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Synopsis 

A detailed comparison of the solid-state d-d luminescence spectra of isoelectronic 

bis(dimethyldithiocarbamato) complexes of nickel(II), palladium(II), and platinum(II) is presented, 

including their deuterated analogs. Variable-pressure spectroscopy, high-resolution X-ray diffraction and 

variable-pressure X-ray diffraction reveal clear differences in molecular electronic structures and 

intermolecular interactions involving metal centers and methyl groups. 

Ni(II) Pd(II) Pt(II) 

∆Emax/∆P = +26 cm-1/kbar ∆Emax/∆P = +32 cm-1/kbar ∆Emax/∆P = +44 cm-1/kbar 
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Abstract 

Luminescence spectra of isoelectronic square-planar d8 complexes with 3d, 4d and 5d 

metal centers show d-d luminescence with an energetic order different from the spectrochemical 

series, indicating that additional structural effects, such as different ligand-metal-ligand angles 

are important factors. Variable-pressure luminescence spectra of square-planar nickel(II), 

palladium(II), and platinum(II) complexes with dimethyldithiocarbamate ({CH3}2DTC) ligands 

and their deuterated analogs show unexpected variations of the shifts of their maxima. High-

resolution crystal structures and crystal structures at variable pressure for [Pt{(CH3)2DTC}2] 

indicate that intermolecular  M…H-C interactions are at the origin of these different shifts. 

Introduction 

A renewed focus on luminescence and photochemical properties of 3d complexes is emerging in the 

recent literature.1-4 Many past studies are aimed at intensely luminescent complexes of 4d and 5d metals 

with d6, d8 or d10 electron configurations, documented in several comprehensive reviews.5-8 Very few 

studies compare systematically the luminescence proprieties of 3d, 4d and 5d metal complexes with 

identical ligands. Variable-pressure studies provide quantitative, continuously varied spectroscopic 

properties of crystalline complexes,9-11 and are especially attractive to probe structure-energy relations.12-

15 Only rarely have such continuous variations been explored by any spectroscopic technique for 

isoelectronic complexes with different metal centers. In this report, we compare variable-pressure 

luminescence spectra of structurally similar d8 complexes with identical ligands, but different metal 

centers to quantify luminescence energy variations. Square-planar nickel(II), palladium(II), and 

platinum(II) complexes show luminescence in a variety of crystalline environments, in some cases 

affected by interactions perpendicular to the ML4 plane.5, 7  

Pressure induces an energy increase of the d-d luminescence maxima (Emax) from both octahedral and 

square-planar complexes.12, 16 This increase is formally equivalent in both structures and can be 

rationalized using metal-ligand bonding characteristics. Metal-ligand bond lengths are compressed, 

leading to a stronger destabilization of the σ* LUMO than the π* HOMO, increasing their energy 

difference. This energy variation is comparable in size for a number of complexes with many different 

metal centers.17 For square-planar complexes of palladium(II) and platinum(II) with chelating 

dithiocarbamate ligands, the average shift ∆Emax/∆P caused by bond compression is on the order of +12 ± 

2 cm-1/kbar.17 It is expected that isoelectronic square-planar nickel(II) complexes also show shifts of this 

magnitude.17 Deviations from this average value point towards additional effects. Illustrative examples 

Page 2 of 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



are the negative ∆Emax/∆P values for complexes with intermolecular metal-metal interactions. 

Tetracyanoplatinate(II) complexes show ∆Emax/∆P values of -115 to -320 cm-1/kbar.18 Square-planar 

nickel(II), palladium(II), and platinum(II) complexes with glyoxime ligands also show metal-metal 

interactions, and negative ∆Emax/∆P values are determined from the absorption spectra at variable 

pressure.19 In these examples, increasing pressure leads to shorter metal-metal distances and stronger 

intermolecular interactions, inducing a gradual destabilization of the HOMO. The different isoelectronic 

metal centers involved in the metal-metal interaction greatly influence the variation of the absorption 

maxima for the glyoxime complexes.19, 20 The nickel(II) complexes presented in the following show 

∆Emax/∆P values closest to the literature range of +8 to +20 cm-1/kbar for octahedral nickel(II) complexes 

from absorption data.17 The ∆Emax/∆P values are significantly higher for the palladium(II) and 

platinum(II) analogs.17 

Examples of intermolecular M...H-C interactions have been reported for square-planar platinum(II) and 

palladium(II) complexes.21 22 These interactions are the focus of  reports from several areas,23-25 including 

crystal engineering26, 27 or C-H activation.28, 29 Experimental examples of such effects are often measured 

at a single set of conditions, which gives limited insight on the interaction and the effect of different metal 

centers.24 These weak M…H-C interactions are challenging to describe theoretically30 and experimental 

data is essential for any comparison, motivating our study covering 3d, 4d and 5d complexes. 

The traditional ligand field picture for octahedral complexes with identical ligator atoms predicts an 

increasing energy splitting ∆oct (between t2g and eg orbital energies) from 3d to 5d metal centers.31 The 

expected energetic order for group 10 is nickel(II) << palladium(II) < platinum(II). The more extended 4d 

and 5d orbitals contribute to stronger metal-ligand bonding, leading to high ∆oct values.32 The difference 

between 4d and 5d complexes is smaller than between 3d and 4d, as illustrated with [M(NH3)6]
3+ 

complexes of group 9 metals, whose ∆oct values vary from roughly 23000 cm-1 for cobalt(III), to 34000 

cm-1 for rhodium(III) and 41000 cm-1 for iridium(III).31, 33 This increase is approximately 50% from 3d to 

4d, and 20% from 4d to 5d. Similar variations are also observed from the luminescence maxima Emax of  

K3[M(CN)6] involving isoelectronic group 9 metal centers.34 For square-planar complexes, the same trend 

is expected by formal analogy with octahedral complexes.  The lowest energy d-d transition occurs 

between a 3Γ excited state and the 1Γ ground state. A difference of Emax by 15% is observed between 

palladium(II) and platinum(II) in square-planar halide complexes.35, 36 The bis-diethyldithiocarbamate 

