of cores. This increase of the parallelism degree is a clear trend that
unfortunately comes with a decrease of the amount of memory
per core, as well as a strong pressure on the use of highly vec-
torized code. The Intel Knights Landing processor (knl) [36] and
Intel Skylake processor (skl) [10], for instance, require respectively
from 64 to 256 and 48 to 96 threads to utilize the cores at their full
capacities, as well as 512-bit wide SIMD instructions (i.e. 16 floats).
This explains why many ongoing efforts are devoted to designing

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225085

new implementations of parallel simulations to meet these hard-
ware constraints, which require to generate more parallelism, more
vectorized code and to enforce stronger data locality.

Molecular Dynamics (MD) N-body simulations, which represent
the most accurate method to simulate complex materials by op-
erating at a microscopic level, are naturally good candidates for
exploiting most of the underlying hardware’s potential, because
they are intrinsically data-parallel. Optimization of such simula-
tions over parallel supercomputers has indeed been extensively
studied, and very efficient implementations are available over a
wide range of modern hardware. One of the key aspect of an effi-
cient implementation of an N-body simulation is to speedup, for
each particle, the lookup of neighbor particles which potentially
exerts a force on the considered particle. To this end, several meth-
ods are used by state-of-the-art software, most notably the Verlet
list [37] method or the cell-list one [1]. These methods perform
indeed very efficiently under regular conditions, that is, when par-
ticles are uniformly spread over the domain. For extreme shock
simulations where many particles have high velocities, these meth-
ods lead to either frequently recompute neighbor lists or to cope
with a massive number of empty cells.

This paper investigates the use of Adaptive Mesh Refinement
techniques [3, 4] in N-body simulations. In order to cope with re-
gions of highly variable particle density, we partition the domain in
several subdomains organized as octrees, which are periodically
refreshed. Each octree is intended to be processed sequentially on
a single core, and we carefully enforce the execution order so that
no adjacent octrees can concurrently access a shared cell, leading
to a completely lock-free algorithm. To maximize the efficiency of
particles interactions computation over recent manycore architec-
tures, such as Intel Xeon Phi knl, we use a careful data layout for
particle attributes that improves data locality and cache utilization,
and maximizes code vectorization opportunities. We evaluate our
approach using an extended implementation of the ExaStamp MD
simulator [31] over a Intel Xeon Phi and Intel Xeon. We use differ-
ent input configurations and show that our approach outperforms
state-of-the-art solutions while using a similar memory footprint.

The main contributions of this paper are:
• We introduce a new software architecture for MD including
amr techniques;
• We present a thread parallelization strategy adapted to the
amr structure;
• We evaluate our implementation of the amr on two different
architectures using both a static and a highly dynamic test
case.

The remainder of this paper is organized as follows. In the next
Section, we briefly recall the main concepts used in Molecular

https://doi.org/10.1145/3225058.3225085
https://doi.org/10.1145/3225058.3225085

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Raphaël Prat, Laurent Colombet, and Raymond Namyst

Linked Cell Method

rcut

rcut

Verlet List Method

rcut
rverlet

Figure 1: Standard methods to build atom neighbors list.

Dynamics simulations and in Adaptive Mesh Refinement based ap-
plications. Section 3 describes the main ideas behind our approach.
We demonstrate the relevance of our approach in Section 4 compar-
ing our implementation with state-of-the-art software on several
benchmarking scenarios. We present related work in Section 5, and
dress concluding remarks in Section 6.

2 BACKGROUND

2.1 Molecular Dynamics Simulations

The classical MD is a computational method used to study dynami-
cal properties of a systems made of particles. This method consists
in numerically integrating Newton’s equation of motion

−→
f = m.−→a

1, where the force on a particle depends on the interactions with
all others [1]. The force on particles is given by the gradient of
a potential

−→
f =-∇−→U.MD simulations typically follow an iterative

process, where each iteration (time step) consists in computing
forces applied to each particle, deducing each particle’s accelera-
tion, updating particles velocities, and finally updating particles
positions. To do so, the most widely adopted scheme is the Velocity
Verlet integrator [21].

2.1.1 Particle interactions. In most MD simulations, particles
are processed as points and the interacting force between particles
is approximated as a gradient of a potential that depends on the
particles relative positions. The force computation is obviously the
most challenging part: it contains all the physics of the simulation
and can take up to 95% of the total time. Potentials from classical
MD are empirical or semi-empirical, computed from an analytical
formula or interpolated from tabulated values [38].

In this paper, we focus on short-range interactions neglected
beyond a given distance rcut called the cutoff distance. This ap-
proximation is relevant for solid materials, in which distant atoms
are “screened” by closer atoms.

2.1.2 Lists of Neighbors. To speed up the force computation
step, most MD simulations maintain a list of neighbors for each
atom. To build such lists efficiently, two methods (see figure 1) are
typically used and can even be combined. The first is based on
Verlet lists [37]. A radius of Verlet (rVerlet) is added to rcut. As a
consequence, the list of neighbors contains “useless” atoms which
are too far from the considered atom. However, as long as no atom
has moved from its original position2 by more than 1

2 rVerlet,

1−→
f force,m mass, −→a acceleration, −→U potential energy

2The original position is the one captured when updating the list of neighbors.

there is not need to recompute the lists. This method is therefore
the most efficient when atoms are moving very slowly, because
the Verlet lists are not frequently updated. This method have a
complexity of O (N 2), and can easily be performed in parallel. The
other one is the linked cells method [1]. The domain is divided
into rcut sized cells on a grid. For all atoms, the neighborhood
of an atom is included in the (27 in 3D) neighboring cells. This
method avoids the cost of maintaining lists of neighbors per atom.
However, it comes at the cost of considering a significant amount
of atoms which are beyond the rcut distance. This method has a
complexity of O (N). The strategy of building neighbor lists can
influence the simulation performance because it requires a lot of
memory accesses.

2.1.3 Pair Potentials. Pair potentials are a particular but ex-
tremely widely used case of potentials, where interactions between
particles are reduced to pairwise interactions. Therefore, the poten-
tial between two particles will only depend on the distance between
those particles. Pair potentials are quite effective to describe low-
density materials such as liquids and gases. Some common pair
potentials are for instance, the Lennard-Jones potential (lj) [19],
the Morse potential [28] and the Exponential-six potential [24].
Although it was first designed to study gases, the Lennard-Jones
potential (lj) has been used in a large part of materials science and
has become a standard benchmark forMD codes.

