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nD variational restoration of curvilinear structures
with prior-based directional regularization

Odyssée Merveille, Benoit Naegel, Hugues Talbot, Nicolas Passat

Abstract—Curvilinear structure restoration in image process-
ing procedures is a difficult task, which can be compounded when
these structures are thin, i.e. when their smallest dimension is
close to the resolution of the sensor. Many recent restoration
methods involve considering a local gradient-based regularization
term as prior, assuming gradient sparsity. An isotropic gradient
operator is typically not suitable for thin curvilinear structures,
since gradients are not sparse for these. In this article, we propose
a mixed gradient operator that combines a standard gradient in
the isotropic image regions, and a directional gradient in the
regions where specific orientations are likely. In particular, such
information can be provided by curvilinear structure detectors
(e.g. RORPO or Frangi filters). Our proposed mixed gradient
operator, that can be viewed as a companion tool of such
detectors, is proposed in a discrete framework and its formulation
/ computation holds in any dimension; in other words, it is
valid in Z", n > 1. We show how this mixed gradient can
be used to construct image priors that take edge orientation
as well as intensity into account, and then involved in various
image processing tasks while preserving curvilinear structures.
Experiments carried out on 2D, 3D, real and synthetic images
illustrate the relevance of the proposed gradient and its use
in variational frameworks for both denoising and segmentation
tasks.

Index Terms—directional gradient, proximity operator, nD
images, variational framework, filtering, segmentation

I. INTRODUCTION

URVILINEAR structures are among the most difficult

to preserve when carrying out image processing tasks.

By curvilinear, we mean objects with a spatial dimension d
that can be considered strictly lower than the dimension n
of the space in which they are embedded. In this article, we
are interested in objects of dimension d = 1 within spaces of
dimension n > 2. For n = 2, such objects can be, for instance,
roads in remote sensing images, vessels in eye fundus imaging;
for n = 3, they can be fibres in composite materials, complex
vascular networks in medical images; for n = 4, they can be
tracked trajectories of moving objects in 3D+-time images; etc.
The preservation of curvilinear structures is challenging for
various reasons. They are generally sparsely distributed within
images, due to their low dimension. They are also often thin
structures, with a thickness similar to the image resolution. In
addition, they can have complex geometry and topology, with
high curvatures, tortuosity, junctions and bifurcations, etc. All
these properties make observing curvilinear structures difficult.

Odyssée Merveille and Benoit Naegel are with Université de Strasbourg,
CNRS, ICube, Strasbourg, France ({merveille,b.naegel } @unistra.fr).
Hugues Talbot is with Centralesupélec, CVN, Paris,

(hugues.talbot @centralesupelec.fr).
Nicolas Passat is with Université de Reims Champagne-Ardenne, CReSTIC,
Reims, France (nicolas.passat@univ-reims.fr).

France

In particular, they are easily corrupted by noise, and they often
suffer from partial volume effect, due to the above mentioned
properties. In this context, many existing image processing
methods cannot efficiently discriminate them from noise and
artifacts.

For tackling these issues, a relevant solution consists of
guiding the process by information related to the location
and geometric properties (size, orientation) of curvilinear
structures. The robustness of the framework then depends on
(1) the reliability of this prior information, and (2) the ability
to efficiently embed and use this information for improving
the restoration or segmentation process.

Regarding point (1), several contributions have been specif-
ically devoted to compute information of curvilinear structures
from nD images (often with n = 2 or 3). Two representative
examples of such contributions are RORPO [1] and Frangi
vesselness [2], that both allow to get access to orientation
information on putative curvilinear structures. A complete
state of the art is beyond the scope of this article; a brief
survey is proposed in Section II-A.

In this article, our purpose is related to point (2). Indeed, we
aim at developing a framework that explicitly models and uses
information about curvilinear structures for improving their
efficient processing. This framework is indeed a companion
tool of the curvilinear structure estimators of point (1). Our
approach relies on a variational paradigm, which is versatile
in terms of applications and image dimensions.

Many variational formulations stem from a Maximum a
Posteriori Bayesian interpretation that is expressed in a sum
of two terms, namely a data-fidelity term and a regulariza-
tion term. The regularization term corresponds to an image
model. Among these, Total-Variation-like approaches aim at
regularizing the result versus image noise, by minimizing the
overall gradient of the segmentation result. Resulting from
several decades of research, this classical regularization term
usually provides good results except on curvilinear structures.
The reasons of this failure are discussed in Section III-A.