(EDTC) complexes of palladium(II) and platinum(II) show an increase of Emax by 11%.37 The differences 

between square-planar palladium(II) and platinum(II) have been established,38 and are similar to 

variations for octahedral 4d and 5d complexes. Data for nickel(II) analogs are essential to a systematic 

comparison of group 10 metal complexes. To the best of our knowledge, this is the first such comparison. 
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Solid-state luminescence spectra of square-planar nickel(II), palladium(II) and platinum(II) complexes 

with identical ligands are presented, all showing d-d transitions. We chose dimethyldithiocarbamate 

ligands ({CH3}2DTC), since their palladium(II) and platinum(II) complexes are reported to show 

unexpected shifts of the luminescence maxima with pressure.17, 39 In the following, we complete the series 

with the nickel(II) complex and deuterated analogs of all metal centers. Variable pressure was used to 

induce gradual intramolecular and intermolecular structural variations, allowing us to characterize the 

effect of the interaction on the different metal centers. These spectroscopic results are combined with new 

structural data, in particular ambient pressure high-resolution crystal structures for all complexes to 

determine hydrogen and deuterium positions in order to correlate with the variation of the luminescence 

spectra. Crystal structures at variable pressure were determined for [Pt{(CH3)2DTC}2] to characterize the 

structural variations influencing intermolecular Pt…H-C interactions. 

Results 

Luminescence spectra 

Luminescence spectra at ambient pressure and 80 K for the [M{(CH3)2DTC}2] complexes are presented 

in Figure 1. To the best of our knowledge, this is the first comparison of d-d luminescence measurements 

in the solid state for complexes of nickel(II), palladium(II), and platinum(II) with identical ligands. 

Luminescence maximum Emax is 14200 cm-1 for the nickel(II) complex, surprisingly higher in energy than 

for palladium(II) and platinum(II), with Emax values of 13300 cm-1 and 13800 cm-1, respectively.  

Variable-temperature spectra of [Pd{(CH3)2DTC}2] and [Pt{(CH3)2DTC}2]
40 are compared to 

[Ni{(CH3)2DTC}2] spectra in Figure S1 (Supporting Information), the latter showing a shift of the 

luminescence maxima to lower energy as temperature increases. [Ni{(CH3)2DTC}2] spectra show 

constant bandwidth and shift more clearly than those of corresponding palladium(II) or platinum(II) 

complexes. Spectra are also presented for the deuterated analogs, with ∆Emax/∆T shifts shown in Figure 

S2 and Table S1. The nickel(II) complexes show the smallest difference between the spectra of non-

deuterated and deuterated analogs with similar shapes and similar ∆Emax/∆T shifts. For both palladium(II) 

and platinum(II) the absolute values of the ∆Emax/∆T shifts are higher for the deuterated complexes than 

for the non-deuterated analogs. The bandshape of the deuterated platinum(II) complex at ambient 

conditions is much broader than for the non-deuterated analog. 

Luminescence spectra at variable pressure are published for [Pd{(CH3)2DTC}2]
17 and 

[Pd{(CD3)2DTC}2]
17 and are presented for all complexes in Figure 2. For [Pt{(CH3)2DTC}2],

39 data at 

Page 4 of 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



pressures higher than 40 kbar are added here. For all complexes, a shift of Emax to higher energy from 

ambient pressure to roughly 20 kbar is observed, as shown in Figure 3. The values of ∆Emax/∆P are +26 ± 

5 cm-1/kbar, +32 ± 3 cm-1/kbar and +44 ± 5 cm-1/kbar for [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and 

[Pt{(CH3)2DTC}2] complexes, respectively, as given in Table 1. At higher pressure, the ∆Emax/∆P values 

change for each complex. [Ni{(CH3)2DTC}2] shows a negative ∆Emax/∆P value at pressures higher than 

24 kbar. A negative shift is also observed for [Pt{(CH3)2DTC}2] at pressures higher than 35 kbar. The 

[Pd{(CH3)2DTC}2] complex is the only one showing three different ∆Emax/∆P values, with a value of +11 

± 3 cm-1/kbar from 21 kbar to 45 kbar and a negative shift at pressures higher than 45 kbar. 

The deuterated nickel(II) complex shows a ∆Emax/∆P value of +20 ± 5 cm-1/kbar, similar to 

[Ni{(CH3)2DTC}2] above. In contrast, significant differences between the non-deuterated and deuterated 

complexes occur for the palladium(II) and platinum(II) metal centers. For [Pd{(CD3)2DTC}2], the 

∆Emax/∆P value is higher by a factor of two than for the non-deuterated analog in the 0-20 kbar pressure 

range, with a value of +63 ± 8 cm-1/kbar. The shifts become identical in the 20-45 kbar range, with a 

value of +12 ± 5 cm-1/kbar. For [Pt{(CD3)2DTC}2], spectra show significantly broader bands at low 

pressure, as seen in Figure 2f. This is indicative of two overlapping emission bands. 

Raman spectra 

Raman spectra at variable-pressure of [Pd{(CH3)2DTC}2]
17 and [Pd{(CD3)2DTC}2]

17 are published.  

Comparison of the spectra of non-deuterated and deuterated nickel(II), palladium(II), and platinum(II) 

complexes are shown in Figures S3 and S4, respectively. Raman spectra at variable temperature are 

shown in Figures S5 and S6. Each spectrum keeps a constant peak pattern, with no appearance or 

disappearance of peaks. Broadening can be seen at high pressure,  attributed to crystal defects induced by 

pressure as previously reported.41 Raman peak maxima at variable pressure are plotted in Figures S7, S8 

and S9 for the [M{(CH3)2DTC}2] complexes. They show gradual increases of vibrational frequencies 

with pressure due to bond length compression.42 To correlate the effect of the intermolecular M…H-C 

interaction, C-H peaks are followed and are expected to change in accordance with the observations in the 

luminescence spectra. The [Pd{(CH3)2DTC}2] complex shows a variation of the slope with pressure for 

its 2920 cm-1 vibration, from +0.45 ± 0.03 cm-1/kbar to 0.0 ± 0.1 cm-1/kbar, corresponding to a C-H mode. 