2.2 Adaptive Mesh Refinement (AMR)

The first adaptive mesh refinement was developed by Berger [3, 4]
for hydrodynamics application in 1984 to optimize time computa-
tion. In hydrodynamics, the domain is discretized into a Cartesian
grid where the solution is computed in each point of the grid. The
spacing of the grid points determines the local error and hence
the accuracy of the solution. amr consists in coarsening the grid
points where the points do not need to be spaced to keep their
stability. The error is negligible at these points. The coarsening
is determined by a criterion based on density or on a Richardson
extrapolation [4, 33]. Note that different levels of refinement may
be obtained for a simulation. This method is interesting for simula-
tions with heterogeneous density to reduce computational cost for
some parts of the simulation.

amr methods have already been introduced in N-body simula-
tions in the past. In such simulations, the domain is decomposed
into a grid of cells, which are equivalent to points in hydrodynam-
ics. The amr consists in coarsening the cells containing only a few
atoms, using criteria such as the number of particles or average
density. A large amount of amr software have been developed [13]
for various physical problems such as astrophysics with Enzo [7]
or BoxLib [22], Chombo [8] to solve PDE.

3 ADAPTIVE MESH REFINEMENT FOR

MOLECULAR DYNAMICS SIMULATIONS

To meet the needs of highly dynamic particles simulations over
many core architectures, we introduce a new approach inherited
from Adaptive Mesh Refinement Methods (amr) to perform MD
simulations. We first describe the main characteristics of the Ex-
aStamp framework (Section 3.1) that has served as a basis for our
implementation. Section 3.2 presents the main data structures used

Combining Task-based Parallelism and Adaptive Mesh Refinement Techniques ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Node

Sub Domain -- Grid (4 octrees)

Root Cell

Leaf
Cell

Leaf Cell

Inter
Cell

MPIMPI

Node

Sub Domain

Node

Sub Domain

Figure 2:MD simulation with amr architecture and two levels of
refinement. A node is divided into octrees and the octrees are
refined in leaf or inter cells.

to efficiently cope with highly heterogeneous sets of particles. In
Section 3.3, we detail how the workload is dynamically assigned to
the underlying computing resources.

3.1 The ExaStampMD Framework

ExaStamp is aMD code which has been recently developed at CEA
for the upcoming generation of supercomputers. The main goal
of ExaStamp is to cope with simulations featuring up to several
billions of atoms on thousands of cores. The code is written in
C++ and uses hybrid parallelization mixing MPI and threads (Open-
MP/ Intel TBB). ExaStamp kernels are written by physicists using
high-level types and functions, and the generated code features
Intrinsics instructions to minimize missed vectorization opportu-
nities. These techniques have most notably proved to be effective
on the Intel Xeon Phi Knights Corner processor.

LikemanyMD software packages, ExaStamp relies on the linked-
cell method to organize particles, that is, a static mesh of cells that
does not evolve during the simulation. Although this strategy ex-
hibits high performance when particles are homogeneously dis-
tributed across the simulation domain, it is not suitable for extreme
dynamic micro-jetting [12] configurations. Indeed, between two
time steps, most atoms move from one cell to another, leaving a
large number of cells almost empty. Dealing with those empty cells
incurs significant memory and performance overheads, because
their number can sometimes exceed the number of atoms.

3.2 Software Architecture

Our approach combines the use of several techniques such as the
octree’s structure, the Structure-of-Array, the Morton index and a
vector-friendly handling in order to optimize access to L1 and L2
caches.

3.2.1 Adaptive Mesh Refinement. We apply amr techniques to
the management of cells, so as to deal with cells of different sizes,
depending on the particles density. Figure 2 illustrates how the
spatial domain is decomposed into cells [32]. The domain is first
decomposed into sub-domains, each sub-domain being assigned
to one MPI process. Sub-domains are in turn decomposed into a

Cache L1Cache L2

OCTREE

Sub Domain

MPI NODE

Leaf Cell

Z curve

Figure 3: The domain simulation (3D representation of Figure 2)
is decomposed into sub-domains that are distributed across MPI
nodes, each sub-domain being a grid of octrees.

grid of octrees. The reason for using a grid of octree instead of a
large, unique octree is that an octree serves a unit of work that
can be exchanged between MPI processes for load balancing pur-
pose. octrees are built and refreshed using a refinement algorithm:
each cell is recursively divided into 8 cells of same volume if some
refinement criteria are fulfilled. The maximal depth Dmax limits the
number of times octrees can be refined. Therefore each octree
contains between 1 and 8Dmax cells. As shown in Figure 2, a cell
can either be a root cell (also called level 0 cell), a leaf cell or an
inter cell. Note that the minimal size of a leaf cell corresponds
to the size that would be used in a classical linked-cell method, in
accordance with the maximum cut-off distance.

The way octrees are assigned to MPI processes is beyond the
scope of this paper. Inside MPI processes, thread-level parallelism
is used to explore the grid of octrees, as it will be detailed in the
following Subsection. Given that the number of octrees is larger
than the number of cores by several orders of magnitude, one
important aspect of our strategy is that each octree is assigned to
a single thread and is thus processed sequentially. This allows us to
optimize the octree traversal with respect to cache usage [14, 15]:
leaf cells are explored along a Z-order curve to minimize cache
misses, as illustrated in Figure 3 (red path).

3.2.2 Data layout. Inside an octree, all atoms’ attributes are
stored in the root cell, in a Structure-of-Arrays (SOA) layout. For
the sake of clarity, we simply refer to this data structure as the
“array of atoms” in the remaining of the paper. inter and leaf cells
only store indexes indicating the position of atoms in this array,
as illustrated in Figure 4. This strategy prevents the copy of atoms
during the refinement, improves the data locality between cells
inside an octree and reduces data movements because transfers
are performed between octrees instead of cells [11]. In addition,
because the number of arrays is reduced, they are filled with more
atoms, which improves vectorization efficiency.

