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Abstract
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a
key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a
combination of eight global biome models participating in the Inter-Sectoral Impact-Model
Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer
(MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the
spatiotemporal variability of GPP at the regional and global levels. We found the 2000–2010 total
global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr−1 (mean ± 1 standard
deviation), which was higher than MODIS (112 Pg C yr−1), and close to the MTE (120 Pg C yr−1). The
spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends
are different, and the seasonality and inter-annual variability of GPP at the regional and global levels
are not completely consistent. For the model ensemble, Tropical Latin America contributes the most
to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere
regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to
inter-annual variability of global GPP. However, we observed large uncertainties across the eight
ISIMIP2a models, which are probably due to the differences in the formulation of underlying
photosynthetic processes. The results of this study are useful in understanding the contributions of
different regions to global GPP and its spatiotemporal variability, how the model- and
observational-based GPP estimates differ from each other in time and space, and the relative strength
of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP
that are essential for understanding the inter-annual and seasonal variability of GPP as a major
component of the carbon cycle.
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1. Introduction

Terrestrial ecosystems play a critical role in the global
carbon cycle (Le Quéré et al 2016). Gross primary
productivity (GPP), the carbon uptake by terrestrial
ecosystems through plant photosynthesis, is the largest
global CO2 flux (Le Quéré et al 2016) and the major
driver of many ecosystem processes. Therefore, it is
important to understand the spatiotemporal variabil-
ity of GPP for obtaining reliable estimates of terrestrial
ecosystems capacity to serve as a major reservoir for
carbon, especially in light of continued buildup of
atmospheric carbon dioxide in the atmosphere for the
rest of this century (Ciais et al 2013).

The spatial and temporal variations of global GPP
are controlled by climate conditions, vegetation types
and their spatial distribution, the nutrient availabil-
ity, and other factors such as land-use practice that
affect the distribution and composition of ecosys-
tems (Ahlström et al 2015). Modeling studies suggest
large differences in different approaches used to obtain
estimates of global GPP (Anav et al 2013), largely con-
trolled by seasonal, decadal and longer time variability
and change in different regions, globally (Ahlström et
al 2015). Many studies have estimated GPP in key
regions of the world: for example, Lee et al (2013)
estimated GPP in Amazonia using Greenhouse gases
Observing SATellite (GOSAT) measurements; Liu et al
(2014) estimated GPP in China using five GPP models
and Moderate Resolution Imaging Spectroradiometer
(MODIS) observations; Jung et al (2008) estimated
GPP in Europe (EU) using terrestrial ecosystem mod-
els; Nightingale et al (2008) and Chen et al (2011)
estimated GPP in the USA using MODIS observations;
and Friedlingstein et al (2010) estimated GPP in the
Sahel region of Africa using ORCHIDEE model. In
spite of this large body of research, there is limited
information on the relative contributions of these
regions to the seasonal, inter-annual and longer time
variability of total global GPP.

One significant challenge is that GPP cannot be
directly measured (Ma et al 2015). The most com-
mon methods for estimating regional and global
GPP include using remote sensing data, statistical
interpolation, and process-based carbon cycle model
simulations. For example, the MODIS GPP estimate is
derived from satellite-based observations and a light-
use efficiency algorithm (Running et al 2004); the
Model Tree Ensemble GPP (MTE GPP) product is
derived fromeddycovariancefluxmeasurementsby the
global FLUXNET network and the parameterization of
the relationship between GPP and the explanatory vari-
ables (Jung et al 2011, Beer et al 2010). Generally, good
spatiotemporal correlation between site-level inferred
GPP and MODIS-based estimates as well as MTE prod-
ucts has been reported in literature (Sjöström et al2013,
Zhu et al 2016, Gebremichael and Barros 2006, Turner
et al 2006), and these products have been widely used
for analyzing spatiotemporal variation of global GPP,

and for benchmarking the process-based model esti-
mates of GPP.

With common simulation protocols, and con-
sistent input data, model intercomparison projects
(MIPs) have been launched to analyze terrestrial
ecosystem model outputs (e.g. GPP) in a system-
atic fashion, improve models’ estimates, and facilitate
model improvement. The recent Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) provides a
framework for developing and using such a common
modeling protocol by a number of models, and offer
a unique opportunity to use their simulated results to
betterunderstand the spatial, inter-annual and seasonal
variation of GPP at regional and global scales (Warsza-
wskiet al2014).Thesemodels serveasan important and
alternative way to estimate GPP variation for a range
of spatial and temporal scales, and in response to mul-
tiple environmental factors (Ahlström et al 2015, Xia
et al 2015). However, as indicated by previous MIPs,
such as the Multi-scale synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) (Huntzinger et al
2013) and TRENDY (Sitch et al 2008), the magnitude
and patterns of model-estimated GPP varies largely
across the models, indicating limited understanding of
the fundamental underlying ecological process.

