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Highlights

• A new gradient-based algorithm for stochastic multiobjective optimization

problem

• Mean-square and almost-sure convergence of the algorithm proven

• Algorithm tested on a variety of benchmark tests

• Performance compared to two optimization algorithms coupled with a

Monte Carlo estimator

• Algorithm computationally efficient
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Abstract

In this article, we propose a new method for multiobjective optimization prob-

lems in which the objective functions are expressed as expectations of ran-

dom functions. The present method is based on an extension of the classical

stochastic gradient algorithm and a deterministic multiobjective algorithm, the

Multiple Gradient Descent Algorithm (MGDA). In MGDA a descent direction

common to all specified objective functions is identified through a result of

convex geometry. The use of this common descent vector and the Pareto sta-

tionarity definition into the stochastic gradient algorithm makes the algorithm

able to solve multiobjective problems. The mean square and almost sure con-

vergence of this new algorithm are proven considering the classical stochastic

gradient algorithm hypothesis. The algorithm efficiency is illustrated on a set

of benchmarks with diverse complexity and assessed in comparison with two

classical algorithms (NSGA-II, DMS ) coupled with a Monte Carlo expectation

estimator.

Keywords: Multiple objective programming, Multiobjective stochastic

optimization, Stochastic gradient algorithm, Multiple gradient descent

algorithm, Common descent vector

∗Corresponding author
Email addresses: quentin.mercier@onera.fr (Quentin Mercier), poirion@onera.fr

(Fabrice Poirion), jean-antoine.desideri@inria.fr (Jean-Antoine Désidéri)

May 31, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Manufacturers are ever looking for designing products with better perfor-

mance, higher reliability at lower cost and risk. One way to address these

antagonistic objectives is to use multiobjective optimization approaches. But

real world problems are rarely described through a collection of fixed parame-5

ters and uncertainty has to be taken into account, may it appear in the system

description itself or in the environment and operational conditions. Indeed

the system behavior can be very sensitive to modifications in some parame-

ters [1, 30, 33]. This is why uncertainty has to be introduced in the design

process from the start. Optimization under uncertainty has known important10

advances since the second-half of the 20th century [4, 9, 28] and various ap-

proaches have been proposed including robust optimization, which encompasses

today a rather large field of robustness concepts such as the ”worst case” or the

”mean and variance” concepts [26], and stochastic optimization where uncer-

tain parameters are modeled through random variables with a given distribution15

and where the probabilistic information is directly introduced in the numerical

approaches. In that context the uncertain multiobjective problems are written

in terms of the expectation of each objective. In our paper we shall focus on

this last interpretation of the optimization problem. Considering single objec-

tive stochastic optimization problems, a large variety of numerical approaches20

[36, 37] can be found in the literature. Two main distinct approaches exist, one

based on stochastic approximations such as the Robbins Monro algorithm and

the various stochastic gradient approaches [21, 22, 35], the second one based on

scenario approaches [32, 39], the latter being more frequently applied for chance

constrained problems.25

Regarding stochastic multiobjective optimization the literature is less pro-

lific: the various approaches proposed are based on classical deterministic algo-

rithm such as genetic algorithms coupled with a robust formulation where the

random quantities appearing (such as the mean values or standard deviations)

are either obtained analytically for simple objectives [7, 11, 25] or estimated30
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using a sample averaging approach using scenarios [5, 18, 24, 29, 31, 40]. In this

paper, we propose a new algorithm for constructing the set of Pareto stationary

points of a multiobjective optimization problem written in terms of the mean

objective functions. The method is based on the use of the MGDA algorithm

[12, 14] and more precisely on the existence of a common descent vector analo-35

gous to the steepest descent vector of [23], together with a stochastic gradient

algorithm. Convergences of this new algorithm will be proved and several il-

lustrations given. The paper is organized as follows. In section 2 the Multiple

Gradient Descent Algorithm (MGDA) is recalled. In section 3, after introducing

some probabilistic notations and results which will be used for the convergence40

proofs, we introduce the problem under consideration and introduce the Stochas-

tic Multiple Gradient Descent Algorithm (SMGDA). Then we shall prove two

types of convergence. In section 4 illustrations of the SMGDA algorithm will

be given and compared to the classical Sample Average Approximation (SAA)

approach [39].45

2. Multiple Gradient Descent Algorithm (MGDA)

The Multiple Gradient Descent Algorithm (MGDA) was originally intro-

duced in [13] and [12] to solve general multiobjective optimization problems

involving differentiable cost functions. Variants were proposed in [14], but more

recently the algorithm was slightly revised in [15] to apply to cases where the50

number m of objective functions exceeds the dimension n of the working design

space.

Recently, the revised version of MGDA was applied in a deterministic set-

ting, to a time periodic problem governed by the time dependent compressible

Navier-Stokes equations [17]. There, six parameters defining pulsating jets on55

a flat plate have been optimized to reduce drag over a time period. The mul-

tiple gradients were the realizations at 800 time steps of the gradient of drag

with respect to the six parameters. By MGDA, drag was reduced at every time

steps of the period. Presently, following [17], we summarize the method used

4
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to construct the descent direction from a set made of multiple gradients, using60

slightly different notations being necessary in the subsequent stochastic frame-

work. For the sake of clarity, the calculation of the common descent vector is

only presented in the linearly independent gradients case where the number of

objectives m is supposed inferior to the dimension of the design space n.

2.1. Multiobjective problem statement65

Let m and n be two arbitrary integers and consider the multiobjective opti-

mization problem consisting in minimizing m differentiable objective functions

{fj(x)} in some open admissible domain Da ⊆ Rn (j = 1, . . . ,m; fj ∈ C1(Da)).

