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Abstract

In the last 20 years many discretization schemes have been devel-
oped to approximate the Darcy fluxes on polyhedral cells in heteroge-
neous anisotropic porous media. Among them, we can distinguished
cell based approaches like the Two Point Flux Approximation (TPFA)
or the Multi Point Flux Approximation (MPFA) schemes, face based
approaches like the Hybrid Finite Volume (HFV) scheme belonging
to the family of Hybrid Mimetic Mixed methods and nodal based
discretizations like the Vertex Approximate Gradient (VAG) scheme.
They all have their own drawbacks and advantages which typically
depend on the type of cells and on the anisotropy of the medium. In
this work, we propose a new methodology to combine the VAG and
HFV discretizations on arbitrary subsets of cells or faces in order to
choose the best suited scheme in different parts of the mesh. In our
approach the TPFA discretization is considered as an HFV discretiza-
tion for which the face unknowns can be eliminated. The coupling
strategy is based on a node to face interpolation operator at the inter-
faces which must be chosen to ensure the consistency, the coercivity
and the limit conformity properties of the combined discretization.
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The convergence analysis is performed in the gradient discretization
framework and convergence is proved for arbitrary cell or face parti-
tions of the mesh. For face partitions, an additional stabilisation local
to the cell is required to ensure the coercivity while for cell partitions
no additional stabilisation is needed. The framework preserves at the
interface the discrete conservation properties of the VAG and HFV
schemes with fluxes based on local to each cell transmissibility ma-
trices. This discrete conservative form allows to naturally extend the
VAG and HFV discretizations of two-phase Darcy flow models to the
combined VAG-HFV schemes. The efficiency of our approach is tested
for single phase and immiscible two-phase Darcy flows on 3D meshes
using a combination of the HFV and VAG discretizations as well as
for non-isothermal compositional liquid gas Darcy flows on a vertical
2D cross-section of the Bouillante geothermal reservoir (Guadeloupe)
using a combination of the TPFA and VAG discretizations.

Keywords: Finite Volume, Gradient discretization, Darcy flow,
two-phase Darcy flow, hybrid meshes

Introduction

The simulation of compositional multi-phase Darcy flow in heterogeneous
porous media plays a major role in many applications. In the oil and gas
sector, compositional multi-phase Darcy flow simulations are paramount to
predict and optimize reservoir production. In sedimentary basin modelling,
such models are used to simulate the migration of hydrocarbon phases, over
geological space and time scales, from source rock to traps in geological for-
mations. In CO2 geological storage, compositional multi-phase Darcy flow
models allow to optimize the injection of CO2 and to evaluate the integrity of
the storage. Two-phase compositional Darcy flow models are used to study
the gas migration and to assess the long term safety of nuclear waste stor-
ages. Finally, coupling such models with the energy conservation equation
lead to practical applications for both exploration and production phases of
geothermal operations.

The standard industrial answer to cope with the strong coupling of both
an elliptic (or parabolic) unknown, the pressure, and hyperbolic (or degen-
erate parabolic) unknowns, the volume and mole fractions, is based on finite
volume spatial discretization, which is efficiently combined with an Euler im-
plicit time integration to allow for sufficiently large time steps [4, 22]. A ma-
jor difficulty is linked to the finite volume discretization of the Darcy fluxes
on the complex geometry and geology encountered in practical problems
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typically including fault networks, pinch-out, heterogeneities and spatially
varying anisotropies of the medium. The classical cell-centred Two-Point
Flux Approximation (TPFA) widely used in industrial simulators is cheap
and robust but its consistency requires strong orthogonality conditions on
the mesh which cannot be achieved for complex geological models. In the
last 20 years, these restrictions have motivated an active research on the de-
velopment of new discretization schemes to approximate the Darcy fluxes on
polyhedral cells and in heterogeneous anisotropic porous media [18, 13]. Still
relying on the cell-centred approximation, Multi-Point Flux Approximations
(MPFA) extend TPFA to consistent discretizations on general meshes with
anisotropic heterogeneous media [1, 14]. Yet, MPFA schemes are mesh and
anisotropy conditionally stable and exhibit a very large stencil on simplec-
tic meshes. Alternatively, nodal discretizations such as the Control Volume
Finite Element (CVFE) method [19] and the Vertex Approximate Gradient
(VAG) scheme [15, 18, 23] are unconditionally coercive and very efficient on
simplectic meshes thanks to their nodal based approximation. Finally, face
based discretizations such as the Hybrid Finite Volume (HFV) scheme [16]
belonging to the family of Hybrid Mixed Mimetic (HMM) methods [12], or
the Mixed Hybrid Finite Element method, have been developed and adapted
to multi-phase Darcy flows in [3, 2]. They provide accurate and uncondition-
ally stable discretizations of the Darcy fluxes but, due to the large number
of faces, remain rather expensive compared with nodal or cell-centred ap-
proaches.

Roughly speaking, all these discretizations of the Darcy fluxes have their
own drawbacks and advantages which typically depend on the mesh charac-
teristics and on the anisotropy of the medium. In this work, we propose a new
methodology which combines nodal based and face based discretizations on
arbitrary subsets of cells or faces in order to adapt the choice of the scheme in
different parts of the mesh. In our approach, the TPFA is considered as a face
based HFV scheme for which the face unknowns can be eliminated assum-
ing that the mesh satisfies the superadmissibility property with anisotropy
aligned with the mesh directions (see Lemma 2.1 of [16]). The VAG scheme
is chosen as our nodal approximation since it shares a common data structure
with the HFV scheme based on local to each cell transmissibility matrices.
It has also the advantage, compared with more classical nodal discretizations
such as CVFE, to avoid the mixing of rocktypes at nodal control volumes
[18, 23].

We consider two types of strategies to couple the VAG and HFV (TPFA)
discretizations. The first one is based on a partition of the cells, each cell
using either nodal or face unknowns. The second approach can be extended
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to more general partitions of the mesh based on faces, each face using either
face or nodal unknowns. In both cases, the coupling is performed using a
node to face interpolation operator at interfaces which must be chosen to
ensure the consistency, the coercivity and the limit conformity properties of
the combined VAG-HFV discretizations. The convergence analysis is per-
formed in the gradient discretization framework [15, 12, 10] and convergence
is proved for arbitrary cell or face partitions of the mesh. For face partitions,
an additional stabilisation is required to ensure the coercivity while for cell
partitions no additional stabilisation is needed and the stability is obtained
at the interface thanks to the neighboring VAG cells.

At the interface, the framework preserves the discrete conservation prop-
erties of the VAG and HFV schemes with fluxes based on local to each cell
transmissibility matrices which size is the number of selected nodes or/and
faces on the shared boundary. This discrete conservative form leads to a
natural extension of the VAG and HFV discretizations of multi-phase Darcy
flow models to the combined VAG-HFV schemes.

The remainder of this paper is organized as follows. Section 1 focuses
on the discretization of second order diffusion problems. It introduces our
framework based, to fix ideas, on a partition of the cells into VAG, HFV
and interface cells. Then, two gradient schemes are built combining the
VAG and HFV schemes in their respective subset of cells coupled with two
possible choices of matching discretizations in the interface cells. The sta-
bility and convergence of both discretizations are proved using the gradient
discretization framework and the convergence is assessed numerically on var-
ious types of hybrid 3D meshes and compared with the standalone VAG and
HFV discretizations. Using the discrete fluxes connecting each cell to its node
or/and face boundary degrees of freedom, the VAG-HFV discretizations are
extended to immiscible two-phase Darcy flows in Section 2. Then, numerical
tests investigate, on a 1D two-phase flow reference solution, the convergence
and efficiency of the VAG-HFV schemes compared with the standalone VAG
and HFV discretizations. Section 3 considers the extension of the VAG-HFV
discretizations to non-isothermal compositional liquid gas Darcy flows based
on the formulation introduced in [5]. Finally, the model and its VAG-TPFA
discretization are tested on a simplified two dimensional cross-section of the
Bouillante high temperature geothermal reservoir with an hybrid cartesian
triangular mesh. A reference solution, computed on a refined mesh, is com-
pared in terms of accuracy and CPU time with the solutions obtained with
the VAG scheme on a triangular mesh and the TPFA scheme on a Voronoi
mesh.
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1 Two Gradient discretizations combining the

VAG and HFV schemes

Let us consider a domain Ω ⊂ Rd, with d = 2, 3 the space dimension, and the
following second order diffusion equation looking for the potential u ∈ H1

0 (Ω)
and the velocity q ∈ Hdiv(Ω) such that{

div(q) = f on Ω,
q = −ΛΛΛ∇u on Ω.

(1)

In (1), f ∈ L2(Ω) is the source term and ΛΛΛ ∈ L∞(Ω)d×d is the diffusion tensor
such that there exist k ≥ k > 0 with

k|ξ|2 ≤ (ΛΛΛ(x)ξ, ξ) ≤ k|ξ|2 for all ξ ∈ Rd,x ∈ Ω.

The primal weak formulation of (1) amounts to find u ∈ H1
0 (Ω) satisfying

the following variational equality for all v ∈ H1
0 (Ω)∫

Ω

ΛΛΛ(x)∇u(x)∇v(x)dx =

∫
Ω

f(x)v(x)dx. (2)

It admits a unique solution from the Lax Milgram theorem.

1.1 Polyhedral mesh and partition of the mesh

Following [15], we consider generalized polyhedral meshes of Ω. Let M be
the set of cells that are disjoint open subsets of Ω such that

⋃
K∈MK = Ω.

For all K ∈ M, xK denotes the so-called “centre” of the cell K under the
assumption that K is star-shaped with respect to xK . Let F denote the set
of faces of the mesh. The faces are not assumed to be planar for the VAG
discretization, hence the term “generalized polyhedral cells”, but they need
to be planar for the HFV discretization. We denote by V the set of vertices
of the mesh. Let VK , FK , Vσ respectively denote the set of the vertices of
K ∈ M, faces of K and vertices of σ ∈ F . The set of edges of the mesh is
denoted by E and Eσ denotes the set of edges of the face σ ∈ F . Let Mσ

denote the set of cells sharing the face σ ∈ F . We denote by Fext the subset of
faces σ ∈ F such thatMσ has only one element and we set Eext =

⋃
σ∈Fext Eσ

and Vext =
⋃
σ∈Fext Vσ. The mesh is assumed to be conforming in the sense

that for all σ ∈ F \Fext, the setMσ contains exactly two cells. It is assumed
that, for each face σ ∈ F , there exists a so-called “centre” xσ of the face such
that

xσ =
∑
s∈Vσ

βσ,s xs, with
∑
s∈Vσ

βσ,s = 1,
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where βσ,s ≥ 0 for all s ∈ Vσ. The face σ is assumed to match with the union
of the triangles Tσ,e defined by the face centre xσ and each of its edge e ∈ Eσ.

