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Regular Switching Components

Yan Gerard

LIMOS, University Clermont Auvergne, France

Abstract

We consider a problem of Discrete Tomography which consists in reconstruct-
ing a lattice set S ⊂ Z2 with given horizontal and vertical X-rays (in other
words, with prescribed number of points in each row and column). With-
out complementary assumption, the problem can be solved in polynomial
time [1, 2]. Many variants add the constraint to find a solution in a chosen
class C. Among others, the problem is NP-complete for the class HV of HV-
convex lattice sets [3] and it becomes polynomial for the class HV4 of the
HV-convex polyominoes [4]. Twenty years after these results, its complexity
remains unknown for the class P of the convex lattice sets (in other words
two-dimensional lattice polytopes).

The difficulty of this problem comes from combinatorial structures called
switching components. Given the border of a solution (its feet), switching
components are finite sequences of points (pi)1≤i≤2l with the property that
either the points with odd indices, or the points with even indices are in a
solution S. This binary choice is encoded in a boolean variable associated
with the switching component. Then the convexity constraints are simply
encoded by clauses (2-clauses for HV-convexity and 3-clauses for convexity).

The purpose of the paper is to investigate the properties of the switch-
ing components and their relations induced by convexity. We divide the
switching components in two classes: regular if their turning angle is con-
stant, irregular otherwise. We prove that the 4-connected regular switching
components have equal boolean variable. It leads to merge them in extended
switching components. If all switching components are regular, we prove that
the extended switching components are all independent (then the number of
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solutions with the considered feet is 2n where n is the number of extended
switching components) and that they are geometrically ordered.

Keywords: Discrete Tomography, X-rays, HV-convex lattice sets

1. Introduction1

A word about some friends of Maurice Nivat2

The scientific community involved in the field of Discrete Tomography3

started his work 25 years ago. Maurice Nivat promoted the field by co-4

organizing or participating to some weeks of workshop in Dagstuhl (1997),5

Thionville (1999), Sienna (2000), Oberwolfach (2000). He met new friends6

and presented the field to younger researchers who became his students and7

friends. This tribute to Maurice Nivat is an opportunity to honor also the8

memory of three of his friends who unfortunately died much too early: Alain9

Daurat, the last PhD student of Maurice (1973-2011), Alberto Del Lungo10

(1965-2003) [5] and Attila Kuba (1953-2006).11

1.1. Open problems in Discrete Tomography12

The field of Discrete Tomography [6, 7, 8] started in the mid 1990s years13

with a report of failure. The classical algorithms of Computerized Tomog-14

raphy fail to reconstruct lattice sets as requested for instance in Electron15

Microscopy for the investigation of crystals [9, 10]. Due to the technical16

principle providing the measurements and the complexity of the considered17

problems, a special attention has been given on dimension 2. The state of the18

art around this question was already rich of different results of complexity.19

The most fundamental one is due to D. Gale and R.J Ryser in 1957. They20

proved independently that if it exists, a lattice set with prescribed number21

of points in each row and column can be computed in polynomial time [1, 2].22

This central problem has been extended in several directions including the23

following:24

• By increasing the dimension of the lattice, the problem becomes NP-25

hard from dimension 3 [11]. The question can also be related with26

timetables and multi-commodity flow problems [12, 13].27

• By increasing the number of X-rays (let us precise that an X-ray is28

the vector which counts the number of points of a lattice set in the29
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sequence of lines of given direction), from 3 directions, the problem30

becomes NP-hard [14].31

• By reconstructing no more one set from its X-rays but simultaneously32

several sets (with empty intersections) from their own X-rays [15], the33

problem is NP-hard from only two sets [16].34

• By adding geometrical or topological constraints as we are going to35

precise in the following.36

Instead of searching for any lattice set with the prescribed X-rays as in37

the initial problem investigated by D. Gale and H.G Ryser [1, 2], we can38

search for a solution satisfying complementary constraints. It might change39

completely the complexity of the problem. The constraints which are added40

can be topological, for instance by searching for 4-connected solutions (4-41

connected finite subsets of Z2 are called polyominoes), or geometrical, as the42

research of convex solutions. This area of research has been open by two43

seminal papers providing deep results.44

• The first one is due to Richard Gardner and Peter Gritzmann[17]. They45

considered the reconstruction of convex lattice sets with different num-46

ber of directions of X-rays. They characterized the sets of n directions47

for which any set is uniquely determined by its X-rays. For 2 or 348

directions, their exist always ambiguous pairs or triplet of X-rays. For49

n ≥ 7 directions, all lattice sets are uniquely determined by their X-50

rays. For 3 < n < 7, the so-called cross-ratios of the directions provide51

a characterization of the sets of direction providing either uniqueness,52

or ambiguous X-rays [17]. With the directions of X-rays providing53

uniqueness, these results have been completed by a polynomial time54

algorithm of reconstruction by Sara Brunetti and Alain Daurat [18].55

• The second paper on which we focus our attention is the reconstruction56

of HV-convex polyominoes of Z2 from their horizontal and vertical X-57

rays. Helena Barcucci, Alberto Del Lungo, Renzo Pinzani and Maurice58

Nivat proved in 1996 that it can be solved in polynomial time [4].59

The polynomial time algorithm reconstructing 4-connected HV-convex60

lattice sets from their horizontal and vertical X-rays is all the more notewor-61