Given a starting point x0 ∈ Da and a vector d ∈ Rn, one forms the directional

derivatives

f ′j = [∇xfj(x0)]
t
d (1)

where ∇x is the symbol for the gradient w.r.t. x and the superscript t stands

for transposition. One seeks for a vector d such that the scalar product of any

objective gradient ∇xfj(x0) with the vector d remains strictly positive

f ′j > 0. (2)

If such a vector d exists, the direction of the vector (−d) is said to be a local

descent direction common to all objective functions. Then evidently, infinitely

many other such directions also exist, and our algorithm permits to identify at

least one.

2.2. Convex hull, two lemmas and basic MGDA70

We recall the following :

Definition 1. The convex hull of a family of m vectors {uj} (j = 1, . . . ,m;

uj ∈ Rn), is the set of all their convex combinations

Ū =



u ∈ Rn such that u =

m∑

j=1

αjuj ; αj ∈ R+ (∀j);
m∑

j=1

αj = 1



 . (3)

5
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Evidently, given the m vectors {uj} in Rn, the convex hull Ū is a convex,

closed and bounded subset of the finite-dimensional subspace spanned by these

vectors. Its image in the affine space Rn in which vectors are associated with

representatives of same origin O, is a convex polytope with at most m vertices.75

Then, we have :

Lemma 1. Given an n × n real-symmetric positive-definite matrix An, the

associated scalar product

(
u,v

)
= utAnv (u,v ∈ Rn), (4)

and Euclidean norm

‖u‖ =
√

utAnu, (5)

the convex hull Ū admits a unique element ξ? of minimum norm.

Proof. - Existence : Ū is compact and ‖.‖ is a continuous function.

- Uniqueness : suppose that ξ1 and ξ2 are two realizations of the minimum

µ = arg minu∈Ū ‖u‖ so that µ = ‖ξ1‖ = ‖ξ2‖ and let

ξs =
1

2
(ξ2 + ξ1) , ξd =

1

2
(ξ2 − ξ1) ,

so that:

(
ξs, ξd) =

1

4

(
ξ2 + ξ1, ξ2 − ξ1

)
=

1

4

(
‖ξ2‖2 − ‖ξ1‖2

)
= 0 .

Hence ξs ⊥ ξd, and since ξs ∈ Ū , ‖ξs‖ ≥ µ, and

µ2 = ‖ξ2‖2 = ‖ξs + ξd‖2 = ‖ξs‖2 + ‖ξd‖2 ≥ µ2 + ‖ξd‖2 =⇒ ξd = 0 .

Lemma 2. The minimum-norm element ξ? defined in Lemma 1 satisfies the

following relation for any element u in the convex hull Ū

(
u, ξ?

)
≥ ‖ξ?‖2 . (6)

6
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Proof. Let u ∈ Ū , arbitrary. Let r = u − ξ?; by convexity of Ū , any convex

combination of ξ? and u is an element of Ū

(1− ε)ξ? + εu = ξ? + εr ∈ Ū , ε ∈ [0, 1].

By definition of ξ?, ‖ξ? + εr‖ ≥ ‖ξ?‖, that is

(
ξ? + εr, ξ? + εr

)
−
(
ξ?, ξ?

)
= 2ε

(
ξ?, r) + ε2 ‖r‖2 ≥ 0 ,

and this requires that the coefficient (ξ?, r) of ε be non-negative.

Then consider the set {uj}j∈J1,mK where each element is the gradient of the

objective function fj at point x0

uj = ∇xfj(x0). (7)

If the vector ξ? defined in Lemma 1 is nonzero, the vector

d = Anξ
? (8)

is also nonzero, and is a solution to the problem stated in (1)-(2) since by virtue

of Lemma 2
(
uj , ξ

?
)

= utjAnξ
? = utjd ≥ ‖ξ?‖2 > 0. (9)

The situation in which ξ? = 0, or equivalently, when there exists a set

α = {αj} of m positive real numbers such that

m∑

j=1

αj∇fj(x0) = 0 and
m∑

j=1

αj = 1, (10)

is said to be one of ”Pareto stationarity”. The relationship between Pareto80

optimality and Pareto stationarity was made precise by the following [14]-[15]

Theorem 1. If the objective functions are differentiable and convex in some

open ball B ⊆ Da about x0, and if x0 is Pareto optimal, then the Pareto sta-

tionarity condition is satisfied at x0.

Proof. Without loss of generality, suppose that fj(x0) = 0 for j ∈ J1,mK. Since,

by hypothesis, x0 is Pareto optimal, a single, arbitrary objective function cannot

7
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be improved (here diminished below 0) under the constraint of no-degradation

of the others. In particular, x0 solves the problem

min
x
fm(x) / subject to : fj(x) ≤ 0, j ∈ J1,m− 1K. (11)

Let Ūm−1 be the convex hull of the m− 1 gradients {u1,u2, . . . ,um−1} and

ξ?m−1 = argmin
u∈Ūm−1

‖u‖ . (12)

Existence, uniqueness and following property of this element have already been

established (Lemmas 2.1 and 2.2)

(
uj , ξ

?
m−1

)
≥
∥∥ ξ?m−1

∥∥2
, j ∈ J1,m− 1K. (13)

Two situations are then possible :85

1. Either ξ?m−1 = 0, and the Pareto stationarity condition is satisfied at

x = x0 with αm = 0.