A tetrahedral submesh of M is defined by

T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈M},

where TK,σ,e is the tetrahedron joining the cell centre xK to the triangle Tσ,e.
Let ρT denote the insphere diameter of a given tetrahedron T , hT its diameter
and hT = maxT∈T hT . We will assume in the convergence analysis that the
family of tetrahedral submeshes T is shape regular. Hence let us define the
following shape regularity parameter of the mesh by

θT = max
T∈T

hT
ρT
. (3)

The following combination of the VAG and HFV discretizations is based
on the choice of a subset of cells Mv ⊂M on which the VAG discretization
is used. Then, we define the subset of interfacial faces Fhv ⊂ F \ Fext by

Fhv = {σ ∈ F \ Fext |K ∈Mv, L 6∈ Mv or L ∈Mv, K 6∈ Mv with Mσ = {K,L}}

and the set of interface cells Mhv by

Mhv =
{
K ∈M \Mv | FK ∩ Fhv 6= ∅

}
.

The subset of HFV cells on which the HFV discretization is used is finally
defined by

Mh =M\ (Mv ∪Mhv),

such thatMv,Mh,Mhv defines a partition of the set of cellsM (see Figure
1).
We also define the following subsets of nodes and faces

Vv =
⋃

K∈Mv

VK , Vhv =
⋃

σ∈Fhv
Vσ, Fh =

( ⋃
K∈Mh∪Mhv

FK
)
\ Fhv,

and
Vvext = Vext ∩ Vv, Fhext = Fext ∩ Fh.

For all σ ∈ Fh ∪ Fhv, it is assumed in the following that the face σ is
planar and that xσ is the centre of gravity of σ.
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1.2 Combining the VAG and HFV discretizations us-
ing the gradient discretization framework

The junction between the VAG and HFV discretizations is obtained using the
gradient discretization framework introduced in [15, 12, 10]. This framework
is based on the definition of a vector space of discrete unknowns XD, of a
function reconstruction operator

ΠD : XD → L2(Ω),

and of a gradient reconstruction operator

∇D : XD → (L2(Ω))d.

The subspace of XD incorporating homogeneous Dirichlet boundary condi-
tions is denoted by X0

D. Then, the discretization of our model problem (2)
is obtained by the following variational formulation: find uD ∈ X0

D such that∫
Ω

ΛΛΛ(x)∇DuD(x)∇DvD(x)dx =

∫
Ω

f(x)ΠDvD(x)dx (4)

for all vD ∈ X0
D. It admits a unique solution as soon as ‖.‖D = ‖∇D.‖(L2(Ω))d

defines a norm on X0
D.

As exhibited in Figure 1, our construction is based on the following set
of degrees of freedom (d.o.f.)

dofD = {K ∈M} ∪ {s ∈ Vv} ∪
{
σ ∈ Fh

}
, (5)

the associated vector space XD of discrete unknowns

XD = {uν ∈ R | ν ∈ dofD} , (6)

and its subspace

X0
D =

{
uD ∈ XD |us = 0, uσ = 0, s ∈ Vvext, σ ∈ Fhext

}
. (7)

Let us also define the subsets of d.o.f. located at the boundary of a given
cell K ∈M as

dofK =


(FK \ Fhv) ∪ (VK ∩ Vhv) if K ∈Mhv,

FK if K ∈Mh,
VK if K ∈Mv.
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K ∈Mhv

K ∈Mh

K ∈Mv

Fhv
node unknown us, s ∈ Vv

face unknown uσ, σ ∈ Fh

cell unknown uK , K ∈M

Figure 1: Illustration on a 2D mesh of the partition of the cells between
the VAG cells K ∈ Mv, the HFV cells K ∈ Mh and the interface cells
K ∈ Mhv. Examples of cell (crosses), node (circles) and face (squares)
degrees of freedom of dofD in the VAG, HFV and interface regions.

The function reconstruction operator is based on an arbitrary partition
{DK , DK,ν , ν ∈ dofK} of each cell K ∈M and is defined by

ΠDuD(x) =

{
uK , for all x ∈ DK , for all K ∈M,
uν , for all x ∈ DK,ν , for all K ∈M, ν ∈ dofK ,

(8)

with DK,ν = ∅ for all ν ∈ Vvext ∪ Fhext. The gradient reconstruction operator
is defined cellwise by

∇DuD(x) =


∇v
KuD(x) for all x ∈ K,K ∈Mv,
∇h
KuD(x) for all x ∈ K,K ∈Mh,
∇hv
K uD(x) for all x ∈ K,K ∈Mhv.

(9)

It is based on the VAG gradient reconstruction operator ∇v
K for all VAG cells

K ∈ Mv and on the HFV gradient reconstruction operator ∇h
K for all HFV

cells K ∈ Mh. On the interface cells K ∈ Mhv, the gradient reconstruc-
tion operator ∇hv

K must be built to guarantee that the gradient discretization
(XD,∇D,ΠD) satisfies the coercivity, consistency and limit conformity prop-
erties of the gradient discretization framework, ensuring the well-posedness
and convergence of the scheme (see [15, 12, 10] and subsection 1.3 below).

1.2.1 VAG gradient reconstruction operator

Following [17], a P1 finite element discretization is built using the tetrahedral
submesh T of M and a second order interpolation at the face centres xσ,
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σ ∈ F \ Fh defined for uD ∈ XD by

uσ =
∑
s∈Vσ

βσ,sus.

For a given uD ∈ XD, we define the function ΠT uD on
⋃
K∈Mv K as the

continuous piecewise affine function on each tetrahedron of T included in⋃
K∈Mv K such that ΠT uD(xK) = uK , ΠT uD(xs) = us, and ΠT uD(xσ) =∑
s∈Vσ βσ,sus for all K ∈ Mv, s ∈ Vv and σ ∈ F \ Fh. The VAG gradient

reconstruction operator is obtained from this finite element discretization by
setting

∇v
KuD(x) = ∇ΠT uD(x) for all x ∈ K,K ∈Mv. (10)

1.2.2 HFV gradient reconstruction operator

We follow the construction presented in [16]. As shown in [11] it can be gener-
alized as the family of Hybrid Mimetic Methods covering in the same frame-
work Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite

Volume Methods. For K ∈M, let us set UK =
(
uK , uσ, σ ∈ FK

)
∈ R#FK+1

and define

∇KUK =
1

|K|
∑
σ∈FK

|σ|(uσ − uK)nK,σ,

where |K| is the volume of the cell K, |σ| is the surface of the face σ, and nK,σ
is the unit normal vector of the face σ ∈ FK oriented outward of the cell K.
Let us remark that ∇KUK does not depend on uK since

∑
σ∈FK |σ|nK,σ = 0.

Hence a stabilised gradient reconstruction is defined as follows:

∇K,σUK = ∇KUK +
1√
d

|σ|
|Kσ|

RK,σ(UK)nK,σ, σ ∈ FK ,

with
RK,σ(UK) = uσ − uK −∇KUK · (xσ − xK),

where Kσ is the cone joining the face σ to the cell centre xK and |Kσ|
its d-dimensional measure. It leads to the definition of the HFV gradient
reconstruction operator for uD ∈ XD as

∇h
KuD(x) = ∇K,σUK for all x ∈ Kσ, K ∈Mh, σ ∈ FK , (11)

Note that the weight 1√
d

is chosen in order to recover the gradient recon-
struction corresponding to the two point flux approximation in the case of a
superadmissible mesh (see Lemma 2.1 of [16]).
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1.2.3 First gradient reconstruction operator in the interface cells

Our first construction is based on a second order interpolation of the face
unknown uσ at the centre of gravity xσ for each face σ ∈ Fhv defined by

uσ =
1

|σ|

∫
σ

ΠT uD(x)dσ(x).

Since xσ is the centre of gravity of the face σ, it results that

uσ =
∑
s∈Vσ

βσ,sus.

Then we set for uD ∈ XD,

UK =
(
uK , uσ =

1

|σ|

∫
σ

ΠT uD(x)dσ(x), σ ∈ FK ∩ Fhv, uσ, σ ∈ FK \ Fhv
)
,

and
∇hv
K uD(x) = ∇K,σUK for all x ∈ Kσ, K ∈Mhv, σ ∈ FK . (12)

1.2.4 Second gradient reconstruction operator in the interface
cells

The second construction combines the previous interpolation at the faces
σ ∈ Fhv with a stabilisation of the cell gradient. As previously, for uD ∈ XD,
let us set

UK =
(
uK , uσ =

1

|σ|

∫
σ

ΠT uD(x)dσ(x), σ ∈ FK ∩ Fhv, uσ, σ ∈ FK \ Fhv
)
.

Then we rewrite the constant gradient ∇KUK as

∇KUK =
∑

ν∈dofK

(uν − uK)bK,ν ,

with 
bK,σ =

|σ|
|K|

nK,σ for σ ∈ FK \ Fhv,

bK,s =
∑

{σ∈FK∩Fhv | s∈Vσ}

βσ,s
|σ|
|K|

nK,σ for s ∈ VK ∩ Vhv.

This gradient does not actually depends on uK and must be stabilised using
the residual

RK,ν(uD) = uν − uK −∇KUK · (xν − xK),
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and, for each ν ∈ dofK , the new gradient

∇K,νuD = ∇KUK + γK,νRK,ν(uD)bK,ν .

It leads to define the stabilised gradient

∇hv
K uD(x) = ∇K,νuD for all x ∈ ωK,ν , K ∈Mhv, ν ∈ dofK , (13)

where the weights (γK,ν)ν∈dofK and the partition (ωK,ν)ν∈dofK of the cell K ∈
Mhv are such that

ωK,σ = Kσ for σ ∈ FK \ Fhv,

|ωK,s| =
∑

σ∈FK∩Fhv |Kσ|
#(VK ∩ Vhv)

for s ∈ VK ∩ Vhv,

and 
γK,σ =

1√
d

|K|
|Kσ|

for σ ∈ FK \ Fhv,

γK,s =
1√
d

|K|
|ωK,s|

for s ∈ VK ∩ Vhv,

such that γK,ν |ωK,ν | = 1√
d
|K| for all ν ∈ dofK . Note that, as soon as the

diffusion tensor ΛΛΛ(x) is cellwise constant, only the d-dimensional measures
of the sets ωK,ν , ν ∈ dofK are used.