thy that almost all the other neighboring problems are NP-hard. Deciding62

3



whether there exists a solution in the classes of H-convex, V-convex, HV-63

convex, 4-connected, H-convex and 4-connected lattice sets is NP-complete64

[3, 4] in these five cases. The main remaining open question with orthogonal65

X-rays is the complexity of the reconstruction of lattice polytopes or in other66

words convex lattice sets (for a lattice set, convex means that it is equal to67

the intersection of its real convex hull with the lattice). It’s a challenging68

problem whose adjacency with the reconstruction of HV-convex polyominoes69

has drawn a new attention on the classical algorithm of [4]. Although older70

than 20 years, this approach has still a shadow zone. It concerns the last71

step of the algorithm. Given the feet of the lattice set, either the algorithm72

stops during the filling operations and there is no solution, or the last step is73

required to find solutions. Several experts have noticed that if the algorithm74

arrives at the fourth step, there are always solutions (unfortunately only oral75

communication). Although it can be proved quite easily in the cases b), d)76

and f) of Fig.20, this remark remains a conjecture.77

This unexplained and prevalent property shows that it remains a real78

interest in digging the heritage of Maurice Nivat and his co-authors. They let79

the combinatorial structures of the switching components unexplored while80

their investigation is of major interest for the reconstruction of convex lattice81

sets, a question which remains an open question despite the current attention82

on this topic [19]).83

1.2. Results84

We provide in this paper new results in the framework of the reconstruc-85

tion of lattice sets from their horizontal and vertical X-rays with constraints86

of convexity or HV-convexity. The original approach for solving these prob-87

lems of reconstruction (also used in [20, 18]) works in 4 steps.88

1. Fix the feet of the solutions (the points on the boundary of the region89

of interest).90

2. Proceed to a sequence of filling operations.91

3. Partition the remaining undetermined points in switching components92

and express the constraint of HV-convexity (or convexity) with 2-93

clauses.94

4. Use a 2-SAT solver to provide solutions.95

The fourth step of the algorithm is however very often useless. In most96

cases, the 2-SAT instance is reduced to a set of equalities on boolean vari-97

ables which can be solved without any 2-SAT solver. The purpose of the98
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paper is to provide the definitions, classifications and properties which ex-99

plain the degeneracy of the set of constraints induced by HV-convexity. We100

introduce a partition of the switching components in two classes according to101

the variation of their turning angle: Switching components are closed path102

which might turn sometimes on the left (anticlockwise) and sometimes on103

the right (clockwise). If the path is always turning on the same direction,104

the switching component is said regular, and irregular otherwise. A larger105

part of the paper but not all is devoted to the regular case.106

The main lemma of the paper (Lemma 1) is that the regular switching107

components at Euclidean distance 1 are necessarily equal. It follows that in108

the case where all the switching components are regular, any pair of switch-109

ing component is either equal, or independent (Theorem 1). In other words,110

if the HV-convexity makes two regular switching components dependent and111

relates them by a 2-clause, then, at some other points of the path, HV-112

convexity enforces the converse dependency and provides their equality. It113

leads to merge the equal switching components in extended switching compo-114

nents. These objects are all independent. It explains why in the case where115

all switching components are regular, the 2-SAT instance is reduced to a set116

of equalities (these instances are of course trivial to solve). It follows the117

structural property:118

If all switching components are regular, the number of solutions (with the119

chosen feet) is 2n where n is the number of extended switching components120

(Property 1).121

This property does not hold in general: with irregular switching compo-122

nents, the number of solutions is not necessarily a power of 2 (an example is123

drawn in Fig.1).124

As the condition of regularity of all the switching components can appear125

as a bit restrictive, we investigate the different cases where it might occur. It126

leads to prove new properties of the switching components and provide some127

counter-examples going against the intuition.128

• We prove that each switching component visits necessarily the four129

borders (South West, North West, North East and South East) of the130

set of undetermined points (Property 2).131

• Among all the possible configurations of the feet, in one case, they are132

all regular while in the other, irregular switching components might oc-133

cur (Fig.20). In this second case, only one sub-case among five provides134
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both regular and irregular switching components (this counter-intuitive135

case is illustrated Fig.21). For all the others: switching components are136

either all regular, or all irregular.137

• If all switching components are regular, we prove that the extended138

switching components obtained by merging the 4-connected switching139

components are well ordered (Property 3).140

Figure 1: Counter-example with irregular switching components. The two switch-
ing components (blue and cyan) are irregular since their path does not have a constant
turning angle. With such switching components, the number of HV-convex solutions is
not necessarily a power of 2 while it is always the case with regular switching components
(Property 1).

These results do not only provide a better understanding of the classical141

algorithm used for reconstructing HV-convex lattice set. The simplification142

that it introduces in the case of regular switching components might also be143

useful for solving the open question of the reconstruction of convex and no144

more HV-convex lattice sets from their horizontal and vertical X-rays.145

In Sec.2, we present the definitions from HV-convexity to the notion of146

switching components by passing through the original algorithm of recon-147

struction of [4]. In Sec.3, we provide the main result and its proof about the148

degeneracy of the constraints in the regular case. At last, Sec. 4 is devoted149

to the complementary results (properties 2 and 3.150
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2. Definitions and notations151

2.1. HV-convexity152

There exist several kinds of convexity in Zd or even simply in Z2: direc-153

tional convexity such as HV-convexity, Q-convexity and just convexity some-154

times called digital convexity or strong convexity. We introduce HV-convex155

and convex lattice sets.156

Definition 1. A lattice set S ⊂ Z2 is HV-convex if its intersection with any157

horizontal or vertical line is a set of consecutive points (Fig.2).158

Figure 2: HV-Convexity. The left lattice sets are not HV-convex since their intersection
with some vertical or horizontal line (in red) has holes. The two right lattice sets are
HV-convex.

