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Abstract: The microwave scatterometer is one of the most effective instruments in ocean remote
sensing, which urges the need for some theoretical models to accurately estimate the scattering
coefficient of the sea surface. For the simulation of the scattering from an ocean surface, the sea
spectrum, or its inverse Fourier transform, autocorrelation function is essential. Currently, many sea
spectral models have been proposed for describing sea waves. However, which spectrum should be
adopted during electromagnetic (EM) computations? A systematic comparison of these models is
needed to evaluate their accuracies. In this paper, we focus on numerical simulations of scattering
from a rough sea surface in monostatic and bistatic configurations by using six different sea spectral
models and the first-order small slope approximation (SSA-1). First, sea spectral models proposed by
Elfouhaily et al., Hwang et al., Romeiser et al., Apel et al., Fung et al., and Pierson et al., are compared
with each other from different points of view, e.g., the omnidirectional parts, the angular spreading
functions, the autocorrelation functions, and the slope variances. We find that the spectra given by
Elfouhaily and Hwang could reflect realistic wind sea waves more accurately. Then, the scattering
coefficients are simulated in fully monostatic and bistatic configurations. Regarding the monostatic
scattering, the results simulated using EM scattering models are compared with those obtained
from the measured UAVSAR data in the L band and the empirical model CMOD5 in the C band.
Comparisons are made for various incident angles, wind speeds, and wind directions. Meanwhile,
special attention is paid to low to moderate incident angles. The comparisons show that, it is difficult
to find one certain spectral model to simulate scattering coefficient accurately under all wind speeds
or wind directions. Accurate estimations will be obtained using different methods according to
different situations.

Keywords: EM scattering; EM scattering coefficient; SSA; sea spectrum; UAVSAR; CMOD5

1. Introduction

The microwave scatterometer is one of the most effective instruments in ocean remote sensing
since it can provide valuable measurements at both day and night in spite of the atmospheric conditions.
In the past decades, many microwave radars that operate at various frequencies have been developed
for airborne and space-borne platforms, such as the Advanced Synthetic Aperture Radar (ASAR) on the
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European Space Agency (ESA)’s ENVISAT-1 satellite, which was launched in 2002; the Phased-Array
L-Band Synthetic Aperture Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS),
which was launched in 2006; synthetic aperture radar on the Canadian Space Agency’s Radarsat-1
and Radarsat-2, which were launched in 1995 and 2007, respectively; and synthetic aperture radar
carried on the Sentinel-1 satellite launched in 2014 by the European Space Agency. These radars have
been proven to be useful tools for ocean observations, e.g., sea wave retrieval, wind speed retrieval,
ship detection, oil spill monitoring, etc. Among these applications, the estimation of scattering
coefficient (σ0 or NRCS, normalized radar cross-section) from sea clutter is of critical importance.
Thus, it is required to develop accurate (theoretical or empirical) models to predict the radar scattering
coefficient of the sea background.

At present, geophysical model functions (GMFs), such as CMOD5 for the C band, NSCAT2 for
the Ku band, etc., are often employed in ocean remote sensing. These GMFs have been widely used
in ocean wind field retrieval. It also has been proven that GMFs can provide accuracy predictions
in practical applications. However, just like all other empirical models, GMFs have no physical
meaning, which make it impossible for more physical interpretations. Therefore, it is necessary to
develop theoretical models for simulating the scattering from the sea surface. When dealing with
the problem of scattering from a rough surface, it is known that there is no exact analytical solution
for the scattering field. In the past decades, various approximate methods have been proposed to
overcome this difficulty [1]. The most significant among these methods are the Kirchhoff-Tangent
Plane Approximation (KA) [2] and the small perturbation method (SPM) [3]. The combination of
KA and SPM, which is named the two-scale model (TSM), is also an effective method for calculating
the scattering coefficient. Unfortunately, these three methods are available in specific conditions
or involve a cutoff parameter to separate sea waves into small and large scales. The small slope
approximation proposed by Voronovich [4–6] is a unifying model that could reconcile KA and SPM
without introducing any arbitrary parameters. SSA has been proved as an appropriate method for
large-, intermediate-, and small-scale roughness surfaces under the condition that the tangent of
grazing angles of incident/scattered waves is sufficiently larger than the RMS (root mean square)
slopes of the rough surface. These approximate methods have been studied and analyzed in the
comparisons with the measured radar data [7].

In the evaluations of EM scattering using approximate methods, either the sea spectrum or surface
elevation autocorrelation function is essential for scattering coefficient estimation. For microwave
scattering, short gravity and capillary-gravity waves serve as roughness elements. Hence, special
attention should be paid to the description of the small-scale waves. In this paper, we only discuss
the spectra which could provide descriptions for short waves rather than those who could only
describe large-scale waves (such as PM spectrum, JONSWAP spectrum). In the past decades, many
spectral models that can be used to describe the small-scale waves have been proposed, for instance,
the Pierson spectrum [8,9], Bjerkaas and Riedel spectrum [10], Fung spectrum [11], Donelan and Pierson
spectrum [12], Apel spectrum [13], Romeiser spectrum [14], Elfouhaily spectrum [15], and Hwang
spectrum [16–19]. These spectral models have been employed in EM computations as they have
defined the high-frequency spectra.

