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A new Lattice-Boltzmann model for low-Mach reactive flows is presented.

Based on standard lattices, the model is easy to implement, and is the first, to the authors' knowledge, to pass the classical freely propagating flame test case as well as the counterflow diffusion flame, with strains up to extinction.

For this presentation, simplified transport properties are considered, each species being assigned a separate Lewis number. In addition, the gas mixture is assumed to be calorically perfect. Comparisons with reference solutions show excellent agreement for mass fraction profiles, flame speed in premixed mixtures, as well as maximum temperature dependence with strain rate in counterflow diffusion flames.

Introduction

Industries from the aerospace, aeronautic and automotive sectors are increasingly relying on numerical simulation tools. From the occasional use of a research and development department, these tools progressively made it to conception and production departments, where they help to continuously improve designs. The field of low-Mach external aerodynamics and aeroacoustics, have been particularly impacted by the rapid development of Lattice-Boltzmann (LB) methods [START_REF] Chen | Lattice boltzmann method for fluid flows[END_REF] in the last five to ten years. From industrial benchmarks [START_REF] Marié | Comparison between lattice boltzmann method and navier-stokes high order schemes for computational aeroacoustics[END_REF][START_REF] Casalino | Lattice-Boltzmann aeroacoustic analysis of the lagoon landing-gear configuration[END_REF][START_REF] Sengissen | Simulations of lagoon landing-gear noise using lattice boltzmann solver[END_REF], these methods quickly ramped up to full scale applications: full-scale cars [START_REF] D'hooge | Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction[END_REF][START_REF] Gleason | Comparison of computational simulation of automotive spinning wheel flow field with full width moving belt wind tunnel results[END_REF], full-scale aircraft engines [START_REF] Casalino | Turbofan broadband noise prediction using the lattice boltzmann method[END_REF] and even fullscale aircrafts [START_REF] Khorrami | Computational evaluation of airframe noise reduction concepts at full scale[END_REF][START_REF] Khorrami | Simulation-based airframe noise prediction of a full-scale, full aircraft[END_REF], oftentimes with outstanding results.

Combustion modelling in the LB framework, however, remain relatively marginal within the combustion community. A hybrid finite difference lattice Boltzmann model has been presented for the simulation of low Mach number flows with significant density changes by Filippova et al [START_REF] Filippova | A Novel Lattice BGK Approach for Low Mach Number Combustion[END_REF] almost twenty years ago. An LB model for combustion modelling was then presented by Yamamoto and coworkers [START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF][START_REF] Yamamoto | Combustion Simulation using the Lattice Boltzmann Method[END_REF][START_REF] Yamamoto | LB simulation on soot combustion in porous media[END_REF] for steady and unsteady reactive flows. About ten years ago, a pressure-based lattice Boltzmann model was presented by Chen et al. for low Mach number combustion simulations by [START_REF] Chen | A novel coupled lattice Boltzmann model for low Mach number combustion simulation[END_REF][START_REF] Chen | A simple lattice Boltzmann scheme for combustion simulation[END_REF], based on an incompressible LB model developed earlier by Guo et al [START_REF] Guo | Lattice BGK Model for Incompressible Navier -Stokes Equation[END_REF]. An entropic lattice Boltzmann model on two-dimensional standard lattice was also presented for compressible thermal flows and extended to combustion applications [START_REF] Prasianakis | Lattice Boltzmann method for thermal flow simulation on standard lattices[END_REF][START_REF] Rienzo | Lattice boltzmann model for reactive flow simulations[END_REF]. More recently, detailed kinetics were successfully implemented in the LB framework [START_REF] Chiavazzo | Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations[END_REF][START_REF] Chiavazzo | Efficient simulations of detailed combustion fields via the lattice Boltzmann method[END_REF].

Thermodynamic closure is one of the key issues in extending the LB capabilities from low-Mach aerodynamics and aero-acoustics to reactive flows, and obtaining satisfactory results in cases with significant thermal expansion is challenging, as indicated by the low-number of combustion models in the LB context. Most of LB models mentioned above for reactive flows were specifically applied under constant pressure, and lack full coupling between thermodynamics and the flow. In particular, because their equilibrium density distribution function only depends on the local density, hydrodynamic pressure and velocity, and not on temperature, these models may fail at setting in motion fluids at rest when heat-release is applied. This aspect is however critical in representing canonical combustion phenomena, such as ignition in a mixing layer, or the dynamics of freely propagating flame in a premixed mixture.