For each atom, we compute a Morton index [29] out of the carte-
sian position of its smallest bounding cell. This index gives the
path from the root cell to the leaf containing the atom. The array
of atoms is sorted by the atoms’ Morton index, to improve cache
locality [25].

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Raphaël Prat, Laurent Colombet, and Raymond Namyst

Level 0

Level 1

Level 2

100
atoms

5
atoms

75
atoms

10
atoms

10
atoms

20
atoms

15
atoms

20
atoms

20
atoms

Mem :At0 ... At5 ... At25 ... At40 ... At60 ... At80 ... At90 ...

Atoms
array

Figure 4: Data management in a octree. The array containing
all atoms information (orange color) is allocated into the Root
cell (red) and atoms (At) are sorted by their morton index. The
refined cells Inter (gray) and Leaf (blue) point on this atoms array.
This strategy avoids the copy of data during refinement/coarsening
steps.

3.2.3 Vector-friendly Particles Handling. To maximize vector-
ization opportunities inside the computation step, one technique
consists in using a vectorization buffer to pack information about
neighboring atoms in contiguous areas of memory. While this al-
lows the compiler to generate efficient, vectorized instructions to
process data stored in such buffers, the cost of introducing an extra
copy of data has a negative impact on performance in the case of
low cost potentials (e.g. Lennard Jones). Another technique is to
access the data through in a vector-friendly manner. More precisely,
we divide the set of atoms into a series of blocks (for which the size
is a multiple of the processor’s vector width), which is illustrated
in Figure 5. We only process blocks that contain at least one atom
included in the Verlet radius, while others are skipped. In the worst
case, we could end up with blocks containing only one useful atom,
which would lead to process only one single atom at a time. In
practice, however, we observe that vector registers are filled with
more than 50% of useful values. This implementation variant of
ExaStamp will be called amr Vec in the remaining of this paper.

3.3 Parallelization Strategy

Inside eachMPI node, we use OpenMP to process cells in parallel. As
mentioned previously, since the number of octrees is significantly
larger than the number of cores, each octree is assigned to a single
OpenMP thread, and thus is processed sequentially. In our current
implementation, we spawn one OpenMP task per octree.

When the potential has symmetrical properties (third newton’s
law), forces exerted between two particles are equal and are thus
computed once only. This saves some precious computing cycles,
but requires as a counterpart to use costly synchronization tools
(e.g. mutexes) to avoid that multiple threads update the same tar-
get particle. Another strategy is to process the cells in an order
that ensures that no particle can be simultaneously updated by
different threads. The wave method was introduced by Meyer et

Cell jradius of verlet

Atom I

0

1

2
3

4

5

6

7

8

9

10

11

1213

14

15

radius cut-off

Figure 5a

Figure 5b

Figure 5c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

block 0 block 1 block 2 block 3

Atom are aligned in the cell j

At least one
atom by block
is in the radius

of Verlet

Cj Cj Cnext ...

0 12 idnext ...

ptr

id
Verlet List
of atom I

7 7Verlet List
–

every k-steps

Pair
computation

–
every steps

0 1 2 3
1 1 0 1

Load block 0

Build mask
(dist<rcut)

12 13 14 15

Load block 3

0 1 1 0

0 1 2 3

Pair computation

Store results

12 13 14 15

Pair computation

Store results

Figure 5: Atom I interacts with some of the atoms inside cell j (a).
The Verlet lists are filled (b) by the first indexes of blocks of a vector
register size (4 doubles in avx2 256-bit) and containing a minimum
of one atom in the radius of Verlet. During the potential step (c),
the atoms are loaded by blocks and could be pre-fetched.

al. [23, 26, 34] as a mean to avoid these synchronizations. The idea
is to partition cells – or octrees in our case – into a set of waves
such that two cells of the same wave are far enough from each
other to have no neighbor in common. Thus, during the computa-
tion of a given wave, neighbor particles can be updated without
synchronization (see Figure 6).

Note that there is no need to strictly execute waves one after the
other: their execution can actually overlap if it relies on a task-based
scheduler able to take inter-task dependencies into account (such
as Intel TBB or OpenMP). During the execution of wave n, tasks
of wave n + 1 will be progressively unlocked. Using dependency
graph allows to unlock tasks as quickly as possible. We use OpenMP
4.5 to generate explicit tasks with dependencies. In our case, each
task represents an octree to compute (see Figure 7), and not just
a cell. This method is equivalent to the cell task blocking method
[34] and limits the number of waves to 8 but requires that Dmax

is superior to one. This approach is similar to the Particle and
Separate-Calculation (PSC) [17].

Finally, compared to the original version of the wave method,
octrees helps to control the granularity of tasks, and thus helps to
minimize the overhead of generating OpenMP tasks.

Combining Task-based Parallelism and Adaptive Mesh Refinement Techniques ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Octree

Cellrcut

rcut

Figure 6: 2D representation of a part of the MD simulation. The
atoms are distributed into the cells themselves included into oc-
trees with a tree depth of 1. The octrees are colored in 4 colors
such that two atoms included in two octrees of the same color do
not interact together.

1

(1,3)

7
2

(2,3)

8
1

(3,3)

9

4

(1,2)

4
3

(2,2)

5
4

(3,2)

6

1

(1,1)

1
2

(2,1)

2
1

(3,1)

3
2

3

2

position
index octree

Unlock

wave
number

p
attern

Figure 7: Task dependency graph in 2D. octree are classified into
4 waves (8 in 3D), cells classified in the wave (n)n>=0 are unlocked
by specific cells in the wave (n − 1)n>=1.

4 EVALUATION

To assess the effectiveness of our approach, we present a perfor-
mance study using two test cases: bulk material, a steady configu-
ration of atoms, and micro-jetting, a highly dynamic one. We com-
pare our implementation (ExaStamp extended with amr) against
the Lammps [20] reference package and its mini-application min-
iMD [16].

