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ABSTRACT

Estimating vegetation height from PolInSAR data using
the RVoG model has motivated several studies. Most of
these propose estimators and apply them to real data to
demonstrate their potential. In previous publications on
the single-baseline system, we proposed a complementary
approach which consisted in analyzing the precision of
estimations of vegetation height that can be expected
depending on the considered model and on the available
a priori knowledge. In this paper, we develop such an
analysis for the case of a dual-baseline system.

We consider the dual-baseline configuration with a
PolInSAR set obtained with three PolSAR acquisitions, the
extinction coefficient of the volume is assumed unknown
and the level of temporal decorrelation is assumed to be
unknown. The observed high sensitivity of the vegetation
height Cramer-Rao bound (CRB) with respect to the
system parameters and the vegetation characteristics shows
that the the system optimization cannot guarantee one
meter precision for all vegetation heights, even for large
estimation windows with N = 2000 pixels. Nevertheless,
an operating regime exists for which the vegetation height
estimation precision is around 1 m for N = 200 pix-
els. This regime is obtained for a pair of wavenumbers
(0.06m−1 and 0.25m−1), for vegetation height ranging
[20, 50] m, and for polarimetric contrast between the
ground and the volume larger than 0.3. Furthermore, we
investigate the performance of a Maximum-Likelihood
estimator and compare this to the precision given by the
CRB. For the examples considered, with N = 200 pixels,
we observed convergence issues of the estimator when the
polarimetric contrast is smaller or equal to 0.3.
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I. INTRODUCTION

Worldwide biomass monitoring is essential for a bet-
ter understanding of the carbon cycle and can be per-
formed from synthetic aperture radar (SAR) measurements
[1]. Because the radar backscattered signal saturates for
high biomass depending on the radar frequency, a direct
biomass estimation from intensity data is not always
possible. An alternative approach consists in first esti-
mating forest height using polarimetric interferometric
SAR (PolInSAR) techniques [2] and then estimating the
biomass through allometric relationships [1]. Being able
to correctly retrieve the vegetation height is thus of great
importance for biomass estimation.

Different methods have been proposed in the literature
to estimate vegetation height from PolInSAR data, depend-
ing on the considered configuration and on the available a
priori knowledge. In the single-baseline (SB) PolInSAR
configuration, corresponding to the acquisition of two
PolSAR measurements, vegetation height estimators have
been successfully applied on real data at different bands
such as L and P [3], [4], [5], [6], [7]. In most cases, these
estimators are based on the Random Volume Over Ground
(RVoG) model, introduced by Treuhaft et al [8]. To build
an estimator, Tabb et al proposed to use a maximum-
likelihood based approach [9], [10], which allows one
to estimate not only vegetation and ground heights but
also polarimetric coherency matrices of the ground and of
the volume. Another estimation approach proposed in [3]
by Papathanassiou et al provides in addition a geometric
interpretation of the complex coherence observed for dif-
ferent polarization states. Afterwards, several variants of
the estimator from [3] have been developed, depending
on the considered model and on the available a priori
knowledge. Initially in [3], [4], the authors proposed to
estimate vegetation height and extinction coefficient, under
the assumption that, at L-band, the effective ground-to-
volume ratio is equal to zero for one polarimetric channel
in order to solve the ambiguity problem encountered for
this kind of SB approaches with such a model [11], [12].
Alternatively, at P-band, when the ground has a significant
contribution for all polarizations, SB height estimation
is performed in [6], [13], assuming that the extinction
coefficient is known a priori.

Furthermore, it has been shown in [12], [14] that the
temporal decorrelation phenomenon, which often occurs
in the repeat-pass scenario, can have a significant influence
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on the height retrieval and thus should be taken into
account. In [5], the RVoG model with volume temporal
decorrelation (called RVoG+VTD) has been introduced
and allows the estimation of the vegetation height and
of a temporal decorrelation coefficient in SB, assuming
not only a negligible ground-to-volume ratio, but also an
a priori known extinction coefficient [15]. More recently,
another alternative to address temporal decorrelation has
been proposed based on a Random Motion over Ground
(RMoG) model [16], [7]. In these articles, Lavalle et al,
generalizing the works of Zebker and Villasenor [17],
consider unstable scatterers located at the ground layer
as well as in the volume layer, with a motion variance
changing along the vertical axis. In [7], the authors use an
objective function with five observations of the temporal
and volumetric complex coherence, to inverse in SB the
vegetation height, the extinction coefficient and the motion
standard deviations of ground and canopy elements from
real airborne SAR data at L-band. In [18], Lei et al
combine the RMoG model with the effects of dielectric
changes for large temporal baselines and provide a sim-
plified height inversion procedure from SB HV-polarized
InSAR correlation magnitude data, giving an alternative
approach when full-polarization data are not available.