In this context, we define a mixed gradient, which merges
a standard gradient and a directional gradient that derives
from the directional information provided by any curvilinear
structure estimator, for instance [2], [1]. This mixed gradient
is then embedded in a variational formulation to form a
directional regularization term adapted to curvilinear struc-
tures. In addition, we propose an algebraic formulation of
this directional regularization, providing a unified definition,
independent from the image dimension.

This article is an extended and improved version of the
conference paper [3]. It is organized as follows. In Section II,



we propose a brief survey of curvilinear structure processing.
In Section III, we describe the drawbacks of standard gradient-
based regularization, and we summarize our strategy for
coping with the identified issues. In Section IV, we propose
our gradient definitions. In Section V, we show how both
standard and directional gradients can be expressed in a matrix
formalism that remains homogeneous in any dimensions. In
Section VI, experiments involving our gradient-based regular-
ization are proposed for various kinds of 2D / 3D and synthetic
/ real images. Concluding remarks are provided in Section VII.

II. CURVILINEAR STRUCTURE PROCESSING

The state of the art of curvilinear structure processing and
analysis is, amusingly, both thin and wide. It is thin because it
is not a mainstream topic in image processing, and it is wide
because applications cover many different fields. In particular
vascular imaging —i.e., 2D eye fundus imaging and 3D,
3D+time angiographic imaging— is certainly the object of
the most intensive activity in this context. The bibliography
published over the 25 last years took advantage of most
paradigms classically proposed in image or signal processing
and, more recently, in machine learning.

The short bibliographic discussion proposed hereafter is
necessarily incomplete and focuses on the topics that are
the most related to our proposed contributions. The readers
interested in a more general discussion will find a global
survey in [4, Chapters 1, 2]; a medical-oriented survey may
also be found in [5], [6].

A. Curvilinear structure detection / description

Before actually processing / analysing a curvilinear struc-
ture, it is often relevant to make it more easily detectable in
the image. This can be viewed as a filtering task, by improving
the signal-to-noise and / or signal-to-background ratio. It can
also be viewed as a more semantic task, by determining higher
level information, for instance, local size and / or orientation
of the curvilinear structure. In this context, two main families
of approaches have been developed.

The first relies on linear operators, based on local, differen-
tial analysis of images. In particular, the analysis of second-
order derivatives of 3D images were proposed in [7], [8]. In
these pioneering works, the eigenvectors of multiscale Hessian
matrices and their associated eigenvalues are analysed to char-
acterise blobs (3D), planar (2D) and curvilinear (1D) structures
as well as their scale and orientation. This led to the proposal
of measures combining differential information into heuristic
formulations. The measure proposed in [2] is often considered
the current gold-standard. Several variants have been proposed
since then, for instance in [9], [10]. Alternatively, steerable
filters [11] can be expressed, for similar purposes, in terms of a
linear combination of basis filters. As such, they are often used
to detect oriented features such as curvilinear structures. A
framework for 3D steerable filters was, in particular, proposed
in [12], using a n™ Gaussian derivative basis filter.

Anisotropic diffusion methods [13], [14] were also proposed
to filter curvilinear structures. Of particular interest is the
Coherence Enhancing Diffusion (CED) filter [15], designed to

perform actual anisotropic diffusion by adapting the diffusion
direction using the structure tensor, i.e the tensor product of
the gradient. More recently, the Hybrid Diffusion using Con-
tinuous Switch (HDCS) [16] proposed to combine CED and
a diffusion filter with actual anisotropic effects, namely Edge-
Enhancing Diffusion (EED) [14]. This combination allows for
a strong denoising effect both in the background and inside
curvilinear structures, while still preserving their edges. The
direction estimation used by both methods depends on the
structure tensor which is a reliable estimator for large scale
curvilinear structures, but is less robust at small scales. In [17],
authors consider local analytical and semi-analytical schemes
that can be used for implementing true anisotropic diffusion
filters such as EED. They also make an interesting link with
Haar wavelets shrinkage, allowing for a multiscale approach.