Remark 1.1 This second gradient reconstruction (13) based on interpola-
tion and stabilisation can be applied as a standalone discretization in all cells
provided that a partition of the faces σ ∈ F between those with a face un-
known uσ and those with node unknowns us, s ∈ Vσ is given. The situation is
different for the first gradient reconstruction (12) based only on interpolation
which leads to a stable discretization thanks to the neighboring VAG cells (see
Subsection 1.3). For example, if all faces are with node unknowns, it is clear
that the first construction, if applied to all cells, will lead to an unstable dis-
cretization while the second construction reduces to the VAG discretization
presented in [15] which differs from the VAG gradient reconstruction defined
by (10).

1.2.5 Conservative formulation

From the cellwise definition of the gradient reconstruction, one can define the
cell transmissibility symmetric positive matrices TK ∈ RdofK×dofK , K ∈ M
such that
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∫
Ω

ΛΛΛ(x)∇DuD(x)∇DvD(x)dx =
∑
K∈M

∑
ν∈dofK

∑
ν′∈dofK

T ν,ν
′

K (uν′ − uK)(vν − vK),

with

T ν,ν
′

K =

∫
K

ΛΛΛ(x)∇Dw(ν′)
D (x)∇Dw(ν)

D (x)dx,

where w
(ν)
µ = δνµ for all (ν, µ) ∈ dofD × dofD. Let us define the following

fluxes connecting each cell K ∈M to its boundary d.o.f. ν ∈ dofK

FK,ν(uD) =
∑

ν′∈dofK

T ν,ν
′

K (uK − uν′). (14)

Then, the gradient scheme (4) can be formulated as a set of discrete conser-
vation equations as follows: find uD ∈ X0

D such that

∑
ν∈dofK

FK,ν(uD) =

∫
DK

f(x)dx for all K ∈M,∑
K∈M| ν∈dofK

−FK,ν(uD) =
∑

K∈M| ν∈dofK

∫
DK,ν

f(x)dx

for all ν ∈ (Fh ∪ Vv) \ Fhext ∪ Vvext.

(15)

Each cell unknown uK can be eliminated from the first equation in (15) which
depends only on uK and uν , ν ∈ dofK . It leads to a Schur complement linear
system without any fill-in depending only on the face and node unknowns uν
for ν ∈ Fh ∪ Vv.

Remark 1.2 For the first construction, given T hK ∈ RFK×FK , the HFV
transmissibility matrix of the cell K ∈ Mhv, then the transmissibility ma-
trix TK can be easily computed by

TK = (AK)t T hK AK , (16)

where AK ∈ RFK×dofK is such that (AK)σ,ν = δνσ for all σ ∈ FK ∩ Fh,
ν ∈ dofK, (AK)σ,s = βσ,s for all σ ∈ FK ∩ Fhv, s ∈ Vσ, and (AK)σ,ν′ = 0 for
all σ ∈ FK ∩ Fhv, ν ′ ∈ dofK \ Vσ.

Remark 1.3 The cell transmissibility matrix TK is Symmetric Positive Def-
inite (SPD) for all K ∈ Mv ∪Mh, but TK is SPD for K ∈ Mhv for the
second construction only. From (16), it is clear that TK is symmetric positive
but not definite for the first construction for K ∈Mhv.
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Remark 1.4 In the special case for which a given cell K ∈Mhv satisfies the
superadmissibility property σ ⊥ xKxσ for all σ ∈ FK, and say for ΛΛΛ isotropic
and cellwise constant, the HFV discretization transmissibility matrix T hK is
diagonal leading to two point fluxes FK,σ (see Lemma 2.1 of [16]). From
(16), it can be checked that this two point flux property is preserved by the
first construction for all faces σ ∈ FK ∩ Fh while it is not a priori the case
for the second construction. This is one of the major advantage of the first
approach when coupling the VAG and TPFA discretizations.

1.3 Mathematical analysis in the gradient discretiza-
tion framework

1.3.1 Gradient discretization framework

Let us recall the coercivity, consistency, and limit conformity properties for
sequences of gradient discretizations introduced in [15, 12, 10].

Coercivity: Let CD > 0 be defined by

CD = max
vD∈X0

D\{0}

‖ΠDvD‖L2(Ω)

‖vD‖D
. (17)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be coercive if
there exist CP > 0 such that CDl ≤ CP for all l ∈ N.

Consistency: For all u ∈ H1
0 (Ω) and vD ∈ X0

D let us define

SD(u, vD) = ‖∇DvD −∇u‖L2(Ω)d + ‖ΠDvD − u‖L2(Ω) (18)

and
SD(u) = min

vD∈X0
D

SD(u, vD). (19)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be consistent
if for all u ∈ H1

0 (Ω) one has liml→+∞ SDl(u) = 0.

Limit Conformity: For all q ∈ Hdiv(Ω) and vD ∈ X0
D, let us define

WD(q, vD) =

∫
Ω

(
(ΠDvD)divq +∇DvD · q

)
dx, (20)

and

WD(q) = max
vD∈X0

D\{0}

|WD(q, vD)|
‖vD‖D

. (21)
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Then, a sequence of gradient discretizations (Dl)l∈N is said to be limit con-
forming if for all q ∈ Hdiv(Ω) one has liml→+∞WDl(q) = 0.

The following proposition is proved in [15, 12, 10].

Proposition 1.1 Let D =
(
X0
D,∇D,ΠD

)
be a gradient discretization such

that ‖.‖D is a norm on X0
D, then the gradient scheme (4) has a unique solution

uD ∈ X0
D which satisfies the a priori estimate

‖uD‖D ≤
CD
k
‖f‖L2(Ω).

Let u ∈ H1
0 (Ω) be the solution of (2) and let us set q = −ΛΛΛ∇u ∈ Hdiv(Ω).

Then, one has the following error estimates:
‖∇u−∇DuD‖L2(Ω)d ≤ (k + k)SD(u) +

1

k
WD(q),

‖ΠDuD − u‖L2(Ω) ≤
1

k

(
(CDk + k)SD(u) + CDWD(q)

)
.

1.3.2 Proof of the coercivity, consistency and limit conformity
properties for both constructions

Proposition 1.2 Let us consider the gradient discretization D =
(
X0
D,∇D,ΠD

)
defined by (7), (8), (9) with the gradient reconstructions given either by (10)-
(11)-(12) or by (10)-(11)-(13). Then, there exists CD depending only on θT
such that

‖ΠDvD‖L2(Ω) ≤ CD‖vD‖D, for all vD ∈ X0
D, (22)

and the following consistency estimate

SD(ϕ) ≤ CϕhT , for all ϕ ∈ C2(Ω) ∩H1
0 (Ω), (23)

holds with Cϕ depending only on θT and ϕ. Furthermore, the following limit
conformity estimate

WD(ϕ) ≤ CϕhT , for all ϕ ∈ (C1(Ω))d, (24)

holds with Cϕ depending only on θT and ϕ.

Proof for the first gradient reconstruction: the consistency estimate
(23) is a classical result already established in the case of the VAG dis-
cretization (see [7] Lemmae 3.7 and 3.4) and of the HFV discretization (see
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[16] Lemma 4.3). The extension to our case results from the exactness of the
cell gradients on affine functions as well as from the definition of θT (3). Let
us now prove the coercivity (22). Let us set for all uD ∈ XD, ΠMuD(x) = uK
for all x ∈ K and K ∈ M. It results from the discrete Sobolev embeddings
proved in [16] Lemma 5.3, that there exists C1 depending only on θT such
that for all uD ∈ X0

D

‖ΠMuD‖2
L2(Ω) ≤ C1

∑
K∈M

∑
σ∈FK

|σ|
dK,σ

(uσ − uK)2, (25)

with uσ =
∑

s∈Vσ βσ,sus for all σ ∈ F \Fh and dK,σ = nK,σ ·(xσ−xK). For all
K ∈Mv, it results from the convex combination assumption on the weights
βσ,s, s ∈ Vσ, the definition of θT (3), and from Lemma 3.2 of [7] that there
exists C2 depending only on θT such that∑

σ∈FK

|σ|
dK,σ

(uσ − uK)2 ≤ C2‖∇v
KuD‖2

(L2(K))d . (26)

For all K ∈Mh∪Mhv, it also results from the definition of θT (3), and from
Lemma 4.1 of [16] that there exists C3 depending only on θT such that∑

σ∈FK

|σ|
dK,σ

(uσ − uK)2 ≤ C3‖∇DuD‖2
(L2(K))d . (27)

Combining (25)-(26)-(27), it results that the coercivity holds for the cellwise
constant reconstruction in the sense that there exists C4 depending only on
θT such that for all uD ∈ X0

D

‖ΠMuD‖L2(Ω) ≤ C4‖∇DuD‖(L2(Ω))d . (28)

To conclude the proof of the coercivity property, let us now prove that there
exists C5 depending only on θT such that for all uD ∈ XD

‖ΠMuD − ΠDuD‖L2(Ω) ≤ C5hT ‖∇DuD‖(L2(Ω))d . (29)

It results from (27) and Lemma 3.4 of [7] that there exists a constant C6

depending only on θT such that for all uD ∈ XD and for all K ∈ Mv ∪Mh,
one has

‖ΠMuD − ΠDuD‖2
L2(K) ≤ C6(hK)2‖∇DuD‖2

(L2(K))d , (30)

where hK is the diameter of the cell K. On the interface cells K ∈ Mhv,
from (27), there exists a constant C7 depending only on θT such that for all
uD ∈ XD ∑

σ∈FK\Fhv
|K||uσ − uK |2 ≤ C7(hK)2‖∇hv

K uD‖2
(L2(K))d . (31)
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For all σ ∈ Fhv, Mσ = {K,L}, K ∈ Mhv, using that L ∈ Mv and Lemma
3.2 of [7], there exists a constant C8 depending only on θT such that for all
uD ∈ XD ∑

s∈Vσ

|K| |us − uL|2 ≤ C8(hL)2‖∇v
LuD‖2

(L2(L))d .

It results that, for σ ∈ Fhv,Mσ = {K,L}, K ∈Mhv, there exists a constant
C9 depending only on θT such that for all uD ∈ XD∑

s∈Vσ

|K| |us − uK |2 ≤ C9

(
(hL)2‖∇v

LuD‖2
(L2(L))d + (hK)2‖∇hv

K uD‖2
(L2(K))d

)
.

(32)
It is clear from (32) that the control of the contribution of the node s ∈ Vσ
to ‖ΠMuD −ΠDuD‖2

L2(K) is obtained thanks to the neighboring VAG cell L.