To complement these single-baseline approaches, dual-
baseline (DB) configurations have also been considered
[19], [20], [21], [22], [23], [24]. In [19] and [20], the
introduction of a second spatial baseline allows the de-
velopment of two DB methods under the RVoG model
(respectively a geometrical one and a formal one with
norm minimization) using at least four complex coherence
observations (i.e. considering at least two polarization
channels per baseline) for vegetation height and extinction
coefficient estimation, without the zero ground-to-volume
ratio hypothesis applied in SB [4]. Moreover, in [22] and
in [23], two DB inversion approaches (respectively a geo-
metrical one and a formal one with vectorial criterion min-
imization), developed under the RVoG+VTD model and
also based on complex coherence observations, enable the
simultaneous estimation of vegetation height, extinction
coefficient and two volume temporal decorrelation factors,
but this time conserving a zero ground-to-volume ratio
hypothesis. In [24], a DB inversion approach, developed
under the RMoG model and using six complex coherence
observations provided by the three available spatial base-
lines, enables to simultaneously estimate vegetation height,
extinction coefficient and six temporal decorrelation pa-
rameters.

Finally, multi-baseline (MB) approaches with larger
number of acquisitions have also been considered. In
[25], several forest characteristics (including in particular
a temporal decorrelation parameter for each baseline) are
retrieved from MB PolInSAR data by a joint exploitation
of polarimetric and interferometric diversities. In [26], two
temporal decorrelation coefficients relative to the ground
and volume layers are quantified and their impacts on
MB PolInSAR vegetation height estimation are studied.
Moreover, in [27] and [28], MB InSAR coherence and

phase observations are used for the retrieval of vertical
vegetation density profiles. Eventually, MB InSAR or
PolInSAR data have been also widely analyzed to develop
tomographic techniques [29], [30], [31], [32], [33], [34],
requiring usually at least six PolSAR measurements.

Most of these analysis focus on proposing estimation
algorithms which are applied to real data to demonstrate
their potential, using in situ measurements or LIDAR mea-
surements as ground truth. In this paper, as in the recent
studies in [35], [36], [37], we propose a complementary
approach which consists in analyzing the precision of
vegetation height estimation depending on the considered
model and on the available a priori knowledge. More
precisely, we explore the amount of information present
in the data based on the Cramer-Rao bound (CRB) as a
function of the system configuration and as a function of
some vegetation characteristics. In particular, we analyse
the sensitivity of the CRB with respect to the vertical
wavenumbers, the vegetation height, the extinction coeffi-
cient, the volume coherence and the polarization properties
of the volume and of the ground. The CRB is a bound on
the variance of unbiased estimators [38] for a given model
and a priori knowledge. It is often used as a reference
for precision. It does not depend on the choice of the
considered estimator. In [35], it has been shown that the
CRB of the vegetation height can be very high in SB,
and thus that the corresponding precision on the vegetation
height can be very poor, but in [36] it has also been shown
that some a priori knowledge can allow the precision to be
improved significantly. More recently in [37], it has been
shown that the CRB of the vegetation height depends only
on four unknown parameters, which allows one to identify
the contrast parameters which influence the precision of
the considered estimation problem.

In this paper, we apply this methodology based on
the CRB to the dual-baseline configuration to explore
whether adding a third PolSAR image allows one to
estimate accurately the vegetation height when extinction
coefficient and temporal coherence are unknown. Further-
more, we investigate whether a maximum-likelihood (ML)
estimator can reach the precision given by the CRB. Thus,
we consider a DB PolInSAR model, which takes into
account temporal decorrelation of the volume, based on the
RVoG+VTD model [5], with unconstrained polarimetric
coherency matrices.

We show via simulations that, the precision described
by the vegetation height CRB is sensitive not only to sys-
tem configuration (vertical wavenumbers), but also to the
vegetation characteristics (in particular vegetation height
and polarimetric properties). Thus, optimizing the system
to obtain a one meter precision on vegetation height esti-
mation for all vegetations seems impossible. However, we
show an operating regime exists for which the vegetation
height estimation precision is around 1 m for N = 200
pixels and for vegetation heights between 20 and 50 m,
which corresponds to a large percentage of the higher
biomass forest. Section II details the model, the CRB
computation and the implemented maximum likelihood
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(ML) estimator. Then, the evolutions of the vegetation
height CRB as a function of the system configuration and
of the vegetation characteristics are analyzed in section III.
Finally, in section IV, the main conclusions of the paper
are drawn and some perspectives are considered.

II. CRAMER-RAO BOUND AND
MAXIMUM-LIKELIHOOD BASED ESTIMATOR WITH THE
DUAL-BASELINE CONFIGURATION AND RVOG MODEL

A. Dual-baseline RVoG model

For each pixel of a DB PolInSAR image, a 9D complex
valued vector k is defined as the concatenation of three
PolSAR measurements ui by k = [uT1 , u

T
2 , u

T
3 ]
T , where

ui can be written in the Pauli basis as ui = 1√
2
[SHHi +

SV Vi , SHHi − SV Vi , 2SHVi ]T and where SY Xi denotes the
complex scattering amplitude measured at antenna i for
a given X emitting polarization state and a given Y
receiving polarization state. Introducing T ij = 〈uiu†j〉,
where 〈.〉 is the statistical expectation operator, the 9× 9
covariance matrix of k has the following form:

Υ = 〈k (k)†〉 =



T 11 T 12 T 13

T †12 T 22 T 23

T †13 T †23 T 33


 . (1)

where (T ij)(i,j)∈{1,2,3}2 are 3× 3 matrices.
We assume that the vegetation can be described by

a homogeneous Random Volume over Ground (RVoG)
model [8] with temporal decorrelation in the volume layer
similarly to [5]. Thus, introducing ρij as the temporal
correlation coefficient (equivalently (1− ρij) is called the
temporal decorrelation coefficient [5]) between antenna i
and antenna j (where ρii = 1 ∀i ∈ {1, 2, 3}), kzij as
the vertical sensitivity (or vertical wavenumber) between
antenna i and antenna j (where kzii = 0 ∀i ∈ {1, 2, 3}),
and T vol and T gro as respectively the polarimetric co-
herency matrices associated with volume and ground, for
(i, j) ∈ {1, 2, 3}2, the matrix T ij can be written:

T ij = ejk
z
ijzij (ρijIijT vol + aT gro) . (2)

Note that with this model, the coherency matrices T vol
and T gro do not depend on the baseline ij. Moreover, in
Eq. (2), Iij and a are defined by:

Iij =
e
jkzijhv−e−αhv

jkzij+α
, a = e−αhv with α = 2σv/ cosβ,

(3)
where σv is the polarization-independent and vertically
constant extinction coefficient of the volume, hv is the
vegetation height and β is the incident angle of the radar
[4]. Note that in Eq. (2), the ground height parameter
zij depends on the indices (i, j). Obviously, the true
ground height does not depend on the interferometric
indices (i, j). However, due to phase calibration issues,
the interferometric phase associated with the indices (i, j)
may introduce an error in the measured ground height
[39], [40]. As a result, knowledge on the SB ground phase
cannot be used as input information for another pair as it
can be affected by this phase bias. To take into account this

uncertainty, we introduce a ground height zij that depends
on the interferometric pair.

In the considered model, the system parameters β and(
kzij
)
{(i,j)=(1,2),(2,3),(1,3)} are known from the experimen-

tal setup, while the other parameters are unknown and have
to be estimated in an homogeneous region where measure-
ments are identically distributed. Moreover, introducing
the interferometric ground phase φij = kzijzij , it can be
shown [41] that kz13 = kz12 + kz23 and φ13 = φ12 + φ23,
thus

z13 = 1
kz13

(kz12z12 + kz23z23) , (4)

which means that the number of unknown ground heights
(or similarly ground phases) can be reduced to two.
In this paper, we generate data for which numerical values
of parameters verify the particular case:

z12 = z23 and ρij = ρ for i 6= j. (5)

We make this assumption to be able to compare the
estimation precisions as a function of different a priori
knowledges: situations for which estimations are obtained
using the knowledge of both equations in Eq. (5), but also
when it is not the case. In particular, when the estimator
does not use this a priori knowledge, it may estimate three
temporal coherences and two ground heights. The four
considered situations correspond to different vectors of
unknown parameters:

θ22 = {(tvol,k)k=1,..,9 , (tgro,k)k=1,..,9 , z12, hv, σv, ρ}
with z12 = z23 and ρij = ρ for i 6= j,

θ23 = {(tvol,k)k=1,..,9 , (tgro,k)k=1,..,9 , z12, z23, hv, σv, ρ}
with ρij = ρ for i 6= j,

θ24 = {(tvol,k)k=1,..,9 , (tgro,k)k=1,..,9 , z12, hv, σv,

ρ12, ρ23, ρ13} with z12 = z23,
θ25 = {(tvol,k)k=1,..,9 , (tgro,k)k=1,..,9 , z12, z23, hv,

σv, ρ12, ρ23, ρ13},
(6)

where the index n on θn indicates the number of unknown
parameters and (tm,k)k=1,..,9 denote the 9 unknown real
coefficients which parameterize the matrix Tm for m ∈
{vol, gro}. Note that it is possible to use symmetry prop-
erties to constrain the matrices T vol and T gro, and thus
decrease the number of unknown parameters. However,
such a priori knowledge is not useful in single-baseline
[36] to improve the vegetation height estimation, and
seldom used in practice [4]. Thus, we choose not to use
any assumption on T vol and T gro.

B. CRB computation

It has been shown in [35] that the CRB can be use-
ful to characterize the estimation precision in the SB
PolInSAR configuration. This paragraph summarizes the
CRB properties previously presented in [35]. Consider a
set χ = {k1,k2, ...,kN} of N measurements of a DB
PolInSAR image. Assume that the vector of unknown
parameters is θ = {(θp)p=1,...,K} (it can be θ22, θ23, θ24
or θ25 but we removed the index to simplify notations)
and consider an estimator θ̂p(χ) of the parameter θp. The
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mean and variance of θ̂p(χ) are respectively denoted by
µθp and σ2

θp
. The precision of an unbiased estimator (i.e.

for which µθp = θp) can be described by its variance
σ2
θp

. However, before looking for an estimator θ̂p(χ), it
can be interesting to analyze CRBN [θp] (i.e. the CRB
of θp for a sample of size N ), because it provides a
lower bound on the variance σ2