2. Or ξ?m−1 6= 0. Then let φj(ε) = fj(x0 − εξ?m−1) (j = 1, . . . ,m − 1) so

that φj(0) = 0 and φ′j(0) = −
(
uj , ξ

?
m−1

)
≤ −

∥∥ ξ?m−1

∥∥2
< 0, and for

sufficiently-small ε

φj(ε) = fj(x0 − εξ?m−1) < 0, j ∈ J1,m− 1K. (14)

This result confirms that for the constrained minimization problem (11),

Slater’s constraint-qualification criterion is satisfied, and optimality re-

quires the satisfaction of the Karush-Kuhn-Tucker (KKT) condition [6],

that is, the Lagrangian

L = fm(x) +

m−1∑

j=1

λjfj(x) (15)

must be stationary, and this gives

um +
m−1∑

j=1

λjuj = 0 (16)

in which λj > 0 for j ∈ J1,m − 1K by saturation of the constraints

(fj(x0) = 0) and sign convention. Finally, Λ = 1 +
∑m−1
j=1 λj > 1. Thus

by dividing the above equation by Λ 6= 0, the result is achieved.90

8
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Note that this proof is valid for all m and n, in particular in situations in

which m ≥ n, encountered in particular in multi-point optimization when the

number of points is larger than the number of variables, as well as m < n more

typical of multidisciplinary optimization.95

Hence, the Pareto stationarity condition generalizes to the multiobjective con-

text, the classical stationarity condition expressing that an unconstrained dif-

ferentiable function is extremal.

We now return to the non-trivial case of a point x0 that is not Pareto sta-

tionary and we suppose that the vectors ξ? and d (ξ? 6= 0; d 6= 0) have been

identified (see next subsection). Then we define MGDA as the iteration which

transforms x0 in

x1 = x0 − ρd (17)

where ρ > 0 is some appropriate step size. In many cases in engineering sciences,

the step size can be adjusted after an analysis of the the physical scales involved100

is made [17]. PDE-constrainted optimization is our ultimate goal, and realisti-

cally, the number of cost function evaluations per optimization iteration should

remain small. Additionally, in steady problems, a constant step size is often

adequate although not optimal. This is our choice here. Nevertheless, in case

where step size adaptation is really beneficial, it may be realized by constraint105

violation limitation, and/or accurate, or coarse one dimensional optimization in

the direction of search; see for exemple [16].

Thus MGDA is an extension to the multiobjective context of the classical

steepest descent method, in which the direction of search is taken to be the

vector d defined above. At convergence, the limiting point is Pareto stationary.110

We now examine how can the vector d be computed in practice.

2.3. QP formulation and hierarchical Gram-Schmidt orthogonalization

By letting

ξ? =

m∑

j=1

αjuj = Uα (18)

9
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where uj = ∇xfj(x0), U is the n×m matrix whose jth column contains the n

components of vector uj , the identification of vector ξ? can be made by solving

the following Quadratic Programming (QP) problem for the unknown vector of

coefficients α = {αj}
ξ? = arg min

α∈Rm

1

2
αtHα (19)

subject to

αj ≥ 0, j ∈ J1,mK,
m∑

j=1

αj = 1, (20)

where H = UtAnU. Note that if vector ξ? is unique, vector α may not be.

However, if the family of gradients is linearly-independent, which requires

in particular that m ≤ n, it is possible to choose the scalar product, through

the definition of matrix An, in such a way that the given gradients are 2 by 2

orthogonal, and of norm 1. Then the QP-formulation admits the trivial solution

ξ? =
1

m

m∑

j=1

uj (21)

To characterize matrix An, first apply a Gram-Schmidt orthogonalization pro-

cess to the vectors {uj} and get a new family of vectors, {vj}, 2 by 2 orthogonal

with respect to the standard Euclidean scalar product (vtjvk = 0, j 6= k) ; define

the following diagonal matrix

∆ = Diag
(
vtjvj

)
. (22)

Then:

An = WtW + (I−Π)2 , W =
(
UtU

)−1
UtV∆−1Vt, (23)

where Π = V∆−1Vt is the projection matrix onto subspace spanned by the

gradients [15].115

Once matrix An is defined, the descent direction (−d) is given by (8), and

a descent step can be performed by MGDA, (17).

Remark 1. In the case of a linearly-dependent family of gradients, only a

subfamily of {uj} is used in the Gram-Schmidt process. The elements of this

10
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subfamily are selected one-by-one according to a specific hierarchical principle120

which tends to make the cone associated with the hull of the subfamily as large as

possible. A new family of same rank and made of vectors two-by-two orthogonal

is thus constructed, {vj}. Then, one usually resorts to solving the QP-problem

but reformulated in this basis which permits a very stable numerical treatment

[15, 17]. The case of exception is when Pareto stationarity is detected; then, the125

algorithm is terminated. However, in any case, this methodological enhancement

is not necessary here since the number m of objective functions is less than the

dimension n of the admissible working space, and the gradients are assumed to

be linearly independent.

3. The Stochastic Multiple Gradient Descent Algorithm (SMGDA)130

Using results given in the previous section, we are going to extend the MGDA

algorithm to the stochastic context using a stochastic gradient like algorithm.

Classical probabilistic results are recalled in the first subsection. Then the

problem formulation and the SMGDA algorithm are described. In the last

subsection two convergence results are given.135

3.1. Probabilistic prerequisites

Let (Ω,A,P) be an abstract probabilistic space, andW : Ω→ Rd, ω 7→W (ω)

a given random vector. We denote µ the distribution of the random variable W

and W its image space W (Ω) ⊂ Rd. Let W1, ...,Wp, ... be independent copies

of the random variable W which will be used to generate independent random140

samples with distribution µ. We denote Fk = σ(W1, ...,Wk) the σ-algebra gen-

erated by the k first random variables Wi. Since Fk−1 ⊂ Fk the sequence

{Fk}k≥1 is a filtration denoted F .