Definition 2. A lattice set S ⊂ Z2 is convex if it is equal to the intersection159

of its (real) convex hull with the lattice (Fig.3).160

In other words a finite convex lattice set is equivalent to a lattice poly-161

tope. We introduce notations for the classes of finite lattice sets used in the162

following. The set of the HV-convex 4-connected lattice sets (HV-convex163

polyominoes) is denoted HV4. The set of the HV convex lattice sets is de-164

noted HV . The set of the convex lattice sets is denoted P (P for lattice165

polytopes). Then we have the two inclusions P ⊂ HV and HV4 ⊂ HV .166

Notice that both convex and HV-convex lattice sets are not necessarily 4 or167

even 8-connected.168
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Figure 3: Convexity. The left lattice set is not convex since its convex hull (in red)
contains a lattice exterior point (in white). The right lattice set is convex.

2.2. Horizontal and vertical X-rays169

An X-ray is the sequence of the cardinalities of the intersection between170

a given lattice set and the consecutive diophantine lines having a given di-171

rection. In the case of the vertical and horizontal directions, it leads to the172

following definition.173

Definition 3. Given a finite lattice set S ⊂ Z2 included in the rectangle174

[1,m] × [1, n], its vertical X-ray is the vector V (S) ⊂ Zm whose coordinate175

vi(S) is the number of points of S in the vertical line x = i (we have Vi(S) =176

|{(x, y) ∈ S|x = i}|). The horizontal X-ray of S is the vector H(S) ⊂ Zm177

counting the number of points of S in each horizontal line y = j (we have178

Hj(S) = |{(x, y) ∈ S|y = j}|).179

Figure 4: The horizontal and vertical X-rays of a given lattice set S.

2.3. Problem statement180

We introduce the problem of decision of the existence of a finite lattice181

set having the double property to belong to a specific class C and with the182

given X-rays:183
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Problem 1 (DTC(h, v)).184

Given a class C of lattice sets185

Input: Two vectors v ∈ Zm, h ∈ Zn186

Output: does there exist a lattice set S ∈ C with V (S) = v and H(S) = h ?187

The problems DTC are known to be polynomial for the classes C of the188

whole lattice sets [1, 2] and for the class HV4 of the HV-convex polyominoes189

[4]. Its complexity is unknown for the class of the convex polytopes P and is190

NP-complete for many other (H-convex, V-convex, HV-convex, 4-connected)191

[3, 4].192

2.4. The feet193

We introduce the feet of a lattice set S as the subsets of its points with194

minimal and maximal coordinates.195

Definition 4. Given a lattice set S ⊂ Z2, we consider its South, East, North196

and West feet as the sets197

• South(S) = S ∩ {y = ymin(S)} where ymin(S) is the min ordinate of198

the points of S.199

• West(S) = S ∩{x = xmin(S)} where xmin(S) is the min abscissa of the200

points of S.201

• North(S) = S ∩ {y = ymax(S)} where ymax(S) is the max ordinate of202

the points of S.203

• East(S) = S∩{x = xmax(S)} where xmax(S) is the max abscissa of the204

points of S.205

2.5. Steps of the original algorithm206

The original algorithm for solving DTHV4 is strongly dependent on HV-207

convexity. It is only guaranteed to terminate in a polynomial time for the208

class HV4 of the HV-convex polyominoes. Its principle can however be con-209

sidered for any instance DTC(h, v) with a class C of lattice sets which are all210

HV-convex (C ⊂ HV). It can be for instance HV4, P or even HV itself. The211

algorithm can be decomposed in four steps [4].212

1. Fix the feet (Fig.6).213
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Figure 5: The feet. The four feet of a finite lattice set.

2. Filling operations: Try to satisfy the X-rays and the geometrical con-214

straints until the filling operations do not allow to determine any new215

point.216

3. Decompose the remaining undetermined points in switching compo-217

nents and provide the 2-clauses expressing HV-convexity.218

4. Solve the 2-SAT instance.219

In many cases, the main part of the computation is done in the second220

step.221

2.6. Filling operations222

Under the assumption of the chosen feet, the filling operations are working223

with a partition of the lattice in three sets:224

• The set In contains the points which are known to belong to all solu-225

tions.226

• The set Out contains the points which are known to be excluded from227

all solutions.228

• The set Shell is the set of the undetermined points.229

The task of the filling operations is to take the constraints into account in230

order to include or exclude from the solutions as much points as possible and231

thus decrease the shell. If a point of In has to be added in Out or conversely,232

this contradiction leads to the conclusion that the considered position of the233
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Figure 6: Step 1. On the left, the different possible positions of the feet. On the right,
a position of the feet is chosen. The points are added in In (in black) while the other
extreme points which have not been chosen are added in Out (in red). The shell (in grey)
is the set of the points which are not yet determined.

feet admits no solution. The next step starts as the filling operations did not234

find contradictions and are no more able to decrease the shell.235

There exist different kinds of filling operations depending on the chosen236

class C. Their common property of HV-convexity and the prescribed X-rays237

provide however the main operations. First operations are uniquely related238

with HV-convexity. The intermediary lattice points between two points of239

In on the same row or on the same column can be added in In. If there240

are two points p ∈ In and p′ ∈ Out on the same row or column, the points241

behind p′ can be added in Out. There are also the filling operations which242

take the prescribed X-rays into account with HV-convexity (Fig.7). We refer243

to [20, 18] for a more complete presentation of the operations.244

Some of the filling operations can be much more complex. It is the case of245

the operation based on the 4-connectivity used for reconstructing HV-convex246

polyominoes [4].247
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Figure 7: Four filling operations.