Among these spectral models, more attention should be paid onto the Elfouhaily and Hwang
spectra. The Elfouhaily spectrum is a unified spectrum that has been studied in many papers.
This spectrum is established based on available field and tank measurements. For the low-frequency
part, the Elfouhaily spectrum is consistent with the Donelan spectrum [12]. For the high-frequency
part, it is consistent with tank measurements. Moreover, the unified spectrum takes into account the
influences caused by wind fetch on the wave behaviors. With respect to the Hwang spectrum, it is a
very new spectrum which is derived based on the analysis of the wave action balance function and
field measurements. The curvature spectrum is expressed as B(k) = A(k)(u∗/c)a(k), where u∗ is the
friction velocity, c is the phase speed of wave, and k denotes the wavenumber. A(k) and a(k) are given
as polynomial fitting functions.
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A reliable spectrum is of crucial importance for predicting the scattering coefficients precisely.
Up to now, on the basis of different sea spectral models, many works about EM computations of
the sea surface have been carried out. Voronovich et al. studied the scattering from the sea surface
with breaking waves with SSA and the Elfouhaily spectrum in the Ku- and C-bands [5]. Awada et al.
conducted comparisons between the results estimated using the first-order SSA, the TSM model,
and the Elfouhaily spectrum in the bistatic configuration [20]. Ayari et al. studied the bistatic scattering
of the sea surface using TSM and the Elfouhaily spectrum. In their work, the scattering coefficients
calculated with TSM and the Elfouhaily spectrum were compared with those obtained with CMOD5,
SSA, and the Pierson spectrum [21]. Du et al. studied the backscattering from the sea surface
with the advanced integral equation method, an improved angular spreading function, and Apel’s
omnidirectional spectrum [22]. Additionally, the sea spectral model can also be used to study the
nonlinear and non-spectral ocean surface effects (including Doppler-induced effects and rapid changes
on the surface) [23,24]. However, most of the previous papers focus on only one or two spectral models.
To the best of our knowledge, few comprehensive comparison studies of these spectral models have
been reported, especially for the application of ocean remote sensing. In this context, a systematic
study of different sea spectra has been conducted in this work.

The rest of this paper is organized as follows: in Section 2, spectral models proposed by different
researchers are reviewed and compared with each other. In Section 3, theoretical derivations of SSA-1
and CMOD5 are briefly reviewed. Section 4 is dedicated to some numerical simulations in monostatic
and bistatic configurations, which are analyzed as functions of several parameters: incident angle, wind
speed, wind direction, scattering angle, and scattering azimuth angle. The meaningful conclusions are
drawn in the final section.

2. Sea Spectrum

In general, sea surface waves are considered as an ergodic and stationary random process and
the sea spectrum is often used to describe them. The sea spectrum is one of the two order statistical
properties of sea waves and it can be directly obtained by the inverse Fourier transformation of the sea
surface height’s autocorrelation. In order to study the scattering from the sea surface, it is necessary to get
enough knowledge of the sea spectrum. This part aims at presenting different sea spectra and discussing
the differences between them. For convenience’s sake, in the following, we denote the spectrum
proposed by Elfouhaily et al. [15] as the E-spectrum, the spectrum proposed by Hwang et al. [16–19]
as the H-spectrum, the spectrum proposed by Romeiser et al. [14] as the R-spectrum, the spectrum
proposed by Apel et al. [13] as the A-spectrum, the spectrum proposed by Fung et al. [11] as the
F-spectrum, the spectrum proposed by Pierson et al. [9] as the P-spectrum, respectively.

A sea spectrum describes the distribution of each harmonic component of the sea surface as
function of the spatial wavenumber and wind direction. Usually, it can be expressed as:

S(k, φ) = S0(k) · f (k, φ), (1)

where S0(k) represents the omnidirectional part, and f (k, φ) represents the angular spreading function.
k and φ are the spatial wave number and the wind direction, respectively.

2.1. Omnidirectional Part of Sea Spectra

Figures 1–3 show the omnidirectional parts of the six spectra mentioned above. The wind speeds
at 10 m height above sea surface (U10) are 5 m/s, 10 m/s and 15 m/s, respectively. For E-spectrum
and H-spectrum, the simulations are performed for an inverse wave age of 0.84, corresponding to a
fully-developed sea. In Figures 1a, 2a and 3a, one can observe that different spectral models have
similar behaviors. For microwave scattering from the rough sea surface, the primary contribution of the
scattering is from the small-scale Bragg resonant waves. A common scatterometer typically operates at a
moderate incident angle between about 20◦ and 60◦. To better exhibit the differences between the various
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sea spectra in the small scale range, Figures 1b, 2b and 3b present the sea spectra that accounts for Bragg
scattering for incident angles between about 20◦ and 60◦ in the C band, corresponding to the curves
within the rectangles of Figures 1a, 2a and 3a. Significant discrepancies can be observed among these the
spectral models in this range. Moreover, in Figures 1b, 2b and 3b, the effects of wind speed on different
spectral models are also different. The F-spectrum presents almost the same as the P-spectrum since
the underlying formulations for the two spectra are identical for this range. Additionally, the spectral
energies of the F-spectrum and P-spectrum are larger than other spectra in this range.
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Figure 1. Omnidirectional sea spectra for U10 = 5 m/s. (a) Full range. (b) Bragg scattering wavenumber
range in the C band with an incident angle θi = 20◦~60◦.
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Figure 2. Omnidirectional sea spectra for U10 = 10 m/s. (a) Full range. (b) Bragg scattering wavenumber
range in the C band with θi = 20◦~60◦.
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Figure 3. Omnidirectional sea spectra for U10 = 15 m/s. (a) Full range. (b) Bragg scattering wavenumber
range in the C band with θi = 20◦~60◦.
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2.2. Angular Spreading Function