Definition 2. A sequence (Xn) of integrable random variables is a supermartin-

gale relatively to the filtration F if Xn is Fn measurable and if and only if

E(Xn+1|Fn) ≤ Xn

11
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almost surely (a.s.) where E(Xn+1|Fn) denotes the conditional expectation of

the random variable Xn+1 respectively to the σ-algebra Fn.145

The two following classical results will be used in the convergence proof:

Lemma 3. Let B ⊂ A be two σ-algebras from probability space (Ω,A,P) and

X and Y be two independent random variables such that X is independent of

B and Y is B-measurable. We consider f , a measurable bounded function that

takes its values in R. Then



E[f(X,Y )|B] = ϕ(Y )

ϕ(y) = E[f(X, y)]

.

Theorem 2. Let (Xk)k∈N be a positive supermartingale. Then there exists a

random variable X∞ such that Xk converge toward X∞ almost surely

P
(

lim
k→∞

Xk = X∞

)
= 1.

3.2. Problem statement

Throughout the paper the standard inner product on Rn will be used and

denoted 〈·, ·〉, the norm being denoted ‖ · ‖.
Consider m functions fj : Rn×W → R, j = 1, ...,m . The problem addressed

in this paper is to solve the mean multiobjective optimization problem written

min
x∈Rn

{E[f1(x,W ),E[f2(x,W )], ...,E[fm(x,W )]} . (24)

More precisely we want to construct a set of points that belongs to the associated

Pareto set. As it is written, problem (24) is a deterministic problem but in

general the objective function expectations are not known. A classical approach

is to replace each expectancy by an estimator built using independent samples

wk of the random variable W [5, 24]. As for stochastic gradient algorithms, the

algorithm we propose does not need to calculate the mean objective functions

and is only based on the values of the stochastic functions gradients. The

classical stochastic gradient algorithm is based on a descent direction given by

the objective function gradient. Here the descent vector which will be used is

12
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the common descent vector constructed in the previous section for the MGDA

algorithm. In the stochastic context this common descent vector is random and

defined by the random convex combination

ξ?(x,W ) =
m∑

j=1

αj(x,W )∇fj(x,W ) a.s., x ∈ Rn (25)

with
∑

j

αj(x,W ) = 1 a.s. (26)

by construction.150

The flow chart of SMGDA ( Stochastic Multiple Gradient Descent Algorithm)

algorithm is described below.

Algorithm: SMGDA

input:

• An initial point X0 of the design space

• A number of iterations N

• A σ-sequence {εk}k∈N

begin

X = X0 ;

for k ∈ J1, NK do

Generate a sample wk of random variable Wk;

Evaluate the objective functions and their gradients

(Xk−1, wk) −→ (fj(Xk−1, wk),∇fj(Xk−1, wk));

Calculate the common descent vector ξ?(Xk−1, wk);

Update the current parameter values :

Xk = Xk−1 − εkξ?(Xk−1, wk) .

Remark 2. Two parameters require user adjustment: the number of iterations

for the stochastic algorithm, and the σ-sequence that define the step size.155

13
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Remark 3. No stopping criterion is proposed as it is the case for most stochas-

tic algorithms since there exists no efficient ones.

More generally we shall consider the random sequence (Xk) defined by the

recurrence relation

Xk = Xk−1 − εkξ?(Xk−1,Wk). (27)

3.3. Convergence proofs

Two types of convergences will be proved in this section, the first one being

a mean square convergence in the Hilbert space L2(Ω), the second one being160

an almost sure point-wise convergence. The two proofs are extensions of the

stochastic gradient convergence proofs and are based on classical assumptions

which can be found for instance in [19, 34].

The notation P?D (resp. P?O) will denote the Pareto solution set (resp. the

Pareto front). For any x ∈ Rn the notation x⊥ will denote an element of the

Pareto set which minimizes the distance between the point x and a point of the

Pareto set PD?

x⊥ ∈ argmin
u∈P?

D

{‖x− u‖}. (28)

The convergence results rely upon the following hypotheses.

H1 Problem (24) admits a nonempty Pareto solution set P?D.165

H2 The random variables fj(x,W ) are integrable for j = 1, ...,m and for all

x ∈ Rn.

H3 The functions x 7→ fj(x,W ) : Rn → R are convex and their derivatives

exist almost surely for j = 1, ...,m.

H4 The partial gradient of function fj with respect to x is almost surely uni-

formly bounded by a strictly positive real number Mj

‖∇fj(x,W )‖ ≤Mj a.s., x ∈ Rn.

H5 For any objective function fj , there exists a positive real number cj such

that for any x in Rn the following relation holds

fj(x,W )− fj(x⊥,W ) ≥ cj
2
‖x− x⊥‖2 a.s. ; j = 1, . . . ,m.

14
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H6 The sequence {εk}k∈N is a σ-sequence

∞∑

k=0

εk =∞

∞∑

k=0

ε2k <∞.

170

Some properties of the common descent vector ξ? will be needed further.

Proposition 1. The norm of the common descent vector ξ? is almost surely

uniformly bounded by a positive real number Mξ?

‖ξ?(x,W )‖ ≤Mξ? a.s., x ∈ Rn.

Proof. Using the definition of the common descent vector

∀(x, w) ∈ Rn ×W; ‖ξ?(x, w)‖ = ‖
m∑

j=1

αj(x, w)∇fj(x, w)‖

with 0 ≤ αj(x, w) ≤ 1 and
∑
j αj(x, w) = 1, we can write

‖ξ?(x, w)‖ ≤
m∑

j=1

‖αj(x, w)∇fj(x, w)‖ ≤
m∑

j=1

‖∇fj(x, w)‖.

