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INTRODUCTION

The Gartner Group expects an increase of 45% of the connected objects from 2018 to 2020 1 , reaching more than 20 Billions data producing objects. Currently, only a minority of the produced data is exploited. From this increase, a need for data visualization systems raises. A visualization system is defined as "the visual display of the most information needed to achieve one or more objectives" [START_REF] Few | Information Dashboard Design[END_REF]. Two types of visualization systems are identified : exploratory and analytic [START_REF] Roberts | State of the art: Coordinated & multiple views in exploratory visualization[END_REF], depending on the intent behind their usage.

On the one hand, in the exploratory paradigm, the visualization system supports the users in the incremental definition of their objectives. Both the relevant subset of data and the specific user tasks are undefined at the start of the visualization design process. To ease the exploration, the design of such systems focuses on a high degree of interaction, on a wide variety of visualizations and ideally on reconfiguration capabilities. For example, when data journalists work on unstructured data from social network to extract knowledge about a given event as a terrorist attack, they require to process different aspects on the data to identify an interesting hidden factor. It implies a need for a set of various visualizations, refined by steps as their understanding of the data evolves.

On the other hand, in the analytic paradigm, the visualization system is tailored for a specific diagnosis goal. It is commonly used for diagnosis in fields as various as management, healthcare, transport and energy. An analytic visualization system captures the business knowledge of the users, using proven indicators to detect abnormalities in order to support them in the decision making process. In this context, the user tasks and the proper data sets to exploit are defined during the design of the system. To support the diagnosis goal, the design of such systems relies on the identification of the relevant visualizations to use and their connections. For example, the post-operation medical monitoring for cardiac diseases is a well-defined process which follows an approved protocol. The physician requires to compare a given set of vital signs ; e.g., the heart rate, the blood pressure, the breathing capacity and the evolution of the white blood cells concentration ; with fixed indicators, in order to provide the relevant medication.

The context of visualization systems provides two challenges : (i) the support of the system design, i.e., a modeling challenge, and (ii) the choice of relevant visualizations among the available widgets offered by visualization libraries, i.e., a variability challenge. A classical way to support the design of complex systems (cf. (i)) in the Model-Driven Engineering (MDE) paradigm is the use of a Domain Specific Language (DSL). While the abstract syntax captures the structure of the domain in a meta-model, a concrete syntax allows the design of conform models through textual or graphical representations. Designing at the model level instead of working on code allows to reason about the system, by using e.g., verification, validation or generation mechanisms. Software Product Lines (SPLs) are suitable to model variability of visualization solutions (cf. (ii)) and relies on strong logical foundations and configuration support. SPLs are defined as "a set of software-intensive systems that share a common, managed set of features and that are developed from a common set of core assets in a prescribed way" [START_REF] Pohl | SPL Engineering: Foundations, Principles and Techniques[END_REF].

In this article, we focus on analytic visualization systems intended for a known diagnosis task. The corner stone of our contribution is to apply MDE to the design of visualization systems, to provide to each user the relevant support to ease their task in the diagnosis process. We build on prior work by Logre et al. [START_REF] Logre | Sensor Data Visualisation: a Composition-based Approach to Support Domain Variability[END_REF] but offer (i) to integrate it in a whole multi-user design approach, with an emphasis on the system designer role supported through a characterization process, and (ii) to validate it with a user experiment focused on this specific role.

The outline of this article is the following. First, we provide in Sec. 2 a software project management use case, to be used as a running example and to validate our contribution and we define the involved users, their materials and our requirements. Then, we detail our designing approach step by step in Sec. 3, highlighting the use of a visualization widget catalog. The Sec. 4 explains how the catalog is produced using SPLs and the possible interactions with our identified roles. Then, in Sec. 5 we validate our approach through a user experiment. We discuss the related work in Sec. 6. Finally, Sec. 7 compiles the conclusions, limits and perspectives of the contribution.

CONTEXT AND SCOPE

According to the given definition, the design of an analytic visualization system implies the selection of a relevant set of visualizations (how), depending on the role of the user (who), with respect to the considered data (what) and the identified user task (why). In this section, we provide a illustrating use case, we detail the inherent complexity of these dimensions and we identify the requirements to be addressed in order to support the design of visualization systems.

The design of a visualization system is a complex task addressed by a large variety of methods. In human-centered design, the software designer captures the needs of the final user, for example through the use of interviews, task models or user stories. Then, they iterate on mock-ups and prototypes of increasing fidelity, and evaluate it directly with the final user, leading toward a final viable implementation. The choice of the proper designing tools and methods is highly dependent of the context.
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The diagnosis goal, performed through visualization systems, is intrinsically linked to the domain of application.

