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Abstract

A new Lattice-Boltzmann model for low-Mach reactive flows is presented.

Based on standard lattices, the model is easy to implement, and is the first,

to the authors’ knowledge, to pass the classical freely propagating flame test

case as well as the counterflow diffusion flame, with strains up to extinction.

For this presentation, simplified transport properties are considered, each

species being assigned a separate Lewis number. In addition, the gas mixture

is assumed to be calorically perfect. Comparisons with reference solutions

show excellent agreement for mass fraction profiles, flame speed in premixed

mixtures, as well as maximum temperature dependence with strain rate in

counterflow diffusion flames.

Keywords: lattice Boltzmann; reacting flows; combustion

1. Introduction

Industries from the aerospace, aeronautic and automotive sectors are in-

creasingly relying on numerical simulation tools. From the occasional use

of a research and development department, these tools progressively made
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it to conception and production departments, where they help to continu-

ously improve designs. The field of low-Mach external aerodynamics and

aeroacoustics, have been particularly impacted by the rapid development of

Lattice-Boltzmann (LB) methods [1] in the last five to ten years. From in-

dustrial benchmarks [2–4], these methods quickly ramped up to full scale

applications: full-scale cars [5, 6], full-scale aircraft engines [7] and even full-

scale aircrafts [8, 9], oftentimes with outstanding results.

Combustion modelling in the LB framework, however, remain relatively

marginal within the combustion community. A hybrid finite difference lat-

tice Boltzmann model has been presented for the simulation of low Mach

number flows with significant density changes by Filippova et al [10] almost

twenty years ago. An LB model for combustion modelling was then pre-

sented by Yamamoto and coworkers [11–13] for steady and unsteady reactive

flows. About ten years ago, a pressure-based lattice Boltzmann model was

presented by Chen et al. for low Mach number combustion simulations by

[14, 15], based on an incompressible LB model developed earlier by Guo et

al [16]. An entropic lattice Boltzmann model on two-dimensional standard

lattice was also presented for compressible thermal flows and extended to

combustion applications [17, 18]. More recently, detailed kinetics were suc-

cessfully implemented in the LB framework [19, 20].

Thermodynamic closure is one of the key issues in extending the LB ca-

pabilities from low-Mach aerodynamics and aero-acoustics to reactive flows,

and obtaining satisfactory results in cases with significant thermal expansion

is challenging, as indicated by the low-number of combustion models in the

LB context. Most of LB models mentioned above for reactive flows were
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specifically applied under constant pressure, and lack full coupling between

thermodynamics and the flow. In particular, because their equilibrium den-

sity distribution function only depends on the local density, hydrodynamic

pressure and velocity, and not on temperature, these models may fail at set-

ting in motion fluids at rest when heat-release is applied. This aspect is

however critical in representing canonical combustion phenomena, such as

ignition in a mixing layer, or the dynamics of freely propagating flame in a

premixed mixture.

To address this issue, more complex, multi-speed models with aid of fi-

nite volume approach were developed for subsonic and supersonic flows [21],

including detonations. Alternatively, coupled lattice Boltzmann models on

standard lattices have been investigated in low Mach thermal compressible

flows [22, 23].

The model presented in this work is based on the latter [23] and takes full

advantage of the simplicity and practicality of standard lattice models. It is

able to deal with multi-component, calorically perfect gas mixtures, and the

coupling between the thermodynamics and the flow is two-way. Simplified

transport properties are considered, with non-unity Lewis number set for each

component. This new LB model for low-Mach reactive flows is presented in

the first Section. The second Section validates the model using Cantera

[24] as a reference on canonical combustion test cases of premixed and non-

premixed combustion.
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2. Lattice-Boltzmann combustion modelling

Introductory comments: athermal LB method

Lattice Boltzmann methods intend to solve the continuous Boltzmann

equation through discretization of space, time, and velocity [1, 25, 26]. In

the so-called DnQm model, a n-dimensional physical space is filled with a

regular lattice (or a Cartesian grid) and velocity space is discretized on a set

of lattice tensor En

m
= [c0, ..., ci, ..., cm−1] . On every lattice node x, fi(x, t)

denotes the density distribution of particle with velocity ci, thus the local

density ρ and momentum ρu are defined as ρ = Σifi and ρu = Σicifi.