Surprisingly, no variations are observed in the platinum(II) and nickel(II) analogs, nor in any of the 

deuterated complexes. Calculated Raman spectra show a good agreement with the experimental spectra, 

as presented in Figures S10 and S11. 
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Ambient condition crystal structures 

In most crystal structures of molecular materials, the positions of hydrogen or deuterium atoms are 

determined on the basis of theoretical (steric) considerations and are neither experimentally derived from 

electronic density maps nor refined. Since this is problematic for detailed distances and angles of M...H-C 

intermolecular contacts, single-crystal X-ray diffraction studies have been performed on the six 

compounds. The aim of these new high-resolution diffraction experiments was to precisely locate 

experimentally the positions of hydrogen (deuterium) atoms,43 which is possible using diffractometers.44 

To be successful, this approach must be performed on highly diffracting samples, showing Bragg peaks 

far beyond the standard resolution of 0.77 Å, the value used in previous studies. We take advantage of the 

high quality of diffraction of the six compounds, whose Bragg peaks were collected up to 0.55 Å for all 

compounds. The high-resolution data collection significantly increases the number of observed 

reflections, allowing to safely add the hydrogen atom positions to the refinement. High-resolution crystal 

structures were therefore determined mostly in order to obtain experimental hydrogen or deuterium 

positions and precise M…H intermolecular distances and angles, as presented in Figure 4 and S12.  

It is interesting to note that the calculated positions for H and D in the previously reported structures17, 40 

are close to the experimental positions obtained here, as shown in Table S2. A posteriori, it is possible to 

validate the model previously used to calculate the position of the hydrogen atoms in the present 

compounds. This result is of importance since intermolecular distances involving hydrogen atoms are 

very often discussed, but rarely experimentally determined in this kind of compounds. By extension, this 

validation may be applied to all previous study of luminescent complexes of the same family as well as 

the high-pressure data below. 

Table 2 shows selected bond lengths and angles for [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and 

[Pt{(CH3)2DTC}2] and their deuterated analogs. The palladium(II) and platinum(II) complexes are 

isostructural. The nickel(II) complex is slightly different, with shorter metal-ligand bond lengths and 

larger S-M-S angles.  This is coherent with the smaller ionic radius of 0.49 Å for nickel(II) compared to 

palladium(II) and platinum(II), with values of 0.64 Å and 0.60 Å, respectively.45 The difference between 

both M-S bonds lengths for [Ni{(CH3)2DTC}2] and [Pd{(CH3)2DTC}2] is 0.12 Å, close to their difference 

of ionic radii of 0.15 Å. In contrast, the differences of M-S bond lengths in [Pd{(CH3)2DTC}2] and 

[Pt{(CH3)2DTC}2] are only 0.005 Å and 0.001 Å. The same trends are observed for the deuterated 

complexes. Table 3 shows selected intermolecular distances and angles notably involving hydrogen 

(deuterium) atoms for [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and [Pt{(CH3)2DTC}2] and their deuterated 

analogs. Deuteration has almost no effect on the geometry of the related intermolecular contacts, 

differences between M...H and M...D distances are within experimental precision. The geometry of M...H-C 
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(M...D-C) contacts is identical for palladium(II) and platinum(II) complexes. Globally, these contacts are 

also the same in the nickel(II) complex but a closer examination shows a significant shortening of the 

M...C distances compared to palladium(II) and platinum(II) analogs. Nickel(II) complexes show slightly 

shorter intermolecular M…H distances of 2.89(7) Å compared to 3.01(3) Å and 2.99(6) Å for 

palladium(II) and platinum(II), respectively. For the deuterated analogs, the M…D distances for the three 

complexes are identical within experimental precision, with values of 2.96(6) Å, 3.00(8) Å and 3.1(3) Å 

for nickel(II), palladium(II), and platinum(II), respectively. The analysis of the four S-M…H angles 

reveals a slightly better alignment of the M…H interaction in a direction perpendicular to the molecular 

plane for the nickel(II) complex, with angles closer to 90° than for the palladium(II) and platinum(II) 

complexes.  

Variable pressure structure 

The crystal structure determination of molecular materials under high-pressure by X-ray diffraction is 

more and more achievable yet still pioneering46 especially when looking for accurate atomic positions.47  

The crystal structure at variable pressure has been determined for [Pt{(CH3)2DTC}2] in order to compare 

structural changes and variation of the luminescence spectra with pressure. We chose the platinum(II) 

complex as it shows the greatest shift of the luminescence maxima in the ambient pressure to 20 kbar 

range. Crystal structures were determined at 5 kbar and 10 kbar for the [Pt{(CH3)2DTC}2] complex using 

diamond-anvil cells (DAC). The crystallographic data is presented in Table S3, and shows a decrease of 

the unit-cell parameters and volume as pressure increases. From ambient pressure to 10 kbar, the unit-cell 

volume decreases by about 8% when a, b and c parameters decrease by 3%, 1.5% and 3.8% respectively. 

These values are significant and reveal a slight anisotropy of the high-pressure effects on the crystal 

packing. The pressure on the sample was increased up to 20 kbar but the diffraction pattern quality was 

too low to determine the crystal structures beyond 10 kbar. As seen from the diffraction patterns 

presented in Figure S13, broadening of the reflections increases gradually over the studied pressure range, 

indicating an alteration of the single-crystal quality at higher pressure in the pressure cell. This decrease 

of crystallinity is not a reversible phenomenon in this case and likely due to a degradation of the sample 

in this pressure range.  

Selected bond lengths, angles, intermolecular distances and intermolecular angles are presented in Table 

4. Compression of the metal-ligand bond lengths is too small to be determined in the measured pressure

range. The C-N bond lengths vary with pressure and seem to slightly increase. The C-N-C angle between 

the methyl substituents is slightly compressed at higher pressure. Intermolecular distances are all reduced, 
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leading to a denser crystal packing at higher pressure, as shown in Figure S14. Interestingly, the 

intermolecular distances between the carbon and the metal for both methyl groups decrease 

anisotropically, with decreasing values from ambient pressure to 10 kbar of 3.89(6) Å, 3.84(4) Å and 

3.82(9) Å for Pt…C(4) and of 4.39(4) Å, 4.34(4) Å and 4.18(6) Å for Pt…C(5), corresponding to a 

decrease of approximately 2% and 5% for Pt…C(4) and Pt…C(5), respectively. Rotation of the methyl with 

H(D) is observed as pressure is varied, but not for the methyl involved in the M…H-C interaction, as seen 

in Figure S15. 