2.7. 8-connectivity of In and shell partition in SE, NE, NW and SW248

We did not restrict the framework of the paper to the reconstruction of a249

specific class C of lattice sets, except the property that it has to be HV-convex250

but for going further, we need a first assumption:251

We assume that the set In obtained at the end of the filling operations252

is 8-connected. At the step 1, the set In is initialized as the union of the253

feet. In most cases, they are not 8-connected. If the filling operations allow254

to connect them, then at the end of the filling operations, we can decompose255

the shell in 4 parts according to their relative position towards the set In.256

Otherwise, there is no intrinsic decomposition.257

The assumption that the set In is 8-connected allows to decompose the258

shell in four borders. These four borders located between In and Out are259

denoted SE, NE, NW and SW for South-East, North-East, North-West and260

South-West (Fig.8).261

Once defined, the main property of the four layers is that they are struc-262

tured by pairs, North and South, East and West.263

2.8. Corresponding points264

We define vertical correspondences between the South and the North265

points and horizontal correspondences between the West and the East points.266

Definition 5. We consider an instance DTC(h, v) with X-rays h and v and a267

class C ⊂ HV . We assume that the set In obtained after the filling operations268

is 8-connected so that the shell has been decomposed in four borders.269
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Figure 8: The 4 borders of the shell. If the set In is 8-connected, the shell can be de-
composed in its South-East, North-East, North-West and South-West borders respectively
denoted SE, NE, NW and SW.

The vertical correspondent of a point p = (i, j) of the South borders270

SE ∪ SW is the point p = (i, j + vj).271

The vertical correspondent of a point p = (i, j) of the North borders272

NE ∪ NW is the point p = (i, j − vj).273

The horizontal correspondent of a point p| = (i, j) of the West borders274

SW ∪ NW is the point |p = (i + hj, j).275

The horizontal correspondent of a point |p = (i, j) of the East borders276

SE ∪ NE is the point p| = (i− hj, j).277

The vertical and horizontal correspondents have a few properties.278

1. The horizontal and vertical correspondents of an undetermined point p279

are also undetermined (otherwise, the filling operations allow to assign280

p to In or Out).281

2. Correspondences are symmetric relations.282

3. The distance between p and its correspondents being hj and vi, if p is283

in a solution, its correspondents are outside.284

4. A point p and its correspondent p′ cannot be outside from a solution285

in the meantime because the segment of the solution is necessarily in286

between and there are not enough points.287

It follows that if p and p′ are correspondents, p is in a solution S if and only288

if p′ is not in S.289
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Figure 9: Corresponding points. On the left, a configuration with the sets In (black
points), Out (red points) and Shell (white cells, grey points) of the undetermined points. In
the middle, a pair of vertical correspondents (green) and a pair of horizontal correspondents
(blue). We represent the points alternatively with squares or diamonds. Notice that the
segment represented by the dotted ellipse has only two possible positions. Due to its
length, if it contains the square, it does not contain the diamond and conversely. On the
right, the correspondences define closed paths called switching components which provide
a partition of the undetermined points. For each switching components, either the squares
belong to a solution, or the diamonds.

2.9. Switching components290

The correspondences between the points define paths. The undetermined291

point p1 has an horizontal correspondent p2 which has a vertical correspon-292

dent p3 which has an horizontal correspondent p4 and so on until coming back293

to p1 as vertical correspondent (since the shell is finite, the path is necessarily294

closed). This path is called switching component (Fig.9 and 10).295

Definition 6. We consider an instance DTC(h, v) and a position of the feet296

providing a 8-connected set In. The shell obtained at the end of the filling297

operations is decomposed in SE, NE, NW, SW.298

A switching component P is a cyclic sequence of corresponding points pr299

with indices r ∈ Z/2lZ (the length of the sequence is 2l) so that p2k and p2k+1300

are vertical correspondents while p2k−1 and p2k are horizontal correspondents.301

We denote P [0] the set of the points of the sequence with even indices and302

P [1] the set of the points with odd indices.303

By construction, the two sets P [0] and P [1] have the same horizontal and304

vertical X-rays, since each point has a unique vertical and horizontal corre-305

spondent in the other set (they are respectively represented with diamonds306

and squares in all following figures). In the same way than the corresponding307
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Figure 10: Switching components. On the left, two switching components P 1 and P 2.
The squares represent their points with even indices (the set P [0]) and the diamonds the
points with odd indices (the set P [1]). Notice that there are here only 2 convex solutions
since the convexity enforces to add P 1[0]∪P 2[0] or P 1[1]∪P 2[1] in the solution while sets
including P 1[0]∪P 2[1] or P 1[1]∪P 2[0] have also the prescribed X-rays but are not convex.
In the middle, regular switching component are not restricted to only one turn (the brown
switching component makes 2 turns). On the right, an irregular switching component. It
turns clockwise at point 2 and anticlockwise at point 3. On the contrary, the switching
components of the two left images are regular (they turn always clockwise).