Under assumption H4

‖ξ?(x, w)‖ ≤
m∑

j=1

Mj .

The mean common descent vector is defined as:

Definition 3.

Ξ?(x) = E[ξ?(x,W )] = E



m∑

j=1

αj(x,W )∇fj(x,W )




=
m∑

j=1

E [αj(x,W )∇fj(x,W )]

15
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Proposition 2. The mean common descent vector satisfies the following prop-

erty for any x in Rn

Ξ?(x)(x− x⊥) ≥ C

2
‖x− x⊥‖2

with C = min cj and where the cj are defined in H5.175

Proof. From hypothesis H3, we know that any objective function fj is almost

surely convex

∇fj(x,W )(x− x⊥) ≥ fj(x,W )− fj(x⊥,W ) a.s., x ∈ Rn.

Therefore, using assumption H5 ,

∇fj(x,W )(x− x⊥) ≥ cj
2
‖x− x⊥‖2 a.s..

Introducing the coefficients that define ξ?(x,W ), we can write

m∑

j=1

αj(x,W )∇fj(x,W )(x− x⊥) ≥
m∑

j=1

αj(x,W )
cj
2
‖x− x⊥‖2 a.s..

Let C = min
j
cj , we can write

m∑

j=1

αj(x,W )∇fj(x,W )(x− x⊥) ≥ C

2
‖x− x⊥‖2

m∑

j=1

αj(x,W ) a.s..

Since the {αj} sum up to 1 by construction

m∑

j=1

αj(x,W )∇fj(x,W )(x− x⊥) ≥ C

2
‖x− x⊥‖2 a.s..

The proof follows by taking the expectation

Ξ?(x)(x− x⊥) =

m∑

j=1

E[αj(x,W )∇fj(x,W )](x− x⊥) ≥ C

2
‖x− x⊥‖2.

Remark 4 (Weaker hypothesis H5). The approach of keeping the same hypoth-

esis as the mono-objective does not take into account the Pareto order. This

makes the hypothesis very strong, because the relation

fj(x,W )− fj(x⊥,W ) ≥ cj
2
‖x− x⊥‖2 a.s.
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is supposed true for all objectives (j = 1, ...,m). Using the Pareto dominance

approach, we can easily weaken this hypothesis. Considering that x⊥ dominates

almost surely the point x and that the inequality of hypothesis H5 is true for at

least one objective (` ∈ J1,mK), it is possible to demonstrate the same property

for the mean descent vector



∃` ∈ J1,mK, f`(x,W )− f`(x,W ) ≥ c`

2 ‖x− x⊥‖2

∀j ∈ J1,mK \ {`}, fj(x,W )− fj(x,W ) ≥ 0

a.s..

It follows immediately that

ξ?(x,W )(x− x⊥) ≥ α`(x,W )
c`
2
‖x− x⊥‖2 a.s.,

and therefore,

Ξ?(x)(x− x⊥) ≥ E[α`(x,W )]
c`
2
‖x− x⊥‖2.

3.3.1. Mean square convergence of SMGDA

We introduce the filtration (Fk)k∈N where the σ-algebras are generated by

the k first random variables of the sequence (Wn)n∈Rn

Fk = σ(W1, ...,Wk).

By construction, the random variable Xk is Fk-measurable for any k ∈ N. From

now on, we denote the common descent vector ξ?(Xk,Wk+1) by the notation

ξ?k and we use Ξ?k for the mean descent vector Ξ?(Xk).180

Lemma 4.

E
[
〈Xk −X⊥k , ξ

?
k − Ξ?k〉|Fk

]
= 0 a.s.

Proof. This results directly from Lemma 3 since the random variable Wk+1 is

independent from the σ-algebra Fk

E
[
〈Xk −X⊥k , ξ

?
k − Ξ?k〉|Fk

]
= ϕ(Xk) a.s.,

with ϕ the function defined by

∀x ∈ Rn, ϕ(x) = 〈x− x⊥,E[ξ?(x,Wk+1)]− Ξ?(x)〉.
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The conclusion follows from the definition of the mean descent vector

Ξ?(x) = EWk+1
[ξ?(x,Wk+1)].

Theorem 3. The sequence of random variables X0,X1, ...,Xn constructed us-

ing the SMGDA algorithm converges in mean square towards a point X⊥ of the

Pareto set P?D

lim
k→+∞

E[‖Xk −X⊥k ‖2] = 0.

Proof. Let L⊥k denote the square distance between Xk and one of its closest

point in P?D : X⊥k

L⊥k = ‖Xk −X⊥k ‖2.

As X⊥k+1 is one of the closest point of P?D to Xk+1, we have

L⊥k+1 ≤ ‖Xk+1 −X⊥k ‖2.

We now introduce the recurrence relation which describes the SMGDA algorithm

∀k ∈ N, Xk+1 = Xk − εkξ?k

into the latest relation

L⊥k+1 ≤ ‖Xk − εkξ?k −X⊥k ‖2

≤ L⊥k + ε2k‖ξ?k‖2 − 2εk〈Xk −X⊥k , ξ
?
k〉.