For a better understanding, we describe an illustrating use case, re-used for the validation. Numerous indicators are defined in terms of project management in the software engineering field. Both the project leader and the team members themselves use visualization systems to assess the health of the project, by analyzing data extracted from software engineering tools such as ticketing systems, version control systems and testing frameworks. We interviewed three software engineering professors to extract the following coarse-grained tasks and their respective impact on the decision making process in terms of grade:

• compare the tickets volume resolved by each team member, to evaluate their relative contributions;

• calculate the average period required to resolve tickets, to estimate the technical debt;

• detect bad patterns in the evolution of ticket status (to do, in progress, done) through time, to prevent bottleneck situation;

• compare the distribution in the team of ticket attribution, for each status, to identify available and overbooked resources.

In this context, the team members (e.g., students of a software engineering module) are using the same visualization system as the teacher who grades.

Visualization systems are fast evolving systems as the final user often expresses new requirements emerging from the usage (e.g. highlight a new aspect of the data in specific conditions). In the software engineering use case for example, each teaching assistant customize her monitoring dashboard, and specialize it during the semester for specific needs for some groups (e.g. if suspicion of laziness rises about a student). Within the MDE paradigm, the use of models provides a higher abstraction space to design the system, it diminishes the cost of modifications and helps to quickly produce high fidelity prototypes, and handles the variability of concrete solutions. In our case, it allows to reason about abstract visualizations (i.e., a visual space designed to highlight identified characteristics or properties of its input data), instead of enduring the technological complexity of numerous concrete widgets (i.e., specific implementations of a visualization, unit of code). We offer an approach based on three layers of the MDE paradigm and three roles. The corner stone of our contribution lies in the definition of the system designer role, which is neither a specialist in visualization nor the final user, and her usage of characterization to design a visualization system.

While the relevant indicators for a given diagnosis task are defined, the users needs evolve with their degree of expertise, the object under study, and the context of use. Therefore, there is no such thing as an absolute, ideal visualization system even in the analytic paradigm. This inherent difficulty implies that not all users are able to design their own visualization system. We propose to characterize three roles involved in this design:

Visualization experts are visualization professionals, they possess the knowledge required to specify which visualization is suitable for a given task; Final users possess the business knowledge, without any assumption on their ability to understand the visualization system internal behavior; System designers are software engineers, they are expected to capture both business and visualization knowledge and provide executable solutions suitable for the final user task.

Within the software project management use case, Atlassian 2 engineers are the visualization experts, providing visualization widgets adapted to their software tools (i.e., Jira, Bitbucket, Confluence). The system designer is the professor responsible of the SE module, and the final users are the students. In this use case, teaching assistants are both system designer and final users, as they are allowed, and encouraged, to modify the visualization system they will use while supervising the project teams. These roles are meant to be generic, to help defining the knowledge requirements during the different steps of the visualization design. Note that depending on the specific context, a unique actor of a project may assume several roles, e.g., Human-Computer Interface (HCI) engineers are suitable candidates for both the visualization expert and the system designer roles, maybe even the final user one if they design the visualization system for their own usage.

The number of available visualizations is growing thanks to the expansion of the web and the increase of objects producing data, as introduced in Sec. 1. Many libraries offer their own implementations of visualization, i.e., widgets, e.g., AmCharts3 , Highcharts4 , Vega 5 , Datamatic 6 and Google Chart 7 . While classical visualizations are offered by several libraries, their respective implementations modify their capabilities, e.g., the number of data series a widget able to aggregate directly impacts its comparison capability. Furthermore, the number of available widgets is increasing. For example D3.js8 offered 133 visualization widgets in April 2014, 235 in January 2015 and 368 in June 2017. This diversity of solutions in terms of number and features worsen the choice of suitable visualizations at design time. It also motivates a prototyping approach where some aspects of the systems are kept undecided to allows the final user to compare the corresponding solutions.

In this context, given the three roles and the diversity of visualization widgets, the main challenge is for the system designer to choose appropriate visualizations. To ease this choice, we offer to constitute a tooled catalog of available visualizations. We identify three requirements on this catalog: Multiplicity (R 1 ): the catalog must benefits from the existence of multiple reusable visualization widgets without imposing to the system designer to browse them all; Heterogeneity (R 2 ): the catalog of visualizations must take into consideration the heterogeneity of the concrete artifact of the solution space, i.e., the widgets extracted from visualization libraries; Automation (R 3 ): the explicit choices required from the system designer must be minimized, from selection of suitable solutions to the production of an executable solution.