points, any solution S of DTC(h, v) with the considered feet falls in one of308

the two possible cases:309

• either P [0] ⊂ S and P [1] ∩ S = ∅,310

• or P [1] ⊂ S and P [0] ∩ S = ∅.311

In other words, considering a switching component P , a solution contains312

either the points of the switching component with odd indices, or the ones313

with even indices.314

2.10. Boolean variables for encoding the state of each switching component315

According to previous remark, in a solution S of DTC(h, v) with prescribed316

X-rays and fixed feet, a switching component P can have only two states:317

• P (S) = 0 if P [0] is in S and P [1] is excluded.318

• P (S) = 1 if P [1] is in S and P [0] is excluded.319
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The value P (S) is a boolean variable. If we consider now the whole sets of320

switching components P q for the indices q going from q = 1 to the number Q321

of switching components, the values of the Q boolean variables P q(S) provide322

a complete characterization of S. Moreover, the 2Q possible assignments of323

the Q boolean variables all provide a set S with the prescribed horizontal324

and vertical X-rays. The problem is to determine whether there exists an325

assignment which provides a solution S in the chosen class C.326

2.11. Regular switching components327

Before starting the investigation of the relationships between the switch-328

ing components, we introduce two groups according to the regularity of their329

turning angle.330

Definition 7. A switching component is regular if for all indices, the ori-331

ented angle between vectors pk − pk−1 and pk+1 − pk is a constant of k (in332

other words, the switching component turns always clockwise, or always anti-333

clockwise (Fig.10)).334

The switching components which have clockwise and anticlockwise turn-335

ing angles are simply said irregular (Fig.10).336

3. Main result337

We prove that the boolean variables associated to regular switching com-338

ponents at distance 1 (they have two 4-neighbors at some points) are neces-339

sarily equal. This main lemma allows to state different properties.340

3.1. Encoding the convexity with clauses341

The classical approach developed in [4] for reconstructing HV-convex342

polyominoes is to search for an assignment of the boolean variable pq(S)343

leading to an HV-convex solution S. The approach passes through the en-344

coding of the HV-convexity constraint in a conjunction of 2-clauses. It leads345

to a 2-SAT instance (Fig.11).346

The same approach holds for encoding convexity with clauses (Fig.11).347

They are however no more restricted to 2-clauses. 3-clauses are necessary348

with the difficulty that 3-SAT is no more polynomial but NP-complete. It349

explains why the original polynomial time algorithm for the class HV4 of350

convex polyominoes has not been extended to the class of convex polytopes351

P . We can however believe that some properties of the switching components352

might be of interest for avoiding the use of 3-clauses.353
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Figure 11: 2 and 3 clauses encoding convexity. The switching components being
encoded in boolean variables (represented here geometrically with colored squares and
diamonds), HV-convexity is expressed by a conjunction of 2-clauses. Consequently, the
research of an HV-convex solution is reduced to a 2-SAT instance that can be solved in
polynomial time. For expressing the convexity (not HV-convexity but the one of Definition
2) in the same manner, we need 3-clauses with the difficulty that 3-SAT is NP-complete.

3.2. Regular switching components at distance 1 are equal354

We provide an important lemma whose consequences have been observed355

several times in the framework of the reconstruction of HV-convex polyomi-356

noes. By convention, we choose the initial point p1 of the regular switching357

components in the North West border NW (Property 2 shows that it is always358

possible).359

Lemma 1. We consider an instance of DTC(h, v) with a class C ⊂ HV. The360

four feet being chosen, we assume that the filling operations have connected361

them. It provides a partition of the shell in its NE, NW, SW, SE borders362

and thus in switching components (Fig.11). For any pair P and P ′ of regular363
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switching components having a pair of points at Euclidean distance 1, the364

HV-convexity constraint of a solution S enforces P and P ′ to be equal.365

Lemma 1 means that neighboring regular switching components are nec-366

essarily equal.367

Proof. We assume without loss of generality that the points p1 = (x1, y1)368

and p′1 = (x′1, y
′
1) both belong to the North West border NW and that p′1 is369

the right 4-neighbor of p1 (Fig.12).370

Figure 12: Assumption of Lemma 1. We assume that the two considered switching
components have two points at Euclidean distance 1. By symmetries, we can assume
without loss of generality that p′1 is the right 4-neighbor of p1. It follows that if p1 is in
the solution S (the odd part P [1] of the switching component P is in S namely P (S) = 1),
then p′1 is also in S (the odd part P ′[1] of the switching component P ′ is also in S namely
P ′(S) = 1). The black zone is a sketch of the set In. It underlines the property that with
regular switching components horizontal correspondences are only between NW and NE
or SW and SE while vertical correspondences are only between NW and SW or NE and
SE.

We consider the positions of the points p0 = (x0, y0) (vertical correspon-371

dent of p1), p2 and p3 = (x3, y3). We distinguish three cases according to the372

comparison of y0 and y3.373

• Case 1. y0 < y3374

• Case 2. y0 = y3375

• Case 3. y0 > y3376
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Figure 13: The three possible configurations used for proving Lemma 1. We
develop the three cases in the following.