The second family relies on nonlinear approaches. In par-
ticular, notions of optimal path detection in graph and math-
ematical morphology were involved in the development of
these approaches. At the frontier between these two domains,
geodesic paths [18] were introduced to consider long-range,
non-local interactions while still coping with the constraints of
thin objects, in particular noise. A curvilinear object detector
was also proposed in [19] using geodesic voting, similar to
path density. In [20], a notion of local optimal path was
pioneered. Its purpose is to restrict the research to a given
distance, and in a given cone of orientations. This paradigm led
to the development of a notion of path opening [21], enabling a
higher flexibility in geometry and size, while preserving a 1D
semantics. Algorithmic efforts were conducted to make such
approach computationally efficient [22] and robust to noise
[23], [24], leading to a notion of robust path opening. In [1],
[25], the notion of RORPO (ranking the orientation responses
of path operators), finally built upon these notions, in order
to provide a semi-global, nonlinear alternative to the Hessian
based approaches in the 2D and 3D cases.

B. Variational paradigm

In this article, we consider the classical variational image
restoration problem expressed as the minimization of a two-
term energy defined as follows:

f = arg mfin Edata(f) + )\Ereg(f) (1

where f is the restored image, FEg,, is the data fidelity
term and Fi, is the regularization term. This framework was
popularized in the 1990s with active contour, level sets and
image restoration models.

Mathematically speaking, image restoration is an ill-posed
inverse problem. For solving it, it is necessary to impose some
regularity on the solution. In [26], a quadratic regularization
term is used. This is highly efficient, however, this can generate
blurring effects. This quadratic regularization can be replaced
by a ¢; gradient norm, called total variation (TV), which better
preserves edges [27].

This framework is very flexible and can be used with sparse
and/or a blurring operator in the data fidelity for non-blind
deconvolution, for instance in the context of alpha-matting [28]



and super-resolution [29], [30]. With missing image values in
the input, it can be used for image inpainting [31], [32].

By constraining the output image to take a restricted set
of values, this framework can be used for segmentation. In
particular, the Chan-Vese model [33] divides the image into
two regions of piecewise constant intensities. If these two
constant values are known, it results in a convex problem that
can be solved exactly [34].

In the context of curvilinear structure segmentation, ex-
tensions of the Chan-Vese model were proposed by adding
curvilinear priors, for instance, superellipsoids [35], B-splines
framelet [36], adaptive dictionaries [37] and elastical regular-
ization [38]. In [39], we also proposed a variational approach
for tubular structure restoration. By considering the Frangi
measure [2], we designed an adaptive regularization parameter
to avoid intensity loss in curvilinear structures, which is an in-
trinsic problem of classical variational frameworks. However,
this approach can prevent regularization within the curvilinear
structures, thus leading to various problems, such as potential
disconnections.

In the current manuscript, we propose a framework for
defining and embedding a mixed gradient operator coupling
the directional and standard gradient. This allows us to more
robustly take advantage of prior knowledge related to curvi-
linear structure analysis. Indeed, regularization can be carried
out everywhere in the image while remaining adapted to
the geometric context. In addition our proposed variational
framework remains fully n-dimensional, thus encompassing
any images considered in potential applications.

III. CURVILINEAR STRUCTURE RESTORATION USING
DIRECTIONAL REGULARIZATION

In this section, we first explain the limitations of classical
regularization terms in the context of curvilinear structure
restoration. Then, we give the intuition behind our directional
regularization and why it is a better suited term for curvi-
linear structure restoration. More formal explanations on the
directional regularization and its implementation details are
exposed in Section IV.

A. Regularization principle and limitations

The regularization term in a variational restoration problem
can be interpreted as choosing a solution with desirable
properties within a solutions space. A property often desired is
to minimize image noise while retaining image content. This
property is translated into a regularization term that minimizes
the norm of the image gradient, under the assumption that the
image content has sparse contours. When this norm is the ¢;
norm, the regularization term is called rotal variation (TV):

Ereg tv(f) = IVfllh 2

where Vf is the discrete gradient of f and || - ||; is the £;
norm.