In this study, we used a combination of GPP prod-
ucts from MODIS and MTE GPP, and those simulated
by eight ISIMIP Phase 2a (ISIMIP2a) terrestrial biome
models to understand the contribution of terrestrial
ecosystems to carbon cycle under the historical condi-
tions, for the 1971–2010 period. Our main objectives
were to: (1) report the ISIMIP2a model-estimated
GPP and evaluate the ISIMIP2a models’ performance
against MODIS and MTE-GPP; (2) examine the spa-
tial, inter-annual and seasonal variability of GPP at
global and regional scales; and (3) assess the relative
contribution of major regions to the global GPP.

2. Methods

2.1. Data
The MODIS GPP (MOD17) (Zhao and Running 2010)
is the first satellite-based modeled dataset for monitor-
ing vegetation productivity at the global scale. A light
use efficiency model is the core of MODIS GPP algo-
rithm (Running et al 2004). The MODIS GPP data is
available for 8 day, monthly and annual timescales at
1 km and 0.05◦ × 0.05◦ spatial resolution since 2000,
and we analyzed the data for 2000–2010 period in this
study. The MODIS GPP products were resampled to
0.5◦ × 0.5◦ resolutionby area-weighted averagingof the
values in each 10× 10 pixel window from the original
0.05◦ × 0.05◦ product.

The MTE-GPP product (Jung et al 2009, 2011)
was upscaled based on the globally distributed
FLUXNET eddy-covariance tower measurements with
a ‘Model Tree Ensembles’ machine-learning algorithm.
The MTE-GPP is currently available as a monthly
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Table 1. The major processes represented in eight ISIMIP terrestrial biome models.

Model Time

step

# of

soil

layers

N

cycle

GPP

model

Leaf

to

canopy

Phenology Phenology

cont.

Water stress

affect

Heat

stress

affect

Closed

energy

balance

Fire Reference

CARAIB Daily 1 No EK 3 leaf Dyn. Moist,

Temp

Photo, Pheno,

Heter. Resp.

Photo,

resp

Yes Yes (Dury et al

2011)
DLEM Daily 10 Yes EK 2 leaf Semi-Prog GDD Photo, C alloc,

ET,

biogeochem

Photo,

resp

No No (Tian et al

2010, 2015,

Pan et al 2014)
JULES Hourly 4 No EK 2 leaf Dyn. Temp Photo, resp No Yes No (Clark et al

2011)
LPJmL Daily 5 No EK 1 leaf Semi-Prog GDD Photo, C alloc,

ET,

biogeochem

Photo,

resp

Yes Yes (Bondeau et al

2007)

LPJ-
GUESS

Daily 2 Yes EK x leaf Dyn. Moist,

Temp

Photo, C alloc,

ET,

biogeochem

Photo,

resp

No Yes (Smith et al

2001)

ORCHIDEE Half-

hourly

11 No EK 1 leaf Prog. Moist,

Temp

Photo, pheno Pheno Yes No (Krinner et al

2005)
VEGAS Daily 2 No LUE 1 leaf Dyn. Moist,

Temp

Photo, C alloc,

ET,

biogeochem

No Yes Yes (Zeng et al

2005)

VISIT Monthly 2 No EK 1 leaf Semi-Prog GDD Photo, ET,

pheno,

biogeochem

Photo,

resp.

No Yes (Ito and

Inatomi 2011)

EK = enzyme kinetic, LUE = light use efficiency, BL = Big-Leaf model including stomatal gas exchange regulation, ET = evapotranspiration,

GDD = growing degree days, Dyn = dynamic, Semi-Prog. = semi-prognostic, Moist = moisture, Temp = temperature, Phen. = phenology,

Photo = photosynthesis, C = carbon, alloc = allocation, Prog = prognostic, x leaf = no specific leaf layers as it is a gap model with age cohorts of

different age/heights.

product at 0.5◦ × 0.5◦ resolution for 1982–2011 period,
and we used the 1982–2010 data in this study.