Since a directional spectrum is the Fourier transform of the two-dimensional covariance of surface
elevation, directional spectrum should be a real and even function. Therefore, the Fourier series
expansion of an angular spreading function must contain only even harmonics. Unfortunately, some
angular spreading functions do not meet this requirement. To solve this problem, Elfouhaily et al.
proposed to calculate the angular spreading function with the following expression [15]:

f (k, φ) =
1

2π
[1 + ∆(k)× cos(2φ)]. (2)

The term ∆(k) ratio is calculated with:

∆(k) =
f ′(k, 0)− f ′(k, π/2)
f ′(k, 0) + f ′(k, π/2)

, (3)

where f ′(k, φ) denotes the angular spreading functions proposed by different authors [25]. For the
sake of simplicity, the explicit formulas for them are not given here, but the numerical simulations are
shown in Figure 4.

Figure 4 shows the ∆(k) ratios and Figure 5 presents the angular spreading functions based on
various formulas, where 0◦ corresponds to upwind direction and 180◦ corresponds to downwind
direction. Generally, the long wind waves are assumed to be aligned with the mean wind direction
in the steady condition, which makes f′ (k, π/2) approaches to zero. As a consequence, ∆(k) should
be equal to 1 for large-scale waves. As shown in Figure 4, the Fung and Romeiser angular spreading
functions cannot satisfy this requirement. The shorter wind waves are more non-directional, some of
them may even travel perpendicular to the wind direction [15].
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Figure 4. ∆(k) ratios given by different authors: (a) U10 = 5 m/s; (b) U10 = 10 m/s; and (c) U10 = 15 m/s.
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Figure 5. Angular spreading functions given by different authors, k = 135 rad/m: (a) U10 = 5 m/s;
(b) U10 = 10 m/s; and (c) U10 = 15 m/s.

Combining Figure 4a–c, the wind speed has no influence on Pierson and Apel spreading functions.
For Romeiser angular spreading function, the influence of wind on Bragg scattering wave range
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is quite small. However, in the case of Elfouhaily and Fung functions, the ∆(k) ratios of the Bragg
scattering wave range increase with wind speed, which means that the high-frequency waves become
more directional in high wind speed conditions.

In Figure 5, all curves have their maximum value in upwind and downwind directions, while
reaching their minimum value in the crosswind direction. The value of the Pierson function is zero in
the crosswind direction, which means that there is no component perpendicular to the wind direction
for k = 135 rad/m, which is not consistent with the real case.

2.3. Slope Variation

The slope variance is regarded as a measurement of sea surface roughness, which can be obtained
through the following integrations:

σ2
u =

∫ ∞

0

∫ 2π

0
(k cos φ)2S(k, φ)dφdk (4)

σ2
c =

∫ ∞

0

∫ 2π

0
(k sin φ)2S(k, φ)dφdk (5)

where u denotes upwind direction and c denotes crosswind direction. It can be recognized that the
slope variances of upwind and crosswind directions are highly sensitive to the shape of spectra.
According to the Cox and Munk model, the slope variances of the upwind and crosswind directions
are given as [26]:

σ2
u = (5.0 + 0.78U12.5)× 10−3 (6)

σ2
c = (3.0 + 0.84U12.5)× 10−3 (7)

where U12.5 is the wind speed at 12.5 m height above sea surface. In the following, the RMS slopes
evaluated based on spectral models are compared with the Cox and Munk model.

Figure 6 shows the RMS slopes estimated as functions of wind speeds. For the H-spectrum,
the same angular spreading function of E-spectrum is used in this paper. Both for upwind and
crosswind directions, one can note that the RMS slopes increase with wind speed. The sea surface
becomes rougher under higher wind speed conditions, which corresponds to the real situation.
The RMS slopes calculated with E-spectrum and H-spectrum match well with Cox and Munk model
both in upwind and crosswind directions. R-spectrum agrees well with Cox and Munk model only
in upwind direction. The errors in crosswind direction may be caused by that the angular spreading
function cannot describe the real situation accurately. With respect to other spectral models, there exist
larger discrepancies with the Cox and Munk curves.
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2.4. Autocorrelation Function

The autocorrelation of the displacement field of sea surface, which corresponding to the inverse
Fourier transform of the sea spectrum. It describes the correlations between two arbitrary points on a
rough surface. The correlation length and the autocorrelation function shape are closely related to the
roughness of the rough surface [27]. It is interesting to compare autocorrelation functions calculated
based on different sea spectra since they will be employed in calculating the scattering coefficients
with SSA-1.