4.1 Experimental Framework

Our experimental framework is composed of two architectures.
The first is a knl processor featuring 68 cores running at 1.4GHz
(4 of which being dedicated to the operating system). Each core
has a 2-wide out-of-order pipeline with support for 4 hardware
threads and 512-bit vector units. Its memory system consists of
a 96 GB DDR4 off-chip memory and a 16 GB MCDRAM stacked
memory. The second architecture is a skl-based machine that con-
tains 2 sockets of 24 cores running at 2.7GHz. Each core has a

2-wide out-of-order pipeline with support for 2 hardware threads
and 512-bit vector units. It is equipped with 380 GB DDR4 off-chip
memory. The same Intel ICC v18 compiler was used on both plat-
forms. We used the following compile flags: -O3, avx 512-bit flag,
and -qopt-zmm-usage=high on skl. We launched the programs
in native mode using the numactl -p 1 command on knl. The
KMP affinity environment was set to granularity=thread,scatter for
ExaStamp amr and to granularity=core,scatter for miniMD and
Lammps.

Lammps is one of the most relevant classical MD simulator
designed for parallel computers. The numerous built-in features
for the simulation of atomic, polymeric, biological, metallic, or
mesoscale systems, using a variety of force fields and boundary
conditions. Lammps benchmarks include simulations up to several
billion atoms on tens of thousands cores. Although the standard
Lammps version is parallelized using MPI, many packages have
been developed to integrate thread parallelization such as USER-
OMP or USER-INTEL. The KOKKOS package has been integrated
to optimize Lammps on the accelerators (Xeon Phi and GPU). A
load balancing has been implemented using the shift method [30]
or the recursive coordinate bisection [5] (rcb) method. Despite of
specific optimizations for the knl architecture, the OpenMP ver-
sion of Lammps is 10 to 15% slower than the full-MPI version [18].
Note that Lammps is compiled using the flags recommended by the
documentation on Intel Xeon Phi (knl) and Xeon (skl). We have
notably used the following Kokkos-runtime flags: -k on t nbThread
-sf kk -pk kokkos newton on neigh half comm no. Newton’s third
law (neigh half) is used by all codes to take advantage of the
symmetry of lj potential.

miniMD is a simplified version of Lammps written in C++. Due
to its simplicity (near 5000 lines), it is possible to explore poten-
tial optimisations much more rapidly. Despite supporting only the
Lennard-Jones (lj) and Embedded-Atom model (Eam) potentials,
miniMD’s performance and scaling behavior is representative of
much larger and more complex codes with hybrid parallelization
MPI/OpenMP. Simulation parameters are defined with a simple
input file. miniMD is compiled using the flags recommended in the
Intel Makefile, and the following runtime flags: –half_neigh=1 -t
nbThread.

We tried to faithfully use the same experimental setup for min-
iMD, Lammps and ExaStamp amr. Most notably, each experiment
features a warm-up phase of 10 time steps, followed by 90 iterations.
An amr refinement/coarsening process is required for the initial-
isation step. Two test cases were simulated in our experiments.
The first one is a bulk material corresponding to an ideal crystal
(4,000,000 atoms) with an homogeneous density. In constrat, the
second one simulates a micro-jetting (3,535,584 atoms) occurring
after a shock on a material. The number of atoms in these two
test cases represents the quantity assigned to a node by the ExaS-
tamp code during simulations with several hundreds of millions of
atoms. The lj potential is used because its low computational cost
better highlights performance issues related to suboptimal mem-
ory accesses or bus contentions (e.g. memory-bound code regions
and threads synchronizations). This makes it easier to accurately
identify performance issues and evaluate the effectiveness of code
optimizations.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Raphaël Prat, Laurent Colombet, and Raymond Namyst

Simulation code million atoms processed per second

Architecture Knights
Landing Skylake

Lammps 7.2 36.9
miniMD 8.0 42.9
ExaStamp amr 24.1 52.0
ExaStamp amr Vec 45.4 68.8

Table 1: Number of atoms processed per second (higher is better) by
ExaStamp amr with and without Vec option, miniMD and Lammps
(mean). Software performed on 64 cores on knl (left) and 48 cores
on skl (right).

4.2 Bulk Material: a Steady-State Simulation

The first benchmark consists in simulating a bulk material featuring
4 millions of atoms in thermodynamic equilibrium. This simulation
has many properties such as an homogeneous density, which also
remains constant throughout the duration of the simulation. The
bulk of copper is obtained by replicating an atom pattern named
lattice. A Face Cubic Center (FCC) lattice of 3.54Å is used with a
suitable lj potential. For each atom, 39 interactions with neighbor-
ing atoms are processed due to the 5.68Å cut-off and symmetric
property of the lj potential. A radius of Verlet of 0.3Å is added
to avoid re-build Verlet lists. Throughout this simulation, the tree
depth Dmax is set to 2 to obtain best performance.

A classical way to evaluate performance of MD simulations is
to measure the number of atoms processed per second. The results
in Table 1 report performance obtained with Lammps, miniMD and
ExaStamp amr on Intel knl and skl architectures. As expected,
we observe that miniMD and Lammps exhibit similar performance.
ExaStamp amr is 3 times faster thanminiMD, while ExaStamp amr
Vec is 5.5 times faster than miniMD on the knl architecture. The
difference is reduced on the skl from 3 to 1.21 and from 5.5 to 1.6
respectively. This significant difference between ExaStamp amr and
the two other codes comes from the performance penalty incurred
by OpenMP atomic operations used in the miniMD and Lammps
kernels when updating neighboring atoms. In ExaStamp amr, the
use of a wave-based task scheduling, presented in Section 3.3, avoids
using such costly synchronization instructions. Moreover, the use of
atomic operations in miniMD and Lammps prevents the code from
being properly vectorized by the compiler. Note that performance
reported for this bulk configuration, which features 4 millions of
atoms, only evolves marginally when increasing the number of
atoms. For instance, with 216millions of atoms and a memory usage
of about 100GB, the ExaStamp amr Vec throughput is 60 millions
of atoms processed per second on the skl. The measurements show
that the slight drop in performance is due to an increase of NUMA
effects.

Table 2 reveals that the cost of rebuilding the amr data struc-
tures is low: under 2% on knl and 3% on skl. It also shows that
the percentage of time spent in the potential computation is the
lowest for ExaStamp amr, because this part has been significantly
optimized: the optimization with memory blocks for vectorization

Software Potential Refinement
Lammps knl 96.4% NA
Lammps skl 88.3% NA
miniMD knl 97.5% NA
miniMD skl 91.2% NA
ExaStamp amr knl 94.8% 0.9%
ExaStamp amr skl 81.1% 1.9%
ExaStamp amr Vec knl 91% 1.7%
ExaStamp amr Vec skl 77.3% 2.6%

Table 2: Time ratio measured for different parts of the bulk of copper
simulation: potential kernel (Potential) and related to the amr
structure (Refinement). Time ratio of other parts are not reported
(Scheme, Reorganisation, Update Ghost). Note that the Verlet
lists are not updated.