θp
of unbiased estimators

(i.e. σ2
θp
≥ CRBN [θp]). As explained in [38], CRBN [θp]

is defined as the element (p, p) of the inverse of the
Fisher information matrix IN (θ), which is defined by
[IN (θ)](p,q)∈{1, ..., 23}2 = −〈(∂2/∂θp∂θq) logP (χ|θ)〉,
where P (χ|θ) is the probability density function of ob-
serving χ when the parameter is θ. In this paper, measure-
ments kn are assumed to be statistically independent and
identically distributed with a zero mean complex circular
Gaussian with covariance matrix Υ, which means that :

P (χ|θ) = 1

π9N det(Υ)N
exp(−N tr(Υ−1Υ̂)) (7)

where tr is the trace, det is the determinant, Υ̂ =
1
N

∑N
n=1 knkn

† is the empirical covariance matrix ob-
tained from the measurements and Υ is the covariance
matrix parameterized by the vector of unknown parameters
θ. In which case, the element (p, q) of the matrix IN (θ)
can be written [42] as

[IN (θ)]p,q = N tr
(
Υ−1

∂Υ

∂θp
Υ−1

∂Υ

∂θq

)
, (8)

The expressions of the partial derivatives ∂Υ
∂θp

required to
calculate CRBN [θp] are straightforward generalizations of
those described in [35] and thus are not detailed in this
paper.

Since the CRB only gives a bound of the variance of
unbiased estimator, it is also important to check whether
the bound is reached by an estimator. For this purpose, an
iterative maximum-likelihood based estimator is proposed.
The implementation of this estimator is detailed in the next
section.

C. Implemented maximum-likelihood estimator

When the precision of vegetation height estimation in
single-baseline was analyzed in [35], the Cloude et al’s
estimator proposed in [4] was observed to be an efficient
estimator, which means that it is unbiased and its variance
is equal to the CRB, when the sample size N is sufficiently
high. In this paper, a maximum-likelihood estimator is
used in dual-baseline to provide a simple criterion taking
into account all the available baselines. The maximum-
likelihood estimator, previously used in [10] in single-
baseline PolInSAR configuration, is a standard algorithm
which can be used in most of estimation problems (see
[38] for a didactic tutorial).

In the PolInSAR literature [4], [11], [26], [24], [7], most
of the estimators are based on the parametrization of co-
herence γij(w) =

w†T ijw√
w†T iiw

√
w†T jjw

for different pairs

of polarizations described by the vectorw. The maximum-

likelihood estimator is based on the minimization of the
opposite of the log-likelihood:

J(θ) = N ln (det(Υ)) +N tr
(
Υ−1Υ̂

)
, (9)

where the covariance matrix Υ is parameterized by the
vector θ as previously described. The minimization of the
function J(θ) allows one to estimate the unknown vector
θ. In this paper, the optimization is performed with the
Fisher’s scoring algorithm [38], which is based on the
recursive scheme:

θ̂n+1 = θ̂n + pndn
with dn = − (IN (θ̂n))

−1 ∇θJ(θ̂n),
(10)

where, at iteration n, the vector θ̂n is an estimation of
the vector θ, the scalar pn is the step (herein chosen
equal to 0.1), and the vector ∇θJ denotes the gradient
of J(θ). The pth component of ∇θJ is equal to ∂J(θ)

∂θp
=

N
(

tr
(
Υ−1 ∂Υ∂θp

)
− tr

(
Υ−1 ∂Υ∂θpΥ

−1Υ̂
))

[42]. In such
an iterative procedure, it is often crucial to initialize it
with a vector θ̂0 not too far from the global minima
of J(θ) because of the presence of local minima. A
possible initialization procedure (i.e. estimation of θ̂0),
which relies on single-baseline approaches, is presented in
appendix A and in appendix B when one estimates only
one coherence ρ (i.e. one uses the a priori knowledge that
ρij = ρ for i 6= j). It is shown in the next section III-A
that the CRB of the vegetation height are so large with
three unknown coherences that it appeared unnecessary to
implement an estimator in this case. Furthermore, with the
scoring algorithm, it can also be important to regularize the
inversion of the matrix IN (θ̂n) in Eq. (10) with a pseudo-
inverse [43] (in our implementation, the limit is when the
ratio between the largest and the smallest singular value
is higher than 1016).

Another issue is to decide when the optimization should
stop. With the proposed implementation, there are 3 situa-
tions which stop the recursive scheme. The iteration stops
when the quantity 1

N |J(θ̂n) − J(θ̂n−1)| is inferior to a
given value (chosen equal to 10−6 in this paper), or when
the number of iterations nmax = 1000 is reached, or when
the optimization algorithm is providing parameter values
leading to a non-defined criterion value J(θ̂n). This last
situation usually occurs because the estimated covariance
matrix T̂ vol or T̂ gro has negative eigenvalues. In this
case, the estimator is considered to fail. In addition, if
the obtained value ĥv is with an error |ĥv − hv| larger
than 6 m, then the estimator is also considered to fail.
This arbitrary value of 6 m allows us to define outliers
(i.e. bad estimates), whose proportion is analyzed in the
simulation section with the so-called estimated “success
rate”.