We used eight ISIMIP2a biome models: CARAIB,
DLEM, JULES, LPJmL, LPJ-GUESS, ORICHIDEE,
VEGAS, and VISIT from the ISIMIP Phase 2a
project. A summary of underlying processes for
these models is presented in table 1. We used the
simulated GPP from these eight models for 1971–
2010 period, all at 0.5◦ × 0.5◦ spatial resolution. We
calculated the mean GPP from the eight models
(hereafter ‘ENSEMBLE’). The models’ simulations
were performed using the common ISIMIP2a pro-
tocol, including time variant CO2 concentrations,
climate forcing, and land use change data. All mod-
els used the same climate forcing data from Global
Soil Wetness Project 3 (GSWP3). More details of
ISIMIP2a models are in the supplementary material
available at stacks.iop.org/ERL/12/105005/mmedia,
and more information about the models’ simu-
lation protocol and input data are available at
www.isimip.org/protocol/#isimip2a.

2.2. Analysis
We divided the global land area into 12 regions
(figure 1) by considering their climate, land cover
and geopolitical characteristics: Boreal North America
(BNA), Temperate North America (TNA), Tropi-
cal Latin America (TLA), Temperate South America
(TSA), Europe (EUR), Semi-arid and Arid Asia-
Europe-Africa (SAAEA), Tropical Africa (TAF), South
Africa (SA), Boreal Euro-Asia (BEA), Temperate Asia
(TEA), Tropical Asia (TA) and Oceania (OCE).

We calculated the temporal trend of GPP for the
annual global and regional GPP (area-weighted) using
linear least square regression method. F-statistic was
used to test the significance of the linear trend. GPP
anomaly was calculated as the departure of the long-
term mean of the detrended annual-GPP. The GPP
inter-annual variability (IAV) for each region and the
entire globe was calculated as the standard deviation
of the detrended annual GPP at each of these spa-
tial scales. We compared the IAV of ISIMIP2a model
estimated GPP against MODIS and MTE by calculat-
ing the Pearson’s correlation coefficient (R), with the
detrended annual GPP. For each region and the entire
globe, we calculated the mean monthly GPP to analyze
the seasonal variations, which are also compared across
ISIMIP2amodels,MODISandMTEwith thePearson’s
correlation coefficient. We also calculated each region’s
relative contribution to global GPP trend, seasonality
and IAV based on the method from Ahlström et al
(2015) (see supplementary material for details). The
Matlab R2016b was used for all statistical analysis.

3. Results

3.1. Spatial pattern of global GPP
The spatial pattern of GPP from MODIS, MTE and
ENSEMBLE generally agree well (figure 2). The highest
GPP values are in tropical regions (e.g. Amazonia, Cen-
tral Africa and Southeast Asia) because of the wet and
humid climate; and, the lowest GPP values are mainly
in the arid regions of North Africa, West Asia and South
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Figure 1. Global land regions used in this study.

(a) MODIS (b) MTE-GPP (c) Model Ensemble

(d) CARAIB (e) DLEM (f) JULES

(g) LPJ_GUESS (h) LPJmL

(j) VEGAS (k) VISIT

0 1000 2000 3000 4000

(i) ORCHIDEE

GPP (g C m-2 yr-1)

Figure 2. Annual global terrestrial ecosystems gross primary production (GPP) from MODIS (2000–2010), MTE (1982–2010) and
ISIMIP models (1971–2010).

America, as well as the cold and snow-covered regions
(e.g. Greenland), due to the unfavorable conditions
for plant photosynthesis. However, the representation
of this variability by eight models was different, with
JULESandDLEMproducingexceptionallyhighGPPin
tropical regions, especially in Amazonia and the Sahel,

while CARAIB producing high GPP in the temperate
regions.

Over the 2001–2010 period, the eight models’
estimates diverge in total global GPP, ranging
from 106 (ORCHIDEE) to 134 (VISIT) Pg C yr−1

(figure 3(a), figure S1a), with a standard deviation of
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(a) (b)

(c)

(d)

Figure 3. Global and regional annual GPP. The red, green and blue markers represent MODIS, MTE and the model ensemble mean
(ENSEMBLE), respectively. Boxplots show the distributions of the eight ISIMIP models. Horizontal lines in the boxplots from top
to bottom indicate the 95th, 75th, 50th, 25th, and 5th percentiles. (a) and (b) show the annual mean global and regional GPP; (c)
contributions to global GPP from each region; (d) annual mean GPP per unit square meters. All of the results shown in this figure are
for the period of 2000–2010. Regions abbreviations used on the x-axes are defined in figure 1.