In Figure 7, the autocorrelation functions are normalized by height variances. From this simulation,
one can see that the autocorrelation functions calculated based on the E-, A-, and F-spectra almost
overlap with each other, while the other two autocorrelation functions exhibit larger differences.
The Hwang and Romeiser autocorrelation functions approach zero more slowly. Additionally, with the
increase in wind speed, all the curves approach zero more slowly, which indicates that the correlation
becomes longer.
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Figure 7. Omnidirectional normalized autocorrelation functions. (a) U10 = 5 m/s; (b) U10 = 10 m/s;
and (c) U10 = 15 m/s.

3. Models for Scattering Coefficient Estimation

In this part, SSA-1, CMOD5, and the polarization ratio model, which will be applied in the
following numerical simulations, are briefly reviewed.

3.1. The First-Order Small Slope Approximation (SSA-1)

The small slope approximation proposed by Voronovich is valid for the arbitrary wavelength,
provided the tangent of the grazing angles of the incident/scattered waves sufficiently exceeds the RMS
slopes of roughness [4,6]. A noticeable advantage of SSA is that SSA does not involve any arbitrary
parameter to separate sea waves into larger and smaller scales. Compared with the second-order SSA
(SSA-2), SSA-1 involves a small calculating quantity. Thus, SSA-1 is used in our simulation to simplify
the computation. In the following, the calculation procedures for the scattering coefficient with the sea
spectra are presented.

The scattering coefficient of SSA-1 can be expressed as [4,5]:

σSSA−1
αα0

(k, k0) = 1
π

∣∣∣ 2qkq0
qk + q0

Bαα0(k, k0)
∣∣∣2 exp

[
−(qk + q0)

2ρ(0)
]

×
∫ {

exp
[
(qk + q0)

2ρ(r)
]
− 1
}

exp[−i(k− k0) · r]dr
, (8)

where α and α0 correspond to the polarizations of scattered and incident waves, respectively.
αα0 ∈ {HH, HV, VH, VV}, where H denotes the horizontal polarization and V denotes the
vertical polarization. k0 and k are horizontal projections of the vector of incident and scattered
waves, respectively. q0 and qk are the vertical projections of the incident and scattered wave
vectors, respectively.

Using the Bessel function, we can obtain the following expression for scattering coefficient [20]:
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σSSA−1
αα0

(k, k0) = 8
∣∣∣ qkq0

qk + q0
Bpq(k, k0)

∣∣∣2 × ∫ ∞
0 rdr

{
exp−(qk+q0)

2[ρ(0)−ρ(r)]− exp−(qk+q0)
2ρ(0)

}
J0(Mr). (9)

In the above equation, J0(·) denotes the Bessel function of the first kind of zero-order.

M = k
√
(sin θs cos φs − sin θi cos φi)

2 + (sin θs sin φs − sin θi sin φi)
2. θi and θs represent the incident

and the scattered angles. ρ(r) is the autocorrelation function, φi and φs denote incident and scattered
azimuth angles. More details about the derivations can be found in Appendix A.

The calculation of two dimension autocorrelation function can be conducted easily with the help
of the Bessel function, which can be expressed as follows [20,28]:

ρ(r) = ρ(r, φ) = ρ0(r)− cos(2φ)× ρ2(r), (10){
ρ0(r) =

∫ ∞
0 S0(k)J0(kr)dk

ρ2(r) =
∫ ∞

0 S0(k)J2(kr)∆(k)dk
. (11)

In Equation (11), J2(·) is the first kind Bessel function of second order. S0(k) denotes the
omnidirectional part of sea spectrum mentioned in Equation (1), ∆(k) can be calculated according to
Equation (3) based on the angular spreading functions given by different authors.

Additionally, to model the sea dielectric constant, the Debye equation [29] is employed in all of
the following simulations, where the temperature equals 20 ◦C and salinity equals 35 ppt.

3.2. Empirical Model CMOD5 and PR (Polarization Ratio) Model

In order to quantitatively evaluate the quality of the numerical results simulated by different
models, the C band (5.3 GHz) empirical model CMOD5 is introduced in this part. The C band GMF
CMOD5 is derived based on a large number of measurements [30]. It has been employed in many
studies to retrieve the wind speed of the sea surface or to study the backscattering from the sea
surface [31–33]. Thus, CMOD5 can be regarded as a reliable reference. The form of the CMOD5 model
is given by Equation (12). More details about CMOD5 are presented in [30]:

σVV
0 = B0(1 + B1 cos φ + B2 cos 2φ)1.6 (12)

where σVV
0 denotes the VV polarized NRCS. It should be noted that the CMOD5 model is only valid for

the VV polarized channel in the C band. In order to estimate the scattering coefficient in HH channel,
polarization ratio (PR) models are often employed to convert the scattering coefficient from the VV
polarization to the HH polarization.

A PR model is commonly defined as:

PR =
σVV

0

σHH
0

(13)

where σHH
0 denotes the HH polarized NRCS. In this work, the PR model given by Liu et al. is used

which is given as [34]:
PR = A exp(Bθi) + C (14)

with A = 0.453041, B = 0.0324573, C = 0.524303. It is noteworthy that empirical approaches do not have
any physical meaning, which makes it impossible for physical interpretation.