D. Simulated RVoG model parameters

A straightforward adaptation of the result obtained in
[37] for the single-baseline case, to the dual-baseline con-
figuration shows that the CRB of the vegetation height and
the variance of the maximum likelihood estimator depends
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on the form of T vol and T gro only through the 3 eigen-
values of T−1volT gro denoted λn (with λ1 > λ2 > λ3). In
other words all datasets for which T−1volT gro are equal to
(λn)n=1,2,3 (with identical values for hv , σv , ρ, ...) have
the same vegetation height estimation precision. Thus, in
the simulations of this paper, we generated synthetic data
with

T vol =




1 0 0
0 1 0
0 0 1


 T gro =




λ1 0 0
0 λ2 0
0 0 λ3




(11)
Furthermore, the adaptation of [37] in dual-baseline also
shows that the vegetation height estimation precision does
not depend on the values of z12 and z23 (even in the
situation with z12 6= z23). Thus, in the simulations of this
paper, we generated synthetic data with

z12 = z23 = 1 m (12)

The parameters that influence the precision of vegeta-
tion height estimation are β, kz12, kz23, hv , σv , ρ and
(λn)n=1,2,3. Exploring the whole space of dimension 9 is
not possible. In section III, first, the variation of the CRB
of hv as a function of kz12, kz23 is analyzed, to discuss the
potential optimization of the system. Next, the variation
of the CRB of hv is analyzed as a function of hv , σv ,
ρ, A = (λ1 − λ3)/(λ1 + λ3) and E = λ1 + λ2 + λ3.
As explained in [37], the parameter A is related to the
difference between the polarimetric properties of T vol and
those of T gro. On the one hand, A = 0 implies that T vol
and T gro are proportional and coherence γij(w) are inde-
pendent ofw. On the other hand, A = 1 implies that a pair
of polarization exists, described by a vector w, for which
the ground response contribution is null (i.e. for which
γij(w) = ejk

z
ijzij ρijIij√

IiiIjj
). The parameter E is related

to the ground-to-volume power ratio between the wave
backscattered by the ground and the one backscattered by
the volume.

The relation between (λn)n=1,2,3 and A, E , X is given
by

λ1 = E(1 +A)/(3−A+ 2AX )
λ2 = E(1−A+ 2AX )/(3−A+ 2AX )
λ3 = E(1−A)/(3−A+ 2AX )

(13)

where X = (λ2 − λ3)/(λ1 − λ3).

III. PRECISION ANALYSIS

A. Evolution of the CRB as a function of the system
configuration

Figure 1 shows the evolution of the CRB of hv as a
function of the system configuration for different a priori
knowledge (see Eq. (6)) and for N = 200 pixels. For
all considered a priori knowledge, when kz12 = 2πn/hv
and kz23 = 2πm/hv with (n,m) a pair of strictly pos-
itive integers, the precision described by CRB

1/2
N (hv)

becomes larger than 10 m (these particular values are
denoted by white dashed lines in Figure 1(a-d)). Thus,
for these values, it is impossible to have an accurate

estimation of hv . In the rest of the space (kz12, k
z
23), the

value of CRB1/2
N (hv) remains larger than 6 m in most

cases where 3 temporal coherences are estimated (see (a)
and (b)). Nevertheless, the value of CRB1/2

N (hv) often
lies below 2 m when one estimates only one temporal
coherence (see (c) and (d)). When the vegetation height
hv varies in the interval [10 m, 50 m], similar images will
be obtained and the patterns centered at kz12 = 2πn/hv
and kz23 = 2πm/hv will partly fill the space (kz12, k

z
23).

Thus, it seems impossible to estimate the vegetation height
accurately when 3 temporal coherences are unknown. For
the rest of the paper, we thus focus on situations (c) and
(d), for which only one temporal coherence ρ is estimated.
Moreover, based on Figure 1, we choose kz12 = 0.06 m−1

and kz23 = 0.25 m−1 so that the CRB of hv remains small
for hv ∈ [10, 50] m.

Furthermore, figure 1 (c) and (d) show that knowing a
priori that z12 = z23 can also allow the reduction of the
CRB of hv compared to the case where this a priori is
unknown. In the following, we continue to compare these
two cases. In the next paragraph, the proposed maximum
likelihood estimator is thus analyzed in both scenarios
where θ22 or θ23 are estimated.

B. Evolution of the CRB and of the proposed estimator
performances as a function of hv and A

This section presents an analysis of the performances of
the estimators obtained with Monte-Carlo simulations. For
each example considered, P = 200 realisations of the sam-
ple χ(p) = {k(p)1 ,k

(p)
2 , ...,k

(p)
N } (with p ∈ {1, 2, ..., P})

have been generated according to the considered model
(see Eqs. (1) and (2)) assuming a Gaussian circular
distribution. Then, the empirical root mean square errors

(RMSE) r̂mse2ĥv = 1
P

∑
p

(
ĥv(χ

(p))− hv
)2

are com-
puted. One also could have analyzed bias and variance
separately, but we preferred to add these two sources of
error and concentrate on the presence of outliers with the
analysis of the percentage of success of the estimator. The
size of sliding windows in PolInSAR images is usually
around 200 pixels, we choose to analyze the performances
for N = 200 and N = 2000 pixels. Furthermore, the
iterative estimator performance are analyzed for two cases:
• When the initial estimation θ̂0 is obtained with the

algorithm presented in Appendix A.
• When the initial estimation θ̂0 is fixed to the true

vector θ.
Obviously this second initialization cannot be used with
real data. The purpose is to analyze the performance of the
estimator when the iterative estimator is initialized near the
solution and thus is less sensitive to local maxima.