Gathering (30)-(31)-(32) concludes the proof of (29) and hence of the
coercivity (22).

Let us first prove the limit conformity estimate (24) for the gradient

discretization
(
X0
D,∇D,ΠD

)
using the function reconstruction ΠD defined

by ΠDuD(x) = ΠT uD(x) for all x ∈ K, K ∈ Mv and ΠDuD(x) = ΠMuD(x)
for all x ∈ K, K ∈ Mh ∪ Mhv. Using that ∇v

KuD = ∇ΠDuD|K for all
K ∈Mv, one has

T v =
∑
K∈Mv

∫
K

(
(ΠDuD)divϕ+∇DuD ·ϕ

)
dx

=
∑
σ∈Fhv

Mσ={K,L},K∈Mv

∫
σ

(ΠT uD)ϕ · nK,σdσ(x).

Let us set uσ =
∑

s∈Vσ βσ,sus for all σ ∈ F \ Fh and ϕσ = 1
|σ|

∫
σ
ϕ(x)dσ(x),

ϕK = 1
|K|

∫
K
ϕ(x)dx. We define

T h =
∑

K∈Mh∪Mhv

∫
K

(
(ΠDuD)divϕ+∇DuD ·ϕ

)
dx = T h1 + T h21 + T h22,

with

T h1 =
∑

K∈Mh∪Mhv

∫
K

(ΠDuD)divϕdx =
∑

K∈Mh∪Mhv

∑
σ∈FK

|σ|uKϕσ · nK,σ,

T h21 =
∑

K∈Mh∪Mhv

∑
σ∈FK

|σ|(uσ − uK)ϕK · nK,σ,

T h22 =
∑

K∈Mh∪Mhv

∑
σ∈FK

1√
d
|σ|RK,σ(uD)nK,σ ·

1

|Kσ|

∫
Kσ

ϕ(x)dx.
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Since
∑

σ∈FK |σ|RK,σ(uD)nK,σ = 0, one has

T h22 =
∑

K∈Mh∪Mhv

∑
σ∈FK

1√
d
|σ|RK,σ(uD)nK,σ ·

1

|Kσ|

∫
Kσ

(ϕ(x)−ϕK)dx,

and, from [16], it exists C depending only on θT and ϕ such that

|T h22| ≤ ChT

( ∑
K∈Mh∪Mhv

‖∇DuD‖2
(L2(K))d

) 1
2
.

Since ∑
K∈Mh∪Mhv

∑
σ∈FK

|σ|uσϕσ · nK,σ =
∑
σ∈Fhv

Mσ={K,L},L∈Mv

|σ|uσϕσ · nK,σ,

one has

T h1 =
∑

K∈Mh∪Mhv

∑
σ∈FK

|σ|(uK − uσ)ϕσ · nK,σ +
∑
σ∈Fhv

Mσ={K,L},L∈Mv

|σ|uσϕσ · nK,σ.

Combining the previous identities and using that |σ|uσ =
∫
σ

ΠT uD(x)dσ(x)
for all σ ∈ Fhv, we obtain that

T v + T h1 + T h21 = T hv + T h3 ,

with

T h3 =
∑

K∈Mh∪Mhv

∑
σ∈FK

|σ|(uσ − uK)(ϕK −ϕσ) · nK,σ,

T hv =
∑
σ∈Fhv

Mσ={K,L},K∈Mv

∫
σ

(ΠT uD(x)− uσ)(ϕ(x)−ϕσ) · nK,σdσ(x),

We deduce that there exists C depending only on θT and ϕ such that

|T h3 | ≤ ChT

( ∑
K∈Mh∪Mhv

‖∇DuD‖2
(L2(K))d

) 1
2
.

Since for σ ∈ Fhv with Mσ = {K,L}, K ∈ Mv, there exists a constant C
depending only on θT such that

‖ΠT uD(x)− uσ‖L2(σ) ≤ Ch
1
2
K‖∇

v
KuD‖(L2(K))d ,
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we deduce that there exists a constant C depending only on θT and ϕ such
that whatever the subset Mv of VAG cells one has the estimate

|T hv| ≤ ChT

( ∑
σ∈Fhv

Mσ={K,L},K∈Mv

‖∇v
KuD‖2

(L2(K))d

) 1
2
.

Note that a better estimate of order h
3
2
T is obtained for |T hv| if the subset

of VAG cells is such that the surface of the interface
∑

σ∈Fhv |σ| remains
bounded independently of the mesh.

This concludes the proof of the limit conformity estimate (24) for the

gradient discretization
(
X0
D,∇D,ΠD

)
. The extension of this estimate to

D =
(
X0
D,∇D,ΠD

)
results from the estimate

‖ΠDuD − ΠDuD‖L2(Ω) ≤ ChT ‖uD‖D,

for all uD ∈ X0
D which is obtained in a similar way than the estimate (29) on

‖ΠMuD − ΠDuD‖L2(Ω) established in the above proof of the coercivity.

Proof for the second gradient reconstruction: as stated in remark 1.1,
the second gradient reconstruction (13) can be used in combination with X0

D
and ΠD as a standalone gradient discretization. The proof of the coercivity,
consistency and limit conformity for this gradient discretization is similar to
the one presented in Lemma 3.1 of [15] using that

∑
ν∈dofK

(xν−xK)btK,ν = I
and that

∑
ν∈dofK

RK,ν(uD)bK,ν = 0. The limit conformity when combining
this gradient discretization with the VAG gradient reconstruction (10) must
be checked but this analysis is similar to the one performed above using that
|σ|uσ =

∫
σ
(ΠT uD)dσ(x) for all σ ∈ Fhv.

Proposition 1.3 Let (Dl)l∈N be a sequence of gradient discretizations Dl =(
X0
Dl ,∇Dl ,ΠDl

)
defined by (7), (8), (9) with the gradient reconstructions

given either by (10)-(11)-(12) or by (10)-(11)-(13) and such that there exists
θ with θT l ≤ θ for all l ∈ N and such that liml→+∞ hT l = 0. Then, the
sequence (Dl)l∈N is coercive, consistent and limit conforming. Therefore the
gradient scheme is convergent. Furthermore, it satisfies a first order error
estimate on smooth solutions.

Proof: the coercivity of the sequence of gradient discretizations results from
Proposition 1.2 and from the shape regularity assumption. The consistency
of the sequence of gradient discretizations results from Proposition 1.2, from
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liml→+∞ hT l = 0 and from the density of C2(Ω)∩H1
0 (Ω) in H1

0 (Ω). The limit
conformity property of the sequence of gradient discretizations results from
Proposition 1.2, the density of (C1(Ω))d in Hdiv(Ω) and from the coercivity
property.

1.4 Numerical tests for second order diffusion prob-
lems

In the following subsections, the VAG scheme on the full domain (vag), the
HFV scheme on the full domain (hfv) and both combined VAG-HFV schemes
using stabilisation (vag-hfv stab) or not (vag-hfv) are compared on various
families of meshes. The objective of these test cases is to compare the ac-
curacy of the four schemes and in particular of both combined VAG-HFV
schemes. All test cases consider the exact solution

u(x, y, z) = ecos(x+y+z),

with Dirichlet boundary conditions at ∂Ω. If not specified differently, the
diffusion tensor ΛΛΛ is the identity matrix.

1.4.1 Hexahedral meshes

Let us consider the family of uniform Cartesian grids of the domain Ω =
(0, 1)3 of size N × N × N with N = 8, 16, 32, 64. The family of hexahedral
meshes is obtained by random perturbation of the Cartesian grids inside the
subdomain Ωv = (0.25, 0.75)3 as exhibited in Figure 2 for N = 8.

Figure 2: Hexahedral mesh obtained for N = 8 and composed of cubic cells
in the HFV subdomain Ω \ Ω

v
and of randomly perturbated cubic cells in

the VAG subdomain Ωv = (0.25, 0.75)3.
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Figure 3: Convergence in L2 norm of the potential (left) and of the gradient
(right) on the family of hexahedral meshes and for the VAG, HFV, VAG-HFV
and the stabilised VAG-HFV schemes.

A convergence of order two is observed as expected in Figure 3 on the
potential and of order one on the gradient for the VAG and both VAG-HFV
schemes. This is not the case for the HFV scheme for which the gradient
clearly does not converge due to the non planar faces in the VAG region.
The combined VAG-HFV schemes solve this issue by using the consistent
VAG scheme in the non planar face region. Both VAG-HFV schemes are
remarkably more accurate than the VAG scheme on the potential.

1.4.2 Hybrid meshes with hexahedra and pyramids

Let us consider the family of uniform Cartesian grids of the domain Ω =
(0, 1)3 of size N ×N ×N with N = 8, 16, 32, 64. Then our family of hybrid
meshes is obtained by cutting in 6 pyramids each cubic cell contained in the
VAG subdomain Ωv = (0.25, 0.75)3 as exhibited in Figure 4 for N = 8.

Figure 4: Hybrid mesh obtained forN = 8 and composed of cubes in the HFV
subdomain Ω\Ωv

and of pyramids in the VAG subdomain Ωv = (0.25, 0.75)3.
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Figure 5: Convergence in L2 norm of the potential (left) and of the gradient
(right) on the family of hybrid meshes and for the VAG, HFV, VAG-HFV
and the stabilised VAG-HFV schemes.

A convergence of order two is observed as expected in Figure 5 on the
potential and of order one on the gradient for all schemes. The VAG scheme is
more accurate than the HFV scheme on the gradient while it is the contrary
on the potential. The convergence of both combined VAG-HFV schemes
matches with the convergence of the HFV scheme on the potential and the
VAG-HFV schemes provide the best convergence of the gradient in L2 norm.

1.4.3 Anisotropic test case

We consider in this subsection the previous test case with the following ho-
mogeneous anisotropic diffusion tensor

ΛΛΛ =

 3 −1 −1
−1 3 −1
−1 −1 3

 .
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Figure 6: Convergence in L2 norm of the potential (left) and of the gradi-
ent (right) on the family of hybrid meshes (hexahedral and pyramidal cells)
with anisotropic permeability and for the VAG, HFV, VAG-HFV and the
stabilised VAG-HFV schemes.

As exhibited in Figure 6, the numerical results are similar as in the pre-
vious test case.

1.4.4 Red black test case

Let us consider the family of uniform Cartesian grids of the domain Ω =
(0, 1)3 of size N ×N ×N with N = 8, 16, 32, 64. The cells are ordered in red
black fashion and the VAG cells (resp. the HFV cells) correspond to the red
cells (resp. black cells) as exhibited in Figure 7. Note that all the HFV cells
are interface cells for this test case i.e. Mh = ∅.