13 Pg C yr−1. The ENSEMBLE estimate of total global
GPP is 118 Pg C yr−1, which is higher than MODIS
estimate of 112 Pg C yr−1 but lower than MTE estimate
of 120 Pg C yr−1 (figure 3(a)). Based on the ENSEM-
BLE estimates (figure 3(b)), the regional sum of GPP
in Tropical Latin America is the highest among all
12 regions (23 Pg C yr−1), followed by Southern Africa
(17 Pg C yr−1) and Temperate Asia (13 Pg C yr−1). The
top three regions together contribute about 45% to
global GPP (figure 3(c)). However, GPP estimates per
unit area are the highest in tropical regions (Tropi-
cal Africa, Tropical Asia and Tropical South America)
with > 2000 g C m−2 yr−1 (figure 3(d)). The regional
contributions to global GPP from MODIS and MTE
show similar patterns to the ISIMIP2a models based
estimates.

3.2. Trend and regional contributions
The ENSEMBLE global GPP increased from
105 Pg C yr−1 in 1971 to 118 Pg C yr−1 in 2010, with
a significant trend of 0.28 Pg C yr−2 (p < 0.01, fig-
ure 4). During 1971–2010, all regions except Oceania
show significant increasing trends in GPP, with the
fastest rates of increase in Boreal Euro-Asia and Tem-
perate Asia (both 0.04 Pg C yr−2). The trend of the
ensemble mean is similar to the trends of individ-
ual GPP from the eight ISIMIP2a models, although

their magnitudes are different (figure S1(b)). For exam-
ple, some models (e.g. CARAIB, LPJ_GUESS) have
larger positive trend of global GPP than the others (e.g.
VEGAS), (figure S1(b)). In contrast to the ISIMIP2a
models, MTE and MODIS estimates of global GPP
show smaller long-term change over their record peri-
ods. During 1982–2010, MTE global GPP increased
at a small rate of 0.08 Pg C yr−2, and only Europe,
Semi-arid and Arid Asia-Europe-Africa and Temper-
ate Asia regions show a weak but significant increasing
trend (figure 4). In general, the MODIS product does
not show a significant trend in any region during
2000–2010, except inTropical Asia and Tropical Africa,
which have exhibit a significantly decreasing trend of
−0.09 Pg C yr−2 and a significantly increasing trend
of 0.04 Pg C yr−2, respectively. In contrast, ENSEM-
BLE GPP during 2000–2010 showed a significant large
increasing trend of 0.41 Pg C yr−2, and only Temper-
ate South America and Oceania had decreasing trends.
MTE GPP during 2000–2010 generally showed similar
but weaker trends as compared with ENSEMBLE GPP
(figure S1(c)). Based on the ENSEMBLE GPP, Boreal
Euro-Asia andTemperateEasternAsia contributemost
to theglobalGPP trend (eachof themcontributes about
15%), while Semi-arid and Arid Asia-Europe-Africa
and Oceania contribute the least, only about 2% by
each region (figure 5(a)).

5



Environ. Res. Lett. 12 (2017) 105005

(a) Global (b) BNA (c) TNA (d) TLA (e) TSA

(f) EUR

(k) TEA (l) TA (m) OCE

(g) SAAEA (h) TAF (i) SA (j) BEA

Figure 4. Inter-annual changes of global and regional GPP. The anomalies were calculated as the difference between annual GPP and
the long-term mean over the period for each data source. The numbers located at the top-left corners indicate the linear trends of the
ENSEMBLE (black), MTE (blue) and MODIS (red). ∗ indicate the trend is significant (p < 0.01).

3.3. Mean seasonality and regional contributions
Figure 6 illustrates the mean seasonal cycle of global
and regional GPP. At the global scale, all datasets show
similar seasonal cycles. For MODIS and ENSEMBLE,
global GPP starts from as low as about 50 g C m−2

month−1 in the Northern Hemisphere (NH) winter
months (i.e. December, January and February) to high
values of about 100 g C m−2 month−1 in the NH sum-
mermonths (i.e. June, July andAugust).Theamplitude
of MTE GPP is about 10 g C month−1 higher. The
NH regions generally have similar seasonal patterns but
higher amplitudes (as large as∼150 g C m−2 month−1)
than the global results, but the amplitudes of GPP sea-
sonality in Semi-arid and Arid Asia-Europe-Africa are
much lower than the other NH regions. There are no
strong seasonal variation in tropical regions such as
Tropical Latin America, Southern Africa and Tropi-
cal Asia. The Southern-Hemisphere (SH) regions of
Temperate South America and Oceania show opposite
patterns, which offset the higher seasonal amplitude
of the NH regions resulting in the lower amplitude in
seasonality of global GPP.