Adding the null term

〈Xk −X⊥k ,Ξ
?
k − Ξ?k〉

to the right hand side of the last relation

L⊥k+1 ≤ L⊥k + ε2k‖ξ?k‖2 − 2εk〈Xk −X⊥k , ξ
?
k − Ξ?k + Ξ?k〉. (29)

Using the results of Propositions 1 and 2, we obtain

L⊥k+1 ≤ L⊥k (1− εkC) + ε2kM
2
ξ? − 2εk〈Xk −X⊥k , ξ

?
k − Ξ?k〉.
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We then take the conditional expectation of the expression with respect to the

element Fk of the filtration (F)

E[L⊥k+1|Fk] ≤ E[L⊥k (1− εkC) + ε2kM
2
ξ? − 2εk〈Xk −X⊥k , ξ

?
k − Ξ?k〉|Fk].

Since the random variable Xk is Fk-measurable, we can write

E[L⊥k+1|Fk] ≤ L⊥k (1− εkC) + ε2kM
2
ξ − 2εkE[〈Xk −X⊥k , ξ

?
k − Ξ?k〉|Fk].

Introducing the result of Lemma 4 yields the following relation

E[L⊥k+1|Fk] ≤ L⊥k (1− εkC) + ε2kM
2
ξ? .

Since E[E[L⊥k+1|Fk] ] = E[L⊥k+1],

E[L⊥k+1] ≤ E[L⊥k ](1− εkC) + ε2kM
2
ξ? .

Considering the above relation for N consecutive terms, we have

E[L⊥k+1+N ] ≤ E[L⊥k ]
k+N∏

`=k

(1− Cε`) +
k+N∑

`=k

ε2`M
2
ξ? . (30)

The proof of the convergence follows from the fact that the two sequences
k+N∑

`=k

ε2`M
2
ξ? and

k+N∏

`=k

(1− Cε`) converge towards 0, the first one because (εk)k∈N

is a σ-sequence, the second one because of the convergence of its logarithm

image. Finally we have proved that

lim
N→∞

(
E[L⊥k+1+N ]

)
= 0

which proves the mean square convergence theorem.185

A convergence speed result is also available for the mean square convergence.

Theorem 4. Let X0 be an initial design point for the stochastic optimization

problem. If the following σ-sequence is used in the algorithm

εk =
1

kC/2 +
M2
ξ

E[L⊥0 ]C/2

,
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then

E[L⊥k ] ≤ 1

(C/2)2

M2
ξ

k +
1

E[L⊥0 ]

.

The proof of this convergence speed is exactly the same as the one given in

[19] for mono-objective problems and will not be recalled here.

Remark 5. It can be seen that the convergence speed depends on the chosen190

σ-sequence.

3.3.2. Almost sure convergence of SMGDA

Theorem 5. The sequence of random variables X0,X1, ...,Xn constructed us-

ing the SMGDA algorithm converges almost surely towards a point X⊥ of the

Pareto set P?D
P
({

lim
k→∞

(Xk −X⊥k ) = 0

})
= 1.

Proof. Let (Yk)k∈N be the random sequence defined by

Yk = ‖Xk −X⊥k ‖2 +M2
ξ?

∑

`≥k
ε2` .

Using the inequality (29), we can write

Yk+1 ≤ ‖Xk −X⊥k ‖2 + ε2kM
2
ξ? +

∑

`≥k+1

ε2`M
2
ξ? − 2εk〈Xk −X⊥k , ξ

?
k − Ξ?k + Ξ?k〉.

Proposition 2 allows us to bound from above by 0 the last term of this relation

−2εk〈Xk −X⊥k ,Ξ
?
k〉 ≤ −εkC‖Xk −X⊥k ‖2 ≤ 0,

which leads to the following inequation

Yk+1 ≤ ‖Xk −X⊥k ‖2 + ε2kM
2
ξ? +

∑

`≥k+1

ε2`M
2
ξ? − 2εk〈Xk −X⊥k , ξ

?
k − Ξ?k〉.

Taking the conditional expectation of Yk+1 with respect to the σ-algebra Fk,

we obtain

E[Yk+1|Fk] ≤ E[Yk|Fk]− 2εkE[〈Xk −X⊥k , ξ
?
k − Ξ?k〉|Fk].
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Knowing that Yk is Fk-mesurable and using the Lemma 4 we finally obtain the

following expression

E[Yk+1|Fk] ≤ Yk.

The random process (Yk)k∈N is a supermartingale which is obviously positive.

Therefore, using Theorem 2, the random process (Yk)k∈N converges almost

surely toward a random variable Y∞. Using Fatou’s lemma, we can now bound

the random variable Y∞ by the following expression

0 ≤ E[ lim
k→∞

(
inf
`≥k

Y`

)
] = E[Y∞] ≤ lim

k→∞

(
inf
`≥k

E[Y`]

)

≤ lim
k→∞


E[L⊥k ] +

∑

`≥k
ε2`M

2
ξ?


.

The mean square convergence and the fact that the second term is the remainder

of the 2nd order series of (εk) allow us to deduce that

E[Y∞] = 0.

Knowing that (Yk) is a positive random process implies that Y∞ = 0 almost

surely

P
(

lim
k→∞

Yk = 0

)
= 1.