Figure 7: Uniform Cartesian mesh for N = 8 with the VAG cells in white
and the HFV cells in black.
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Figure 8: Convergence in L2 norm of the potential (left) and of the gradient
(right) on the family of Cartesian meshes and for the VAG, HFV, VAG-HFV
and the stabilised VAG-HFV schemes.

A super convergence of order two of the gradient is observed in Figure 8 for
the VAG and HFV schemes on this family of uniform Cartesian meshes. This
super convergence property is lost as expected for the combined VAG-HFV
schemes. We also remark that the HFV scheme provides a better accuracy
than the VAG scheme for this family of meshes and consequently that the
convergence of the potential for the combined VAG-HFV schemes is close to
the one of the VAG scheme.
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2 Combined VAG-HFV discretization of two-

phase Darcy flows

The extension of the VAG-HFV discretization to two-phase Darcy flows com-
bines ideas presented in [18] for the VAG discretization of multi-phase Darcy
flow models and in [3] for the HFV discretization of two-phase Darcy flows.
It is based on the discrete fluxes FK,ν , K ∈ M, ν ∈ dofK defined in (14)
and connecting each cell K to its nodes s ∈ VK ∩Vv and faces σ ∈ FK ∩Fh.
Porous volumes are assigned as usual to all cells K ∈ M but also, following
[18], to each node s ∈ Vv \ VD (excluding the Dirichlet nodes VD). Then,
discrete conservation equations are derived for all K ∈ M and s ∈ Vv \ VD
using the porous volumes, the discrete fluxes FK,ν and an upwind approxi-
mation of the mobilities. The faces σ ∈ Fh are considered as interfaces on
which, following [3], the flux continuity equations are written for each phase
assuming the continuity of the phase mobility. This is a natural general-
isation to the HFV discretization of the harmonic transmissibility formula
which is classicaly considered for Two-Point Flux Approximations [4, 22].

2.1 Two-phase Darcy flow model

Let us consider the following two-phase Darcy flow model
φ(x)∂tS

α + div(qα) = 0, α ∈ P ,∑
α∈P

Sα = 1, (33)

where φ(x) is the porous-medium porosity, P = {g, l} denotes the set of the
non-wetting phase (denoted by g to fix ideas) and the wetting phase (denoted
by l to fix ideas) and Sα, α ∈ P is the phase saturation. The flow rates qα

are defined by the following generalized Darcy laws for α ∈ P :

qα = −k
α
r (x, Sα)

µα
ΛΛΛ(x)

(
∇Pα − ραg

)
, (34)

where ρα is the phase mass density, µα is the phase dynamic viscosity, g
is the gravitational acceleration, ΛΛΛ(x) is the absolute permeability tensor,
kαr (x, Sα) is the phase relative permeability and Pα is the phase pressure.
The model is closed by the following capillary pressure relation

P g − P l = Pc(x, S
g),

where Pc(x, S
g) is the capillary function.
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Let us consider a partition ∂ΩD ∪ ∂ΩN of the boundary ∂Ω. On ∂ΩD, we
consider a Dirichlet boundary condition with prescribed pressures Pα and
saturations Sα, α ∈ P . On ∂ΩN , homogeneous Neumann boundary condi-
tions are imposed with qα · n = 0 for α ∈ P .

2.2 Combined VAG-HFV discretization

The mesh is assumed to be conforming with the boundary condition in the
sense that there exists a subset FD ⊂ Fext such that

⋃
σ∈FD σ̄ = ∂ΩD. Let

us define the set of Dirichlet boundary HFV faces by

FhD = FD ∩ Fh,

and the set of Dirichlet boundary VAG nodes by

VvD = Vv ∩ (
⋃
σ∈FD

Vσ).

The Neumann boundary HFV faces are defined by

FhN = (Fext \ FD) ∩ Fh.

A rocktype rtK is assigned to each cell K ∈ M and each rocktype rt corre-
sponds to given capillary and phase relative permeability functions denoted
by Pc,rt(S

g) and kαr,rt(S
α). The porosity and absolute permeability tensor are

also assumed cellwise constant and denoted by φK and ΛΛΛK for all K ∈M.

Let us define the set of neighboring cells of a node s as Ms = {K ∈
M| s ∈ VK}. For the VAG discretization, a single rocktype rts is assigned to
each node s ∈ Vv \ VvD. It is chosen as the most permeable rocktype among
all rocktypes (rtK)K∈Ms∩Mv . Then, the porous volume is distributed to the
VAG nodes as follows: given a parameter ω ∈ (0, 1), we set for all K ∈Mv,
s ∈ Vv ∩ VK

αK,s =

{
0 if rtK 6= rts or s ∈ VvD,

ω
#VK\VvD

#{s′∈VK\VvD | rts′=rtK}
if rtK = rts and s 6∈ VvD,

thus the porous volumes are

ϕs =
∑

K∈Ms∩Mv

αK,sφK |K|,
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for s ∈ Vv,
ϕK = (1−

∑
s∈VK

αK,s)φK |K|,

for K ∈Mv, and
ϕK = φK |K|,

for K ∈ Mh ∪ Mhv. Note that ω is chosen small enough such that (1 −∑
s∈VK αK,s) > 0 (see Figure 9). The complementary rock volume for ν ∈

M∪ (Vv \ VvD) is denoted by ϕ̄ν . For HFV Dirichlet boundary faces σ ∈ FhD,
let us also set rtσ = rtK with Mσ = {K}.

K ∈Mhv

K ∈Mh

K ∈Mv

s ∈ VKαK,s|K|

Fhv

Figure 9: Illustration on a 2D mesh of the distribution of the volumes αK,s|K|
to each node s ∈ VK of the cell K ∈Mv in the case of a single rock type.

The set of unknowns and dirichlet data, exhibited in Figure 10, is defined
by

UD = {(P g
ν , P

l
ν , S

g
ν , S

l
ν), ν ∈M∪ Vv ∪ FhD} ∪ {(P g

σ , P
l
σ), σ ∈ Fh \ FhD}, (35)

and the subsets of phase pressure unknowns by

Pα
D = {Pα

ν , ν ∈M∪ Vv ∪ Fh}, (36)

for α ∈ P .
Using the combined VAG-HFV discretization, let us define the discrete

Darcy fluxes for all K ∈M and ν ∈ dofK by

Fα
K,ν(P

α
D) = FK,ν(P

α
D)− ραFK,ν(GD),
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Mhv

Mh

(P g
K, P

l
K, S

g
K, S

l
K)

(P g
K, P

l
K, S

g
K, S

l
K)

(P g
σ , P

l
σ)

(P g
s , P

l
s, S

g
s , S

l
s)

Mv

(P g
K, P

l
K, S

g
K, S

l
K)

Fhv

Figure 10: Illustration on a 2D mesh of the discrete unknowns in the set UD
for the two-phase flow model.

with GD ∈ XD such that for all ν ∈ dofD, Gν = xν · g, where g is the
gravity acceleration. The discrete generalized Darcy fluxes for all K ∈ M
and ν ∈ dofK are deduced using an upwind approximation of the mobilities
as follows:

V α
K,ν(UD) =



kαr,rtK
(SαK)

µα
(Fα

K,ν(P
α
D))+ +

kαr,rtν (Sαν )

µα
(Fα

K,ν(P
α
D))−,

if ν ∈ Vv ∪ FhD,
kαr,rtK

(SαK)

µα
(Fα

K,ν(P
α
D))+ +

kαr,rtL
(SαL)

µα
(Fα

K,ν(P
α
D))−,

if ν ∈ Fh \ (FhD ∪ FhN),Mν = {K,L},

0 if ν ∈ FhN .

The time integration is based on a fully implicit Euler scheme to avoid
severe restrictions on the time steps. For Ntf ∈ N∗, let us consider the

time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tNtf = tf of the
time interval (0, tf ). We denote the time steps by ∆tn = tn − tn−1 for all
n = 1, · · · , Ntf . It leads to the following set of equations at each time step
n = 1, · · · , Ntf accounting for the cell conservation equations

ϕK
Sα,nK − Sα,n−1

K

∆tn
+
∑

ν∈dofK

V α
K,ν(U

n
D) = 0, K ∈M, α ∈ P , (37)
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the VAG node conservation equations

ϕs
Sα,ns − Sα,n−1

s

∆tn
−

∑
K∈Ms\Mh

V α
K,s(U

n
D) = 0, s ∈ Vv \ VvD, α ∈ P , (38)

coupled with the flux continuity equations or Neumann boundary condition
at HFV faces ∑

K∈Mσ

Fα
K,σ(Pα,n

D ) = 0, σ ∈ Fh \ FhD, α ∈ P , (39)

the Dirichlet boundary conditions at Dirichlet nodes and faces

Pα,n
ν = Pα

D,ν , Sα,nν = SαD,ν , ν ∈ VvD ∪ FhD, α ∈ P , (40)

and with the closure laws

Sg,nν + Sl,nν = 1, P g,n
ν − P l,n

ν = Pc,rtν (S
g,n
ν ), ν ∈M∪ Vv \ VvD. (41)

2.3 Numerical experiments on a one dimensional solu-
tion

This test case considers the domain Ω = (0, 1)3 with homogeneous isotropic
permeability ΛΛΛ = 1 and porosity φ = 1. The gravitational acceleration g
is set to zero, the relative permeabilities to kαr (Sα) = (Sα)2, α = g, l, the
dynamic viscosities to µg = 5 and µl = 1, and the capillary pressure to
Pc(S

g) = −0.1 log(1 − Sg). Dirichlet boundary conditions are set at x = 0
with imposed non-wetting phase pressure P g = 2 and saturation Sg = 0.9,
as well as at x = 1 with P l = 0 and Sg = 0. Homogeneous Neumann
conditions are considered at the remaining boundaries. The saturation is set
to Sg = 0 at initial time t = 0 and the final simulation time is fixed to tf = 1.