MULTI-STAGED APPROACH

Given the identified roles, we offer a design approach based on the MDE levels of abstraction. We identify the contribution of each role and associate it with the appropriate level as depicted by Fig. 1. In this section we focus on the design from a user point-of-view and its impact on roles, thus defining a multi-staged approach. The specifics about the definition of the modeling tools implementing this approach and their behavior are detailed in the Sec. 4.

The first step, called Characterization, is the constitution of a catalog encompassing the capabilities of our solution space, i.e., the considered visualization widgets. To do so, we reuse a taxonomy of the visualization capabilities defined and maintained by the data journalism community [START_REF] Logre | Sensor Data Visualisation: a Composition-based Approach to Support Domain Variability[END_REF]. We then rely on the knowledge of visualization experts to characterize the visualizations, i.e., to indicate for each widget which of the fifteen capabilities of the taxonomy it satisfies. For example, as depicted by the top part of the Fig. 1, bar charts are suitable to highlight data extreme values (maximum and minimum) at a glance and to perceive variations, while bubble charts are suitable to render proportions The second step, called Modeling, is for the system designer to modeling the visualization system, by defining the layout of the system and characterizing the intent behind each abstract visualization she designs using the taxonomy.

The design of the visualization system is an incremental process, therefore the system designer is able, at any time, to :

• Organize the layout of the visualization system, by adding or fragmenting a column of a line, as spatial proximity affects the analysis of correlated data. • Fill a space with an abstract visualization.

• Add a visualization intent to characterize an abstract visualization and narrow its solution space.

• Specify which data set feeds the visualization.

• Interrogate the catalog about of the number and names of the visualizations still available for a given abstract visualization, to verify that its current intent characterization can be satisfied by at least one concrete widget.

• Go backward by removing any specified capability, without any consideration about their addition order, useful if the model reaches a state where no widget can satisfy the characterized intent.

• Specify a visualization library to put aside, for example because of a payable usage license for business purposes, or on the contrary a library to be limited to, because of technological constraints.

• Choose one widget to implement a given abstract visualization, among the set of suitable widgets returned by the catalog.

In the example depicted by the middle part of the Fig. 1, the system designer specifies that the first left abstract visualization must display the location and highlight noise patterns of the recorded sound. The catalog answers that four widgets satisfy both these intents : the three choropleths of Vega, Datamatic and Google Chart libraries, and the heat map of Vega. The main objective of this step is to ease the selection of a suitable visualization widget by providing ways for the system designer to express the final user need at an appropriate level of abstraction (cf. R 3 ). Note that the data sets have been reduced to their units of measure in the Fig. 1 only for synthetic purposes (here "dB" for decibels).

The final step is the Generation of the executable code implementing the visualization system, as modeled by the system designer, and to be used by the final user. The bottom part of the Fig. 1 illustrates a dashboard intended for acoustic analysis, where the final user is able to locate sources and evaluate their intensity on a heat map, to analyze the emitted frequency ranges on a bar chart and to visualize the proportion of each type of the uncertainty hierarchy on a sunburst chart. As the choice of a widget is driven from its characterization by the system designer, each generated visualization provides insights to the final user about the intended capability, and therefore allow her to be proactive by submitting proposal to adapt the visualization system using the same vocabulary. The Modeling step classically ends when a concrete widget has been chosen for each designed abstract visualization of the system. However, depending on the expertise of the final user, the system designer can preserve several possibilities of suitable widgets for her abstract visualization (cf. R 1 ), and generate several visualization systems to let the final user choose according to its context.

MODEL-DRIVEN DESIGN

We defined in Sec. 3 the multi-staged approach, i.e., the relations between the steps, the roles and our requirements while identifying a necessary artifact : a visualization catalog. In this section, we detail how to build this catalog implementation along with the required tooling to interact with it and generate code.

Supporting the visualization expert to build the catalog

Given the matrix of characterization of the widgets w.r.t. the taxonomy capabilities produced by the visualization experts, our goal is to build a tooled catalog modeling the variability of this solution space for the system designer. In the SPL paradigm, a common solution to model variability is to use a Feature Model (FM). A FM is a feature-centred hierarchical representation of a propositional logic formula that expresses characteristics of an object under study which encompasses the variability of all the available concrete solutions. A classical way to build a variability model of a solution space is to merge all available products into one FM [START_REF] Mathieu Acher | FAMILIAR: A domain-specific language for large scale management of feature models[END_REF] (i.e., our catalog FM).