4. Illustrations

The efficiency and the reliability of the method is assessed by comparing

the solution obtained by SMGDA and by two other solvers : NSGA-II [10],

and DMS [8] on several classical deterministic benchmark problems described

in [27]. The problems are chosen in order to present different situations : con-

vex, nonconvex and discontinuous Pareto sets. Uncertainties are added to each

problem by introducing random variables into the objective functions. Since

the expectations appearing in the optimization problem described by equation
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(24) are not available, a sample average approximation approach is used for

NSGA-II and DMS in order to evaluate them:

E[f(x,W )] ≈ 1

N

N∑

i=1

f(x, wi) (31)

where wi are independent samples of the random variable W . The number N of195

samples plays a crucial role in the efficiency of the algorithm: a too small value

results in a wide confidence interval and a poor estimate of the objective func-

tion, while an excessive value results in a dramatic increase of the computational

cost. The test cases are conducted taking into account a budget based on the

maximum number of calls to the objective functions. In order to compare the200

performance of the three algorithms tested in this section, two classical indica-

tors are introduced: a performance indicator called Purity [3], which compares

the number of non-dominated points an algorithm is able to find to a reference

front built using the results of the three optimizers, and the well known Hyper-

volume indicator [2] which gives an indication on both the spreading of the front205

and its quality by calculating the sum of the hypervolumes generated between

all non-dominated points and a reference point taken in the objective space.

This last metric is illustrated in Figure 4, where the reference point is repre-

sented by the symbol , and where the hypervolume corresponds to the green

area. For both indicators the higher the score is the better the performance is.210

The tuning of NSGA-II and DMS parameters (including the number of sam-

ples used for the sample average approximation) is not straightforward and we

used an auxiliary genetic algorithm in order to find the parameter values which

maximizes the resulting Hypervolume measure for each problem. Due to the

stochastic nature of the problems the fitness considered is the mean value of the215

resulting Hypervolume measure estimated on a sample of 5 independent runs for

the same set of parameter values. The tuning optimizer is run for a population

of 20 individuals and 15 generations.

In this section we shall begin by presenting in details the MOP2 test case :

the exact formulation of the problem is written, the insertion of the uncertain-220

ties and the results of each algorithm are detailed. The results of the other
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test cases are analyzed using performance profiles which gives an indication of

performance on the overall set of problems [20].

4.1. MOP2 problem

The first test case presented is a randomized version of the MOP2 test case

[27]. It involves two non convex objective functions and fifteen design variables:

min
x∈[−4,4]15




E[f1(x,W )] = E

[
1− exp

(
−∑15

i=1(xi − 1+W1i√
15

)2
)]

E[f2(x,W )] = E
[
1− exp

(
−∑15

i=1(xi + 1+W2i√
15

)2
)]



 (32)

where {W1i}i∈{1,15} and {W2i}i∈{1,15} are thirty independent random variables225

with uniform distribution on the interval [−0.7, 0.7]. We shall denote W the

random vector (W1,i;W2,i) i ∈ {1, 15}.
The reference point considered for defining the Hypervolume indicator is the

point fref = (1.1, 1.1). As it is explained above, NSGA-II and DMS param-

eters have been optimized using a genetic algorithm in order to maximize the

Hypervolume measure calculated with fref as the reference point. Ten indepen-

dent runs of NSGA-II and DMS with the optimized parameters are generated.

The run with the highest hypervolume is the only one considered in the results.

A budget of 105 calls to the objective functions is allocated for both NSGA-

II and DMS algorithms while only 104 calls are allocated to SMGDA and they

are shared over 102 initial points. Once the three algorithms are stopped, a last

estimation of the final mean performance is done using a sample average approx-

imation with 105 samples. For this particular problem, NSGA-II parameters

are set to a population of 211 individuals over 236 generations. The crossover

probability is tuned to 92%, and the crossover index to 1.05. The mutation

index parameter has shown to have a very low influence on the Hypervolume

measure result. Thus it has not been considered in the parameter optimization

and was set to 10 in all problems. The sample average approximation uses 2

samples which is very small, but it gives the best Hypervolume measure for

the 105 allowed calls. The NSGA-II results are expected to have a low Purity

score as accuracy will be impacted by the small number of samples used for
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the expectation approximations. The number of samples for DMS was set to 45

which allows to use more than 2000 calls to the objective functions. No step size

criterion was imposed for DMS algorithm. The critical tuning of SMGDA lies

in its σ-sequence that rules the step size. For the MOP2 problem,we used the

sequence

εk =
10−1

k + 1
,

k being the algorithm iteration index.

0 0.2 0.4 0.6 0.8 1
E[f1(x,W)]

0

0.2

0.4

0.6

0.8

1

E
[f 2(x

,W
)]

SMGDA
DMS
NSGA

Figure 1: Pareto fronts given by the three solvers for the MOP2 problem

Looking at the Pareto front found by the three algorithm and illustrated on

Figure 1, SMGDA seems to give the best results: most of the solutions found230

by SMGDA are dominating the solutions provided by the other solvers. This is

confirmed by looking at the Purity metric illustrated in Figure 2a. Due to the

gradient low values of the objective functions far from the front, some points

of SMGDA have not been able to converge for the allowed budget. Analyzing

the Hypervolume metric results for this particular problem, SMGDA is able to235

give results very close to the maximum obtained by combining the solutions of

the three algorithms together which define the reference Pareto front used for
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characterizing the Purity metric.
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Solver
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ur

ity

0.8785

0.074766 0.046729

1e+04 calls
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0.41
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0.34361

0.38732

0.41744
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(b) Hypervolume measure

Figure 2: Performance indicators for MOP2 problem

In order to illustrate the impact of uncertainties on the solutions, the prob-

ability distribution of the SMGDA solutions was also built. For each converged240

design point x∗ in the Pareto set, 105 independent samples of the random func-

tions fi(x
∗,W ) have been generated, each sample yielding a Pareto front, solu-

tion of a new optimization problem. A Gaussian kernel density estimator was

then used in order to build the probability distribution of the random Pareto

front. It can be seen on Figure 3 that this distribution has two peaks located245

at each edge of the front and that it is rather widely spread out in the mid-

dle. This indicates that the uncertain parameters have a much greater impact

on the solution of the multiobjective optimization problem than on each single

objective optimization problem.
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(a) Side view (b) Top view

Figure 3: Density of probability of the Pareto front given by the SMGDA algorithm

4.2. Additional numerical tests250

The three algorithms are now compared using several other benchmark tests

described in in table 1. The last two columns give the number of total calls bud-

get during the optimization process for each algorithm tested. The number of

calls allowed for SMGDA is set to be 10 times less than for DMS and NSGA-II .