In the following subsections, the VAG scheme on the full domain (vag),
the HFV scheme on the full domain (hfv) and both combined VAG-HFV
schemes using stabilisation (vag-hfv stab) or not (vag-hfv) are compared on
two families of meshes. The error is computed both for the saturation and
for the non-wetting phase pressure based on a numerical reference solution
obtained on a one dimensional uniform grid with 1000 cells and time steps.
A space time discrete L1 norm computed from all cell and time step values
is used for simplicity.
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For all test cases, a uniform time stepping is used with 200 time steps on
(0, tf ). The system of equations (37)-(38)-(39)-(40) is solved at each time step
by using a Newton-Raphson algorithm w.r.t. the set of primary unknowns

UP
D = {(P g

ν , S
g
ν), ν ∈M∪ Vv \ VvD} ∪ {(P g

σ , P
l
σ), σ ∈ Fh \ FhD}, (42)

taking into account the elimination of the Dirichlet boundary conditions (40)
and of the secondary unknowns {(P l

ν , S
l
ν), ν ∈ M ∪ Vv \ VvD} together with

the closure laws (41).
The Jacobian matrix is computed analytically, then the VAG cell primary

unknowns and conservation equations for K ∈ Mv are eliminated without
any fill-in by Schur complement. As mentioned in Remark 1.4, in the case of
superadmissibility of the cells K ∈Mh∪Mhv such as for Cartesian cells with
isotropic permeability tensor, the HFV scheme reduces to a TPFA scheme
and the face unknowns {(P g

σ , P
l
σ), σ ∈ Fh \FhD} are eliminated from the flux

continuity equations (39). When using the stabilised version of the com-
bined VAG-HFV scheme, note that the TPFA fluxes are not preserved at
the faces of the interface cells. Consequently these face unknowns will not
be eliminated for the stabilised VAG-HFV scheme. The reduced linear sys-
tems obtained at each Newton iteration are solved using the GMRes iterative
solver combined with a CPR-AMG preconditioner [20, 24].

The numerical behavior of the four schemes is reported for the two families
of meshes on the finest mesh with Nred the number of degree of freedom of
the reduced linear systems with two primary unknowns per d.o.f., NZred the
number of non-zero 2 by 2 entries in the reduced linear systems, Nnewton the
average number of Newton iterations per time step and Ngmres the average
number of GMRes iterations per Newton step. The CPU times are in seconds
on 3.1 Ghz Intel Core i7 processor and 16Go RAM.

2.3.1 Hexahedral meshes

Let us consider the family of uniform Cartesian grids of the domain Ω =
(0, 1)3 of size N × N × N with N = 4, 8, 16, 32. The family of hexahedral
meshes is obtained by random perturbation of the Cartesian grids inside the
VAG subdomain Ωv = (0.25, 0.75)3 as exhibited in Figure 2 for N = 8.

Figure 11 exhibits, for the four schemes, the convergence of the error.
All schemes exhibit the same order of convergence both for the saturation
(lower but close to 1) and for the pressure (roughly 1). The VAG scheme
is more accurate on this type of mesh since it uses more d.o.f. than the
HFV scheme for the transport of the saturation accounting for the leading
error term due to the first order upwind discretization of the mobilities. The
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combined VAG-HFV schemes both exhibit roughly the same convergence as
the HFV scheme since the HFV domain is much larger than the VAG domain
in this test case.

Figure 11: Convergence in space time discrete L1 norm of the saturation
and the non-wetting pressure on the family of hexahedral meshes and for the
VAG, HFV, VAG-HFV and the stabilised VAG-HFV schemes.

Table 1 exhibits the numerical behavior of the four schemes on the finest
mesh N = 32 with 4096 hexahedra in the VAG subdomain and 28672 cubes in
the HFV subdomain. All schemes have roughly the same number of Newton
iterations and hence their numerical behavior differs by the sparsity of the
reduced linear systems and efficiency of the CPR-AMG preconditioner. The
HFV scheme reduces to a TPFA scheme in the HFV region representing most
of the domain which explains the better CPU time observed with the HFV
scheme compared with the VAG scheme in this test case. The VAG-HFV
scheme without stabilisation leads to the sparsest reduced system and to
the lowest CPU time. The stabilisation increases the number of non-zero
elements of the reduced linear systems since the face unknowns located at
the interface cells are not eliminated. The CPR-AMG preconditioner is also
less efficient leading to a CPU time that is twice larger than the unstabilised
VAG-HFV scheme.

2.3.2 Hybrid meshes with hexahedra and pyramids

Let us consider the family of uniform Cartesian grids of the domain Ω =
(0, 1)3 of size N × N × N with N = 8, 16, 32. Then our family of hybrid
meshes is obtained by cutting in 6 pyramids each cubic cell contained in the
VAG subdomain Ωv = (0.5, 1)× (0, 1)2 as exhibited in Figure 12 for N = 8.
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Scheme Nred NZred Nnewton Ngmres CPU(s)
hfv 45824 411392 3.06 7.4 670
vag 35937 877215 3.05 7.4 1060

vag-hfv 33585 322961 3.0 6.9 553
vag-hfv stab 38385 427985 3.06 9.3 1048

Table 1: Numerical behavior of the VAG, HFV and VAG-HFV schemes for
the two-phase Darcy flow on the finest Hexahedral mesh obtained for N = 32.

Figure 12: Hybrid mesh obtained for N = 8 and composed of cubes in
the HFV subdomain Ω \ Ω

v
and of pyramids in the VAG subdomain Ωv =

(0.5, 1)× (0, 1)2.

As exhibited in Figure 13, the convergence of the error behaves like in
the previous test case.

Figure 13: Convergence in space time discrete L1 norm of the saturation and
the non-wetting pressure on the family of hybrid meshes and for the VAG,
HFV, VAG-HFV and the stabilised VAG-HFV schemes.

The following Table 2 exhibits the numerical behavior of the four schemes
on the finest mesh N = 32 with 16384 cubes in the HFV subdomain and
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98304 pyramids in the VAG subdomain. The HFV scheme is roughly four
times more costly than the three other schemes due the much larger number
of faces in the VAG region compared with the number of nodes.

Scheme Nred NZred Nnewton Ngmres CPU(s)
hfv 361472 5447552 3.02 15.0 6260
vag 52321 1024671 3.04 7.5 1507

vag-hfv 51281 709552 3.05 7.3 1525
vag-hfv stab 54417 778480 3.03 9.5 1360

Table 2: Numerical behavior of the VAG, HFV and VAG-HFV schemes for
the two-phase Darcy flow on the finest hybrid mesh obtained for N = 32.

3 Combined VAG-HFV discretization of non-

isothermal compositional two-phase Darcy

flows

We consider in this section the extension of the previous combined VAG-HFV
discretization to the case of a non-isothermal compositional two-phase Darcy
flow. This extension is based on the formulation of the model introduced in
[5]. Its main advantages compared with the related Coats’ variable switch
formulation [9] is to be based on a fixed set of unknowns using extended phase
molar fractions and to express the thermodynamical equilibrium as comple-
mentary constraints for both phases α ∈ P . Previous works have considered
the VAG discretization of isothermal and of non-isothermal compositional
two-phase Darcy flows in respectively [18] and [26]. The HFV discretization
of isothermal two component two-phase Darcy flows is also derived in [3] and
the related Mixed-Hybrid Finite Element discretization of three-phase Darcy
flows in [2]. Our extension to the combined VAG-HFV discretization follows
the methodology presented in the previous section for immiscible isothermal
two-phase flows which takes advantage of the cell based definition of the
fluxes shared by the VAG, the HFV and by the modified scheme at interface
cells.

3.1 Non-isothermal compositional two-phase Darcy flow
model

Let us consider a non-isothermal compositional liquid gas Darcy flow model
where each phase α ∈ P is a mixture of an arbitrary number of components
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with typically the water component (denoted by w) which can vaporize in
the gas phase and the air component (denoted by a) which can dissolve in the
liquid phase. The set of components is denoted by C. The thermodynamic
properties of each phase α ∈ P depend on its pressure Pα, the local equilib-
rium temperature of the system T and its molar fractions Cα = (Cα

i )i∈C.

Our formulation of the model is based on the fixed set of unknowns defined
by

U = (P g, P l, T, Sg, Sl, Cg, C l).

Let us introduce the notations for the thermodynamic laws. The molar
density is denoted by ζα(Pα, T, Cα) and the dynamic viscosity by µα(Pα, T, Cα)
for each phase α ∈ P . The mass density is defined by ρα(Pα, T, Cα) =∑

i∈C C
α
i miζ

α where mi is the molar mass of the component i ∈ C. Let us
denote by eα(Pα, T, Cα) the molar internal energy, by hα(Pα, T, Cα) the mo-
lar enthalpy of the phase α ∈ P , and by Er(T ) the rock energy per unit rock
volume. For shorter notations, let us introduce the fluid energy per unit pore
volume defined by

Ef (U) =
∑
α∈P

ζαSαeα,

and the number of moles of the component i ∈ C per unit pore volume
denoted by

ni(U) =
∑
α∈P

ζ
α

SαCα
i , i ∈ C.

In order to simplify the notations, each thermodynamic law can also be
written in the following as a function of the full set of variables U still keeping
the same notation for the function.

Thermodynamic equilibrium between the gas and liquid phases is as-
sumed for each component and governed by the phase fugacities denoted
by

fα(Pα, T, Cα) = (fαi (Pα, T, Cα))i∈C, α ∈ P .

Note that, as opposed to the Coats’ variable switch formulation [9, 8], the
molar fractions Cα of an absent phase α are extended by the ones at equi-
librium with the present phase in the sense that the equality of the gas and
liquid fugacities f g(P g, T, Cg) = f l(P l, T, C l) always holds. This allows to
fix the set of unknowns independently of the present phases.

The total molar flow rate qi of the component i ∈ C and the energy flow
rate qe are obtained from the generalized Darcy velocities introduced in (34)

33



such that 
qi =

∑
α∈P

Cα
i ζ

αqα,

qe =
∑
α∈P

hαζαqα − λ∇T,
(43)

where λ stands for the bulk thermal conductivity of the fluid and rock mix-
ture. The molar diffusion is neglected for the sake of simplicity.

Let us write the system of equations accounting for the molar conservation
of each component i ∈ C together with the energy conservation{

φ(x)∂tni + div(qi) = 0, i ∈ C,
φ(x)∂tEf + (1− φ(x))∂tEr + div(qe) = 0.

(44)

It is complemented by the capillary relation between the two phase pressures
and the pore volume balance{

Pc(x, S
g) = P g − P l,∑

α∈P
Sα = 1.

In the spirit of [21], the liquid gas thermodynamic equilibrium can be ex-
pressed as the following complementary constraints for each phase α ∈ P
combined with the equality of the gas and liquid fugacities of each compo-
nent {

min(Sα, 1−
∑
i∈C

Cα
i ) = 0, α ∈ P ,

f gi (P g, T, Cg) = f li (P
l, T, C l), i ∈ C.

To fix ideas, let us consider a Dirichlet boundary condition on ∂ΩD with
prescribed phase pressures Pα, molar fractions Cα, saturation Sα, α ∈ P
and temperature T . On ∂ΩN , homogeneous Neumann boundary conditions
are imposed with qα · n = 0 for α ∈ P and qe · n = 0.