Discussion 

Molecular structure and luminescence energy 

At low temperature, the luminescence maximum Emax of the nickel(II) complex is higher in energy than 

for the palladium(II) and platinum(II) analogs. Even at ambient temperature, the Emax value of the 

nickel(II) complex stays higher in energy than for the palladium(II) complex.  Ligand-field theory for 

perfectly square-planar coordination geometries predicts a lower energy for nickel(II), but chelating 

angles must be included in this comparison. For [Ni{(CH3)2DTC}2], the S-Ni-S angle of 79° is higher 

than for [Pd{(CH3)2DTC}2] or [Pt{(CH3)2DTC}2] which show an angle of 75°. This leads to a better 

orbital overlap for the M-S bonds, and therefore energies of the d orbitals are affected. This is shown in 

Figure 5 and S16 by angular overlap model (AOM) calculations where the S-M-S angle is varied from 

70° to 90°. The HOMO-LUMO energy difference increases as the angle increases towards 90°, a key 

factor contributing to the high Emax observed for the nickel(II) complex. This angular structural variation 

leads to the unexpected Emax order for this series of complexes. 

Luminescence spectra at variable temperature show a shift of Emax to lower energies occurring with a 

nearly constant bandwidth for nickel(II) complexes as temperatures increase. The shape of the band 

changes from asymmetric to more symmetric, which points to a dominant influence from a small 

structural variation as temperature is varied, as previously reported and analyzed for platinum(II) 

dithiocarbamate complexes.39 Lower temperature leads to a decrease of the unit cell volume, which is 

qualitatively equivalent to an increase of pressure, from this overall point of view. The structural effect 

induces an increase of Emax as temperature decreases, the LUMO being more destabilized than the 

HOMO. The trend is qualitatively consistent with the negative ∆Emax/∆T shift of nickel(II) complexes as 

temperature increases. This structural effect is not dominant in the spectra of palladium(II) and 

platinum(II) analogs, as their structure are different from the nickel(II) complexes.  Palladium(II) and 

platinum(II) complexes show broadening of their spectra towards lower and higher energy, respectively. 
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Broadening to lower energy is due to distortion in the excited state. Broadening to higher energy is due to 

thermal population of higher energy vibrational levels. The observed shifts are the results of these 

competing trends.40  

In view of their similar structure, variations of the luminescence spectra are expected to be similar for 

deuterated and non-deuterated complexes. This is the case for the nickel(II) compounds. Surprisingly, the 

deuterated palladium(II) complex shows a significantly lower-energy maximum at 12200 cm-1   than 

[Pd{(CH3)2DTC}2] with a maximum at 13000 cm-1 at room temperature.40 This difference is likely due to 

different intermolecular interactions. M…H(D)-C interaction appear to be stronger at ambient temperature 

for [Pd{(CD3)2DTC}2] than for [Pd{(CH3)2DTC}2], leading to a lower Emax value.17 As temperature is 

lowered, this interaction weakens for both systems, giving a different ∆Emax/∆T slope for the deuterated 

analog. For the deuterated platinum(II) complexes, an important increase of the intensity on the high-

energy side is measured, leading to a significantly broader band at room temperature. [Pt{(CH3)2DTC}2] 

shows a corresponding broadening, which is typical for vibronic intensity gain as temperature increase.39, 

40 The spectrum of [Pt{(CD3)2DTC}2] at 293 K, in Figure S1f, has a bandwidth of 5000 cm-1, larger by 

1000 cm-1 than for the non-deuterated complex at this temperature. This important difference cannot be 

accounted for by vibronic intensity gain. It is therefore suspected that [Pt{(CD3)2DTC}2] exhibits two 

overlapping emission bands from thermally populated excited states. 

Pressure effects on luminescence spectra 

The luminescence maxima of the [M{(CH3)2DTC}2] complexes show higher positive ∆Emax/∆P values 

than the average +12 ± 2 cm-1/kbar expected17 for square-planar  dithiocarbamate complexes. These 

differences indicate that a stabilization of the HOMO occurs as pressure increases. In other words, 

intermolecular interactions present at ambient pressure are weakening as pressure increases, which leads 

to high positive values38 of ∆Emax/∆P shown in Table 1 (0 to 20 kbar). [Ni{(CH3)2DTC}2] shows the 

lowest ∆Emax/∆P value of +26 ± 5 cm-1/kbar among the metal complexes studied here, suggesting that it 

has the weakest M…H-C intermolecular effect on luminescence. This is rationalized by the smaller ionic 

radius of nickel(II) compared to palladium(II) and platinum(II). Literature examples of similar values of 

∆Emax/∆P as [Ni{(CH3)2DTC}2] are reported for palladium(II) or platinum(II) complexes with S-M-S 

angles of 90°, as illustrated by the value of +29 cm-1/kbar for (n-Bu4N)2[Pd(SCN)4].
48 In these complexes 

with monodentate ligands, the shift of the luminescence maxima is due to bond compression only, with 

no extra intermolecular interaction contributing. The ∆Emax/∆P value for [Ni{(CH3)2DTC}2] is due to 

bond compression and possibly a very weak interaction. The deuterated nickel(II) analog shows a similar 
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∆Emax/∆P shift of +20 ± 5 cm-1/kbar. This is expected from the high-resolution structures, with equivalent 

measured positions of H and D.  