4. Numerical Simulation and Discussion

4.1. Scattering from the Sea Surface in the Monostatic Configuration

Since most of the current microwave scatterometers measure in the backscattered direction
(monostatic case), this makes the problem of EM scattering in the monostatic configuration become
a practically meaningful problem. In this context, we first deal with the monostatic configuration.
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In the following, on the basis of the theories in Section 2, we present some numerical simulations by
using SSA-1 and different sea spectra in the fully-monostatic configuration. The scattering coefficients
evaluated with SSA-1 and different spectral models are compared with the UAVSAR data in the L
band and the empirical model CMOD5 in the C band, respectively.

4.1.1. Evaluation with UAVSAR Data in the L Band

The SAR images are collected by UAVSAR (uninhabited aerial vehicle synthetic aperture
radar) during the DWH (Deepwater Horizon) oil spill accident in the Gulf of Mexico in 2010.
UAVSAR is a fully-polarimetric L-band SAR. The center frequency of the incident wave is 1.2575 GHz.
Two multi-look (3 and 12 looks in the range and azimuth directions, respectively) UAVSAR images
with a 5 m slant range resolution and 7.2 m azimuth resolution are employed in this part. The two SAR
images were acquired from two adjacent, overlapping flight tracks that covered the main oil spills in
the Gulf of Mexico. The two flight lines are gulfco_14010_10054_100_100623 (hereafter denoted as Case
(a)) and gulfco_32010_10054_101_100623 (hereafter denoted as Case (b)), respectively. The approximate
latitudes and longitudes of Case (a) are (30◦9′N, 89◦54′W) for the upper left pixel, (30◦17′N, 89◦43′W)
for the upper right pixel, (28◦19′N, 88◦9′W) for the lower left pixel, and (28◦26′N, 87◦59′W) for the
lower right pixel. The approximate latitudes and longitudes of Case (b) are (30◦1′N, 90◦1′W) for the
upper left pixel, (30◦9′N, 89◦50′W) for the upper right pixel, (28◦25′N, 88◦28′W) for the lower left pixel,
and (28◦33′N, 88◦17′W) for the lower right pixel. More information about the data are summarized in
Table 1 [35].

Table 1. UAVSAR data information.

Case Data ID Time of Acquisition Incident Angle (◦) Wind Speed U10 (m/s) Wind Direction (◦)

(a) 14010 20:42 UTC 23 June 2010 22–65 2.5–5 115–126
(b) 32010 21:08 UTC 23 June 2010 22–65 2.5–5 115–126

Figure 8 shows the UAVSAR images. The dark areas are the oil spills induced by the accident.
Only the scattering coefficients of the clean sea are used in this work. In order to compare the simulated
results with measured data, UAVSAR data are processed as follows: firstly, a 100 × 3300 matrix is
obtained by extracting 100 rows of pixels along the red lines in Figure 8. Then, a 1 × 3300 array can be
obtained by computing the mean value of each column. Finally, the mean value is calculated in each
1◦ incident angle range.
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Figure 8. UAVSAR data. (a) Case (a); and (b) Case (b).

Figure 9 presents the NRCSs evaluated with SSA-1 and UAVSAR images. The difference of the
observation direction between these two SAR images is about 180◦. Therefore, the difference of the
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wind direction between these two SAR images is about 180◦. In our simulations, the wind speed is
set as 5 m/s, and the wind direction is set as the upwind direction. In Figure 9, one can note that the
difference between the NRCSs acquired from the two SAR images is quite small. Both for VV and HH
polarizations, the scattering coefficients evaluated with SSA-1 are larger than the measured SAR data.
Obviously, none of the curves coincide well with UAVSAR data. Relatively speaking, the curve of
the E-spectrum is slightly better than other curves (the difference between Elfouhaily curve and SAR
data curves is less than 3 dB for VV polarization, and 4 dB for HH polarization). For the F-spectrum,
there exist oscillations for the incident angle larger than 45◦ which are caused by the integration of the
oscillation function in Equation (8).
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Figure 9. Comparisons between SSA-1 and UAVSAR data. (a) VV polarization. (b) HH polarization.

4.1.2. Evaluation with CMOD5

As most measured data are acquired under particular wind speed and wind direction, it is
impossible to evaluate the accuracy of simulated results in all wind conditions. In the following,
in order to evaluate the numerical simulations under different conditions, the simulated results are
compared with the empirical model CMOD5. Simulations are made as functions of the incident angle,
wind speed, wind direction, polarization state, and at a frequency equal to 5.3 GHz.

Incident Angle Variations

It has been reported that the KA (Kirchhoff Approximation) method could provide an accurate
prediction in the specular region (θi = 0◦~20◦). In the following, numerical simulations are compared
with KA for the specular region and CMOD5 for the moderate region. Here, only the case for
U10 = 10 m/s is presented and discussed in detail, and similar situations and conclusions can be
obtained for U10 = 5 m/s and U10 = 15 m/s.