A single time relaxation process is used to model the collision term of

Boltzmann equation in this study, which is the so-called Bhatnagar-Gross-

Krook (BGK) model [27, 28].

fi(x+ cδt, t+ δt)− fi(x, t) = −
1

τ
[fi(x, t)− f eq

i (x, t)] (1)

where τ is the relaxation parameter, δt is the time increment and δt = δx/c.

fi(x, t), fi(x+ cδt, t+ δt) are the distribution functions associated with the

ith discrete velocity ci, and f eq
i is the ith equilibrium distribution function

given by [1, 25]

f eq
i = ρwi

[

1 +
ci · u

c2s
+

(ci · u)
2

2c4s
−

u
2

2c2s

]

(2)

where wi is the weight coefficient associated to discrete velocity ci and cs is

sound speed.

Using the Chapman-Enskog multiscale technique [28], the equivalent Navier-

Stokes equations can be recovered as

∂ρ

∂t
+∇ · (ρu) = 0, (3)
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∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ ·

[

ρν(∇u+ (∇u)T )
]

, (4)

where the kinematic viscosity ν is related to the relaxation parameter through

τ =
ν

c2sδt
+

1

2
. (5)

And, the pressure is related to the density by the equation of the state p =

ρc2s. The equation of state used in this base model is clearly not suitable for

reactive flows, as no temperature is considered. The most simple acceptable

equation of state for reactive flows is probably the ideal gas law, relating the

gas pressure and temperature through

p = ρrT, (6)

where r = R/W , with R the gas constant, and

1/W =
∑

k

Yk/Wk,

linking the mean molecular weight W to the species molecular weights Wk

and the species mass fractions Yk.

A hybrid thermal LB model

Considering the third order Hermite expansion of Maxwell-Boltzmann

distribution, one can obtain the equilibrium distribution function in discrete

Gauss-Hermite space [26]

f eq
i = f

(0)
i = ρwi

[

1 +
ciαuα

c2s
+

A
(2)
αβQ

(2)
iαβ

2c4s
+

A
(3)
αβγQ

(3)
iαβγ

6c6s

]

,

A
(2)
αβ = uαuβ + (θ − 1)c2sδαβ, Q

(2)
iαβ = ciαciβ − c2sδαβ,

A
(3)
αβ = uαuβuγ + (θ − 1)c2s[uδ]αβγ , Q

(3)
iαβ = ciαciβciγ − c2s[cδ]αβγ ,

(7)
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where [cδ]αβγ = cαδβγ + cβδαγ + cγδαβ, δαβ is the Kronecker symbol and θ is

the non-dimensional temperature

θ =
rT

c2s
=

RT

c2s

∑

k

Yk

Wk

(8)

The moment of equilibrium distribution function on the nearest neighbor

type lattices, hereafter referred to as standard lattices (D2Q9, D3Q19, D3Q27,

etc.), are then
∑

i

f
(0)
i = ρ, (9)

∑

i

f
(0)
i ciα = ρuα, (10)

∑

i

f
(0)
i ciαciβ = ρrTδαβ + ρuαuβ, (11)

∑

i

f
(0)
i ciαciβciγ = ρrT (uαδβγ + uβδγα + uγδβα) + ρuαuβuγ +Ψαβγ, (12)

where Ψαβγ is a deviation term due to defect of symmetry of standard lattices

for the third order moment. This deviation can be corrected by introduction

of an extra force term si = Qiαβ
∂

∂xγ

Ψαβγ in the lattice Boltzmann equation.

The LB equation with a force term in the second order accuracy scheme is

given as [29]

fi(x+ cδt, t+ δt) = fi(x, t)−
1
τ
[fi(x, t)− f eq

i (x, t)] (13)

+(1− 1
2τ
)si

where the external force term si reads [23]

si = Qixx
∂

∂x
[ρux(1− θ − u2

x)] +Qiyy
∂

∂y
[ρuy(1− θ − u2

y)], (14)
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in two dimensions.