For [Pd{(CH3)2DTC}2] and [Pt{(CH3)2DTC}2], ∆Emax/∆P values are +32 ± 3 cm-1/kbar and +44 ± 5 cm-

1/kbar, respectively. The higher ∆Emax/∆P value for [Pt{(CH3)2DTC}2] indicates a stronger destabilization 

of HOMO at ambient pressure, thus a stronger intermolecular interaction for the 5d metal than for the 4d 

analog. Structural differences alone cannot explain the differences observed in the luminescence spectra 

at variable pressure.  

The ∆Emax/∆P for the deuterated palladium(II) compound is higher by a factor of two than for the non-

deuterated analog, with values of +63 ± 8 cm-1/kbar and +32 ± 3 cm-1/kbar, respectively. This indicates a 

stronger intermolecular interaction with the deuterium than with the hydrogen. The Raman spectra in 

Figures S3 and S4 show C-D stretching at 2100-2300 cm-1, lower than C-H stretching at 2900-3000 cm-1.  

Luminescence spectra of the deuterated platinum(II) complex show two transitions, despite identical 

crystal structures to the non-deuterated analog. The comparison of calculated energy levels in Figure S17 

and S18 shows that both deuterated and non-deuterated platinum(II) complexes have a molecular orbital 

centered on the ligand (LUMO+1) close in energy to the LUMO, different from the palladium(II) or the 

nickel(II) complexes. The higher-energy emission measured for the deuterated platinum(II) complex is 

possibly due to a metal-to-ligand charge transfer from LUMO+1. It gains intensity due to less efficient 

non-radiative relaxation in deuterated systems.49-51 As pressure increases, non-radiative processes become 

more efficient, leading to the gradual intensity loss of the higher-energy transition, disappearing 

completely at pressures above 25 kbar.  

Pronounced spectroscopic differences are observed between deuterated and non-deuterated complexes of 

palladium(II) and platinum(II), showing different ∆Emax/∆P values and emission patterns, respectively. 

This shows that the presence of C-D bonds significantly affects the luminescence spectra, allowing the 

deuteration effect to be probed by luminescence spectroscopy at variable pressure. In marked contrast, 

deuterated and non-deuterated nickel(II) complexes show identical variations of ∆Emax/∆P values within 

the experimental precision. Therefore, deuteration does not affect their shift of the luminescence maxima, 

in contrast to palladium(II) and platinum(II) complexes. In view of the identical shifts for deuterated and 

non-deuterated nickel(II) complexes and their positive ∆Emax/∆P values within the range reported for 

complexes without interaction, we conclude that Ni…H(D)-C interactions have a negligible effect on the 

luminescence spectra.  
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Crystal structure at variable pressure 

For [Pt{(CH3)2DTC}2], intermolecular distances decrease as expected with pressure, but metal-ligand 

bonds are not significantly compressed within the studied pressure range (0-10 kbar). Changes in the 

intermolecular region are however measurable. Figure 6 shows a view of three molecules in the crystal 

structure at ambient pressure and 10 kbar, to highlight the intermolecular movement. The top panel of 

Figure 6 shows a decrease in the vertical distances at 10 kbar compared to ambient pressure. The top and 

bottom molecules get closer to the middle molecule at 10 kbar, clearly showing the decrease of 

intermolecular distances. A horizontal sliding of the complexes also occurs as pressure increases. The 

vertical red line aligned on the platinum(II) center of the middle molecule shows that the top and bottom 

molecules get more centered at higher pressure. On the second panel, a decrease of the intermolecular 

distances in the vertical axis is also visible, the top and bottom molecules getting closer to the middle one. 

A sliding of the molecules along the horizontal axis is observed. The top and bottom molecules are 

pushed out at higher pressure, highlighted by the vertical red line passing through the sulfur atom 

(yellow) of the middle molecule. At lower pressure, it is well aligned with the nitrogen (blue) of the top 

molecule, but at 10 kbar, the nitrogen is pushed on the left.  The same observation is made with the 

bottom molecule, the nitrogen atom being shifted to the right at 10 kbar. In the last panel, the changes 

illustrated are minor. Movements described in the two last panels result in a diagonal sliding of the 

molecules in the bottom panel point of view. However, a change in both N-C bonds also occurs, 

increasing from 1.46(6) Å at ambient pressure to 1.54(9) Å at 10 kbar for C(5)-N and from 1.41(5) Å to 

1.56(7) Å for C(4)-N, which makes the diagonal sliding harder to see directly.  The red circle highlights 

the movement of the C(4), part of the Pt…H-C interaction. At high pressure, the C(4) is getting further 

from the S atoms underneath it, being pushed along the diagonal. This also causes the carbon to be pushed 

away from the platinum(II) center.  

All the observations from the three panels and data from Table 4 show an increase of the misalignment 

between the CH3 substituents and the platinum dz2 orbital as pressure increases, due to sliding of the 

molecules. This misalignment weakens the M…H-C interaction, which causes the high positive ∆Emax/∆P 

value of +44 ± 5 cm-1/kbar. A suitable compound for comparison is [Pt(SCN)2{(µ-

SCN)Mn(NCS)(bipy)2}2].
21 This square-planar platinum(II) complex with thiocyanate ligands also shows 

a Pt…H-C interaction in its crystal structure. The d-d luminescence maxima shift to lower energy with 

pressure, with a  ∆Emax/∆P value of -99 cm-1/kbar.21 In contrast to [Pt{(CH3)2DTC}2], the crystal structure 

of [Pt(SCN)2{(µ-SCN)Mn(NCS)(bipy)2}2] shows a very good alignment between the metal center and the 

interacting hydrogen. The crystal packing prevents sliding of the complexes, and so, application of 

pressure results in a reduction of the intermolecular distance between interacting atoms. Therefore, 
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pressure induces a strengthening of the Pt…H-C interaction, resulting in a pronounced negative ∆Emax/∆P 

shift, in marked contrast to the observations for [Pt{(CH3)2DTC}2].  

The sliding movement of the molecules in [Pt{(CH3)2DTC}2] leads to a partial loss of crystallinity that 

may cause broadening of the reflections in the diffraction pattern at pressure above 10 kbar due to 

increase of the crystal defects, presented in Figure S13. XRD clearly shows this phenomenon, absent in 

the luminescence spectra but also observed in the Raman spectra. 