The three cases are developed in figures 14, 15 and 16. We follow the path377

of the second switching component P ′ by starting from p′1. This starting point378

is in the region denoted A and we build the oriented graph of correspondences379

between the regions reached by P ′. This graph provides a description of all380

the possible path and thus of all possible configurations starting from the381

region A.382

According to the relative position of p′1 towards p1, the equality P (S) = 1383

implies P ′(S) = 1. Some regions provide the converse relation: P ′(S) = 1384

implies P (S) = 1 or equivalently P (S) = 0 implies P ′(S) = 0, and thus385

provide the wanted equality. These regions are colored in grey in all the386

figures. Therefore the task of the proof is to show that any closed path387

starting from p′1 passes necessarily through a grey region.388

In the first and second cases (Fig.14 and 15), either the path passes389

through a grey region and provides the equality, or it cannot come back in390

the initial region A which is excluded. It provides the equality.391

In the third case, the analysis is a bit more complicated. We proceed in392

two steps. We introduce 4 regions denoted A, B, C and D represented in393

Fig.16. The points p′1 and p′2 are respectively in A and B. Let us assume394

now that the switching component P ′ has two horizontal correspondents395

respectively in C and D. These two points and the two points p′1 and p′2396

define four (grey) regions as in previous cases and as drawn in Fig.16. If the397

switching component P passes through one of these regions, then the HV-398

convexity provides the equality between the switching components P and399

P ′. If the switching component does not pass through the four grey regions,400

then the path of the switching component P after p3 is restricted to an area401
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Figure 14: Case 1. In the first case, we decompose the four borders in different regions
and follow the path of the switching component P ′. It starts with a point p′1 in the
region A. The path ends also necessarily in A. Due to the relative position of p′1 towards
p1, we have P (S) = 1 =⇒ P ′(S) = 1. The horizontal correspondents of the points
in region A are either in region B, or in region C. The graph of the correspondences
between the regions that we can reach from region A is drawn below. It the switching
component P ′ passes through one of the grey regions B or F , the HV-convexity leads
to P (S) = 0 =⇒ P ′(S) = 0. If it passes through the grey regions E or I, then HV-
convexity leads to P ′(S) = 1 =⇒ P (S) = 1. Consequently if the switching component
passes through one of the four grey regions, we have the equality P (S) = P ′(S). We notice
at last that the only way to avoid the grey regions is to follow the path (CDGH)∗ but it
is excluded because their in no way to end the path in region A.

(in green on the figure) which does not allow to come back to the initial402
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Figure 15: Case 2. The second case is similar to the first one. Starting from a point p′1
in the region A, the path of the switching component either passes through a grey region
which provides the equality P (S) = P ′(S) or has a cycle (CDGH)∗ which does not allow
to end the path in region A. This last possibility is excluded.

point. This case can be excluded. We provide a partial conclusion (i): If the403

switching component P ′ has two horizontal correspondents in the regions C404

and D, the equality of P and P ′ is guaranteed.405

We come back to the path followed by the switching component P ′. We406

partition the undetermined points in regions according to their positions407

relatively to p0, p1, p2 and p3 and investigate again the regions crossed by408

the switching component P ′. The grey regions drawn in Fig.17 are the ones409

which, due to HV-convexity, provide the equality of the switching component410

P (S) = P ′(S). By building the diagram of the correspondences between the411
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Figure 16: Case 3. Preliminary analysis. We introduce four regions A, B, C and D.
The points p′1 and p′2 (in red) are respectively in A and B. Let us assume that there is a
pair of horizontal correspondents of P ′ in the regions C and D. Different sub-cases might
occur but the consequences are the same. If we consider now the path of the switching
component P after p3 (in blue), either it passes through one of the grey regions which
provide the equality between P and P ′, or it is maintained in the green area which does
not allow to come back to p1. This last case is excluded with the consequence that if
P ′ has two horizontal correspondents in B and C, we have the equality of the switching
components (for any solution S, we have P (S) = P ′(S)).

regions, it appears that P ′ passes through a grey region, or passes through the412

edge BC for which the conclusion (i) provides already the equality P = P ′,413

or is not closed which is in contradiction with its definition. It follows that in414

all valid cases, we have the equality between the two switching components.415

416

3.3. Extended switching components are independent417

The main lemma 1 has a corollary in the case where all the switching418

components are regular.419

Theorem 1. We consider an instance of DTC(h, v) with a class C ⊂ HV.420

The four feet being chosen, we assume that the filling operations have con-421
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Figure 17: Case 3. Final analysis. We partition the borders in regions according to
their relative positions towards the points p0, p1, p2 and p3. Due to HV-convexity, if the
switching component P ′ has a point in one of the four grey regions W , X, Y and Z, then
we have the equality P (S) = P ′(S). The oriented graph of the horizontal and vertical
correspondences between regions is drawn below. It characterizes the possible path issued
from p′1. Either it passes through a grey region, or it passes through the edge CD for
which we have already proved the equality (i), or it can not be closed and as previously,
this case can be excluded. In the three valid cases, P (S) = P ′(S).

nected them. It provides a partition of the shell in its NE, NW, SW, SE422

borders and thus in switching components (Fig.11). We assume that all the423

switching components are regular and keep the convention that the point p1 of424

any switching component is in NW. Then any pair of switching components425

P and P ′ is either equal (for any solution S, P (S) = P ′(S)), or independent.426