Figure 10 shows the scattering coefficients obtained as functions of incident angle for the upwind
case. In Figure 10, both for HH and VV polarizations, the value of F- and P-spectra are larger than
other curves, while the E-, H-, R-, and A-spectra exhibit similar results. This is because the spectral
energies of the F-spectrum and P-spectrum are larger than other spectra (see Figures 1b, 2b and 3b).
In the case of VV polarization, the NRCS calculated with the R-spectrum fits with the KA and CMOD5
better than other spectra, especially for the specular region (θi = 0◦~20◦). For the moderate region
(θi = 20◦~60◦), the curves of the E-, H-, R-, and A-spectra exhibit similar results. As for Figure 10b,
a similar phenomenon with VV polarization can be observed in the case of the HH polarization in the
small incident angle range. Physically, the impacts caused by the polarization effect on the scattering
coefficient are very small near the specular region. For the moderate region in the HH polarized
channel, it seems that all the models underestimate the scattering coefficient. It is difficult to find a
curve that matches well with the empirical model in all incident angle ranges.
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Figure 10. NRCSs estimated in relationships to incident angle. U10 = 10 m/s, φ = 0◦. (a) VV
polarization. (b) HH polarization.

For the upwind direction, we can see that the R-spectrum shows good agreement with CMOD5
and KA. However, according to Figure 6b, the difference between R-spectrum and Cox and Munk
model cannot be neglected in crosswind direction. It is interesting to test these spectra in the crosswind
direction. Figure 11 presents the scattering coefficients estimated in the crosswind direction. For the
VV polarization, the R-spectrum cannot provide a good estimation as well as the upwind case when
the incident angle is smaller than 30◦. The E-spectrum and H-spectrum provide good estimations
when the incident angle is smaller than 30◦. For the HH polarization, it seems that the A- and P-spectra
match well with empirical model for a moderate incident angle, and the H-spectrum matches well
with the KA in the specular region.
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Figure 11. NRCSs estimated in relationships to incident angle. U10 = 10 m/s, φ = 90◦. (a) VV
polarization. (b) HH polarization.

In fact, as stated in Section 3, SSA-1 is an approximate method. That is to say, in our simulations,
there may be some computational errors caused by SSA-1. Therefore, it does not mean that the
R-spectrum performs better than other spectra in EM computations, it only illustrates that the
R-spectrum provides a more accurate prediction with SSA-1 in the VV polarized channel for the
upwind direction. Additionally, for the HH polarization, it is important to note that the inaccuracy
may be, in part, introduced by the polarization ratio model.

Wind Speed and Direction Variations

For many ocean observations with microwave scatterometers, the basic principle relies on the
scattering coefficient being strongly associated with wind speed and direction at the local sea surface.
In the following part, the dependence of NRCS on wind speed and wind direction are studied. To show
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the wind speed and wind direction dependence in the C band, trend comparisons are made by plotting
NRCS versus the wind speed and wind direction at moderate incident angles. Additionally, from the
above analyses, we can know that the accuracies of the calculated scattering coefficients with different
sea spectra are highly dependent on the incident angle. Here, three cases with different incident angles
(18◦, 40◦, and 58◦) are presented and discussed in detail.

In Figures 12–14, the NRCSs are evaluated as functions of wind speed. The wind speed varies
from 3 m/s to 30 m/s. As expected, the NRCSs increase with wind speed, except for the P-spectrum
(see Figure 12a). According to Figures 12a, 13a and 14a, one can note that the increases of Efouhaily,
Hwang, Romeiser, Apel, and CMOD5 curves induced by wind speed are similar. That is to say, for
these spectra, the accuracies of calculated NRCSs are mainly associated with the incident angle and
wind direction. For instance, the NRCS evaluated with the R-spectrum agrees well with CMOD5 in
the upwind direction for incident angle ranges from 18◦ to 58◦ (see Figure 10a). Consequently, in all
wind speed ranges, the curves of R-spectrum match well with CMOD5 (see Figures 12a, 13a and 14a).
For the case of HH polarization, it appears that the calculated results seem to underestimate the NRCSs
while the incident angles are set at 40◦ and 58◦, which corresponding to Figure 10b. As previously
stated, the underestimation of the HH polarization may be introduced by the PR model.
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Figure 12. NRCSs estimated in relationship to the wind speed. θi = 18◦, φ = 0◦. (a) VV polarization.
(b) HH polarization.
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Figure 13. NRCSs estimated in relationship to the wind speed. θi = 40◦, φ = 0◦. (a) VV polarization.
(b) HH polarization.

Apart from the upwind direction, we also investigated the crosswind direction. For the case
of simplicity, only the comparisons for θi = 18◦ are presented in Figure 15. For VV polarization,
as observed in Figure 11, the R-spectrum cannot provide a good estimation when the incident angle
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is smaller than 30◦. Therefore, a large difference can be observed between the Romeiser curve and
CMOD5 curve in Figure 15a. With respect to θi = 40◦ and θi = 58◦, the influences of wind speed on
Efouhaily, Hwang, Apel, and CMOD5 curves are similar.
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Figure 14. NRCSs estimated in relationship to the wind speed. θi = 58◦, φ = 0◦. (a) VV polarization.
(b) HH polarization.
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Figure 15. NRCSs estimated in relationship to the wind speed. θi = 18◦, φ = 90◦. (a) VV polarization.
(b) HH polarization.