By extrapolation from this evolution of the crystal packing to higher pressure, the sliding of the molecules 

eventually causes the M…H-C interaction to be lost. Therefore, at a certain point, it is expected that the 

evolution of the luminescence maxima changes. If a new interaction occurs due to the decreasing 

intermolecular distances, a negative ∆Emax/∆P value should be measured. In accordance with this 

expectation this is indeed observed for all non-deuterated complexes, and it all occurs at specific 

pressures. For [Ni{(CH3)2DTC}2], the variation of the slope appears at 24 kbar, changing from +26 ± 5 

cm-1/kbar to a negative ∆Emax/∆P value of -15 ± 6 cm-1/kbar. Since the intermolecular distances decrease 

with pressure, at one point, another intermolecular interaction with the metal center may occur, as 

experimentally shown with the negative value of ∆Emax/∆P. For [Pd{(CH3)2DTC}2], the initial interaction 

is lost at the same pressure, at 21 kbar, showing a ∆Emax/∆P value falling in the average range of +12 ± 2 

cm-1/kbar. This indicates that, in that pressure region, the metal center has no additional interaction, the 

luminescence being influenced by bond compression only. Interestingly, at 45 kbar, a negative ∆Emax/∆P 

value of -31 ± 8 cm-1/kbar is observed, indicating a new intermolecular interaction. For 

[Pt{(CH3)2DTC}2], the initial M…H-C interaction is lost at higher pressure than for the two previous 

complexes, where its ∆Emax/∆P changes at 40 kbar. Even tough platinum(II) and palladium(II) complexes 

are isostructural, with very similar intermolecular distances, no range without interaction is measured for 

[Pt{(CH3)2DTC}2]. Instead, the luminescence maxima shift to lower energies, with an ∆Emax/∆P value of -

37 ± 8 cm-1/kbar, indicating a new dominant intermolecular interaction. Assuming identical 

intermolecular movement for isostructural complexes, this indicates a greater extent of the electronic 

density in the z axis for platinum(II), allowing the M...H-C intermolecular interaction to be persistent at 

greater intermolecular distance. This effect was also observed in a recent study on isostructural complexes 

of lanthanides with chelating metalloligands of palladium(II) and platinum(II), clearly showing by EPR 

that 5d metal complexes have a wider radial extension than their 4d analogs.52 In the [M{(CH3)2DTC}2] 

complexes, the extended electronic density of the 5d metal allows the initial M…H-C interaction to be 

present at higher pressure, showing stronger intermolecular interactions for same intermolecular distances 

than 4d metal.  
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The subtle structural variations, affecting the weak M…H-C interactions are not evident in the Raman 

spectra measured at variable pressure. In Figures S7 to S9, a zoom in the 2900-3000 cm-1 region is 

presented to look specifically for peaks corresponding to vibrations that could be involved in M…H-C 

interactions. No variation of the slope presented in Figures S7 to S9 is observed in the 0-40 kbar region 

for all complexes despite very clear effects observed in the luminescence spectra. Broadening of the 

diffraction peaks observed in the high-pressure diffraction patterns of [Pt{(CH3)2DTC}2] at 15-20 kbar 

due to loss of crystallinity does not lead to much broader peaks in the Raman spectra, as the prominent 

Raman peaks correspond to localized molecular modes. Only one peak for [Pd{(CH3)2DTC}2] complex 

shows a very subtle change in its peak shift around 50 kbar, with values varying from +0.45 ± 0.03 cm-

1/kbar to 0.0 ± 0.1 cm-1/kbar, which could correspond to an additional interaction occurring at shorter 

intermolecular distances. X-ray crystal structures at variable pressure clearly show these small structural 

changes leading to new M...H(D)-C interactions that are too weak to be detected by Raman spectroscopy 

but clearly affecting luminescence spectra at variable pressure.  

Conclusion 

We present a detailed comparison of the luminescence properties of a series of square-planar nickel(II), 

palladium(II), and platinum(II) complexes. The smaller ionic radius of nickel(II) induces a larger S-M-S 

angle and crystal-packing differences compared to the 4d and 5d analogs, leading to higher-energy 

luminescence maxima Emax than expected. The luminescence spectra of [Ni{(CH3)2DTC}2] at pressures 

below 20 kbar show the blue shift expected for d-d transitions.  This contrasts with the palladium(II) and 

platinum(II) analogs that both show pressure-induced shifts of their band maxima indicative of 

intermolecular interactions. Deuteration of the complexes does not lead to different shifts in the nickel(II) 

complexes, consistent with very weak intermolecular Ni…H(D)-C interactions, while it leads to stronger 

interactions in the palladium(II) complexes and to a multi-state emission for the deuterated platinum(II) 

complex. X-ray crystallography at variable pressure on [Pt{(CH3)2DTC}2] reveals a sliding of the layers 

containing complexes, leading to weaker M…H-C interaction, again consistent with the shifts of 

luminescence spectra at variable pressure. We conclude that significant differences in intermolecular 

interaction strength lead to the different shifts, qualitatively comparable to different radial electronic 

density along the axis perpendicular to the MS4 coordination plane. Luminescence spectroscopy at 

variable pressure is shown to be a very sensitive technique, well suited to observe the subtle structural 

variations at the focus of this study. Combined with accurate and in situ crystallographic data, it is 

possible to obtain a detailed characterization of isoelectronic complexes with different metal centers, 

taking into account even weak M…H-C intermolecular interactions. The approach developed here 
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provides quantitative insight for understanding the differences of the luminescence properties for 3d, 4d 

and 5d complexes in the solid state. 

Experimental details 

Luminescence and Raman spectroscopy at variable pressure 

Variable-pressure Raman and luminescence spectra of [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and 

[Pt{(CH3)2DTC}2] and their deuterated analogs, [Ni{(CD3)2DTC}2], [Pd{(CD3)2DTC}2] and 

[Pt{(CD3)2DTC}2], were measured using a Renishaw InVia spectrometer coupled to an imaging 

microscope (Leica). The 488 nm excitation wavelength from an Argon-ion laser was used for all 

luminescence measurements and a diode laser (785 nm excitation wavelength) for Raman spectra. 