Each characterized widget is expressed as a variability-free feature model (FM) in the Familiar language 10 (i.e., an atomic FM). We consider for example two widgets from the AmCharts library: its pie chart and line chart implementations.

Each widget is declared as a FM in Familiar (as depicted by the Fig. 2).

To produce a unique model for the system designer to interact with, we need to compose the atomic FMs of each characterized widget as illustrated by Fig. 3. To do so, we reuse the "merge with strict union" operator [START_REF] Mathieu Acher | Composing Feature Models[END_REF] which ensures to produce a merged FM encompassing all the capabilities of its input and nothing more. On the example, the W 1 and W 2 atomic FMs are declared in Familiar and are then merged as follow: Using the provided XText 12 concrete syntax, one can instantiate conform models, as illustrated by the running example in the following code. Note that this textual syntax is given as an example, the scope of this article is not to define the proper concrete syntax, though we plan to investigate the benefits of graphical syntax's in this context, e.g., using

Sirius 13 .

Dashboard A c o u s t i c D i a g n o s i s :

V i s u a l i z a t i o n s :

S c e n e shows L o c a t i o n and P a t t e r n s o f I n t e n s i t y ( dB )

F r e q u e n c i e s shows Extremum and V a r i a t i o n o f P r e s s u r e ( Pa ) The system designer needs to interact with the catalog FM to choose a suitable widget for each abstract visualization she designs. To do so, the system creates a configuration of the catalog FM on which she selects, unselects or deselects features to reduce the solution-space incrementally, narrowing it to eventually reach a relevant and concrete solution.

Note that in this context deselection is the opposite of selection : a deselected feature is forbidden in the resulting product;

whereas the unselection of a feature removes it from the selectable sets of features. The resolution of this configuration according to the inner logic-based formula of the catalog FM relies on strong logical foundations and SAT-solving, which has been experimentally proved to be efficient for the FM class of problem [START_REF] Mendonca | SAT-based analysis of feature models is easy[END_REF]. The example of design developed in Sec. 3 corresponds to the following code when using Familiar . Thanks to the semantics of the "merge with strict union" operator, such a configuration can only lead to widgets as characterized by the visualization experts. As the meta-model contains the taxonomy concepts used by the visualization experts to characterize the widgets, we can automatize this configuration process by translating actions on the model (e.g., adding a intent to an abstract visualization) to its impact on the configuration (i.e., selecting the corresponding feature and returning the number of suitable widgets), which address the R 3 requirement. According to SPLs best practices, each valid and final configuration is a concrete product, in our case a widget, and its code assets are available for reuse. In our implementation, we defined String Patterns from freely accessible and reusable widgets. We use code generation mechanism to browse the visualization system model and to generate the HTML5 structure and layout corresponding to its cells, while injecting data sets into the reusable widgets to instantiate the Javascript code of the widgets. Our current implementation does not address the relations between visualizations such as temporal synchronization and is limited to the interactions provided by the libraries.

Supporting the update of the catalog by a visualization expert

We now know how to build and use the visualization catalog, taming the variability of the visualization widgets expressed in the multiplicity and heterogeneity requirements (respectively R 1 and R 2 ). However, the main motivation Manuscript submitted to ACM of our work is the ever growing number of solutions. Therefore, this section addresses the increment of the catalog to detail the limits of the automation (R 3 ) and the required effort required for visualization experts.

If a visualization expert wants to add her newly developed reusable widget to the catalog, she only has to characterize it according to the taxonomy capabilities (complexity in O(c) where c is the number of capabilities). The translation into an atomic FM and its merging with the current catalog FM are automatized. In the same way, to add an entire visualization library to the catalog, one needs to characterize each offered widget, as depicted by Fig. 3, (complexity in O(w L ′ * c) where w L ′ is the number of widgets in the new library L ′ and c the number of capabilities). Finally, to add a capability to the taxonomy, one need to add it to the enumeration in the meta-model and to characterize the current set of widgets according to this capability (complexity in O(w) where w is the number of widgets in the catalog). There is no need to manually edit the catalog FM even if the new capability is a specialization of a current one (e.g., Correlation w.r.t. Relation). In that case, all widgets satisfying Correlation will satisfy Relation by definition and the merging process ensures that this constraint will be preserved on the catalog FM.