Knight Landing Skylake
0

5

10

15

20

Architecture

T
im

e(
s)

no Vec
avx2 256-bit
avx 512-bit

Figure 8: Time simulation for different vectorization flags on Ex-
aStamp amr Vec, the version no Vec corresponding to ExaStamp
with avx-512 bits and no option Vec. Software performed on 64
cores on knl (left) and 48 cores on skl (right).

reduces the time ratio of this kernel by 3-4%. Regarding the ben-
efits gained using our cache-friendly octree traversal, we used
the Linux perf profiler to finely tune the octree depth (Dmax). We
observed on knl that the number of cache misses of the L1 cache
fluctuated according to the maximum depth of the octree. After
100 iterations, for Dmax =1, we observed 8.8 billions of L1 cache
misses. For Dmax =2, the number of misses dropped to 2.6 billions,
and for Dmax =3, it topped 9.7 billions.

On processors such as knl and skl, special attention must be
paid to the vectorization of the code, because its impact on overall
performance is expected to be high. Figure 8 shows the evolution
of ExaStamp amr performance according to the auto-vectorization
flag used at compile time (-mavx, -xMIC-AVX512, -xCore-AVX512).
The estimated speedup on the potential kernel reported by vec-
report=5 option are: 2.11with avx 512-bit knl, 1.54with avx 512-bit
skl and 1.3 with avx2 256-bit. Measurements on the full application
show an acceleration of 1.88 with avx-512 on knl while it is 2.11

Combining Task-based Parallelism and Adaptive Mesh Refinement Techniques ICPP 2018, August 13–16, 2018, Eugene, OR, USA

for the potential kernel. Similarly, we measure 1.32 with avx 512-
bit skl instead of 1.54 for the single kernel. The difference in the
impact of vectorization on both machines is explained on the one
hand by the time ratio spent in the potential kernel that is lower on
the skl (see Table 2) and on the other hand because the avx 512-bit
instructions set is not exactly the same.

Figure 9 describes the evolution of the simulation time of the
three codes as function of the number of cores used on a proces-
sor. On both processors, the different versions of ExaStamp amr
are faster than Lammps and miniMD when the number of cores is
greater than 1. Note that the sequential versions of the algorithms
used by Lammps and miniMD are different from the parallel ver-
sions, which explains the performance between using one core
or two. In the parallel versions, there is notably the addition of
OpenMP atomic instructions in the potential kernel. We can also
notice in Figure 9 that on the knl, versions of ExaStamp amr have
the same scalability (almost ideal) however on the skl they suffer
more of NUMA effects between 24 and 48 cores than miniMD and
Lammps. These effects could be reduced by using one MPI process
per socket or by forcing a distribution of tasks on the sockets ac-
cording to the octree position. These assumptions will constitute
one of the purpose of our future developments.

Finally, this example highlights the advantages to extend ExaS-
tamp with amr capabilities using cache blocking, task dependency
graph and vectorization even for homogeneous systems. In all cases,
it is faster than miniMD and Lammps.

4.3 Micro-Jetting: a Highly-Dynamic

Simulation

Simulation code million atoms processed per second
Architecture Knights Landing Skylake
Lammps 3.3 14.8
ExaStamp amr 9.2 22.3
ExaStamp amr Vec 15.5 29.1

Table 3: Number of atoms processed per second (higher is better)
by Lammps, ExaStamp amr with and without Vec option (mean).
Software performed on 64 cores on knl (left) and 48 cores on skl
(right).

The second benchmark consists in simulating amicro-jetting [12]
phenomenon, which is a highly dynamic case. The micro-jetting
results of a shock on a sinusoidal default in a tin material. This case
performs over 3.5million atoms with a suitable lj potential. Our ex-
periment is calibrated so that the shock happens from the very first
time steps. Thus, the density of atoms is strongly heterogeneous
and the velocity of atoms is quite high. For such a highly dynamic
configuration, it is expected that our amr solution behaves better
than classicalMD methods. Throughout this simulation, the best
performance was achieved with a maximum tree depth Dmax equal
to 2. Unfortunately, we could only compare our solution against
Lammps, because miniMD is not able to cope with complex input
files.

Software Poten-
tial

Verlet
Lists

Refine-
ment

Lammps knl 81.2% 11.52.% NA
Lammps skl 72.43% 14.2% NA
ExaStamp amr knl 71.7.% 20.7% 3.2%
ExaStamp amr skl 61.5% 23.8% 4.7%
ExaStamp amr Vec knl 62.9% 24.6% 4.9%
ExaStamp amr Vec skl 62.6% 15.0% 6.1%

Table 4: Time ratio measured for different parts of the micro-
jetting simulation: potential kernel (Potential), building Verlet
lists (Verlet Lists) and related to the amr structure (Refinement).
Time ratio of other parts are not reported (Scheme, Reorganisa-
tion, Update Ghost.)

Table 3 reports the measurements of atoms processed per second
and provides some insights into performance obtained on knl and
skl processors. First of all, with an equivalent potential kernel,
ExaStamp amr is 2.8 faster on knl and 1.5 faster on skl compared
to Lammps. In addition, with the Vec optimization, these differences
increase respectively from 2.8 to 4.7 and 1.5 to 2. As described
in the previous benchmark, these differences are partly explained
by a better efficiency of ExaStamp amr, especially in terms of
vectorization. Throughout the simulation, 90% of cells are empty
or almost empty, which have a negative performance impact on all
versions except ExaStamp amr. Note that the previous generation
of the ExaStamp software, which is on a par with Lammps on
the bulk benchmark, suffers from a performance drop to only 1.4
million atoms per second. We have also tested the MPI version of
Lammps with the rcb dynamic load balancing option. This MPI
version of the code is more efficient than the OpenMP version with
6.2 million atoms per second instead of 3.3 on knl and 23.1 instead
of 14.8 on skl. However, ExaStamp amr remains better in terms
of CPU and memory performance (more details in Subsection 4.4).
Moreover, using only one MPI process per processor using OpenMP
inner parallelism will help to reduce communication costs when
moving to large clusters.