Calibration of the spectrometer was made with a tungsten lamp and luminescence intensities in spectra 

are corrected for system response. The crystals were inserted in a stainless-steel gasket along with ruby, 

used for pressure calibration. Nujol oil was added as pressure-transmitting medium. Pressure was applied 

trough a diamond-anvil cell (DAC, High-Pressure Diamond Optics).

High-resolution X-ray diffraction 

Single crystals of [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and [Pt{(CH3)2DTC}2] and their deuterated 

analogs, [Ni{(CD3)2DTC}2], [Pd{(CD3)2DTC}2] and [Pt{(CD3)2DTC}2] were mounted onto a Bruker-

Apex II CCD at 293 K. The full collection of data was measured at a resolution of 0.55 Å, see text for 

justification. Hydrogen (deuterium) atoms positions were determined on difference Fourier maps and 

refined freely. Structural solutions and least squares refinements were carried out using an Olex253 

interface to the SHELX54, 55 suite of programs. The crystallographic data is presented in Tables S4 and S5. 

Variable pressure X-ray diffraction 

High-pressure experiments on [Pt{(CH3)2DTC}2] were performed using a modified Merrill-Bassett 

diamond anvil cell (DAC). The single crystal sample was loaded into a stainless-steel gasket with ruby in 

the DAC to calibrate the pressure by measuring its luminescence peak. Pressure was measured before and 

after data collection. Paraffin oil was used as a pressure medium. High pressure X-ray single-crystal 

diffraction data were collected at room temperature on a the XIPHOS II instrument at Newcastle 

University.56 This instrument was custom built for high pressure single crystal X-ray diffraction studies 
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with an Incoatec Ag Iµs Kα (λ = 0.56086 Å) source. Data were collected, using 10 phi scans to maximise 

accessible coverage. Ambient pressure, 5 kbar, 10 kbar, 15 kbar and 20 kbar data were measured, as well 

as ambient pressure after the pressure release. Sample reflections were identified using the reciprocal 

lattice viewer within the Apex II program57 for initial unit cell refinement. The program ECLIPSE58 was 

used to generate mask files for data integration. Data integration and global cell refinement were 

performed with the program SAINT59 and data were corrected for absorption with the program 

SADABS.60 The minimum transmission factor for the high-pressure structures is due to partial shadowing 

from the DAC gasket. Structural solutions and least squares refinements were carried out using the 

Olex253 interface to the SHELX54, 55 suite of programs. Suitable structures were obtained for three 

pressures: ambient, 5 kbar and 10 kbar.  
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Tables 

Table 1. Results of linear fits for luminescence maxima Emax at ambient pressure and pressure induced 
shift ∆Emax/∆P for [M{(CH3)2DTC}2] and [M{(CD3)2DTC}2] complexes.  

Metal 
M 

Substituent 
on ligand 

Fitted Emax, P=0

(cm-1) 

Fitted ∆Emax /∆P (cm-1/kbar) 

0-20 kbar 20-40 kbar > 45 kbar 

Ni(II) 
CH3 13531 ± 64 +26 ± 5 -15 ± 6 

CD3 13611 ± 104 +20 ± 5 N/A 

Pd(II) 
CH3 13003 ± 47 +32 ± 3 +11 ± 3 -31 ± 8 

CD3 12345 ± 89 +63 ± 8 +12 ± 5 N/A 

Pt(II) 

CH3 13472± 73 +44 ± 5 -37 ± 8 

CD3 N/A N/A 

Page 20 of 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2. Selected bond lengths and angles for [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and 
[Pt{(CH3)2DTC}2] and their deuterated analogs, [Ni{(CD3)2DTC}2], [Pd{(CD3)2DTC}2] and 
[Pt{(CD3)2DTC}2] at room temperature, with measured H and D positions. 

[M{(CH3)2DTC}2] [M{(CD3)2DTC}2] 
Bonds (Å) Ni(II) Pd(II) Pt(II) Ni(II) Pd(II) Pt(II) 
M-S(1) 2.212(1) 2.3334(4) 2.3281(7) 2.2109(8) 2.3324(9) 2.329(2) 
M-S(2) 2.1924(8) 2.3136(3) 2.3118(6) 2.1927(7) 2.3148(6) 2.313(2) 
C(1)-S(1) 1.718(8) 1.722(1) 1.722(2) 1.716(3) 1.722(4) 1.724(8) 
C(1)-S(2) 1.718(3) 1.724(1) 1.733(2) 1.716(3) 1.734(3) 1.740(7) 
C(1)-N(1) 1.325(4) 1.313(2) 1.307(3) 1.331(3) 1.300(4) 1.299(9) 
C(2)-N(1) 1.447(6) 1.459(3) 1.462(4) 1.439(6) 1.457(7) 1.45(1) 
C(3)-N(1) 1.449(5) 1.460(2) 1.463(4) 1.448(5) 1.459(6) 1.47(1) 
Angles (°) 
S(1)-M-S(2) 79.45(4) 75.54(1) 75.10(2) 79.46(3) 75.45(3) 75.10(7) 
S(1)-C(1)-S(2) 110.0(2) 111.40(8) 109.9(1) 110.2(2) 110.7(2) 109.5(4) 
N(1)-C(1)-S(1) 124.7(3) 123.8(1) 124.8(2) 124.6(2) 124.5(3) 125.2(6) 
N(1)-C(1)-S(2) 125.3(3) 124.8(1) 125.3(2) 125.2(2) 124.8(3) 125.2(6) 
C(2)-N(1)-C(3) 116.6(3) 116.0(1) 116.0(2) 116.8(3) 115.8(4) 115.6(8) 

Page 21 of 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 3. Selected intermolecular distances for [Ni{(CH3)2DTC}2], [Pd{(CH3)2DTC}2] and 
[Pt{(CH3)2DTC}2] and their deuterated analogs, [Ni{(CD3)2DTC}2], [Pd{(CD3)2DTC}2] and 
[Pt{(CD3)2DTC}2] at room temperature, with measured H and D positions. 