For example, one may want to add the concept of input and output dimensions to the widget characterization to reduce automatically the solution space of an abstract visualization according to the number of dimensions of its attached data. In this case, we need to know for each widget, the number of dimensions expected as an input, and the number of dimensions rendered. These two values are not necessarily equals, for example an angular gauge chart expects 2D data (a time, value map) but renders only in 1D (only one value rendered at any moment).

Implementation

The implementation of our contribution is composed of both generic and use case specific artifacts. Generic code units include the transformation from a CVS matrix to feature models, the merging of atomic FM into a catalog FM and the configuration of a product through (un/de)selection of features using Familiar . The artifacts specific to the software engineering use case and reused in the validation encompass 73 atomic widgets FMs, the merged catalog FM, the abstract visualization meta-model abstract and concrete syntaxes using EMF and XText and 19 widget templates for code generation.

VALIDATION

The corner-stone of our contribution is to support the system designer in her task of choosing suitable visualizations during the design of the system using a characterization process. This section offers a partial validation of this aspect of the approach, using the implementation described in Sec. 4. It explores the hypothesis that, using our characterization approach, system designers are able to express a visualization need and reach a satisfying set of concrete widgets.

We apply this user experiment to our project management in software engineering use case. We interviewed the responsible of a SE module to capture the coarse-grained tasks detailed in Sec. 2 and we validate that the use of the data journalism taxonomy is sufficient to reason about these tasks. The goal of this experiment is not to validate the current Familiar interface implementation of the catalog interface, therefore the interaction with the system are performed by the experimentation assistant.

Protocol

To test on the system designer role, we gathered a test population of 12 teaching assistants in computer science. We prepared 73 samples of visualization widgets (i.e., the units and nature of the displayed data are hidden), extracted from Manuscript submitted to ACM 5 libraries, and the catalog representing their variability as described in Sec. 4. The objective is to compare two methods used to choose a visualization, given a task to satisfy.

Method Manual: A printed set of concrete samples of widgets is given, sorted by library. The subject familiarizes herself with the set of widgets during 5 minutes. The task is given by writing. The subject is allowed at any time to browse forward or backward the set of widgets and to add or remove a widget to her choices. The subject stops the task resolution at will, when satisfied with her set of widget choices. Method Characterization: A printed list of the taxonomy capabilities and their definition is given. The subject familiarizes herself with the taxonomy and ask precision about the definition of the capabilities during 5 minutes.

The task is given by writing. The subject is allowed at any time to select, unselect or deselect a capability. When satisfied with a capability set, the subject can interrogate the assistant about the current number of suitable widgets and their concrete samples. This action identify the end of an iteration in the choice process. If the subject is not satisfied with the resulting set of widgets presented by the assistant, she can start a new iteration.

If she is, she identify which of these resulting widget are suitable in her opinion.

The interaction with the catalog is handled by the assistant to avoid any technological bias. There is four ticketing tasks to satisfy, described in Sec. 2. Half the test population (later called pop. Manual) start by the method Manual on the first and second tasks (step 1), and then use the method Characterization on the third and fourth tasks (step 2). The other half (later called pop. Characterization) do the opposite order. Finally, the subject recover the first visualization she satisfied with the method Manual, and satisfies it with the method Characterization (step 3, i.e., task 1 for pop. Manual and task 3 for pop. Characterization).

During this test our observation criteria, with the authorization of subjects, are:

• the time spent to satisfy each task,

• the number and names of the widgets chosen for each task (Manual method only),

• the time for each iteration (Characterization method only),

• the selection, unselection, deselection of capabilities for each iteration, and the number and names of the resulting set of widgets (Characterization method only),

• the number and names of the satisfying widgets in the resulting set according to the subject (Characterization method only).

Results

First we compare the results on the Manual and Characterization methods. Then we look into the learning effect of both methods. Finally we detail quantitative results about the performances of the Characterization method.

Method comparison. The Fig. 6 displays the average time per task required to choose a set of widget with both methods, and the relative gain, and the Table 1 details these results. Note that these results are presented per task, but do not include step 3 data, i.e., task 1 or 3 satisfied again by characterization after being resolved manually. The gain column is calculated from both method averaged time according to the formula (Time Manual -Time Char act er izat ion )/Time Manual . We can see that, for all tasks, the subjects spent less time with the Characterization method, with a average gain greater than 50% (i.e., 20% in the worst case and 68% in the best case).

Learning effect analysis. We measure the time gained by the repetition of use of a method to provide insight about the learning capabilities of each method, and the use of the Characterization method by users used to the Manual method.