We found a strong correlation (R > 0.9) between
the seasonality of ISIMIP2a models, MODIS and MTE
GPP at the global scale (figures S2(a) and (b)). This
varies at the regional level, however, the correlation
coefficients are high in boreal and temperate regions,
such as Boreal North America, Temperate North
America, Temperate South America, Europe, Boreal
Euro-Asia and Temperate Asia, but low in the other
semi-arid, arid and tropical regions. The correlation
is especially low in the Tropical Latin America, Trop-
ical Africa and South Africa regions. In addition, the
models do not agree completely on the seasonal phase
of GPP in reference to MODIS and MTE products.

In general, ISIMIP2a model-based seasonal phases of
GPP show a positive correlation with MODIS and
MTE products, but with some variations in the correla-
tion coefficient. For example, the GPP seasonal phases
estimated by JULES and CARAIB are negatively corre-
lated with MODIS products in Tropical Latin America
(R =−0.41 and −0.18, respectively), while the other
models show positive correlations. Other examples
includeCARAIBandLPJ_GUESS inSouthAfricawhen
compared with MODIS result in very low and negative
correlations (R =−0.14 and −0.32, respectively), and
for JULES in Tropical Latin America, LPJmL in Semi-
arid and Arid Asia-Europe-Africa and South Africa,
VISIT in Tropical Africa and ORCHIDEE in South
Africa when compared with MTE (R =−0.1, −0.04,
−0.03, −0.26 and −0.06, respectively).

Based on the ENSEMBLE estimates, each of the
regions in the NH, including Boreal North America,
Temperate North America, Europe, Boreal Euro-Asia
and Temperate Asia, contributes to the global GPP
seasonal variation (figure 5(b)) ranging from 17% to
29%. Southern Hemisphere regions (Temperate South
America, South Africa and Oceania) together con-
tribute about −14% to global GPP variability. The
Semi-arid and Arid Asia-Europe-Africa and tropical
regions have small contributions (−1% to 1%) to sea-
sonal variations of global GPP. The relative regional
contributions calculated from MODIS, MTE and each
of the eight models support similar conclusions.

3.4. Inter-annual variability and regional contribu-
tions
During the2000–2010period,MODISdata suggest that
the interannual variability (IAV) of global GPP was
0.8 Pg C yr−1, while MTE and ENSEMBLE estimates

6



Environ. Res. Lett. 12 (2017) 105005

(a)

(b)

(c)

Figure 5. Regional contributions to global GPP trend, inter-annual variability (IAV), and seasonal variability. Regional contribution
to global GPP trend by MODIS is not shown because MODIS GPP’s global trend is too small and insignificant. Boxplots show the
distributions of the eight ISIMIP models. Horizontal lines in the boxplots from top to bottom indicate the 95th, 75th, 50th, 25th, and
5th percentiles. Region abbreviations on the x-axes are defined in figure 1.

are nearly twice this amount (1.42 and 1.48 Pg C yr−1,
respectively; figure S1(d)). Among the regions, the
ENSEMBLE generally shows the highest IAV in Boreal
North America, Tropical Latin America, Semi-arid and
AridAsia-Europe-Africa,TropicalAfrica, SouthAfrica,
Boreal Euro-Asia and Oceania; MODIS shows rela-
tively higher IAV than MTE in all the regions except
in Europe and Semi-arid and Arid Asia-Europe-Africa.
The IAV estimates vary among ISIMIP2a models. For
example, the IAV of GPP at the global scale esti-
mated from JULES, LPJmL and VISIT are larger than
2 Pg C yr−1, significantly higher than the 0.8 Pg C yr−1

from DLEM. At the regional scale, for example, accord-
ing to LPJ_GUESS, LPJmL and VISIT the GPP in
Oceania varies from 0.94 to 1.01 Pg C yr−1, while it

is 0.37 and 0.26 Pg C yr−1, respectively, according to
DLEM and JULES (figure S1(d)).