The results of the Monte Carlo simulation presented in
Figure 2 (a) and (b) show that the percentage of success
is always close to 100% when the initialization is at
the solution, but it is not the case with the initialization
proposed in Appendix A. When A = 0.3 (i.e. small
polarization contrast) and hv = 28 m, these pourcentages
are around 60% for both estimator (a) and (b).
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Fig. 1: Evolution of the vegetation height CRB as a function of kz12, kz23 for N = 200 pixels, A = 0.3, E = 800 m−1,
X = 0.2, β = 35◦, σv = 0.023 m−1, ρ = 0.8 and hv = 25 m. (a) CRB1/2

N (hv) for θ25 (i.e. 3 estimated temporal
coherences and 2 estimated ground heights). (b) CRB1/2

N (hv) for θ24 (i.e. 3 estimated temporal coherences and 1
estimated ground height). (c) CRB1/2

N (hv) for θ23 (i.e. 1 estimated temporal coherence and 2 estimated ground heights).
(d) CRB1/2

N (hv) for θ22 (i.e. 1 estimated temporal coherence and 1 estimated ground height).

Furthermore, Figure 2 (c) and (d) show that
CRB

1/2
N (hv) varies a lot with hv , and in particular

that CRB1/2
N (hv) increases when the vegetation height

is smaller than 15 m. Thus, the chosen pair of vertical
wavenumber is not adequate for small vegetations. More-
over, a comparison between Figure 2 (c) and (d) shows
that CRB1/2

N (hv) can be bigger when two ground heights
are unknown instead of one. For A = 0.3 and hv = 30 m,
the CRB1/2

N (hv) increases from 0.7 m (in d) to 2 m (in c).
It seems that the influence of the polarimetric contrast A
on CRB1/2(hv) remains modest when only one ground
height is unknown, whereas it is not the case when two
ground heights are unknown.

Figure 2 (c) and (d) also show that the root mean
square error (RMSE) computed with estimations with an
error smaller than 6 m are close to the precision given
by CRB1/2(hv), especially for large values of A. Thus,
the main issue of the estimator is the amount of outliers

described by the pourcentage of success. These results are
confirmed by Figure 3, where simular observations are
obtained for A = 0.1 and A = 0.6.

The problem that occur for A = 0.1 with the initial-
ization proposed in Appendix A (see the pourcentage of
success smaller than 60% in Figure 3(a) and (b)) probably
comes from the inaccuracy of single-baseline estimations
[37]. In such situations, one alternative is to increase the
number of pixels. Figure 4 shows that when N = 2000, the
pourcentage of success increases compared to the situation
with N = 200. However, this supposes one can consider
large homogeneous region of vegetation in the considered
image.

To summarize, the precision given by the CRB is
encouraging, but the proposed estimators may not be
efficient when A is too small. Finding some optimization
algorithms to obtain a better estimator is a motivating
perspective. Another solution is to increase the window



7

10 20 30 40 50 60
10

-1

10
0

10
1

10 20 30 40 50 60
10

-1

10
0

10
1

10 20 30 40 50 60

20

40

60

80

100

10 20 30 40 50 60

20

40

60

80

100

hv [m]hv [m]

A = 0.3

A = 0.9 A = 0.9

A = 0.3

A = 0.3A = 0.9

hv [m]hv [m]

%

A = 0.3

A = 0.9

%

CRB
1/2
N (hv), rmse(ĥv) [m] CRB
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Root mean square errors (RMSE) are computed with estimations for which the error is smaller than 6 m. Straight lines
are CRB1/2

N (hv), the sign + stands for estimations obtained with the scoring algorithm when the initial estimations
θ̂0 are given by the algorithm described in appendix A, and circle o stands for the one obtained when θ̂0 is fixed
to the true value. Large + and o are obtained for A = 0.9 and small ones for A = 0.3. The other parameters are:
kz12 = 0.06 m−1, kz23 = 0.25 m−1, N = 200 pixels, E = 800 m−1, X = 0.2, β = 35◦, σv = 0.023 m−1 and ρ = 0.8.
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(a) (b)

(c) (d)

A = 0.1

A = 0.6

A = 0.1

A = 0.6

A = 0.6

A = 0.1

CRB
1/2
N (hv), rmse(ĥv) [m]
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size, however this solution can lead to inhomogeneous
samples. Thus, the analysis of the estimator performance
in presence of inhomogeneities should be explored to
analyze the bias induced by these inhomogeneities. These
two aspects are not in the scope of this paper but open
challenging perspectives. In the following, we choose
A = 0.3 and investigate the influence of other vegetation
parameters on CRB1/2(hv).