3.2 Combined VAG-HFV discretization of non-isothermal
compositional two-phase Darcy flows

The extension of the discrete set of unknowns (35) to the non-isothermal
compositional two-phase flow model is defined by

UD = {(P g
ν , P

l
ν , Tν , S

g
ν , S

l
ν , C

g
ν , C

l
ν), ν ∈M∪Vv∪FhD}∪{(P g

σ , P
l
σ, Tσ), σ ∈ Fh\FhD}.

(45)

34



We also consider the subset of phase pressure unknowns Pα
D defined in (36),

the subset of temperature unknowns

TD = {Tν , ν ∈M∪ Vv ∪ FhD},

and the subset of the physical unknowns at a given ν ∈M∪ Vv ∪ FhD

Uν = (P g
ν , P

l
ν , Tν , S

g
ν , S

l
ν , C

g
ν , C

l
ν).

Let us define the discrete Darcy fluxes for all K ∈M and ν ∈ dofK by

Fα
K,ν(UD) = FK,ν(P

α
D)− ραK,νFK,ν(GD),

where the phase mass density is defined by

ραK,ν =


ρα(Pα

K , TK , C
α
K) + ρα(Pα

ν , Tν , C
α
ν )

2
if ν ∈ dofK ∩ (Vv ∪ FhD),

ρα(Pα
K , TK , C

α
K) + ρα(Pα

L , TL, C
α
L)

2
if ν ∈ dofK ∩ (Fh \ Fhext),Mν = {K,L},

ρα(Pα
K , TK , C

α
K) if ν ∈ dofK ∩ FhN .

Let us also introduce the discrete Fourier fluxes for all K ∈M and ν ∈ dofK
by

λKGK,ν(TD),

where the thermal conductivity λK is a cell average of the bulk thermal
conductivity computed explicitly from the previous time step variables, and
GK,ν is the flux function (14) obtained with the identity diffusion tensor in
all cells.

The discretization of the mobilities is obtained using the phase based up-
wind approximation. For each Darcy flux, let us define the phase dependent
upwind control volume (Kν)α such that

(Kν)α =


K if Fα

K,ν(UD) ≥ 0,

ν if Fα
K,ν(UD) < 0 and ν ∈ Vv ∪ FhD,

L if Fα
K,ν(UD) < 0 and ν ∈ Fh \ Fhext,Mν = {K,L},

for K ∈M, ν ∈ dofK .
Let us introduce the upwind approximation of the phase molar fluxes

V α
K,ν(UD) =


ζα(U(Kν)α)

µα(U(Kν)α)
kαr,rt(Kν)α (Sα(Kν)α)Fα

K,ν(UD),

if ν ∈ Vv ∪ Fh \ FhN ,

0 if ν ∈ FhN .
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The discrete generalised compositional Darcy and flowing enthalpy fluxes
write respectively

V α
i,K,ν(UD) = Cα

i,(Kν)αV
α
K,ν(UD), K ∈M, ν ∈ dofK , i ∈ C,

and
V α
e,K,ν(UD) = hα(U(Kν)α)V α

K,ν(UD), K ∈M, ν ∈ dofK .

It leads to the following set of equations at each time step n = 1, · · · , Ntf

accounting for the cell conservation equations

ϕK
ni(U

n
K)− ni(Un−1

K )

∆tn
+
∑
α∈P

∑
ν∈dofK

V α
i,K,ν(U

n
D) = 0, i ∈ C,

ϕK
Ef (U

n
K)− Ef (Un−1

K )

∆tn
+ ϕ̄K

Er(U
n
K)− Er(Un−1

K )

∆tn

+
∑
α∈P

∑
ν∈dofK

V α
e,K,ν(U

n
D) +

∑
ν∈dofK

λn−1
K GK,ν(T

n
D) = 0,

(46)

for K ∈M, the VAG node conservation equations

ϕs
ni(U

n
s )− ni(Un−1

s )

∆tn
−
∑
α∈P

∑
K∈Ms\Mh

V α
i,K,s(U

n
D) = 0, i ∈ C,

ϕs
Ef (U

n
s )− Ef (Un−1

s )

∆tn
+ ϕ̄s

Er(U
n
s )− Er(Un−1

s )

∆tn

−
∑
α∈P

∑
K∈Ms\Mh

V α
e,K,s(U

n
D)−

∑
K∈Ms\Mh

λn−1
K GK,s(T

n
D) = 0,

(47)

for s ∈ Vv \VvD, coupled with the Darcy and Fourier flux continuity equations
and Neumann boundary conditions at HFV faces∑

K∈Mσ

Fα
K,σ(Pα,n

D ) = 0, α ∈ P ,
∑

K∈Mσ

λn−1
K GK,σ(T nD) = 0, (48)

for σ ∈ Fh \ FhD, the Dirichlet boundary conditions at Dirichlet nodes and
faces

Pα,n
ν = Pα

D,ν , T nν = TD,ν , Sα,nν = SαD,ν , Cα,n
ν = Cα

D,ν , α ∈ P , (49)

for ν ∈ VvD ∪ FhD and with the closure laws

Sg,nν + Sl,nν = 1,

P g,n
ν − P l,n

ν = Pc,rtν (S
g,n
ν ),

min(Sα,nν , 1−
∑
i∈C

Cα,n
i,ν ) = 0, α ∈ P ,

f gi (P g,n
ν , T nν , C

g,n
ν ) = f li (P

l,n
ν , T nν , C

l,n
ν ), i ∈ C,

(50)
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for ν ∈M∪ Vv \ VvD.

The nonlinear system defined by the conservation equations (46)-(47), the
flux continuity equations (48) and the local closure laws (50) is solved at each
time step w.r.t. the set of unknowns Un

D (45) by a Newton-Raphson algorithm
adapted to the complementary constraints (see [5] for details). The size of
the linear system to be solved at each Newton iteration can be considerably
reduced by elimination of the Dirichlet d.o.f. and by elimination for each
d.o.f. ν ∈M∪Vv \VvD of the local closure laws (50) w.r.t. to a set of #C+ 4
secondary unknowns US

ν ⊂ Uν chosen in such a way that the differential of
the closure laws w.r.t. US

ν is non singular. A classical choice of the set of
primary unknowns UP

ν = Uν \ US
ν is reported in Table 3. Furthermore, the

VAG cell unknowns UK and equations (46), K ∈Mv can be eliminated from
the linear system without any fill-in by Schur complement which considerably
reduces the number of VAG d.o.f. in the case of simplectic meshes. Finally,
in the case of superadmissibility of the cells K ∈ Mh ∪Mhv, as in Remark
1.4, the HFV scheme reduces to a TPFA scheme and the face unknowns
{(P g

σ , P
l
σ, Tσ), σ ∈ Fh \ FhD} are eliminated from the Darcy and Fourier flux

continuity equations (39) leading to the classical harmonic transmissibilities.

Table 3: Primary unknowns of the degree of freedom ν ∈ M ∪ Vv \ VvD
depending on the active complementary constraints of the Newton-Raphson
algorithm.

1−
∑
i∈C

Cg
i,ν = 0 UP

ν = {P g
ν , S

g
ν , (C

l
i,ν)i∈C\{w}}

1−
∑
i∈C

C l
i,ν = 0

Sgν = 0 UP
ν = {P g

ν , Tν , (C
l
i,ν)i∈C\{w}}

1−
∑
i∈C

C l
i,ν = 0

1−
∑
i∈C

Cg
i,ν = 0 UP

ν = {P g
ν , Tν , (C

g
i,ν)i∈C\{w}}

Slν = 0

3.3 Two dimensional Bouillante geothermal test case

Geothermal energy is a carbon-free non-intermittent energy source which can
represent an alternative to fossil energy both for power production and direct
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use, heat representing a large amount of the world final energy consumption.
In countries with a favorable geological context, high temperature geother-
mal energy can even make a significant contribution to power production.
Consequently, the world installed capacity is expected to double over the
present decade [6]. Compositional multi-phase thermal Darcy flow models
are essential tools to provide a quantitative assessment of deep geothermal
resources, from exploration phases of geothermal operations with assessment
of the geothermal potential, validation of conceptual hypothesis, well siting...
to production phases to achieve an optimal and sustainable exploitation and
prevent resource exhaustion.

Hight temperature geothermal fields are often located in active geologi-
cal settings (e.g. plate boundaries, volcanic areas...) with complex natural
structures and geometries such as fault networks with discontinuous proper-
ties and fractures that act as drain or barriers on the deep transfer of mass
and energy, thus controlling the distribution of geothermal resources. The
geological modelling of such systems and their discretization into conforming
unstructured meshes are challenging tasks and often result in meshes that
are hardly tractable for flow simulations. In such situation, hybrid meshes
composed of different types of cells best suited to discretize the geology and
geometry in different parts of the geothermal system represent a clear as-
set. Then, the scheme is adapted locally to the type of mesh/cells using the
methodology developed in the previous sections.

In this section, we consider a simplified geological setting which corre-
sponds to a 2D vertical cross-section of the Bouillante high temperature
geothermal field (Guadeloupe, French West Indies). The vertical cross-
section is assumed to be in the plane of major fault zone acting as a regional
permeable drain. Our objective is to compare the results of the simulations
on different meshes and schemes of the non-isothermal compositional liq-
uid gas Darcy flow model. The following test cases focus on the coupling
between the VAG scheme and the TPFA scheme assuming that the cells
K ∈Mh ∪Mhv satisfy the TPFA admissibility conditions. Only the unsta-
bilised version of the combined VAG-TPFA scheme is considered in order to
preserve the two-point fluxes at all faces σ ∈ Fhv.

We consider the above non-isothermal compositional two-phase Darcy
flow model with the set of water and air components C = {a, w}. The ther-
modynamic laws used in this test case are the following. The gas phase is as-
sumed to have a perfect gas molar density ζg = P g

RT
, R = 8.314 J.K−1.mol−1

and a constant gas dynamic viscosity fixed to µg = 2 · 10−5 Pa. s. The liquid
molar enthalpy hl and the gas molar enthalpies of each component hga, h

g
w

are taken from [25], from which the gas molar enthalpy is deduced assuming
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a perfect mixture

hg(P g, T, Cg) =
∑
i∈C

Cg
i h

g
i (P

g, T ).