The correlation between the interannual variation
of ISIMIP2a models, MODIS and MTE GPP at the
global scale arenot as goodas that of the seasonality (fig-
ures S2(c) and (d)). The correlation coefficients were
0.41 and 0.57 for ENSEMBLE vs. MODIS and ENSEM-
BLE vs. MTE, respectively. However, the correlation
coefficients are relatively high in boreal and temper-
ate regions such as Boreal North America, Temperate
North America, Semi-arid and Arid Asia-Europe-
Africa, South Africa, Temperate Asia, and exceptionally
high in Oceania. In contrast, the correlations are weak
andevennegative in some tropical regions, for example,
ISIMIP2a models estimated interannual variation is
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(a) Global (b) BNA (c) TNA (d) TLA (e) TSA

(f) EUR

(k) TEA (l) TA (m) OCE

(g) SAAEA (h) TAF (i) SA (j) BEA

Figure 6. Mean seasonal variations in global and regional GPP for the period of each data source (MODIS: 2000–2010; MTE:
1982–2010; and ISIMIP models: 1971–2010).

negatively correlated with MODIS and MTE estimates
in Tropical Africa and Tropical Africa, respectively.

Figure 5(c) shows the ENSEMBLE estimates of
GPP for Oceania region that explains the largest frac-
tion (39%) of IAV for global GPP, followed by South
Africa (32%), Tropical Asia (10%) and Tropical Latin
America (9%) regions. In contrast, the contributions of
Temperate North America, Temperate South America
and Semi-arid and Arid Asia-Europe-Africa regions
to IAV of global GPP are negative (−2% to −4%).
The remaining regions contribute relatively smaller
and positive fractions to IAV of the global GPP, with
Boreal Euro-Asia contributing the least (<1%). The
relative regional contributions to the IAV of global
GPP estimated from MODIS and MTE do not com-
pletely agree with ENSEMBLE mean values, nor with
each other (figure 5(c)). For example, South Amer-
ica contributes the most to the IAV of global GPP
according to MODIS and MTE data (46% and 22%,
respectively); and MODIS data indicates the contribu-
tions from Tropical Latin America, Europe and Boreal
Euro-Asia are negative, while all regions except Boreal
Euro-Asia contribute positively based on the MTE data.
There are also significant uncertainties among the esti-
mated relative regional contributions from the eight
ISIMIP2a models, especially in Tropical Latin America,
South Africa and Oceania regions.

4. Discussion

In this study, we examined the spatial pattern, trends,
and inter-annual and seasonal changes of global and
regional GPP as simulated by the eight ISIMIP2a ter-
restrial biome models, and benchmarked them against
observation-based MODIS and MTE GPP products.

The spatial distribution and patterns of GPP based on
the ISIMIP2a models ensemble mean, MODIS, and
MTE all generally agree, and are consistent with other
independent global GPP estimates reported in litera-
ture (Yuan et al 2010, Chen and Zhuang 2014, Anav
et al 2015). The ISIMIP2a model ensemble mean is
close to the mean annual GPP from MODIS and MTE,
and consistent with GPP reported by Jiang and Ryu
(2016) based on a mechanistic model and eddy flux
data (122 ± 2.5 Pg yr−1 for 2001–2011). However, it is
lower than the 130–169 Pg C yr−1 reported by the Earth
system models (ESMs) simulations from the Fifth Cli-
mate Model Intercomparison Project (CMIP5) (Anav
et al 2015); the 150–175 Pg C yr−1 suggested by atmo-
spheric isotope measurements (Welp et al 2011); and
the 146 Pg C yr−1 by using atmospheric CO2 observa-
tions in a carbon cycle data assimilation system (Koffi
et al 2012). These differences are probably due to a
variety of factors such as the errors of the climate forc-
ing in the coupled ESMs, lack of consideration of plant
photorespiration in the isotope-based models, and the
uncertainty of assimilation method used in the data
assimilation systems (Anav et al 2015).

The temporal variation of global GPP based on
ISIMIP2a models’ estimates did not completely agree
with MODIS and MTE estimates. The ISIMIP2a mod-
els show significant trends in the global and regional
GPP in almost every region (except Oceania), while
MODIS and MTE have few trends over their reported
periods, although it is interesting to note that the
MTE trend of 0.09 Pg C yr−2 is very close to the
1989–2008 soil respiration trend of 0.1 Pg C yr−2 esti-
mated through a global synthesis (Bond-Lamberty and
Thomson 2010). The overall lack of a strong GPP
trend, however, is most likely due to the fact that nei-
ther MODIS nor MTE explicitly take account of CO2
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fertilization effect in their algorithms (De Kauwe et al
2016), despite the observed increase of atmospheric
CO2 concentration by about 1.7 ppm yr−1 (Conway
et al 1994). Therefore, MODIS and MTE data do not
appear to be suitable for trend analysis, as also indi-
cated earlier by Jung et al (2009) and Anav et al (2015).
In contrast, the increasing trends in model-estimated
GPP appear to be consistent with other independent
GPP indicators such as vegetation indices (de Jong
et al 2012), and atmospheric carbonyl sulfide records
(Campbell et al 2017).