To address this issue, more complex, multi-speed models with aid of finite volume approach were developed for subsonic and supersonic flows [START_REF] Lin | Double-distribution-function discrete boltzmann model for combustion[END_REF], including detonations. Alternatively, coupled lattice Boltzmann models on standard lattices have been investigated in low Mach thermal compressible flows [START_REF] Li | Coupling lattice boltzmann model for simulation of thermal flows on standard lattices[END_REF][START_REF] Feng | A three dimensional lattice model for thermal compressible flow on standard lattices[END_REF].

The model presented in this work is based on the latter [START_REF] Feng | A three dimensional lattice model for thermal compressible flow on standard lattices[END_REF] and takes full advantage of the simplicity and practicality of standard lattice models. It is able to deal with multi-component, calorically perfect gas mixtures, and the coupling between the thermodynamics and the flow is two-way. Simplified transport properties are considered, with non-unity Lewis number set for each component. This new LB model for low-Mach reactive flows is presented in the first Section. The second Section validates the model using Cantera [START_REF] Goodwin | Cantera: An objectoriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF] as a reference on canonical combustion test cases of premixed and nonpremixed combustion.

Lattice-Boltzmann combustion modelling

Introductory comments: athermal LB method Lattice Boltzmann methods intend to solve the continuous Boltzmann equation through discretization of space, time, and velocity [START_REF] Chen | Lattice boltzmann method for fluid flows[END_REF][START_REF] Qian | Lattice bgk models for navierstokes equation[END_REF][START_REF] Shan | Kinetic theory representation of hydrodynamics: a way beyond the navier-stokes equation[END_REF]. In the so-called DnQm model, a n-dimensional physical space is filled with a regular lattice (or a Cartesian grid) and velocity space is discretized on a set of lattice tensor E n m = [c 0 , ..., c i , ..., c m-1 ] . On every lattice node x, f i (x, t) denotes the density distribution of particle with velocity c i , thus the local density ρ and momentum ρu are defined as ρ = Σ i f i and ρu = Σ i c i f i .

A single time relaxation process is used to model the collision term of Boltzmann equation in this study, which is the so-called Bhatnagar-Gross-Krook (BGK) model [START_REF] Bhatnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral onecomponent systems[END_REF][START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF].

f i (x + cδt, t + δt) -f i (x, t) = - 1 τ [f i (x, t) -f eq i (x, t)] ( 1 
)
where τ is the relaxation parameter, δt is the time increment and δt = δx/c. f i (x, t), f i (x + cδt, t + δt) are the distribution functions associated with the i th discrete velocity c i , and f eq i is the i th equilibrium distribution function given by [START_REF] Chen | Lattice boltzmann method for fluid flows[END_REF][START_REF] Qian | Lattice bgk models for navierstokes equation[END_REF] 

f eq i = ρw i 1 + c i • u c 2 s + (c i • u) 2 2c 4 s - u 2 2c 2 s ( 2 
)
where w i is the weight coefficient associated to discrete velocity c i and c s is sound speed.

Using the Chapman-Enskog multiscale technique [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF], the equivalent Navier-Stokes equations can be recovered as

∂ρ ∂t + ∇ • (ρu) = 0, (3) 
∂ρu ∂t + ∇ • (ρuu) = -∇p + ∇ • ρν(∇u + (∇u) T ) , (4) 
where the kinematic viscosity ν is related to the relaxation parameter through

τ = ν c 2 s δt + 1 2 . ( 5 
)
And, the pressure is related to the density by the equation of the state p = ρc 2 s . The equation of state used in this base model is clearly not suitable for reactive flows, as no temperature is considered. The most simple acceptable equation of state for reactive flows is probably the ideal gas law, relating the gas pressure and temperature through

p = ρrT, (6) 
where r = R/W , with R the gas constant, and 

1/W = k Y k /W k ,
f eq i = f (0) i = ρw i 1 + c iα u α c 2 s + A (2) αβ Q (2) iαβ 2c 4 s + A (3) αβγ Q (3) iαβγ 6c 6 s , A (2) 
αβ = u α u β + (θ -1)c 2 s δ αβ , Q (2) 
iαβ = c iα c iβ -c 2 s δ αβ , A (3) 
αβ = u α u β u γ + (θ -1)c 2 s [uδ] αβγ , Q (3) 
iαβ = c iα c iβ c iγ -c 2 s [cδ] αβγ , (7) 
where