Manuscript submitted to ACM Fig. 6. Time comparison (s) and gain (%) between methods, per task The Table 2 detail, per method, the time spent on the first task, the second, and the gain calculate according to the formula (Time 1 -Time 2 )/Time 1 . For example, the first line is read : "Pop. Manual spent, in average with the Manual method, 4 minutes 38 seconds on task 1, 5 minutes 2 seconds on task 2, which implies a loss of efficiency of 9%". We can see that the second use of the Characterization method decreases the time spent from 20 to 42% in average, while the second use of the Manual method increases the time spent between 9 and 23%. The two last lines detail the use of the Characterization method on a task, after it previous resolution through the Manual method. These measures provide insights about the gain provided by the Characterization to users with a set of widget to reach in mind for a specific task. In these conditions, the subjects spent 4 to 5 times less to reach a satisfying set of widgets.

Characterization performances. To evaluate this method, we present four metrics in Table 3 :

• the average time per iteration, to measure the difficulty to choose capabilities;

• the average number of iteration performed per task, to measure the difficulty to converge to a satisfying set of widgets; • the average percentage of the catalog resulting after the iterations, to measure the efficiency of the configuration;

• the average percentage of widget satisfying in the resulting set according to the subject, to measure the relevancy of the configuration. The Fig. 7 illustrates the five quartiles for each of this measures. For example, the median time per iteration is less than 42 seconds, with a minimum at 5 seconds and a maximum at 84 seconds, and with 50% of the results between 24 and 46 seconds. These results provides insights about the easiness of usability of the Characterization method, which necessitates only 2.5 iterations per task with a median time of 42 seconds. These iterations reduce the solution space to 12% of its total volume, with a median satisfaction ratio of 81% on this resulting subset.

Manuscript submitted to ACM To analyze the Characterization method at finer grain, we offer to classify conditions of testing according to the number and the order of the tasks, in order to avoid averaging the learning effect into our results. For example, the first use of the Characterization method may be easier if the subject browsed manually the set of widgets several time before (i.e., in pop. Manual). We detail six segments, each representing a different situation where a subject used the Characterization method, thus we separate the result according to the considered task and the order of method testing.

These segments are later noted S i , with i in :

(1) i.e., task 3 by pop. Manual, As displayed in the Table 3, each segment average time spent is included between 49 and 23 seconds and the average iteration time is 39 seconds. Subjects need an average of 2.53 iterations to reach a satisfying subset of the catalog, which represents 13% of the catalog and is constituted at 80% of satisfying widgets, the values per segment being included between 76% and 83%. We notice that, for these three metrics, the segment values are close from the general median detailed above, which provide insight about the stability of performances of the Characterization method among the test situations. This result segmentation shows the impact of the increasing tasks difficulty on the time spent: the time Manuscript submitted to ACM spent to reach a satisfying set on the task 1 (S 3 and S 4 ) is inferior to the time spent on task 2 (S 5 ), inferior itself to task 3 (S 1 and S 6 ), and task 4 (S 2 ). However this difficulty does not seem to have a sensible effect on the number of iteration nor the satisfaction about the reached widget subset.

Discussion

These results show that by using a given taxonomy, subjects converge toward a subset of widget in a reasonable time, 2 minutes 5 seconds in average. The number of iteration needed stays low, near to 2.5, each realized in 39 seconds in average. The number of widgets selected by the subjects represents less than 1/6th of the total catalog and is constituted at 80% by satisfying widgets. We conclude that the level of difficulty of the Characterization method is adapted to the system designer task and allows to reach relevant artifacts. In terms of comparison, the test shows that using the Characterization is faster than a Manual choice, for all tested tasks, with an average ratio of 52% of time spent. Moreover, the overhead due to the learning of the taxonomy decrease, as illustrated by the average 33% decrease of time spent on consecutive use of the Characterization, while the time for the Manual method seems to increase.

We collected qualitative feedback at the end of the user experiment to capture the subjects opinions about benefits and drawbacks of the Characterization method. The Table 4 compiles the answers with the most occurrences. It confirms the time gained and the relevancy of the approach by characterization. In addition, more than half the subjects declared that the subset returned by the catalog contained widgets they would not have choose manually because of their apparent complexity among the whole set, but found relevant after consideration. Some subjects were surprised about the subsets returned by the catalog, i.e., about the association between some capabilities and some widgets, which motivates further the approach ability to specialize the taxonomy. Indeed this experiment is limited to the use of the Manuscript submitted to ACM current widget characterization, using a generic visualization taxonomy. To assess the relevancy of these results, the same experiment has to be performed using domain-specific characteristics, in this case by capturing the vocabulary used by SE project manager to characterize their visualization need.