Proof. Let us assume that the HV-convexity enforces two switching compo-427
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nents P and P ′ to be dependent. It means that they are in a configuration428

where if a point pk of P is in a solution S, then the point p′k′ of P ′ is also429

in S. By symmetries, we assume pk is in the North West border. It follows430

that p′k′ is its South East quadrant (Fig.18). There is thus a 4-connected431

path of undetermined points from pk to p′k′ . By induction, Lemma 1 proves432

that their switching component are all equal and thus provides the equality433

between P (S) = P ′(S).434

Figure 18: 4-connected path. HV-convex dependencies between switching components
are consequences of a point configurations like the one drawn above. If pk is in a solution S,
then by HV-convexity, p′k′ is also necessarily in S. In any case, we can connect pk and p′k′

by a 4-connected path of undetermined points (in brown). As their switching components
are all assumed to be regular, according to lemma 1, all the switching components of these
brown points are equal. It provides the equality between the switching components of the
blue and red points.

Theorem 1 states that we have equal switching components (they are435

connected by 4-connected path) and independent switching components. It436

leads to merge the switching components which are equal in extended switch-437

ing components.438

Definition 8. We consider an instance of DTC(h, v) with a class C ⊂ HV439

and positions of the feet providing a partition of the shell in switching com-440

ponents.441

An extended switching component P is the union of all the switching442

components P ′ (considered as the set of their points) whose boolean variables443

are equal to P due to HV-convexity (Fig.19).444
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Figure 19: Extended switching components. On the left, due to convexity, the switch-
ing components P 1, P 2, P 3, P 4 are necessarily equal while P 5 is independent. On the
right, we merge P 1, P 2, P 3, P 4 in the extended switching component P 1 and P 5 becomes
P 5. Extended switching components are less structured, they are just sets of points.

Any extended switching component P is a subset of the shell. We denote445

P (NW), P (NE), P (SE) and P (SW) its four subsets in the four borders of446

the shell. By definition, for any solution S of the instance DTC(h, v), either447

P (NW)∪P (SE) is in S and (P (SW)∪P (NE))∩ S = ∅, or P (SW)∪P (NE)448

is in S and (P (NW) ∪ P (SE)) ∩ S = ∅. Theorem 1 means that if all the449

switching components are regular, all extended switching components are450

independent. An obvious corollary of Theorem 1 is therefore the following451

property:452

Property 1. We consider an instance of DTC(h, v) with a class C ⊂ HV.453

The four feet being chosen, we assume that the filling operations have con-454

nected them. It provides a partition of the shell in its NE, NW, SW, SE455

borders and consequently in switching components (Fig.11).456

If all the switching components are regular, then the number of solutions457

(with the chosen feet) is 2n where n is the number of extended switching458

components.459

Property 1 does not hold with irregular switching components as drawn460

in Fig.1. We end this section with a last remark about extended switching461

components in the regular case. Under the assumption that all the switch-462

ing components are regular, distinct switching components pass necessarily463

through distinct rows and columns. Otherwise it means that they share a row464
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or column, and they would have been merged according to Lemma 1 under465

the same principle than in Fig.18. This property will be used for ordering466

the extended switching components.467

4. Complementary results468

We come back to the general switching components and provide several469

properties. We are in particular interested in the characterization of the470

configurations where all the switching components are regular.471

4.1. Any switching component visits the 4 borders472

Due to their constant turning angle, the regular switching components473

have a cyclic property. With an initial point p1 chosen in NW, we have474

p1+4k ∈ NW, p2+4k ∈ NE, p3+4k ∈ SE, p4k ∈ SW. It does not hold with irreg-475

ular switching components. We can even ask whether an irregular switching476

component could avoid one of the 4 borders NE, NW, SW, SE. It cannot477

happen:478

Property 2. Any switching component passes through the four borders NE,479

NW, SW, SE.480

Proof. We assume that there exists a switching component P which does481

not pass through the border NE. If p1 is in a South border, then p2 is a482

North point and thus in NW. Otherwise p1 is a North point and thus in483

NW. We start from this point pk ∈ NW (with k equal to 1 or 2) and follow484

the path of the switching component. The horizontal correspondent pk+1 of485

pk is necessarily in SE. The vertical correspondent pk+2 of pk+1 is therefore486

in NW. By induction, for any positive integer n, we have pk+2n ∈ NW and487

pk+2n ∈ SE. The turning angles are alternatively +π
2

and −π
2
. Such a path488

can not come back to the point pk. It leads to a contradiction.489

4.2. Structure of the switching components according to the positions of the490

feet491

We are interested now in the different possible configurations of the po-492

sitions of the feet. By symmetries, we can reduce them to 6 cases drawn493

Fig.20.494

• In case a), different structures of switching components are possible495

but they are necessarily irregular.496
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• In case b), the structure of the switching components is constrained.497