Throughout this simulation, the Verlet lists are regularly updated
because the atoms move in the direction of the shock. In our case,
these are updated approximately every 6 time steps. As shown in
the Table 4, the rebuilding of the Verlet lists costs around 20% of
the simulation time for ExaStamp amr and approximately 12.5%
for Lammps because it spends more time in the potential kernel
and is twice slower than ExaStamp amr Vec. The time related
to refinement is more significant because, at each update of the
Verlet lists, the arrays of atoms within the octrees are sorted and
the pointers of the cells are adjusted on these arrays. This time
ratio remains proportionately cheap compared to the benefit that it
provides. In addition, adapting the refinement during simulation, i.
e. coarsening/refining the cells, takes around 7.5% of an iteration
with construction of neighbor lists. For our case of micro-jetting, it
is interesting to adapt the grid approximately every 400 time steps.

As in the bulk benchmark, we observe the impact of various com-
pile time vectorization flags. The Figure 10 describes the simulation

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Raphaël Prat, Laurent Colombet, and Raymond Namyst

1 2 8 16 32 64

101

102

103

Cores

T
im

e(
s)

ExaStamp amr KNL
ExaStamp amr Vec KNL

MiniMD KNL
Lammps kokkos KNL

1 2 6 12 24 48

101

102

Cores

T
im

e(
s)

ExaStamp amr SKL
ExaStamp amr Vec SKL

MiniMD SKL
Lammps kokkos SKL

Figure 9: Simulation time (lower is better) with log axis for miniMD, Lammps, ExaStamp amr and ExaStamp amr Vec. For both architectures,
the codes keep the same ranking regarding simulation time, with ExaStamp amr Vec being the fastest, then ExaStamp amr, then miniMD
and finally Lammps.

Knight Landing Skylake
0

10

20

30

40

50

Architecture

T
im

e(
s)

no Vec
avx2 256-bit
avx 512-bit

Figure 10: Simulation time for different vectorization flags on Ex-
aStamp amr Vec, the version no Vec corresponding to ExaStamp
with avx-512 bits and no option Vec. Software performed on 64
cores on knl (left) and 48 cores on skl (right).

time with the same compilation options as used for the Figure 8.
Both codes being identical, except for the potential kernel, we get
the same pattern as for the Figure 8. Regarding Lammps, vectoriza-
tion is more impactful thanks to the use of neighbor lists. However,
this part of the code represents only 12.5% of total computation
time, so it has only a moderate impact on overall performance.

A more in-depth study of the behavior of the codes is conducted
in two steps, first by analyzing the times obtained at variable num-
ber of cores and second by observing the trace of the tasks with 48
cores on skl. As observed in the Figure 11, for both architectures,
there is a significant difference between the sequential version and
the parallel version of Lammps. As observed in the homogeneous
case, ExaStamp remains much better and always shows a good
adaptation to the number of cores despite the load imbalance be-
tween the different octree due to the heterogeneity of the atom
distribution.

To better analyze the performance of ExaStamp amr on a large
number of cores, it is worthwhile to study the task scheduling
behavior induced by the wave method. Figure 12 shows a tasks

Figure 12: Visualization of tasks execution throughout a time step of
a micro-jetting simulation on skl on 48 cores. The colors represent
the type of task, from light green to light blue through black corre-
sponding to the tasks fromwave 1 to 8. The red portions correspond
to the moment when a thread is idle.

execution trace on the 48 cores skl3, using one thread per core. The
trace was obtained using the VITE software [9]. One can observe
that only few idle slots are observed. They account for less than 5%
of the simulation time. The most relevant thing to observe is that
waves of tasks do not start at the same time: they overlap thanks
to the use of fine-grain task dependencies. Compared to a version
using a global synchronization barrier between waves, we have
measured a gain of 5% on skl (48 cores) and 6% on knl (64 cores).
In our implementation, thread 0 is the master thread in charge of
task distribution and this is the reason why it is more often idle.
At the end of the simulation, there are many threads waiting for,
because there are no more ready tasks for the current iteration.
This situation could be further improved by taskifying the other
parts of the code, to allow the force computation step to overlap
with the amr refinement, for instance.

To conclude this evaluation part, we showed that the use of
octrees coupled to the wave method significantly reduces the sim-
ulation time compared to Lammps on modern processors. This is
3The analysis presented focuses on the use of the skl with 48 cores but the comments
are also relevant for the knl.

Combining Task-based Parallelism and Adaptive Mesh Refinement Techniques ICPP 2018, August 13–16, 2018, Eugene, OR, USA

1 2 8 16 32 64

102

103

Cores

T
im

e(
s)

ExaStamp amr KNL
ExaStamp amr Vec KNL
Lammps kokkos KNL

1 2 6 12 24 48
101

102

Cores

T
im

e(
s)

ExaStamp amr SKL
ExaStamp amr Vec SKL
Lammps kokkos SKL

Figure 11: Simulation time (lower is better) of a micro-jetting with log axis for Lammps, ExaStamp amr and ExaStamp amr Vec. For both
architectures, the codes keep the same ranking regarding simulation time, with ExaStamp amr Vec being the fastest, then ExaStamp amr,
then miniMD and finally Lammps.

explained by the good use of cache blocking techniques, vectoriza-
tion and task based scheduling.

4.4 Memory footprint

Simulation code Memory foot print (GB)
Dataset Bulk Micro-jetting
Lammps 2.3 6.4
Lammps (48 MPI processes) 3.4 13.8
miniMD 2.1 NA
ExaStamp Classic 3.3 48
ExaStamp amr 3.7 8
ExaStamp amr Vec 1.9 3.2

Table 5: Memory footprint (lower is better) of the different codes
for both datasets: Bulk and Micro-jetting.

In this section we study the overall memory footprint with
getrusage in Giga Bytes of both bulk and micro-jetting simula-
tions. We expect ExaStamp amr to behave well in that respect,
because one of the first expectations of amr is used to overcome
the shortcomings of the linked cell method.