Note that we did not analyze the relevancy of the participant's choice of visualizations. Doing so would required to identify the best visualization for each task, and/or provide some distance function between the chosen one and the task. Our approach is closer from the fast-prototyping paradigm where the designer is allowed to try what seems to fit the task according to her understanding of the context, and change it later, instead of identifying an absolute theoretical best.

RELATED WORK

The CAMELEON Reference Framework (CRF, [START_REF] Calvary | A Unifying Reference Framework for multi-target user interfaces[END_REF]) offers a methodology for human-computer interfaces design and generation. Our meta-model can be seen as a specialized implementation of the abstract visualisation layer described in CRF, allowing one to design data visualisations that are not yet supported by UsiComp [START_REF] García Frey | UsiComp: an extensible model-driven composer[END_REF] (reference implementation of the CRF). Indeed, the support in UsiXML is currently more focused on form-based interfaces than on data visualization.

COntext sensitive Multi-target widgETs (COMETs, [START_REF] Demeure | COMET(s), A Software Architecture Style and an Interactors Toolkit for Plastic User Interfaces[END_REF]) model abstract interactors that can be composed to design UIs. The effort has been placed on the context adaptation of those form interface elements. Such an approach is complementary to ours, handling the context awareness part as we focus on the characterization and design of visualization systems and the link with real world solutions, provided that COMETs could represent visualization widgets. The concept of mashups as "composed applications" has reach the user interfaces domain [START_REF] Wilson | Orchestrated User Interface Mashups Using W3C Widgets[END_REF]. This way of composing User Interfaces (UIs) suffers from a lack of globalization of their composition process, mainly focused on spatial arrangement and connection between data and widgets, where our multi-staged approach brings useful concepts to support the system designer in her choice through visualization concerns. Work on spatial composition in mashups is nonetheless an inspiration for further work.

The Interaction Flow Modeling Language (IFML, [START_REF] Rossi | Web Modeling Languages Strike Back[END_REF]) is a standard of the Object Management Group (OMG) dedicated to model and generate front-end applications and human-computer interactions. IFML's purpose is to model front-end of applications composed of several layers, supporting the compositions required in such domain and the links with other layers of the application. In comparison, our approach is dedicated to the design of visualization systems. Both approaches are complementary, as our abstract Visualization concept can reify the IFML concept of ViewComponent in order to handle this specific type of visualization, and our multi-role approach could use IFML expressiveness in terms of events and user actions to define dashboard transitions.

While our contribution is not to validate the data journalists taxonomy, our approach can benefit from other existing visualization taxonomies. Using operational characterization [START_REF] Huai-Hsin | A taxonomy of visualization techniques using the data state reference model[END_REF], we can support the visualization expert in their understanding of how to apply and implement visualization techniques, characterize it and ultimately provide it to system designer. Tory and Möller's taxonomy [START_REF] Tory | Rethinking visualization: A high-level taxonomy[END_REF] offers to fill the gap between the classification of data and the render of visual information by categorizing the algorithms used in this transformation. Because of its complementary with the capability taxonomy we use, we started to integrate its criterion (e.g., Discrete and Continuous classification). The four key dimensions of decision support environment described in the information visualization taxonomy [START_REF] Adilah | Expressive information visualization taxonomy for decision support environment[END_REF] (content, interaction, organization and representation) offer a possible hierarchy to apply to the capabilities used in our approach, easing the characterization and the configuration process.

SPL engineering techniques [START_REF] Clements | SPL : Practices and Patterns[END_REF][START_REF] Pohl | SPL Engineering: Foundations, Principles and Techniques[END_REF] have been used in many domains, but only a few works considered them in the at runtime so that dynamic adaptations of UIs can be realised [START_REF] Blouin | Combining Aspect-oriented Modeling with Propertybased Reasoning to Improve User Interface Adaptation[END_REF]. Variability modeling and SPL techniques are also used to cover the whole development of Rich Internet Applications, including UIs components [START_REF] Meliá | Architectural and Technological Variability in Rich Internet Applications[END_REF]. However, it only captures the UI relations to the rest of the web architectures, not the fine-grained selection of widgets. As for the construction of the feature models from the widgets description, the followed approach is directly inspired from Acher et al. work