The mass and momentum conservation equations derived through Chapman-

Enskog expansion from this model remain unchanged compared to the classi-

cal athermal version (3) and (4), with the exception of the equation of state

and the relation between the relaxation time and the viscosity (5), which

now reads

τ =
ν

θc2sδt
+

1

2
. (15)

The approach proposed here is hybrid: coupled with this lattice Boltzmann

description, temperature T and mass fractions Yk equations are solved fol-

lowing a classical finite difference method

∂T

∂t
+ uα

∂

∂xα

T =
1

ρ

∂

∂xα

(ρDT
∂T

∂xα

) +
ωh

ρcp
(16)

∂Yk

∂t
+ uα

∂

∂xα

Yk =
1

ρ

∂

∂xα

(ρDk
∂Yk

∂xα

) +
ωk

ρ
(17)

Dk and DT are respectively the kth species and thermal diffusivities.

As to simplify the introduction of this model, we assume calorically gases,

with a constant mixture heat capacity. Transport properties are specified

through constant Prandtl number and constant Schmidt number for each

species following [30]

DT =
ν

Pr
, Dk =

ν

Sck
. (18)

Physical and lattice units for length, time, mass and temperature are

related through a reference length scale L0, the physical sound speed csp for

space and time, a reference density ρ0 for mass, and a reference temperature
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T0. Accordingly, the physical variables can be converted from the quantities

in lattice units (l subscript) as

δx = L0/Ni, δt = δx.
cs
csp

,

t = Nt.δt, u = ul.
δx

δt
, (19)

µ = µl
ρ

ρl

δx2

δt

where csp is the reference physical sound speed. It could be set to the fresh

gases sound speed, but in low-Mach flows, it is more convenient to keep it

as a free parameter. This allows to freely accelerate the convergence rate,

by varying the time step somewhere between a velocity based time-step (as

in low-Mach solvers) and a sound-speed based time-step (as in compressible

solvers). We recommend to adopt a high reference temperature (here T0 =

3000K) as to restrict the variations of θ − 1 (let us remind that θ = rT/c2s)

and improve numerical stability [31, 32].

Model implementation

A strong advantage of the present model is its simplicity. The algorithm

we implemented is illustrated in Fig. 1. In essence, two solvers are simulta-

neously running:

• the Lattice Boltzmann (LB) solver, for mass and momentum conserva-

tion Eqs (3) and (4)

• the Finite Differences (FD) solver, for temperature T and mass frac-

tions Yk evolution through Eqs (16) and (17)
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Start

Initialization
ρ,u, Yk, T

Compute
f eq
i (ρ,u, θ) (7)
si(ρ,u, θ) (14)
τ(ρ, θ) (15)

Streaming
and collision

step (13)

Update (ρ,u)

Compute
right hand-
side of Eqs.

(16) and (17)

Runge Kutta
integration

Update (Yk, T )

Output

LB FD

time-step

fi = f eq
i (ρ,u, θ) (Yk, T )

(ρ
,u
)

θ
=
f(Y

k , T
)
(8)

Figure 1: The algorithm proposed consists of a Lattice-Boltzmann (LB) solver coupled
with a classical Finite Differences (FD) solver. Data exchanges between the two solvers
are clearly identified.
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At the end of each time-step, the two solvers exchange macroscopic values:

(ρ,u) is sent from the LB to the FD solver, and the gas composition and

temperature (T, Yk) from the FD to the LB solver.

The LB solver, being of very classical form as well as built on standard

lattices, can share most of the features of standard LB methods. In par-

ticular, a regularized BGK collision model was employed to enhance the

robustness [33, 34], albeit not strictly necessary for the test cases proposed

here. The gradients in the correction term (14) are numerically implemented

by an isotropic second order central difference scheme [35, 36].

The FD solver’s implementation is also very straight-forward. Equations

(16) and (17) are integrated through a second-order Runge-Kutta scheme

in time and the same isotropic finite difference scheme was adopted for the

convective and diffusive terms [35, 36].

Boundary conditions

A non-equilibrium bounce back scheme with a regularization procedure [37]

is employed at the inlets for the LB solver, allowing to set all velocity com-

ponents and the pressure (or density). (T, Yk) are hard-coded at inlets for

the FD solver.

Outlets are treated as zero-gradient boundaries on microscopic distribu-

tion functions fi as well as T and Yk variables.

3. Validation through canonical combustion problems

This section aims at validating the combustion model developed in a

D2Q9 Lattice-Boltzmann framework against solutions from Cantera [24], a

well-validated open source tool designed to compute quickly and efficiently.
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It incorporates and executes fundamental thermodynamics, chemical kinetics

and species transport calculations.