Benchmarked against MODIS and MTE data,
ISIMIP2a models well captured the global GPP sea-
sonality, but they are relatively weaker in simulating
the GPP seasonal cycle in the tropical regions primar-
ily covered by tropical evergreen forests. In fact, most
existing terrestrial biome models perform poorly in
simulating tropical evergreen forest phenology, a key
biophysical control of GPP seasonality (Kim et al 2012,
Restrepo-Coupe et al 2017). Other recent studies also
suggest that incorporating both the seasonal change of
leaf quantity (i.e. leaf area) and quality (i.e. leaf pho-
tosynthetic capacity) can successfully explain seasonal
GPP variation (Wu et al 2016, Wu et al 2017). Includ-
ing this new mechanism may help the models to better
simulate tropical GPP seasonality.

The IAV of GPP from MODIS, MTE and the
ISIMIP2a models are generally more consistent in the
temperate than in the tropical regions (figures S2(c)
and (d)). One possible explanation is that IAV from
MODIS and MTE in tropical regions are not as reliable
as their seasonality, because some of the year-to-year
change of GPP sensitivity to climate are not captured
in their algorithms (Piao et al 2013), and the satellite-
based input data are in a relatively low quality due to
dense and persistent clouds in these regions (Tren-
berth et al 2001). The uncertainty of climate forcing
used in ISIMIP2a models are large due to less mete-
orological station observations in these regions than
the rest of the world, thus the models could produce
inaccurate GPP estimates in these regions (Chang et
al 2017). Another possible reason could be the poor
simulation of tropical phenology in the models (Pau
et al 2011) as indicated above. Phenology controls the
length of growing season, thus being a key determinant
of annual GPP (Keenan et al 2012, Richardson et al
2013, Chen et al 2016). Many previous studies have
suggested that accurate simulation of vegetation phe-
nology is the key to capturing IAV of the carbon cycle
(Keenan et al 2012, Richardson et al 2012). We urge
the modeling community to improve the phenology
algorithms in their models, and to evaluate how the
improved ecosystems phenology, especially in tropi-
cal regions, can help improve the IAV of regional and
global GPP.

We found the regional contributions of terres-
trial ecosystems to the global GPP trend, seasonality,
and IAV to be generally consistent among indepen-
dent methods and estimates (i.e. MODIS, MTE and

ISIMIP2a models), and those reported in literature.
Overall, all regions have increasing trends, and the NH
regions contribute the most to the global increasing
trend, mainly due to the lengthening of the growing
seasons as a result of a warmer and wetter climate con-
ditions that enhance plant growth (Piao et al 2007,
Zhao and Running 2010). Regions in the Southern
Hemisphere have smaller increasing trends, and some
of the models suggest negative trend in some regions
(e.g. South Africa, Oceania). This is possibly due to the
increasing evaporative demand, which leads to a dry-
ing trend in these regions (Zhao and Running 2010),
and reducing soil moisture (Jung et al 2010) and veg-
etation greenness (Gobron et al 2010). The Northern
Hemisphere dominates the world’s land area, and has
the largest forest ecosystems, therefore, it is not sur-
prising that it contributes the most to the seasonal
variability of global GPP; and, the SH regions gener-
ally contribute negatively to it. Some tropical regions,
including Tropical Latin America and Tropical Africa,
cover areas that extend across the equator, therefore
their net contribution are close to zero.