C. Influence of other vegetation parameters

In this paper, we propose a methodology to analyze
the precision that can be expected on the vegetation
height estimation with dual-baseline configuration and
with RVoG model without knowing a priori the extinction
coefficient σv and in presence of an unknown temporal
decorrelation of the volume (described herein by a single
coherence parameter ρ). The previously presented results
show that the precision described by the square root of the
CRB varies significantly as a function of hv . Investigating
the physical reasons of these variations is a major issue
that require further investigations. In the following, we
analyse the influence of different parameters on the CRB:
the parameter E , the attenuation σv and the temporal
coherence parameter ρ.

Figure 5 shows that when two ground heights are
unknown, some local maxima appear at several values of
hv . The intensity and the location of these local maxima
change with E and σv . When data are calibrated such
that z12 = z23, the importance of these local maxima
is reduced significantly. This observation is in favor of
calibrating the data phases before estimating hv .

Furthermore, an increase from E = 50 m−1 to E =
200 m−1 (i.e. an increase of the ground-to-volume power
ratio of a factor 4) make the CRB of hv decrease for
hv > 30 m, but an increase from E = 200 m−1 to
E = 2000 m−1 seems to induce some CRB increases,
especially with two unknown ground heights. This can be
interpreted as a tradeoff on the ground-to-volume energy
ratio. For the extinction coefficient σv , it seems that the
lowest CRB occurs when σv ∈ [0.023, 0.046]. When
σv = 0.069m−1, the vegetation height CRB increase
rapidly after 50 m, probably because the ground is not
visible anymore. Note that these phenomena also depend
on A and on the other parameters. For temporal coherence
ρ, the situation looks simpler. For hv ≤ 60 m, the CRB
seem to be approximately a function of 1/ρ.

IV. CONCLUSION AND FUTURE WORK

We proposed a methodology to analyze the precision on
the vegetation height estimation using the PolInSAR sys-
tem in the DB configuration with an RVoG model, where
the temporal decorrelation on the volume is unknown and
where there is no a priori knowledge on the extinction
coefficient. The influence of the system configuration and
vegetation parameters on the value of the vegetation height
CRB shows that using an RVoG model with three unknown
temporal coherences seems hazardous, since the obtained
precision on the vegetation height is usually larger than
6 m for N = 200 pixels. Even with only one unknown
temporal coherence, the precision on the vegetation height
estimation varies widely as a function of hv and the other
vegetation characteristics. For the considered simulations,
the precision varies from 0.5 to 10 m for a sample size
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Fig. 5: Evolution of the CRB with E (a and b), with σv (c and d) and with ρ (e and f). On the left (a, c and e), two
ground heights are unknown. On the right (c, d and f), one ground height is unknown. Unless otherwise specified,
parameters are kz12 = 0.06 m−1, kz23 = 0.25 m−1, N = 200 pixels, A = 0.3, E = 800 m−1, X = 0.2, β = 35◦,
σv = 0.023 m−1 and ρ = 0.8.

of 200 pixels. The observed sensitivity of the vegetation
height CRB to A, E and hv shows that the description
of the problem is complex in dual-baseline. The presented
comparison between situations where one or two ground
heights are unknown, shows that the difference of per-
formance can remain small. Thus, with phase-calibrated
data, it makes sense to use the two proposed estimators
and compare their results.

For the analyzed examples, the proposed maximum
likelihood estimators seem to be efficient for a sample
size of 200 pixels when the polarimetric contrast is larger
than 0.6, but often leads to outliers when the polari-
metric contrast is smaller than 0.3. This problem may
occur because of the initial estimations and therefore the
optimization process could be improved. The presented
simulations also show that CRBs vary drastically with
respect to the ground-to-volume power ratio (from 1 to
5 m), the extinction coefficient (from 1 to 10 m) and the
temporal coherence. An obvious perspective is to apply
the proposed maximum-likelihood (ML) estimators to real
data sets to analyze whether the considered simple model
with only one temporal coherence coefficient could be

well-suited to extract information from real data with dual-
baseline configuration. Since the ML estimator provide
estimations of all RVoG parameters, it will be possible to
analyze the estimated values of the extinction, the ground
heights, and the polarimetric coherency matrices relative
to the volume and to the ground. Simultaneously, it will
be important to analyse the potential precision of these
estimations with the CRB. Another promising perspective
is to apply the proposed methodology to other models.
In particular, one could investigate the potential of a
relatively large number of PolInSAR measurements for
biomass parameter estimation, when these are available,
to analyze whether such multi-baseline configurations can
significantly outperform single-baseline and dual-baseline
approaches.

APPENDIX

A. Estimation of θ̂0
The algorithm which allows one to get an initial es-

timation θ̂0 is summarized on Figure 6. It consists in
exploring the two-dimensional (2D) space formed by the
parameters ρ and σv . For each pair of available baseline,
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one assumed that ρ and σv are known and one uses single-
baseline approaches [4] to estimate potential values of θ.
Once the whole range of ρ and σv has been covered, the
best estimation according to the dual-baseline likelihood
criterion is retained. In the considered implementation of
this algorithm, the parameter ρ is assumed in the range
[0.1, 1] and the parameter σv is assumed in the range
[10−5 m−1, 10−1 m−1]. Because implementing a loop
with 1000 values for each parameter (ρ and σv) is time
consuming, we choose to implement 3 successive loops
with only 11 values for each parameter to accelerate the
process. The detail of these different steps follows.