255

In this section the Pareto front is not drawn for each problem, but per-

formance profiles using Purity and Hypervolume metrics are used in order to

compare the performance of the three algorithms. The performance profiles

correspond to a cumulative distribution function that gives an indication of the

percentage of problems considered solved for a certain threshold τ of the ratio

rp,s =
tp,s

min{tp,s̄, s̄ ∈ S}

where p is an optimization problem belonging to the set P of benchmark prob-

lems addressed, s is the solver used in S = {SMGDA ,DMS ,NSGA-II } and t is

a performance indicator for which a lower score indicates a better performance.

Thus, in this section, it is actually the inverse of Purity and Hypervolume met-

rics which are used. This leads, for each solver, to the following expression of

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Problem design

variable

number

random

variable

number

SMGDA calls NSGA-II &

DMS calls

MOP2 15 30 104 105

MOP3 2 18 103 104

MOP6 2 3 103 104

ZDT{1,2,3} 30 32 5.103 5.104

JOS1 30 60 5.103 5.104

JOS2 30 32 5.103 5.104

SCH1 1 4 103 104

IM1 2 3 103 104

Table 1: Benchmark problems

the cumulative distribution function ρ(τ)

ρs(τ) =
1

|P| × |{p ∈ P, rp,s ≤ τ}|.

Thus, for each solver s, the value of ρs(1) is the number of problems for which

the performance of algorithm s is superior to the other two.

The set of problems studied covers a large range of optimization problems

with convex and non convex objective functions. Two problems with a mul-

timodal objective function are considered in this benchmark (MOP6, ZDT3 ).260

Because these two last problems have Pareto stationary points which are not

Pareto optimal, SMGDA converges to a Pareto optimal point only when the ini-

tialization permits to avoid local minima. This can be observed on Figure 4 and

shows that SMGDA should be used with care when dealing with multimodal

objectives.265

For τ equal to 1, SMGDA outperforms the other two algorithms. Regarding

the performance profiles based on the Purity metric represented on Figure 5,

SMGDA has a better performance for eight test problems and is the only algo-

rithm able to reach ρs = 1. Which means that NSGA-II and DMS have not
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Figure 4: SMGDA solutions for MOP6 problem and its Hypervolume measure

been able generate any non-dominated point on some of the addressed prob-270

lems for the allocated budget. Because SMGDA may converge towards Pareto

stationary but not optimal points, SMGDA obtains a good score using the Pu-

rity metric for all the problems except for the two multimodal test cases. But

the algorithm reach nevertheless the value of ρs = 1 for τ = 2 which means

that the performance of SMGDA in terms of Purity measure was found infe-275

rior to the best performance by a factor of 2 only. Whereas, for certain test

cases, DMS (resp. NSGA-II ) can result in a Purity score up to 10 (resp. 100)

times lower than the winning algorithm. This demonstrates the capability of

SMGDA to perform well and to give good quality results for all the benchmark

problems addressed.280

Since the parameters of both DMS and NSGA-II have been optimized specif-

ically for the Hypervolume metric, the two algorithms show a better performance

profile than the ones constructed for the Purity metric as it is illustrated in Fig-

ure 6. NSGA-II algorithm, especially, outperforms the other two algorithms for

three test problems. Even if the SMGDA performance is lower for the Hyper-285

volume metric, it is nevertheless rather efficient since the performance reaches
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Figure 5: Performance profile of the Purity indicator

ρs = 1 for a very low value of τ . For its less performing test case, SMGDA per-

formance score was only 1.031 times less than the best algorithm performance.

The performance profiles presented in this section show that SMGDA can

compete successfully with classical algorithms used for multiobjective optimiza-290

tion problems, at least for the two performance metric introduced. The numeri-

cal efficiency of SMGDA comes mainly from the fact that no estimator construc-

tion is necessary to evaluate the objective functions. Moreover the algorithm

efficiency does not depend on the number of random variables introduced in

the objective functions nor on the number of objective functions. The weakness295

of the method is the necessity to have the gradient analytic expressions, their

numerical calculation would of course increase the computation time.
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Figure 6: Performance profile of the Hypervolume indicator

5. Conclusions

In this article, we have proposed a novel algorithm for solving a stochastic

multiobjective optimization problem. It is based on two ingredients: a common300

random descent vector and an extension of the classical stochastic gradient al-

gorithm. Because the algorithm necessitates only a single iteration loop, it is

less time demanding than classical approaches based on sample averaging ap-

proximation methods. Two types of convergence have been proved based on

rather restrictive assumptions. As it is the case for stochastic gradient algo-305

rithms, no efficient stopping criterion exists. Comparisons with NSGA-II and

DMS on a set of benchmark problems have shown the very good behaviour of

the proposed method which requires much less iterations to converge than the

two other solvers tested. Compared to a genetic algorithm there is no exchange

of information between the initial points, which may a priori seem to yield a310

suboptimal decision but which renders the algorithm entirely and readily par-

allelizable: the computation time can be divided by the number of threads. Of

course the objective functions needs to be regular but the approach should be
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easily extended to nonregular objective functions considering descent direction

obtained by subgradients. We are actually working along this path.315
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