The liquid molar density and viscosity are also fixed to the constant values
ζ l = 1000

0.018
mol.m−3 and µl = 10−3 Pa. s in order to avoid thermal convection

instabilities which would prevent the comparison of the schemes on the dif-
ferent types of meshes. The mass density is defined by ρα = ζα

∑
i∈CmiC

α
i

with the molar masses ma = 0.029 and mw = 0.018 Kg.mol−1. The molar
internal energy eα(T ) of each phase α ∈ P is considered to be equal to its
enthalpy. The fugacities are defined by

f gi = Cg
i P

g, i = a, w,
f la = C l

aHa,

f lw = C l
wPsat(T ) exp

(
−Psat(T )− P l

ζ lRT

)
,

where the Henry constant of the air component is set to Ha = 108 Pa and
the vapour pressure Psat(T ) is given by the Clausius-Clapeyron equation

Psat(T ) = 100 exp

(
46.784− 6435

T
− 3.868 log(T )

)
.

In this test case, the porous medium is homogeneous with porosity φ(x) =
0.35 and isotropic permeability ΛΛΛ(x) = K × I with K = 1 D. The relative
permeabilities are defined by kαr (Sα) = (Sα)2 for each phase α ∈ P and the
capillary pressure function is given by the Corey law

Pc(S
g) =

{
−b ln(1− Sg) if 0 ≤ Sg ≤ S1,
−b ln(1− S1) + b

1−S1
(Sg − S1) if S1 < Sg ≤ 1,

regularized for Sg ∈ (S1, 1] to allow for the disappearance of the liquid phase,
with b = 2 · 105 Pa and S1 = 0.99. The rock energy per unit rock volume
is fixed to Er(T ) = 2 · 106 T in J.m−3 and the bulk thermal conductivity of
the fluid and rock mixture is fixed to λ = 3 W.m2.K−1. Figure 14 shows
the 2D vertical cross-section of the Bouillante geothermal reservoir and the
conditions applied at the domain boundary.

The initial and left side conditions are defined by a pure water liquid
phase (Sl = 1, C l

w = 1, C l
a = 0) at hydrostatic pressure and by a linear

temperature between the fixed top and bottom temperatures. The bottom
boundary is impervious (zero Darcy fluxes) with a fixed temperature of 400
K except in the interval 8000 m ≤ x ≤ 10000 m where a pure water liquid

39



0m 2000m 4000m 6000m 8000m 10000m

−
3
0
0
0
m
−
2
0
0
0
m
−
1
0
0
0
m

0
m

1
0
0
0
m

z = 0 z = 500

Neumann:
thermally isolated and imperviousDirichlet:

Linear temperature with 278 K
at the sea level and 400 K
at the bottom,
P l hydrostatic,
Sl = 1, ClW = 1

Dirichlet:
Linear temperature with 300 K
at the surface of the sea
and 278 K at 100 m deep,
P l hydrostatic, Sl = 1,
ClW = 1

Dirichlet:
T = 300 K,

P g = 1 atm, Sg = 1,
Cga = 0.99

Dirichlet:
T = 300 K,

P g = 1 atm, Sg = 0.72,
Cga = 0.97, Clw = 0.999

T = 550 K,
Imposed flux of 0.03 mol.m−2. s−1

Sl = 1, ClW = 1

T = 400 K,
Imposed flux of 0 mol.m−2. s−1

Sl = 1, ClW = 1

Figure 14: Illustration of the two dimensional geothermal reservoir and of
the various conditions applied at its boundary.

input flux of −3 · 10−2 mol.m−2. s−1 at 550 K is imposed. The right side of
the domain is supposed thermally isolated (zero Fourier flux) and impervious
(zero Darcy fluxes).

The upper boundary is composed of three parts corresponding to the
seabed (z ≤ 0 m and 0 ≤ x ≤ 5000 m), a sunny plain zone (0 < z ≤ 500
m and 5000 m < x ≤ 8450 m) and a rainy mountain zone (z > 500 m and
8450 m < x ≤ 11000 m):

• the seabed boundary condition is defined by a pure water liquid phase
(Sl = 1, C l

w = 1) at hydrostatic pressure. The temperature is sea depth
dependent. It is linear between the sea level z = 0 m at 300 K and
z = −100 m at 278 K, then constant below z = −100 m,

• the sunny plain zone is defined by the relative humidity fixed to 0.5,
the temperature fixed to 300 K and the gas pressure fixed to P g = 1
atm, from which we deduce that only the gas phase is present with the
molar fractions roughly equal to Cg

a ' 0.99, Cg
w ' 10−2,

• the rainy mountain zone is characterized by a two-phase state at ther-
modynamic equilibrium which is defined by a fixed temperature, gas
pressure and relative humidity corresponding to the following physical
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values: 
Sg ' 0.72, Sl ' 0.28,
P g = 1 atm, P l ' −153671 Pa,
Cg
a ' 0.97, Cg

w ' 0.03,
C l
a ' 10−3, C l

w ' 0.999,
T = 300 K.

The simulations are run over the time interval (0, tf ), tf = 650 years, with an
adaptive time stepping starting with an initial time step of 1 day and with
a maximum time step of 1 year. Three meshes of roughly 10000 cells have
been generated, a triangular mesh, a Voronoi mesh admissible both at inner
and boundary faces and an hybrid mesh exhibited in Figure 15 combining
Cartesian cells on the bottom subdomain Ω \ Ω

v
and triangular cells on the

upper VAG subdomain Ωv with Ωv = {x ∈ Ω | z > −1500 m}.
The numerical results on the various combinations of meshes and schemes

are compared to a reference solution obtained on a refined hybrid mesh with
roughly 78000 cells including Cartesian cells on the TPFA subdomain Ω\Ω

v

and triangular cells on the VAG subdomain Ωv.
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Figure 15: Coarse hybrid Cartesian-triangular mesh.

Figure 16: Reference temperature (in K) and gas saturation above the
threshold of 10−2 at final time (650 years) obtained with the refined
Cartesian-triangle mesh combined with the VAG-TPFA scheme.

Figures 16-19 show the temperature (on the left) and the gas saturation
above the threshold of 10−2 (on the right) at final time for the different
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Figure 17: Temperature (in K) and gas saturation above the threshold of
10−2 at final time (650 years) obtained with the VAG scheme on the trian-
gular mesh.

Figure 18: Temperature (in K) and gas saturation above the threshold of
10−2 at final time (650 years) obtained with the TPFA scheme on the Voronoi
mesh.

Figure 19: Temperature (in K) and gas saturation above the threshold of
10−2 at final time (650 years) obtained with the VAG-TPFA scheme on the
Cartesian-triangular mesh.

combinations of meshes and schemes. All the numerical results are similar
and no visible artefact can be seen at the interface z = −1500 m for the VAG-
TPFA scheme. However, a closer comparison with the reference solution
focusing on the bottom part of the domain in the temperature plots and on
the gas saturation plots exhibits that the TPFA scheme (alone or combined
with VAG) provides a more accurate solution. The solution is even more
accurate when the TPFA scheme is associated with Cartesian cells at the
bottom subdomain. It can be explained by the quasi horizontal flow lines
close to the bottom boundary which is better captured by the Cartesian
mesh coupled with the TPFA scheme (see Figure 19 compared with Figures
17, 18).
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Figure 20 exhibits the mass (in Kg) of vapour water in the reservoir
as a function of time. The vaporization occurs when the high temperature
front reaches the low pressure zone close to the top boundary (at around
t = 70000 days). It confirms that the combined VAG-TPFA scheme applied
on the Cartesian-triangular mesh better captures the high temperature front.

Figure 20: Mass of vapour water in the reservoir as a function of time for
the various discretizations.

scheme mesh Nred NZred Ntf Nchop Nnewton CPU(s)
VAG triangular 5185 35200 706 2 5.18 1622
TPFA Voronoi 10585 70872 718 5 5.03 2768

VAG-TPFA Cart.-tri. 7298 41744 707 3 5.41 1875

Table 4: Number of d.o.f. after elimination of the VAG cells and TPFA faces,
number of 3 by 3 non-zero elements in the matrix after elimination of the
VAG cells and TPFA faces, number of successful time steps, number of time
step chops, average number of Newton-Raphson iterations per time step and
CPU time obtained with the different meshes and schemes.

Table 4 compares the numerical behavior of the simulation with Nred the
number of degree of freedom of the reduced linear systems with 3 primary un-
knowns per d.o.f., NZred the number of non-zero 3 by 3 entries in the reduced
linear systems, Ntf the number of successful time steps, Nchop the number of
time step chops and Nnewton the average number of Newton-Raphson itera-
tions per successful time step. The CPU times are in seconds on 2.9 GHz
Intel Core i5 processor and 8Go RAM. This table exhibits large differences
in CPU time between the different meshes and schemes whereas the num-
bers of cells are comparable for all meshes. Thanks to the elimination of the
VAG cell unknowns for all K ∈ Mv, the number of non-zero entries in the
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Jacobian matrix is the smallest with the VAG scheme combined with the tri-
angular mesh. It results that the VAG scheme combined with the triangular
mesh leads to the fastest solution. On the other hand, as explained above,
it also leads to a less accurate solution compared with the solution obtained
using the TPFA scheme combined with a Cartesian mesh on the lower part
of the reservoir. All together, the Cartesian-triangular mesh combined with
the VAG-TPFA scheme provides the best compromise in terms of CPU time
and accuracy for this geothermal test case.

Conclusion

A new methodology is introduced in this work to combine face based (HFV
or TPFA) and nodal based (VAG) discretizations on hybrid meshes in order
to adapt the numerical scheme to the different types of cells and medium
properties in different parts of the mesh. The stability and convergence of
the combined VAG-HFV schemes is studied in the gradient discretization
framework and is shown to hold on arbitrary partitions of the cells for the
unstabilised version and on arbitrary partitions of the faces for the stabilised
version. The framework preserves at the interface the discrete conservation
properties of the VAG and HFV schemes with fluxes based on local to each
cell transmissibility matrices of size the number of d.o.f. at the cell bound-
ary. This discrete conservative form allows a natural extension of the VAG
and HFV discretizations of two-phase Darcy flow models to the combined
VAG-HFV schemes. Numerical results on different types of meshes show the
accuracy and efficiency of the combined schemes which are compared to the
standalone VAG and HFV (or TPFA) discretizations. The convergence of
the schemes is first studied numerically for single-phase and two-phase Darcy
flows using analytical solutions. Then, a non-isothermal compositional liquid
gas Darcy flow test case representing a 2D vertical cross-section of the Bouil-
lante geothermal reservoir is considered. For this test case, the combined
VAG-TPFA scheme on an hybrid Cartesian-triangular mesh is shown to pro-
vide the best compromise between accuracy and CPU time compared with
the VAG scheme on a triangular mesh and the TPFA scheme on a Voronoi
mesh.
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