Figures 16–18 show the backscattering coefficients simulated under different wind directions
for U10 = 10 m/s. As illustrated in Figures 16–18, all the curves have their maximum value in both
upwind and downwind directions and their minimum at the crosswind direction. This behavior has
been verified by many experimental measurements. Significant differences can be observed among the
fluctuations (or the difference between peak and valley value) of different curves. These differences
are caused by ∆(k) ratios plotted in Figure 4. As for the empirical model, it can be observed that the
fluctuation along with wind direction increases with incident angle, while, for approximate results,
the increases of fluctuations caused by the incident angle are smaller than CMOD5. It is not easy to find
a curve that matches well with the empirical model in all cases. For VV polarization, the R-spectrum
matches well with CMOD5 when the incident angle equals 40◦ and 58◦ in all wind directions.

Additionally, we have studied the cases of U10 = 5 m/s and U10 = 15 m/s. The fluctuations of
CMOD5 under different wind directions are highly dependent on wind speed. None of the spectra
could provide accurate predictions for all wind speed cases. For the case of U10 = 5 m/s, the P-spectrum
predicts the NRCS well for the HH polarization and θi = 58◦. The R-spectrum predicts the NRCS well
for the VV polarization and θi = 58◦. For the case of U10 = 15 m/s, the E-spectrum predicts the NRCS
well, both for the HH and VV polarizations for θi = 18◦. The P-spectrum predicts the NRCS well for
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the HH polarization and θi = 40◦. The R-spectrum predicts the NRCS well for the VV polarization and
θi = 40◦.
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Figure 16. NRCSs estimated in relationship to the wind direction. U10 = 10 m/s, θi = 18◦. (a) VV
polarization. (b) HH polarization.
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Figure 17. NRCSs estimated in relationship to the wind direction. U10 = 10 m/s, θi = 40◦. (a) VV
polarization. (b) HH polarization.
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Figure 18. NRCSs estimated in relationship to the wind direction. U10 = 10 m/s, θi = 58◦. (a) VV
polarization. (b) HH polarization.

4.2. Scattering from Sea Surface Observed in Bistatic Configuration

Compared with monostatic radar, bistatic radar is not used as widely. However, bistatic radar can
offer certain advantages of spatial diversity and some level of covertness not offered by monostatic
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radar [20]. It is still necessary to study EM scattering from the sea surface in the bistatic configuration.
Unfortunately, to our knowledge, there is no available experimental measurements or data in the
published literature that can be used as references in our simulations.

As shown in Figure 19, in the configuration of the bistatic scattering problem, the transmitter

radar wave (
→
E i) evolves in the direction

→
n i in the plane (

→
h i,
→
v i). The scattered waves (

→
E s) in the

receiver radar are in the direction
→
n s in the plane (

→
h s,
→
v s). The subscript i and s denote the incident

and scattering wave, respectively. The incident and the scattered angles are θi and θs, respectively.
φi and φs are the incident and scattering azimuth angles, respectively [36].Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 20 
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Figure 19. Geometrical configuration for the bistatic scattering from sea surface.

4.2.1. Scattering Angle Variation

Figure 20 exhibits the NRCSs estimated as functions of the scattering angle. The incident angle is set
to 60◦. The situation for the bistatic configuration is similar to the monostatic case. The NRCSs calculated
with the F-spectrum and R-spectrum are higher than KA in specular region. The NRCSs calculated with
F-spectrum and R-spectrum are higher while the scattering angle ranges from −90◦ to 0◦.
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Figure 20. NRCSs estimated based on different sea spectra as a function of the scattering angle.
U10 = 10 m/s, upwind. (a) VV polarization; (b) HH polarization.

4.2.2. Scattering Azimuth Angle Variation

In Figure 21, the NRCSs versus the scattering azimuth angle curves are shown. The theoretical
curves become flat with the scattering azimuth angle larger than 90◦ in the case of VV polarization
and 120◦ in case of HH polarization. It is necessary to point out that the peaks in Figure 21 are not
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caused by physical reasons. They may be caused by the integral method during the computation.
The locations of these peaks are associated with the incident angle.
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Figure 21. NRCSs estimated based on the different sea spectra as functions of the scattering azimuth
angle. U10 = 10 m/s. (a) VV polarization; and (b) HH polarization.

5. Conclusions and Perspectives

In this paper, the numerical simulations of EM scattering using six different sea spectral
models, including the commonly used E-spectrum and the newly-raised H-spectrum, are presented.
A systematic comparison has been conducted in order to assess the performances of different models.
Firstly, the spectral models proposed by different authors are compared and discussed from several
points of view, including the omnidirectional parts, the angular spreading functions, the slope
variances, and the autocorrelation functions. Several discrepancies between the different spectral
models are noted. The analyses of the angular spreading functions and slope variances show that E-
and H-spectra are in accordance with the measurements of Cox and Munk. Numerical simulations
in monostatic and bistatic configurations are then performed. In the backscattering case, the results
obtained with SSA-1 are compared with UAVSAR data in the L band and the empirical model CMOD5
in the C band. Compared with measured SAR data in the L band, both for VV and HH polarizations,
the scattering coefficients evaluated using SSA-1 model are larger than the experimental data. However,
the results obtained using E-spectrum are slightly better than the ones obtained using other spectra.
Compared with CMOD5 in the C band, we find it difficult to accurately simulate the NRCS merely
based on one spectral model in all wind speeds or wind directions. It is advised that different spectral
models should be employed in different configurations to obtain accurate predictions. The following
conclusions can be drawn from our analysis:

(1) For incident angle variation: The R-spectrum matches well with CMOD5 in the upwind
direction. In the case of crosswind direction, for incident angle smaller than 30◦, the E-spectrum and
H-spectrum present better results. For incident angles larger than 30◦, the R-spectrum presents better
consistency with CMOD5.