First, by analyzing the bulk case results in Table 5, we notice that
the memory is equitably divided between the cells for ExaStamp
classic and the octrees for ExaStamp amr. Regarding Lammps
memory storage strategy, the atom information are stored in a
structure of arrays and an array delimiting the cells with the number
of atoms in each cell which minimizes memory usage. In addition
to these, a storage of Verlet lists for each atom is added (more than
75% of the total storage) for each code. In the Verlet lists, miniMD
and Lammps store the position of atoms while ExaStamp needs the
cell index and the neighbor positions in that cell.

For the micro-jetting case, we showed the positive impact of
amr on the memory footprint because a large part of the cells are
mostly empty or almost empty (more than 90%). Contrary to the
bulk test case, the cell storage strategy induced by the linked cell
method reveals its weakness. As attested by the second column of
the Table 5, octrees bear this default. Indeed, a maximum depth

tree of 2 reduces by 64 the storage of empty cells. We observe that
the octrees divide the memory usage by 8, even by 15 with the
use of Vec option. These results are relatively close to the memory
footprint of Lammps.

Thirdly, using many MPI processes, 48 in our case, on one pro-
cessor can generate twice as much memory. This is due to the ghost
atoms that the subdomains must communicate to each others.

amr structure drastically reduces memory footprint whenever
some cells contains very few atoms, while maintaining high perfor-
mance. Additionally, memory footprint may be further reduced by
not storing the Verlet lists (occupying up to 75% of total memory)
and recomputing them on demand. This can be achieved at the
expense of a performance penalty and is required only in case of
very strong memory constraints.

5 RELATEDWORK

Many research efforts have been devoted to designing efficientMD
simulations on supercomputers. Lammps and its associated miniMD
mini application are probably the most widely used software in this
domain, and have already been detailed previously. In the following,
we carry on a short survey of significantMD software.

dl_poly_4 [35] brings a package of subroutines, programs and
data files, written in fortran 90 and designed to facilitateMD sim-
ulations and is used for production. This software is designed to
performs on CPU with OpenMP and MPI, as well as on GPU.

Gromacs [2] is written in C with intrinsics functions for Simd in-
structions and CUDA for GPU. As Lammps, Gromacs contains al-
gorithms for neighbor search based on Verlet lists. Whereas it is
designed for biochemical molecules like proteins, lipids and nucleic
acids that have a lot of complicated bonded interaction, an all-atom
version provides non-bonded interactions such as Lennard Jones
or Buckingham potentials.

As miniMD, several simplified versions of complex MD codes
have recently been developed to serve as a testbed for various opti-
mizations over manycore architectures. The CoMD [27] software
was designed to study the dynamical properties of various liquids
and solids in the context of the ExMatEx project. The reference
implementation of comd uses OpenMP, MPI, OpenCL, and can use
either neighbor lists or cell-lists methods.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Raphaël Prat, Laurent Colombet, and Raymond Namyst

Moreover Lammps proposes other optimizations in the INTEL
package [6] such as mixed precision arithmetics, cache optimiza-
tions (tiling) and kernel offloading on knl accelerators. Optimiza-
tion for GPU are also included in the Kokkos package.

6 CONCLUSION

Performing Molecular Dynamics N-body simulations over super-
computers is a major step towards a better understanding of physics
in many scientific fields.

In this work we propose a combination of Adaptive Mesh Re-
finement, cache-blocking and task-based execution techniques to
significantly increase the efficiency of N-body simulation on mod-
ern multicore machines, while decreasing the memory footprint.
We have implemented these techniques into the ExaStamp pro-
duction code, which runs on CEA’s supercomputing facilities. We
have evaluated the relevance of our approach by comparing perfor-
mance obtained by our implementation against the state-of-the-art
Lammps software over two different multicore hardware. Our exper-
iments show that amr achieves significant performance gains over
existing approaches, even for a lj potential that has low computa-
tional requirements. In the case of a dynamic, imbalanced particles
configuration, ExaStamp amr can be up to 4.7 faster than Lammps
on a knl processor and 2 on a skl processor. Moreover, we observed
that our approach is also very effective on steady-state configura-
tions, thanks to our cache blocking and vectorization optimizations.

Future work include the development of a hybrid MPI/OpenMP
version of ExaStamp amr, focussing on a dynamic load balancing
system able to move octrees between MPI processes on large-scale
clusters.

ACKNOWLEDGMENT

This work was funded by the French Programme d’Investissements
d’Avenir (PIA) project SMICE.

REFERENCES

[1] M.P. Allen and D.J. Tildesley. 1987. Computer Simulation of Liquids. Clarendon
Press.

[2] Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. 1995. GRO-
MACS: a message-passing parallel molecular dynamics implementation. Com-
puter Physics Communications 91, 1-3 (1995), 43–56.

[3] M. Berger and P. Colella. 1989. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comput. Phys. (1989).

[4] M. Berger and J. Oliger. 1984. Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comput. Phys. 53 (1984).

[5] Marsha J Berger and Shahid H Bokhari. 1987. A partitioning strategy for nonuni-
form problems on multiprocessors. IEEE Trans. Comput. 5 (1987), 570–580.

[6] WMichael Brown, Jan-Michael Y Carrillo, Nitin Gavhane, Foram M Thakkar, and
Steven J Plimpton. 2015. Optimizing legacy molecular dynamics software with
directive-based offload. Computer Physics Communications 195 (2015), 95–101.

[7] Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise,
Matthew J Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W
Skillman, et al. 2014. Enzo: An adaptive mesh refinement code for astrophysics.
The Astrophysical Journal Supplement Series 211, 2 (2014), 19.

[8] P Colella, DT Graves, TJ Ligocki, DF Martin, D Modiano, DB Serafini, and B
Van Straalen. 2000. Chombo software package for amr applications-design
document.

[9] K Coulomb, M Faverge, J Jazeix, O Lagrasse, J Marcoueille, P Noisette, A Redondy,
and C Vuchener. 2009. Visual trace explorer (vite). Technical Report. Technical
report.

[10] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha
Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. 2017.
Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake.
IEEE Micro 37, 2 (2017), 52–62.