[cδ] αβγ = c α δ βγ + c β δ αγ + c γ δ αβ , δ αβ is the Kronecker symbol and θ is the non-dimensional temperature θ = rT c 2 s = RT c 2 s k Y k W k (8) 
The moment of equilibrium distribution function on the nearest neighbor type lattices, hereafter referred to as standard lattices (D2Q9, D3Q19, D3Q27, etc.), are then

i f (0) i = ρ, (9) 
i f (0) i c iα = ρu α , ( 10 
) i f (0) i c iα c iβ = ρrT δ αβ + ρu α u β , (11) 
i f (0) i c iα c iβ c iγ = ρrT (u α δ βγ + u β δ γα + u γ δ βα ) + ρu α u β u γ + Ψ αβγ , (12) 
where Ψ αβγ is a deviation term due to defect of symmetry of standard lattices for the third order moment. This deviation can be corrected by introduction of an extra force term s i = Q iαβ ∂ ∂xγ Ψ αβγ in the lattice Boltzmann equation. The LB equation with a force term in the second order accuracy scheme is given as [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF] 

f i (x + cδt, t + δt) = f i (x, t) -1 τ [f i (x, t) -f eq i (x, t)] (13) 
+(1 -1 2τ )s i
where the external force term s i reads [START_REF] Feng | A three dimensional lattice model for thermal compressible flow on standard lattices[END_REF] 

s i = Q ixx ∂ ∂x [ρu x (1 -θ -u 2 x )] + Q iyy ∂ ∂y [ρu y (1 -θ -u 2 y )], (14) 
in two dimensions.

The mass and momentum conservation equations derived through Chapman-Enskog expansion from this model remain unchanged compared to the classical athermal version (3) and ( 4), with the exception of the equation of state and the relation between the relaxation time and the viscosity [START_REF] D'hooge | Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction[END_REF], which now reads

τ = ν θc 2 s δt + 1 2 . ( 15 
)
The approach proposed here is hybrid: coupled with this lattice Boltzmann description, temperature T and mass fractions Y k equations are solved following a classical finite difference method

∂T ∂t + u α ∂ ∂x α T = 1 ρ ∂ ∂x α (ρD T ∂T ∂x α ) + ω h ρc p (16) 
∂Y k ∂t + u α ∂ ∂x α Y k = 1 ρ ∂ ∂x α (ρD k ∂Y k ∂x α ) + ω k ρ (17) 
D k and D T are respectively the k th species and thermal diffusivities.

As to simplify the introduction of this model, we assume calorically gases, with a constant mixture heat capacity. Transport properties are specified through constant Prandtl number and constant Schmidt number for each species following [30]

D T = ν P r , D k = ν Sc k . ( 18 
)
Physical and lattice units for length, time, mass and temperature are related through a reference length scale L 0 , the physical sound speed c sp for space and time, a reference density ρ 0 for mass, and a reference temperature T 0 . Accordingly, the physical variables can be converted from the quantities in lattice units (l subscript) as

δx = L 0 /N i , δt = δx. c s c sp , t = N t .δt, u = u l . δx δt , (19) 
µ = µ l ρ ρ l δx 2 δt
where c sp is the reference physical sound speed. It could be set to the fresh gases sound speed, but in low-Mach flows, it is more convenient to keep it as a free parameter. This allows to freely accelerate the convergence rate, by varying the time step somewhere between a velocity based time-step (as in low-Mach solvers) and a sound-speed based time-step (as in compressible solvers). We recommend to adopt a high reference temperature (here T 0 = 3000K) as to restrict the variations of θ -1 (let us remind that θ = rT /c 2 s ) and improve numerical stability [START_REF] Li | Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows[END_REF][START_REF] Feng | A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices[END_REF].