[M{(CH3)2DTC}2] [M{(CD3)2DTC}2] 
Intermolecular a 
distance (Å) or 
angle (°) 

Ni(II) Pd(II) Pt(II) Ni(II) Pd(II) Pt(II) 

M…H or M…D 2.89(7) 3.01(3) 2.99(6) 2.96(6) 3.00(8) 3.1(3) 
M…C 3.722(6) 3.811(2) 3.886(4) 3.733(5) 3.818(6) 3.89(1) 
M…H-C or  
M…D-C 

149(5) 154(2) 156(4) 151(4) 147(5) 148(23) 

S(1)-M…H or 
S(1)-M…D 

82(1) 77.0(5) 74(1) 80(1) 77(1) 74(5) 

S(2)-M…H or  
S(2)-M…D 

89(1) 85.9(5) 84(1) 88(1) 88(1) 85(5) 

S(1)’-M…H or 
S(1)’-M…D 

91(1) 94.1(5) 96(1) 92(1) 92(1) 95(5) 

S(2)’-M…H or 
S(2)’-M…D 

98(1) 103.0(5) 106(1) 100(1) 103(1) 106(5) 
aValues from the shortest intermolecular distance. 
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Table 4. Selected bond lengths, angles and intermolecular distances for [Pt{(CH3)2DTC}2] at variable 
pressure and room temperature. 

Bonds (Å) 
Pressure 

Amb. 5 kbar 10 kbar 
Pt-S(3) 2.32(1) 2.314(5) 2.31(1) 

Pt-S(2) 2.326(7) 2.333(7) 2.33(1) 

C(1)-S(3) 1.70(3) 1.70(2) 1.68(7) 

C(1)-S(2) 1.71(4) 1.71(3) 1.69(5) 

C(1)-N(1) 1.40(3) 1.36(2) 1.30(5) 

C(5)-N(1) 1.46(6) 1.46(3) 1.54(9) 

C(4)-N(1) 1.41(5) 1.48(4) 1.56(7) 

Angles (°) 
S(2)-Pt-S(3) 75.4(3) 75.1(2) 75.2(5) 

S(2)-C(1)-S(3) 113(2) 112(2) 114(4) 

N(1)-C(1)-S(2) 121(3) 125(2) 124(5) 

N(1)-C(1)-S(3) 125(3) 122(2) 122(5) 

C(4)-N(1)-C(5) 118(3) 116(2) 110(5) 

Intermolecular distances (Å) 
Pt…H(A) 2.99 2.95 2.98 

Pt…H(D) 4.14 3.63 3.47 

Pt…C(4) 3.89(6) 3.84(4) 3.82(9) 

Pt…C(5) 4.39(4) 4.34(3) 4.18(6) 

S(2)…S(3) 4.48(2) 4.41(1) 4.33(2) 

S(2)…H(E)a 3.10(1) 2.742(6) 2.79(1) 

S(3)…S(3)a 3.84(1) 3.752(9) 3.64(2) 

S(3)…S(2)a 3.74(1) 3.694(8) 3.63(2) 

Intermolecular angles (°) 
S(3)-Pt-H(A) 74.5(3) 75.3(2) 74.6(4) 

S(2)-Pt-H(A) 83.4(2) 84.7(2) 87.2(4) 

S(2)’-Pt-H(A) 96.6(2) 95.3(2) 92.8(4) 

S(3)’-Pt-H(A) 105.5(3) 104.7(2) 105.4(4) 

S(3)-Pt-C(4) 72.2(7) 72.0(5) 72(1) 

S(2)-Pt-C(4) 78.2(7) 78.6(5) 80(1) 

S(2)’-Pt-C(4) 101.8(7) 101.4(5) 100(1) 

S(3)’-Pt-C(4) 107.8(7) 108.0(5) 108(1) 
a Intermolecular distances for two complexes in the same plane as the ML4 motif. 
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Figures 

Figure 1. Luminescence spectra at 80 K and ambient pressure for [Ni{(CH3)2DTC}2] (a, green), 
[Pd{(CH3)2DTC}2] (b, red) and [Pt{(CH3)2DTC}2] (c, blue).  
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Figure 2. Luminescence spectra at variable pressure for [Ni{(CH3)2DTC}2] (a), [Ni{(CD3)2DTC}2] (b), 
[Pd{(CH3)2DTC}2] (c), [Pd{(CD3)2DTC}2] (d), [Pt{(CH3)2DTC}2] (e) and [Pt{(CD3)2DTC}2] (f). 
Asterisks mark the ruby R-line used for pressure calibration. 
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Figure 3. Variable-pressure luminescence maxima Emax of [M{(CH3)2DTC}2] (a) and [M{(CD3)2DTC}2] 
(b) complexes with pressure. Maxima for nickel(II) complexes are presented in green (solid lines for 
trends), for palladium(II) complexes in red (dotted lines) and platinum(II) in blue (dashed lines). 
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a) 

b) 

c) 

Figure 4. Perspective views of high resolution structures for [Ni{(CH3)2DTC}2] (a), [Pd{(CH3)2DTC}2] 
(b) and [Pt{(CH3)2DTC}2] (c). Ellipsoids are shown at 50% probability. 
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Figure 5. Energy difference between the lowest-energy excited state (3Eg) and the ground state (1Ag) as a 
function of the S-M-S angle (°).  The solid line denotes for σ donor ligands (eπ = 0), the dashed line is for 
π donor ligands (eσ / eπ = 4.4) and the dotted-dashed line is for π acceptor ligands (eσ / eπ = -4.4). Values 
of 600 cm-1 and 2400 cm-1 were used for the Racah B and C parameters. The vertical lines indicate 
experimental S-M-S angles for platinum(II) (blue), palladium(II) (red) and for nickel(II) (green). 
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Ambient pressure 10 kbar 

Figure 6. Three different views of three molecules of [Pt{(CH3)2DTC}2] at ambient pressure (left) and 10 
kbar (right). Horizontal and vertical lines (red) are drawn as guide to the eye. Hydrogen atoms are omitted 
for clarity. 
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