3.1. Premixed combustion: freely propagating flame

Let us consider a multi-component gas consisting of C3H8,O2,H2O,CO2,N2,

with Schmidt numbers listed in Tab. 1, along with the parameters from the

viscosity’s power-law,

µ = µ0

(

T

T0

)β

, (20)

and the Prandtl number, defining now entirely the species and thermal dif-

fuses properties through (18). In the above T0 = 298K is the reference

temperature of the viscosity power-law, not to be confused with the LB ref-

erence temperature (3000K here). The mixture’s heat capacity is assumed

µ0 1.782× 10−5

β 0.690
Pr 0.682

SC3H8
1.241

SO2
0.728

SCO2
0.941

SH2O 0.537
SN2

0.690

Table 1: Power-law’s viscosity coefficients (SI units), Prandtl number and Schmidt num-
bers for each species.

to be constant Cp = 1008J/K/kg.

Last but not least, a one-step Arrhenius kinetic model is introduced,

following global reaction C3H8 + 5 O2 −→ 3 CO2 + 4 H2O, associated with

the kinetic rate ω = k.CC3H8
.CO2

.e−Ea/RT , where k = 9.9×1013cm3 mol−1 s−1,

Ea = 30kcal/mol, and Ci are the molar concentrations for species i.
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Having introduced these kinetic, thermodynamic and transport proper-

ties, let us now consider the most popular laminar flame, the so-called freely

propagating flame. A pseudo one-dimensional domain is now initialized as

[

T, p, u, YC3H8
, YO2

, YCO2
, YH2O

]

=















[

300K, 1atm, 0, 0.06, 0.21, 0, 0

]

, if x < L/2
[

3070K, 1atm, 0, 0, 0, 0.18, 0.1

]

, else.

,

(21)

the fresh gases corresponding to a stoichiometric mixture of propane and air

in ambient conditions (1atm., 300K), and the burnt gases being set to the

adiabatic temperature at ambient pressure. The right side consists of the

combustion products of the fresh gases combustion, with 3070K being the

adiabatic flame temperature. Let us remind here that we are considering

constant Cp and a reduced number of species, which both contribute to the

rather high burnt gas temperature.

While Cantera [24] includes an straight-forward automated procedure for

computing the flame speed, our LB model does not. Computations were

initialized as a Heaviside function between the fresh and burnt states. The

velocity Uf is imposed at the inlet, with Uf set arbitrarily, given the flame

does not leave the computational domain before convergence.

After initial establishment of the flow, the flame speed can be estimated

through

SL = Uf −
ρfUf − ρbUb

ρf − ρb
, (22)

where the f subscript indicate the fresh gases, and b denotes the burnt gases

properties (respectively the first and last points of the simulation domain).

Mass fractions and temperature profiles in the stoichiometric premixed
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flame are presented in Fig. 2, showing excellent agreement between our

method and the Cantera-computed reference.
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Figure 2: Freely propagating flame: Temperature profile (thick line), C3H8 (△), O2 (▽),
CO2 (◦) and H2O (�) mass fractions. The fresh gases consist of a stoichiometric mixture
of propane and air, at 300K and atmospheric pressure. Cantera reference (plain line), and
present model (dashed line).

As an additional validation, the equivalence ratio dependence of the flame

speed, estimated through Eq. (22) is presented in Fig. 3 and compared with

the Cantera reference value. The left side of the plot indicates convergence

histories, through the time evolution of the velocity evaluated as (22). For

most computations, Uf = 0, but 0.4 and 0.8m/s were also tested at ϕ = 1,

as to check the consistence of the model. As indicated by the convergence

histories, the obtained flame speed is independent of the inlet velocity Uf

and does indeed converge to Cantera’s predictions.
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Figure 3: Freely propagating flame: Variation with equivalence ratio of the flame speed
in propane/air mixtures at 300K and atmospheric pressure. Cantera reference (plain dark
line), and present model (dashed colored line). On the secondary x-axis are plotted the
convergence histories for the LBM computed flame speed SL estimated through Eq. (22).
Uf = 0 for all ϕ = 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (thin lines). Dotted and dashed lines histories
for ϕ = 1 correspond to Uf = 0.4 and 0.8, respectively.