Model implementation

A strong advantage of the present model is its simplicity. The algorithm we implemented is illustrated in Fig. 1. In essence, two solvers are simultaneously running:

• the Lattice Boltzmann (LB) solver, for mass and momentum conservation Eqs (3) and (4)

• the Finite Differences (FD) solver, for temperature T and mass fractions Y k evolution through Eqs ( 16) and ( 17)

Start Initialization ρ, u, Y k , T Compute f eq i (ρ, u, θ) (7) s i (ρ, u, θ) (14) τ (ρ, θ) (15) 
Streaming and collision step [START_REF] Yamamoto | LB simulation on soot combustion in porous media[END_REF] Update (ρ, u) Compute right handside of Eqs. ( 16) and ( 17)

Runge Kutta integration

Update (Y k , T )

Output LB FD time-step At the end of each time-step, the two solvers exchange macroscopic values:

f i = f eq i (ρ, u, θ) (Y k , T ) ( ρ , u ) θ = f ( Y k , T ) ( 8 ) 
(ρ, u) is sent from the LB to the FD solver, and the gas composition and temperature (T, Y k ) from the FD to the LB solver.

The LB solver, being of very classical form as well as built on standard lattices, can share most of the features of standard LB methods. In particular, a regularized BGK collision model was employed to enhance the robustness [START_REF] Latt | Lattice boltzmann method with regularized precollision distribution functions[END_REF][START_REF] Jacob | A new hybrid recursive regularized bhatnagar-gross-krook collision model for lattice-boltzmannmethod based large-eddy simulation[END_REF], albeit not strictly necessary for the test cases proposed here. The gradients in the correction term ( 14) are numerically implemented by an isotropic second order central difference scheme [START_REF] Thampi | Isotropic discrete laplacian operators from lattice hydrodynamics[END_REF][START_REF] Kumar | Isotropic finite-differences[END_REF].

The FD solver's implementation is also very straight-forward. Equations ( 16) and ( 17) are integrated through a second-order Runge-Kutta scheme in time and the same isotropic finite difference scheme was adopted for the convective and diffusive terms [START_REF] Thampi | Isotropic discrete laplacian operators from lattice hydrodynamics[END_REF][START_REF] Kumar | Isotropic finite-differences[END_REF].

Boundary conditions

A non-equilibrium bounce back scheme with a regularization procedure [START_REF] Malaspinas | General regularized boundary condition for multi-speed lattice Boltzmann models[END_REF] is employed at the inlets for the LB solver, allowing to set all velocity components and the pressure (or density). (T, Y k ) are hard-coded at inlets for the FD solver.

Outlets are treated as zero-gradient boundaries on microscopic distribution functions f i as well as T and Y k variables.

Validation through canonical combustion problems

This section aims at validating the combustion model developed in a D2Q9 Lattice-Boltzmann framework against solutions from Cantera [24], a

well-validated open source tool designed to compute quickly and efficiently.

It incorporates and executes fundamental thermodynamics, chemical kinetics and species transport calculations.

Premixed combustion: freely propagating flame

Let us consider a multi-component gas consisting of

C 3 H 8 , O 2 , H 2 O, CO 2 , N 2 ,
with Schmidt numbers listed in Tab. 1, along with the parameters from the viscosity's power-law,

µ = µ 0 T T 0 β , (20) 
and the Prandtl number, defining now entirely the species and thermal diffuses properties through [START_REF] Rienzo | Lattice boltzmann model for reactive flow simulations[END_REF]. In the above T 0 = 298K is the reference temperature of the viscosity power-law, not to be confused with the LB reference temperature (3000K here). The mixture's heat capacity is assumed Having introduced these kinetic, thermodynamic and transport properties, let us now consider the most popular laminar flame, the so-called freely propagating flame. A pseudo one-dimensional domain is now initialized as

µ 0 1.
T, p, u, Y C 3 H 8 , Y O 2 , Y CO 2 , Y H 2 O =        300K, 1atm, 0, 0.06, 0.21, 0, 0 , if x < L/2
3070K, 1atm, 0, 0, 0, 0.18, 0.1 , else.

,

the fresh gases corresponding to a stoichiometric mixture of propane and air in ambient conditions (1atm., 300K), and the burnt gases being set to the adiabatic temperature at ambient pressure. The right side consists of the combustion products of the fresh gases combustion, with 3070K being the adiabatic flame temperature. Let us remind here that we are considering constant C p and a reduced number of species, which both contribute to the rather high burnt gas temperature.