(2) For wind speed variation: The influences of wind speed on the NRCSs computed using
different sea spectra are similar.

(3) For wind direction variation: the fluctuations of CMOD5 under different wind directions
are highly dependent on wind speed. None of the angular spreading functions could describe the
direction of wave propagation exactly in all wind speed cases. However, in some cases, the NRCSs
estimated with SSA-1 and sea spectrum agree well with CMOD5.

The simulations of NRCS in the monostatic configuration using different sea spectral models can
be employed as a basis for inversion problems, such as retrieving the wind speed and direction from a
radar image.
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For the bistatic configurations, as there is not any available experimental data that can be used
as a reliable reference, the scattering coefficients are only compared with KA as functions of the
scattering angle. The differences between different curves in the bistatic configuration are similar to
the monostatic case.

Additionally, it should be pointed out that, in this work, only the performances of different sea
spectra with SSA-1 in the L and C bands have been investigated. In further works, more simulations
and discussions will be conducted with other approximate methods, such as SPM, TSM, and SSA-2.
In addition, and for different applications of interest, it would be useful to perform equivalent works
in the X-band and Ku-band, comparing the contribution of asymptotic methods to the empirical
model GMFs.
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Appendix A

According to [4,5], the scattering coefficient of SSA-1 can be expressed as:

σSSA−1
αα0

(k, k0) = 1
π

∣∣∣ 2qkq0
qk + q0

Bαα0(k, k0)
∣∣∣2 exp

[
−(qk + q0)

2ρ(0)
]

×
∫ {

exp
[
(qk + q0)

2ρ(r)
]
− 1
}

exp[−i(k− k0) · r]dr
, (A1)

q0 and qk are the vertical projections of the incident and scattered wave vector which are given as:

q0 = K cos θi, qk = K cos θs·Im (q0, qk) ≥ 0, (A2)

where K is the wavenumber of incident wave, and k = |k|, k0 = |k0|. Bαα0(k, k0) is the polarization
coefficient is written as [4,5]:

Bvv(k, k0) =
ε − 1

(εq1 + q2)(εq01 + q02)

(
q2q02

k·k0
kk0
− εkk0

)
,

Bhh(k, k0) = − ε − 1
(q1 + q2)(q01 + q02)

K2 k·k0
kk0

,
(A3)

with:
q1 =

√
K2 − k2, q2 =

√
εK2 − k2 · Im(q1, q2) ≥ 0.

q01 =
√

K2 − k2
0, q02 =

√
εK2 − k2

0 · Im(q01, q02) ≥ 0.
(A4)

ε is the complex dielectric constant. Switching the Equation (A2) to polar coordinates, we can obtain
the following expression:

σSSA−1
αα0

(k, k0) = 1
π

∣∣∣ 2qkq0
qk + q0

Bpq(k, k0)
∣∣∣2 exp

[
−(qk + q0)

2ρ(0)
]

×
∫ ∫ {

exp
[
(qk + q0)

2ρ(r)
]
− 1
}

exp
{
−ir
[
(kx − k0x) cos ϕ +

(
ky − k0y

)
sin ϕ

]}
rdrdϕ

, (A5)

where φi and φs denote incident and scattered azimuth angles, and:

kx = k sin θs cos φs, ky = k sin θs sin φs,

k0x = k sin θi cos φi, k0y = k sin θi sin φi.
(A6)
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The phase factor in Equation (A5) can be written in the form:

exp
{
−ir
[
(kx − k0x) cos ϕ +

(
ky − k0y

)
sin ϕ

]}
= exp[−ir(M cos φi cos ϕ + M sin φi sin ϕ)]

= exp[−irM cos(ϕ− φi)]

, (A7)

where M = |k− k0| = k
√
(sin θs cos φs − sin θi cos φi)

2 + (sin θs sin φs − sin θi sin φi)
2. θi and θs

denote incident and scattered angles.
With the help of Bessel function, we can obtain [28]:

∫ 2π

0
dϕ exp[−iMr cos(ϕ− φi)] = 2π J0(Mr), (A8)

where J0(·) denotes the Bessel function of the first kind of zero order. Substituting Equations (A7) and
(A8) into Equation (A5), the scattering coefficient can be expressed as [20]:

σSSA−1
αα0

(k, k0) = 8
∣∣∣ qkq0

qk+q0
Bpq(k, k0)

∣∣∣2 × ∫ ∞
0 rdr

{
exp−(qk+q0)

2[ρ0−ρ(r)]− exp−(qk+q0)
2ρ0
}

J0(Mr). (A9)

The autocorrelation function can be calculated based on Equations (10) and (11).
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