3.2. Non-premixed combustion: counter-flow diffusion flame

As a concluding validation, counter-flow diffusion flame is now considered.

This test case, consisting of two counter flows (oxidizer and fuel), can in

principle be solved as a 1D problem with an adequate choice of variables [38,

39], as done in Cantera [24]. For validation purposes, however, it is sometimes

convenient to solve a 2D problem. A two-dimensional rectangular L × l is

adopted as geometry domain for our LBM computation. Top and bottom

boundaries are inlet, whereas the left boundary is a symmetry, and the right

is a pressure outlet. Kinetic, thermodynamic and transport properties are

identical to those of the premixed flame presented above.

The fuel mixture with uniform density ρf , speed Uf and temperature

Tf = 300K is injected from the upper boundary at atmospheric pressure.

14



On the opposite inlet, air is uniformly injected at ρox, Uox, Tox = 300K

and atmospheric pressure. Fuel and oxidizer mixtures have the same N2

mass fraction YN2
= 0.767, the remainder being propane and dioxygen, re-

spectively. The set up for L/l = 2 is illustrated in Fig. 4 through the

superposition of streamlines and temperature profiles, for mass flow rates

ρfUf = ρoxUox = 0.2kgm2 s−1. The inter-nozzle distance is L = 20mm,

corresponds to a strain of 16.5s−1. It is interesting to note that no spe-

cific treatment was found necessary in the inlet/outlet corners, whereas with

more conventional methods authors typically extend the domain as to have

an outlet far from the inlet [40].

Mass fractions, axial velocity and temperature profiles are reported in

Fig. 5, showing an outstanding agreement. The error in maximum tempera-

ture is less than 1K. Somewhat larger errors can be seen on the axial velocity

profile, to be attributed to the fact that the two-dimensional setup is not

strictly equivalent to the 1D problem solved in Cantera.

It becomes then of interest to check whether the dependence of the max-

imum temperature with the strain rate is correctly reproduced with the LB

model. The 2D configuration leading to an unstable stagnation line when the

domain is large, simulations were ran on a thinner domain, with L/l = 100.

Results, albeit slightly altered in accuracy remain close to the reference, with

an error of 15K in maximum temperature in the conditions of Fig. 5. The

dependence of the maximum temperature with strain rate in this thin 2D

domain are reported in Fig. 6, showing a very good agreement.

The × symbol at the lowest strain rate corresponds to the result on the

large domain simulation (L/l = 2), showing the errors to come from the
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Figure 4: Temperature profiles in a counterflow diffusion flame (dotted lines), superim-
posed with streamlines (dashed lines). Fuel mixture (YC3H8

= 0.21, YN2
= 0.79) is injected

from the top nozzle, and air from the bottom. Conditions: ρfUf = ρoxUox = 0.2kgm2 s−1,
Tf = Tox = 300K, atmospheric pressure.
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Figure 5: Counter flow diffusion flame. ρfUf = ρoxUox = 0.2kgm2 s−1 (a) C3H8 (△),
O2 (▽), CO2 (◦) and H2O (�) mass fractions profiles (b). Temperature (thick lines) and
axial velocity profiles, . Atmospheric pressure, temperature of fresh gases 300K. Cantera
reference (plain dark line), and present model (dashed line).
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Figure 6: Maximum temperature in a counter flow diffusion flame as a function of the
strain rate. Reference computed with Cantera (line), and our LB model with L/l = 100
(+), or L/l = 2 as in Figs. 4 and 5 (×).

simulation domain rather than the model. The strain rate at extinction is

305s−1 with our LB model, whereas Cantera sets it at 310s−1. These results

conclude the validation of our flow model.

4. Concluding remarks

A new LB combustion model has been presented. It is, to the knowledge

of the authors, the first to pass the standard canonical combustion test cases

of freely propagating premixed flame and counter-flow diffusion flame with

strains up to extinction. In practice, the number of independent variables

is the number of lattice discrete velocities (9 in our D2Q9 implementation),

plus the temperature, and a N − 1 or N mass fractions (N being the number

of chemical species), as is typical in combustion modelling [30].

The main assumptions are:

• low Mach number

18



• simplified transport properties, specified by species individual Schmidt

numbers

• constant mixture heat capacity.

The last hypothesis, adopted for the sake of readability, is the most limiting

in practice and is to be relaxed in our next work in preparation.
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