While Cantera [START_REF] Goodwin | Cantera: An objectoriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF] includes an straight-forward automated procedure for computing the flame speed, our LB model does not. Computations were initialized as a Heaviside function between the fresh and burnt states. The velocity U f is imposed at the inlet, with U f set arbitrarily, given the flame does not leave the computational domain before convergence.

After initial establishment of the flow, the flame speed can be estimated through

S L = U f - ρ f U f -ρ b U b ρ f -ρ b , (22) 
where the f subscript indicate the fresh gases, and b denotes the burnt gases properties (respectively the first and last points of the simulation domain).

Mass fractions and temperature profiles in the stoichiometric premixed flame are presented in Fig. 2, showing excellent agreement between our method and the Cantera-computed reference. x(m) T (K) As an additional validation, the equivalence ratio dependence of the flame speed, estimated through Eq. ( 22) is presented in Fig. 3 and compared with the Cantera reference value. The left side of the plot indicates convergence histories, through the time evolution of the velocity evaluated as [START_REF] Li | Coupling lattice boltzmann model for simulation of thermal flows on standard lattices[END_REF]. For most computations, U f = 0, but 0.4 and 0.8m/s were also tested at ϕ = 1, as to check the consistence of the model. As indicated by the convergence histories, the obtained flame speed is independent of the inlet velocity U f and does indeed converge to Cantera's predictions. Equivalence ratio Flame speed (m/s) time (s) Figure 3: Freely propagating flame: Variation with equivalence ratio of the flame speed in propane/air mixtures at 300K and atmospheric pressure. Cantera reference (plain dark line), and present model (dashed colored line). On the secondary x-axis are plotted the convergence histories for the LBM computed flame speed S L estimated through Eq. [START_REF] Li | Coupling lattice boltzmann model for simulation of thermal flows on standard lattices[END_REF]. U f = 0 for all ϕ = 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (thin lines). Dotted and dashed lines histories for ϕ = 1 correspond to U f = 0.4 and 0.8, respectively.

Mass fractions

Non-premixed combustion: counter-flow diffusion flame

As a concluding validation, counter-flow diffusion flame is now considered. This test case, consisting of two counter flows (oxidizer and fuel), can in principle be solved as a 1D problem with an adequate choice of variables [START_REF] Liñán | The asymptotic structure of counterflow diffusion flames for large activation energies[END_REF][START_REF] Williams | Combustion Theory[END_REF], as done in Cantera [START_REF] Goodwin | Cantera: An objectoriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF]. For validation purposes, however, it is sometimes convenient to solve a 2D problem. A two-dimensional rectangular L × l is adopted as geometry domain for our LBM computation. Top and bottom boundaries are inlet, whereas the left boundary is a symmetry, and the right is a pressure outlet. Kinetic, thermodynamic and transport properties are identical to those of the premixed flame presented above.

The fuel mixture with uniform density ρ f , speed U f and temperature T f = 300K is injected from the upper boundary at atmospheric pressure.

On the opposite inlet, air is uniformly injected at ρ ox , U ox , T ox = 300K and atmospheric pressure. Fuel and oxidizer mixtures have the same N 2 mass fraction Y N 2 = 0.767, the remainder being propane and dioxygen, respectively. The set up for L/l = 2 is illustrated in Fig. 4 through the superposition of streamlines and temperature profiles, for mass flow rates

ρ f U f = ρ ox U ox = 0.2kg m 2 s -1 . The inter-nozzle distance is L = 20mm,
corresponds to a strain of 16.5s -1 . It is interesting to note that no specific treatment was found necessary in the inlet/outlet corners, whereas with more conventional methods authors typically extend the domain as to have an outlet far from the inlet [START_REF] Shum-Kivan | Simulation des grandes echelles de flammes de spray et modélisation de la combustion non-prémélangée[END_REF].

Mass fractions, axial velocity and temperature profiles are reported in Fig. 5, showing an outstanding agreement. The error in maximum temperature is less than 1K. Somewhat larger errors can be seen on the axial velocity profile, to be attributed to the fact that the two-dimensional setup is not strictly equivalent to the 1D problem solved in Cantera.