They are all irregular. The point pk+8 is in the same area of the shell498

than pk. Moreover, starting from an initial point p1 in the South West499

border, there is no area containing simultaneously points of switching500

components with odd and even indices. It follows that the constant501

assignment P [S] = 0 for all switching components, or the constant502

assignment P [S] = 1 are two trivial solutions of the instance. In other503

words, there are at least two solutions.504

• In case c), we can have switching components with different structures,505

but necessarily irregular.506

• In case d), the structure of the switching components (all irregular) is507

constrained. The point pk+6 is in the same area of the shell than pk.508

As in b) with points p1 ∈ SW, there are at least two trivial solutions509

obtained with constant assignments of the boolean variables.510

• The case e) is the only one which can provide irregular and regular511

switching components. It is illustrated Fig.20. This example goes512

against intuition.513

• In the case f), all the switching components are regular.514

It remains a lot of open questions about irregular switching components.515

The case e) is the only one where irregular and regular switching components516

might coexist (Fig.21). In the cases b), d), and f), the structures of the517

switching components guarantee that the two constant assignment of the518

boolean variables are trivial solution. In the configurations, a), c) and e), we519

still don’t know if it is possible to have an expression of the HV-convexity520

constraints in 2-clauses which is not feasible.521

4.3. Extended regular switching components can be ordered522

We introduce an order relation on the points of the shell. For a pair of523

points p(x, y) and p′(x′, y′), we denote p < p′ if x < x′ or if x = x′ and y < y′524

for the points of the West borders of the shell and p < p′ if x > x′ or x = x′525

and y < y′ for the East borders.526

An order relation < defined on an arbitrary set of points X induces an527

order relation A < B between a pair of subsets A ⊂ X and B ⊂ X if for528

any pair a ∈ A and b ∈ B, we have a < b. The constraint to order sets is529
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Figure 20: The 6 possible configurations of the feet. By symmetries, we can reduce
the set of the possible configurations of the feet to the two cases drawn above. Below, we
consider the values of the X-rays associated with the feet. They determine points in In
and in Out which are colored in yellow for the South and North feet and in blue for the
East and West feet. The shell is in grey (except the points issued from the feet, In is black
and Out is red). Regular switching components are only possible in the cases e) and f).
Irregular switching components are possible in the cases a), b), c), d) and e).

that their points are well-ordered. Is it the case with switching components?530

Unfortunately not, the points of switching components are not necessarily531

well ordered, even in the regular case (Fig.22). But it becomes true with532

extended switching components in the case where the switching components533

are all regular.534

Property 3. In the case where all switching components are regular, the535

extended switching components can be ordered.536

Proof. We assume that switching components have been defined and that537

they are all regular. We use the previous remark that distinct extended538

switching components pass necessarily through distinct rows and columns.539
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Figure 21: An instance with regular and irregular switching components. The
only configuration which might provide both regular and irregular switching components
is e). In all the other cases, the switching components are either all regular, or all irregular.

They cannot share a row or a column. The second remark is that they are540

necessarily 4-connected with the set In. On each border, they follow the541

boundary of In (Fig.23). Then the only case which can prevent them to be542

ordered is if one extended switching component is surrounded by another.543

We assume that such a configuration exist and show that it leads to a con-544

tradiction.545

We consider 4-connected components of extended switching components546

that we call 4CC. We assume that a 4CC denoted P1 of the switching compo-547

nent P is surrounded by two 4CC P ′1 and P ′2 of another extended switching548

component P ′. It means P ′1 < P1 < P ′2. We can assume without loss of549

generality that P ′2 is upper than all the 4CC of P (otherwise we invert P and550

P ′). By definition, there exists a path of horizontal correspondences connect-551

ing P ′1 and P ′2. With the same number of turns around In, the surrounded552

4CC P1 arrives on a 4CC of P that we denote P2. We notice therefore that553

horizontal and vertical correspondences preserve the order of the 4CCs (since554

they don’t share rows or columns). Then by turning around In, it follows555

from the initial assumption P ′1 < P1 that we have also P ′2 < P2. It contradicts556
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Figure 22: A instance with regular switching components which can not be
ordered directly. The green switching components surrounds the two others.

the initial assumption that P ′2 is upper than any 4CC of P .557

558

It follows from all these complementary properties that the extended559

switching components have a simple structure along the boundary of the560

set In: they are independent and well ordered. This property is a step for-561

ward in the direction of the reconstruction of convex lattice sets in the case562

where all the switching components are regular.563

5. Conclusion564

Although they have been widely used for reconstructing HV-convex lat-565

tice sets from their horizontal and vertical X-rays, switching components566

remain quite mysterious combinatorial objects. We started in this paper the567

investigation of the regular case which occurs if the feet are not placed in568

opposite corners of the window (case f of Fig.20). Then the switching com-569

ponents are all regular. The main lemma 1 and Theorem 1 show that their570

boolean variables used at the last step of the HV-convex reconstruction are571
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Figure 23: Ordering the extended switching components. The extended switching
components follow the boundary of the set In (in black). They can be ordered if and only
if the right case, with an extended switching component surrounding another one can be
excluded.

either equal, or independent. Switching components are equal as soon as572

they have two 4-neighbors among their points. We merge them in extended573

switching components. While regular switching components might still have574

complex configurations, these new objects can be easily ordered along the575

boundary of the set In.576

The proofs of the results required the development of new approaches577

based on the investigation of oriented graphs of regions. The regular switch-578

ing components have revealed their structure. A similar work would be of579

interest with irregular switching components. A better understanding of their580

relations could be for instance useful to close the remaining question: is it581

true that the constraints expressing the HV-convexity of the solution are al-582

ways feasible ? We hope at last that it can help to determine the complexity583

of DTP for the class P of the convex lattice sets.584
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