Our results indicate that the Oceania and South
Africa regions contribute the most to the IAV of global
GPP, supported by all the data sources used in this
study. The dominant land cover in these regions are
semi-arid savannas, grasslands and shrublands that are
very sensitive to climate conditions and its variabil-
ity. These findings are consistent with those previously
reported by (Ahlström et al 2015). The IAV of GPP
for these vegetation types are especially sensitive to the
change of precipitation. For example, due to the peri-
odic El Niño and La Niña events, Australia has received
record high precipitation in 1975, 2000 and 2010, and
experienced exceptional droughts in 1972, 1994 and
2002 (according to the data from Australian Bureau of
Meteorology, www.bom.gov.au/climate/change/). The
influence of these extreme events/conditions are clearly
reflected in the inter-annual variation of GPP in Ocea-
nia, andourfindingare consistentwithprevious studies
(Ahlström et al 2015, Zhang et al 2016, Zscheischler
et al 2014). In addition, the ISIMIP2a models’ esti-
mates suggest that the tropical forests in Amazonia and
Southeastern Asia (regions of Tropical Latin Amer-
ica and Tropical Asia in this study) are the second
largest contributor to the IAV of global GPP, although
MODIS and MTE data do not agree with this result.
There remain some debates on satellite-observed trop-
ical forests’ response to extreme climate conditions
(Morton et al 2014, Zhou et al 2014, Saleska et al 2007,
2016), thus we cannot conclude whether the models
or MTE/MODIS data are more reliable, since large-
scale measurements of GPP do not exist, and terrestrial
biome models show large uncertainties in these regions.

The eight ISIMIP2a model-based GPP estimates
used in this study, having common climate forcing,
land use and CO2 input data were expected to provide
consistent GPP estimates, especially at inter-annual
and seasonal levels. However, differences relating to
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the parametrization, model formulation and underly-
ing assumptions that exist in these models appear to
contribute to GPP variability, and the model ensemble
approach is a good way to capture these uncertainties.
It is not always clear how these assumptions propa-
gate in the simulated parameters, especially if multiple
processes are at play (Rafique et al 2015). Increas-
ing complexity of models may lead to an increase in
models’ uncertainty associated with the introduction
of new model parameters (Prentice et al 2015). In this
study, models’ simulations did not reveal a consistent
set of processes behind the agreement/disagreement
with MODIS and MTE GPP. Apparently, formulation
of photosynthesis based on enzyme kinetics and light
use efficiency (LUE) in the eight models performed
equally well in simulating the inter-annual and sea-
sonal variability of GPP. The addition of nitrogen and
leaf to canopy details did not show significant influ-
ence on the GPP simulations. It is interesting that none
of the models performed well in Tropical Latin Amer-
ica (Restrepo-Coupe et al 2017), suggesting that the
phenological sub-models based on temperature and
moisture may need further improvement. A lack of
particular pattern in the models’ performance does not
mean that structural differences have no effect, how-
ever. For example, better parameter values of LUE and
leaf to plant canopy scaling can largely improve the
GPP estimates (Schaefer et al 2012). The number of
parameters also differ widely among the eight models.
Despite the differences among the eight models, the
results highlight their ability to capture the importance
of relative contributions of diverse ecosystems of the
regions in determining the inter-annual and seasonal
variability of global GPP.

5. Conclusion

The ISIMIP2a was established to foster model eval-
uation, and in the global biome models, how well
they represent the role of terrestrial ecosystems in the
carbon cycle under historical climate conditions. We
used simulations from eight global terrestrial biome
models participating in the ISIMIP2a to examine
the spatial and temporal variability, the changes in
twelve geographical regions, globally, and their con-
tribution to the temporal variability and change in
global and regional GPP. The simulated GPP from
ISIMIP2a models, driven by common climate forc-
ing, land use and CO2 data, were 117± 13 Pg C yr−1

(model ensemble mean± 1 standard deviation), which
is in close agreement with independent global MODIS
and MTE based GPP estimates. The model ensem-
ble generally showed closer interannual variability
for the higher latitudes (i.e. boreal and temperate
regions) than the lower latitudes (i.e. tropical regions),
while at seasonal scale, the models performed very
well except in South Africa and tropical forests in
Tropical Latin America and Tropical Africa regions,

benchmarked against GPP estimates from MODIS and
MTE. According to the model ensemble mean esti-
mates, Tropical Latin America contributes the most to
the global mean annual GPP; the regions in Asia con-
tribute the most to the global GPP trend; the Northern
Hemisphere regions dominate the global GPP seasonal
variation; and Oceania is likely the largest contrib-
utor to the global GPP inter-annual variability. The
results of this study provide some useful insights on
the ability of the terrestrial vegetation models in cap-
turing the spatiotemporal variability and change, and
the relative contribution of twelve regions to global
GPP, and its variability. These results can be used
for model development/improvement, and predict-
ing future changes in regional and global terrestrial
ecosystems conditions and the models’ performance
as relate to the global carbon cycle, in a changing
climate.
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