loop on ρ and σv

∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)}
single-baseline estimation θ̂i,j

θ̂(ρ, σv) = argmin
i,j

J(θ̂i,j)

θ̂ = argmin
ρ,σv

J(θ̂(ρ, σv))

(ρ and σv assumed to be known)

(ρ, σv)

(
θ̂i,j

)
(i,j)∈{(1,2),(1,3),(2,3)}

(
θ̂(ρ, σv)

)
(ρ,σv)

˜˜

˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

Fig. 6: Flow chart of the initialization algorithm, which
consists in finding the best single-baseline solution with a
double loop on the unknown temporal coherence ρ and on
the extinction coefficient σv . The criterion J is the dual-
baseline likelihood (see Eq. (9))

Firstly, for each baseline ij (with (i, j) ∈
{(1, 2), (2, 3), (1, 3)}), introducing

(
T̂ ij

)
{(i,j)∈{1,2,3}2}

as the empirical covariance matrices, potential ground
heights zSBij are estimated using the single-baseline
(SB) Cloude estimator [4]. The two intersections in
the complex plane between a least square line fit
of the three eigenvalues of the contraction matrix
Π̂ij = (T̂ ii)

−1/2T̂ ij(T̂ jj)−1/2 [44] and the unit circle
provide two candidates φSBij1 and φSBij2 for the ground
phase of the baseline ij. Clearly, this first step provides
several possible estimations of the ground heights. In
particular, for θ22, there are six available solutions (2
for each pair of baseline), whereas for θ23, there are
the 8 possible ground height combinations that satisfy
equation (4). To remove this ambiguity, one estimate
θ for all potential candidates (as detailed in the next
paragraph), and finally keep the vector θ that minimize
the dual-baseline likelihood criterion J(θ) (see Eq. (9)).
This criterion is able to remove the ambiguity because it
takes into account all baselines.

Secondly, we use a 2D grid on the extinction σv and
on the temporal coherence coefficient ρ, considering 11
potential values σ̃v in the range [10−5, 10−1][m−1] and 11
potential values ρ̃ in the range [0.1, 1.0], and we compute
the criterion J(θ) for each considered pair (σ̃v, ρ̃). Indeed,
for each pair (σ̃v , ρ̃), the estimation of the intersections
between the complex function

γ̃ij(h) = ρ̃ e
jkzijh−e−α̃h
1−e−α̃h

α̃
jkzij+α̃

with α̃ = 2σ̃v/ cosβ
(14)

and the previous line fit (rotated by kzijz
SBij) provides ei-

ther zero, one or two candidate vegetation heights, denoted
by h̃ijv for each baseline ij. When this process leads to
two candidates, the ambiguity is removed by keeping the
one that minimizes the criterion J(θ). Coherency matrices
T̃
ij

vol and T̃
ij

gro are estimated as detailed in appendix B.
After parameters have been estimated for each baseline
ij, the estimation that minimizes the criterion J(θ) (see
Eq. (9)) is retained. Furthermore, once the whole 2D
grid on σv and ρ has been covered, the estimation that
minimizes the criterion J(θ) is retained.
Next, to improve the accuracy of these estimations, a finer
2D grid, containing new 11×11 pairs (σ̃v, ρ̃) but centered
on these previous estimations of (σv , ρ) is used. This
refinement of the 2D grid is applied a third and last time.

B. Estimation of T vol and T gro

This section details the estimation of the coherency ma-
trix parameters

(
t̃ijvol,k

)
k=1,...,9

and
(
t̃ijgro,k

)
k=1,...,9

from

T̂ ii, T̂ jj and T̂ ij when the parameters zSBij , h̃ijv , σ̃v and
ρ̃ are already fixed. Similarly to [9], the coherency matrix
estimation problem can be reformulated from equation (2)
and from equation (5) through the following equations:

T ii = T jj = T v + T g
T ij = ejk

z
ijzij (ργvT v + T g) if i 6= j,

(15)
where the matrices T v and T g and the ratio γv are defined
by:

T v = I1T vol with I1 = Iii =
1−e−αhv

α
T g = aT gro

γv =
Iij
I1

= e
jkzijhv−e−αhv
1−e−αhv

α
jkzij+α

.
(16)

The estimated matrices T̃
ij

vol and T̃
ij

gro can be thus de-
duced from: Â£

T̃
ij

vol = 1

Ĩ1
T̃ v with Ĩ1 = 1−e−α̃h̃

ij
v

α̃ and α̃ = 2σ̃v/ cosβ

T̃
ij

gro = 1
ã T̃ g with ã = e−α̃h̃

ij
v ,

(17)
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where the matrices T̃ v and T̃ g are determined using:

W = e−jk
z
ijz

SBij

T̂ ij
T = 1

2 (T̂ ii + T̂ jj)

A = T − 1
2 (W +W †)

γ̃v = e
jkzij h̃

ij
v −e−α̃h̃

ij
v

1−e−α̃h̃ijv
α̃

jkzij+α̃

T̃ v = A
1−<(ρ̃γ̃v)

T̃ g = T − T̃ v ,

(18)

where <(.) is the real part operator.
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