[11] Marie Durand, Bruno Raffin, and François Faure. 2012. A packed memory array
to keep moving particles sorted. In 9th Workshop on Virtual Reality Interaction
and Physical Simulation (VRIPHYS). The Eurographics Association, 69–77.

[12] Olivier Durand, S Jaouen, L Soulard, Olivier Heuze, and Laurent Colombet. 2017.
Comparative simulations of microjetting using atomistic and continuous ap-
proaches in the presence of viscosity and surface tension. Journal of Applied
Physics 122, 13 (2017), 135107.

[13] A. Dubey et al. 2014. A survey of high level frameworks in block-structured
adaptive mesh refinement packages. J. Parallel Distrib. Comput.74 (2014).

[14] Dennis Gannon, William Jalby, and Kyle Gallivan. 1988. Strategies for cache and
local memory management by global program transformation. J. Parallel and
Distrib. Comput. 5, 5 (1988), 587 – 616. https://doi.org/10.1016/0743-7315(88)
90014-7

[15] Dennis B Gannon and William Jalby. 1987. The influence of memory hierarchy
on algorithm organization: Programming FFTs on a vector multiprocessor. Univer-
sity of Illinois at Urbana-Champaign, Center for Supercomputing Research and
Development.

[16] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and RobertWNumrich. 2009. Improving performance viamini-applications.
Sandia National Laboratories, Tech. Rep. SAND2009-5574 3 (2009).

[17] Changjun Hu, Xianmeng Wang, Jianjiang Li, Xinfu He, Shigang Li, Yangde Feng,
Shaofeng Yang, and He Bai. 2017. Kernel optimization for short-range molecular
dynamics. Computer Physics Communications 211 (2017), 31–40.

[18] J.Reinders J. Jeffers and A. Sodani. 2016. Intel Xeon Phi Porcessor High Performance
Programing. Chapter 20, 443–470.

[19] J. E. Jones. 1924. On the Determination of Molecular Fields. II. From the Equation
of State of a Gas. Proceedings of the Royal Society of London. Series A, 463–477.

[20] Sandia National Laboratorie. [n. d.]. LAMMPS Molecular Dynamics Simulator.
http://lammps.sandia.gov.

[21] Benedict J. Leimkuhler, Sebastian Reich, and Robert D. Skeel. 1996. Integration
Methods for Molecular Dynamics. In Mathematical Approaches to Biomolecular
Structure and Dynamics, Jill P. Mesirov, Klaus Schulten, and De Witt Sumners
(Eds.). The IMA Volumes in Mathematics and its Applications, Vol. 82. Springer
New York, 161–185.

[22] M Lijewski, A Nonaka, and J Bell. 2011. Boxlib.
[23] Chris M Mangiardi and Ralf Meyer. 2017. A hybrid algorithm for parallel molec-

ular dynamics simulations. Computer Physics Communications (2017).
[24] Edward A. Mason. 1954. Transport Properties of Gases Obeying a Modified

Buckingham (Exp-Six) Potential. The Journal of Chemical Physics 22, 2 (1954),
169–186. https://doi.org/10.1063/1.1740026

[25] Simone Meloni, Mario Rosati, and Luciano Colombo. 2007. Efficient particle
labeling in atomistic simulations.

[26] Ralf Meyer. 2014. Efficient parallelization of molecular dynamics simulations
with short-ranged forces. In Journal of Physics: Conference Series, Vol. 540. IOP
Publishing, 012006.

[27] J Mohd-Yusof. 2012. CoDesign Molecular Dynamics (CoMD) Proxy App Deep
Dive. In Exascale Research Conference.

[28] Philip M. Morse. 1929. Diatomic Molecules According to the Wave Mechanics. II.
Vibrational Levels. Phys. Rev. 34 (1929), 57–64. Issue 1. https://doi.org/10.1103/
PhysRev.34.57

[29] Guy M Morton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. International Business Machines Company New York.

[30] Yehoshua Perl and Stephen R Schach. 1981. Max-min tree partitioning. Journal
of the ACM (JACM) 28, 1 (1981), 5–15.

[31] E. Cieren L. Colombet S. Pitoiset and R. Namyst. 2014. ExaStamp: A Parallel
Framework for Molecular Dynamics on Heterogeneous Clusters, Lecture Notes
in Computer Science (Ed.), Vol. 8806. Euro-Par 2014: Parallel Processing Work-
shops, Springer International Publishing, 121–132.

[32] Steve Plimpton. 1995. Fast parallel algorithms for short-rangemolecular dynamics.
Journal of computational physics 117, 1 (1995), 1–19.

[33] Lewis Fry Richardson. 1911. The approximate arithmetical solution by finite
differences of physical problems involving differential equations, with an ap-
plication to the stresses in a masonry dam. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character 210 (1911), 307–357.

[34] R.Meyer. 2013. Efficient parallelization of short-range molecular dynamics simu-
lation on many-core system. PHYSICAL REVIEW (2013).

[35] W Smith, TR Forester, and IT Todorov. 2012. The DL POLY Classic user manual.
STFC, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD,
United Kingdom, version 1 (2012).

[36] Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel® Xeon Phi
processor. In Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 1–24.

[37] Loup Verlet. 1967. Computer" experiments" on classical fluids. I. Thermody-
namical properties of Lennard-Jones molecules. Physical review 159, 1 (1967),
98.

[38] D. Wolff and W. G. Rudd. 1999. Tabulated Potentials in Molecular Dynamics
Simulations. Computer Physics Communications 120, 1 (1999), 20–32.

https://doi.org/10.1016/0743-7315(88)90014-7
https://doi.org/10.1016/0743-7315(88)90014-7
https://doi.org/10.1063/1.1740026
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1103/PhysRev.34.57

	Abstract
	1 Introduction
	2 Background
	2.1 Molecular Dynamics Simulations
	2.2 Adaptive Mesh Refinement (AMR)

	3 Adaptive Mesh Refinement for Molecular Dynamics Simulations
	3.1 The ExaStamp MD Framework
	3.2 Software Architecture
	3.3 Parallelization Strategy

	4 Evaluation
	4.1 Experimental Framework
	4.2 Bulk Material: a Steady-State Simulation
	4.3 Micro-Jetting: a Highly-Dynamic Simulation
	4.4 Memory footprint

	5 Related Work
	6 Conclusion
	References