It becomes then of interest to check whether the dependence of the maximum temperature with the strain rate is correctly reproduced with the LB model. The 2D configuration leading to an unstable stagnation line when the domain is large, simulations were ran on a thinner domain, with L/l = 100.

Results, albeit slightly altered in accuracy remain close to the reference, with an error of 15K in maximum temperature in the conditions of Fig. 5. The dependence of the maximum temperature with strain rate in this thin 2D domain are reported in Fig. 6, showing a very good agreement.

The × symbol at the lowest strain rate corresponds to the result on the large domain simulation (L/l = 2), showing the errors to come from the simulation domain rather than the model. The strain rate at extinction is 305s -1 with our LB model, whereas Cantera sets it at 310s -1 . These results conclude the validation of our flow model.

Concluding remarks

A new LB combustion model has been presented. It is, to the knowledge of the authors, the first to pass the standard canonical combustion test cases of freely propagating premixed flame and counter-flow diffusion flame with strains up to extinction. In practice, the number of independent variables is the number of lattice discrete velocities (9 in our D2Q9 implementation), plus the temperature, and a N -1 or N mass fractions (N being the number of chemical species), as is typical in combustion modelling [START_REF] Poinsot | Theoretical and numerical combustion[END_REF].

The main assumptions are:

• low Mach number

  linking the mean molecular weight W to the species molecular weights W k and the species mass fractions Y k .A hybrid thermal LB modelConsidering the third order Hermite expansion of Maxwell-Boltzmann distribution, one can obtain the equilibrium distribution function in discrete Gauss-Hermite space[START_REF] Shan | Kinetic theory representation of hydrodynamics: a way beyond the navier-stokes equation[END_REF] 

Figure 1 :

 1 Figure 1: The algorithm proposed consists of a Lattice-Boltzmann (LB) solver coupled with a classical Finite Differences (FD) solver. Data exchanges between the two solvers are clearly identified.

Figure 2 :

 2 Figure 2: Freely propagating flame: Temperature profile (thick line), C 3 H 8 (△), O 2 (▽), CO 2 (•) and H 2 O ( ) mass fractions. The fresh gases consist of a stoichiometric mixture of propane and air, at 300K and atmospheric pressure. Cantera reference (plain line), and present model (dashed line).

Figure 4 :

 4 Figure 4: Temperature profiles in a counterflow diffusion flame (dotted lines), superimposed with streamlines (dashed lines). Fuel mixture (Y C3H8 = 0.21, Y N2 = 0.79) is injected from the top nozzle, and air from the bottom. Conditions:ρ f U f = ρ ox U ox = 0.2kg m 2 s -1 , T f = T ox = 300K, atmospheric pressure.

Figure 5 :

 5 Figure 5: Counter flow diffusion flame.ρ f U f = ρ ox U ox = 0.2kg m 2 s -1 (a) C 3 H 8 (△), O 2 (▽), CO 2 (•)and H 2 O ( ) mass fractions profiles (b). Temperature (thick lines) and axial velocity profiles, . Atmospheric pressure, temperature of fresh gases 300K. Cantera reference (plain dark line), and present model (dashed line).

Figure 6 :

 6 Figure 6: Maximum temperature in a counter flow diffusion flame as a function of the strain rate. Reference computed with Cantera (line), and our LB model with L/l = 100 (+), or L/l = 2 as in Figs. 4 and 5 (×).

Table 1 :

 1 Power-law's viscosity coefficients (SI units), Prandtl number and Schmidt numbers for each species.Last but not least, a one-step Arrhenius kinetic model is introduced,following global reaction C 3 H 8 + 5 O 2 -→ 3 CO 2 + 4 H 2 O, associated with the kinetic rate ω = k.C C 3 H 8 .C O 2 .e -Ea/RT , where k = 9.9×10 13 cm 3 mol -1 s -1 , E a = 30kcal/mol, and C i are the molar concentrations for species i.

		782 × 10 -5
	β	0.690
	P r	0.682
	S C 3 H 8 1.241
	S O 2	0.728
	S CO 2 0.941
	S H 2 O 0.537
	S N 2	0.690

to be constant C p = 1008J/K/kg.
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• simplified transport properties, specified by species individual Schmidt numbers • constant mixture heat capacity.

The last hypothesis, adopted for the sake of readability, is the most limiting in practice and is to be relaxed in our next work in preparation.