where the authors automatically extract a feature model from tabular data describing wiki engines [START_REF] Acher | On extracting feature models from product descriptions[END_REF]. This approach seems the best suited to our needs as other extraction techniques deal with different software artifacts such as source code [START_REF] Xue | Reengineering Legacy Software Products into Software Product Line Based on Automatic Variability Analysis[END_REF], some models [START_REF] Zhang | Model Comparison to Synthesize a Model-Driven Software Product Line[END_REF], or feature combinations [START_REF] Haslinger | On Extracting Feature Models from Sets of Valid Feature Combinations[END_REF]. Besides, the merge operation on feature models that we use in our approach is itself based on the results of She et. al. on reverse engineering feature models [START_REF] She | Reverse engineering feature models[END_REF]. Multi-staged configuration processes [START_REF] Schroeter | Dynamic configuration management of cloud-based applications[END_REF] allow delaying critical feature choices and establishing priorities in the configuration process. It could be useful in our context to guide the system designer in her design, e.g., by suggesting to specify the data before adding a new visualization characteristic to benefits from the input/output criterion of our SPL. Multi Product Lines (MPL) approaches [START_REF] Holl | A systematic review and an expert survey on capabilities supporting multi product lines[END_REF] are classically used to address variability of (utlra) large-scale systems. As sensors producing data present a variability equivalent to the one exposed in this article about visualization widgets, the use of MPL is a promising lead to handle multiple domain design variability in our context.

CONCLUSIONS AND PERSPECTIVES

In this article we described a tooled approach addressing two challenges : the design of visualization systems, and the choice of suitable visualizations among the technological variability of this domain. This approach is illustrated by a software engineering use case, but not limited to it. We mapped each of the identified roles involved in this process with the classical abstraction level of MDE and define their tasks and the requirement to address. Using feature model and composition to address the multiplicity and heterogeneity of the available widgets, we support visualization experts in their definition of a catalog encompassing the variability of the visualization domain, through the characterization of the widget capabilities. We provide a domain specific language tailored for the design of visualization systems and linked to the catalog SPL to help the system designers to model the system and choose a concrete widget suitable for each abstract visualization, offering a semi-automatized tooled support. Finally we use code generation mechanism to provide a executable system to the final user. We designed a user experiment to validate our characterization-based choice of suitable visualizations and showed that system designer are able to reach a satisfying set of widgets using a characterization approach.

As future work, we plan to test the extension capability of the catalog by specializing the taxonomy to a constraining domain such as health-care. The result of our user experiment motivates further validation on the compatibility of the chosen widgets set and on the discovery of new visualizations from the final user point of view. The current implementation of our model support to the system designer is limited to a textual concrete syntax. To fully validate the approach we need to define a graphical syntax tailored for dashboards, for example using Sirius, and test its usability with visualization system designers.
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Table 1 .

 1 Average time spent per method and per task

	Tasks	Manual (avg) Characterization (avg) Gain (%)
	Task 1	4'38"	2'00"	56,9%
	Task 2	5'02"	1'36"	68,3%
	Task 3	3'44"	3'00"	19,7%
	Task 4	4'36"	1'45"	62%
	Average	4'30"	2'05"	54%

Table 2 .

 2 Time gained by the repetition of use of each method

		Population	Time 1	Time 2	Gain (%)
	Manual method	Pop. Manual	(task 1) 4'38"	(task 2) 5'02"	-9 %
		Pop. Characterization	(task 3) 3'44"	(task 4) 4'36"	-23 %
	Characterization	Pop. Manual			
	method				

Table 3 .

 3 Averaged results, per segment, for each method

	Measures \ Segment	Avg S 1	Avg S 2	Avg S 3	Avg S 4	Avg S 5	Avg S 6	AVG
	Average time per iteration	0'47" 0'49" 0'23" 0'38" 0'39" 0'38" 0'39"
	Average number of iterations	3,5	2	2	3,33	3	2	2,53
	Catalog volume after iterations (%)	9%	14%	15%	16%	8%	12%	13%
	Satisfying widgets after iterations (%)	83%	81%	80%	76%	76%	82%	80%

Table 4 .

 4 Feedback about benefits and drawbacks, with number of occurrences

		Feedback	Occurrences
		Cognitive proximity between	
			10 / 12
	Benefits	the visualization need and the characteristics Swiftness to obtain satisfying widgets	8 / 12
		Discovery of new widgets	6 / 12
		Necessity to be familiar with a vocabulary	
	Drawbacks	Necessary learning process	6 / 12
		Validity of the current characterization	
			4 / 12
		of the offered widgets	
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