Interpreting this regularization term as a statistical model, it
says that gradient intensities follow an exponential distribution.
This is indeed observed to be the case for natural images [40].
Interpreting it as an image model, it says that natural images

(a) (b) (©

Fig. 1. Regularization principle. The dark (resp. bright) blue areas represent
high (resp. low) isotropic (i.e. with no privileged direction) regularization,
whereas the red area represents a directional regularization. (a) The classical
regularization is performed in all directions with the same intensity every-
where. (b) The regularization proposed by Miraucourt et al. [39] acts with a
low intensity inside curvilinear structures and a high intensity elsewhere, but
always in all directions. (c) Our directional regularization acts with the same
intensity inside and outside curvilinear structures; however, inside curvilinear
structures, we only regularize along the curvilinear structure direction.

should have a sparse gradient, meaning that most variations in
images are small, except near a few contours where they can
be large. This corresponds to an intuitive piecewise smooth
image model.

This regularization term is effective at decreasing the image
noise in natural images; however it may also suppress image
contours when they are not highly contrasted. Moreover,
structures with a high perimeter over surface ratio (for n = 2)
or a high surface over volume ratio (for n = 3) are highly
penalized. For these reasons, classical regularization terms are
not a good model for curvilinear structures, which tend to
disappear in the resulting restored images.

To cope with this problem, Miraucourt et al. [39] proposed
to include a curvilinear structure position prior in order to
regularize more strongly outside the curvilinear structures
than inside (see Fig. 1(b)). This strategy effectively prevents
curvilinear structures from disappearing, but is not effective at
decreasing noise inside the curvilinear structures, where only
a weak regularization is applied.

B. Directional regularization motivation

The motivation behind [39] was to keep the good behavior
of the total variation outside curvilinear structures and decrease
its effects within them. However, nothing specific was done
to regularize and restore the curvilinear structures specifically.
We propose to extend the total variation formulation to better
preserve curvilinear structures, while keeping its good prop-
erties on other structures. To this end, we consider not only
a positional prior, as in [39], but also an orientation prior.
Instead of a weaker regularization inside curvilinear structures,
we apply a strong regularization but solely along the local
curvilinear structure direction. In other words, we propose an
intensity and directional spatially variant regularization term
(see Fig. 1(c)).

The total variation is an isotropic regularization term as
the discrete gradient lacks a privileged direction. Indeed, the
discrete gradient is computed by finite differences in all the
directions of the Cartesian basis. Our goal is to change the
total variation behavior inside curvilinear structures to better
preserve them. We define a directional gradient V4 f which
has a privileged direction, namely the local direction of the
curvilinear structure itself.



Based on both isotropic (V f) and anisotropic (V4 f) gra-
dients, we propose to adapt the total variation formulation to
better preserve curvilinear structures, while keeping its good
properties on other structures. This new regularization term,
called directional regularization is defined by:

Ereg(f(x)) = [V f(x)]l1 3)
where:

if x € curvilinear structure
otherwise

Vaf(x)

vt ={ T3

“4)

C. Implementation

In practice, we aim at solving the following problem (see
Eq. (1)):

f(x) = arg min Etata(f (%)) + ABreg(f(x))
= arg?leirclEdama(f(X)) + AV f () o)

where C' is a closed convex subset of the image domain,
Euua(f) is a convex, differentiable function and ||V, f]|1 is
a convex, but non-differentiable function that forbids using
a gradient descent approach. For many inverse problems
including segmentation, the convex C' is a centered unit ball
which ensures that output values are consistent with the input
image data.

It can be shown from [41] that Eq. (5) admits a solution
given by the proximal point splitting algorithm:

Un+1 = Prox, (un - 'YVEdata(un)) (6)

where v € (0,4+00) is a step-size parameter and h =
MV f ()1

The reader may refer to [42] for a review on proximal
splitting point algorithm. Here, we only recall the definition
of the proximity operator of a function ¢:

1
prox, (y) = argmin (¢(x) + g llz - yl3) o

where || - ||2 is the £5 norm. There is no generic strategy in the
literature, that allows one to compute the proximity operator of
any function ¢. Nonetheless, several algorithms were proposed
to compute the proximity operator of specific functions.

To solve our restoration problem (Eq. (5)), we use the
iterative method of Eq. (6), that requires to compute the
proximity operator of yh. In particular, we choose the Beck
and Teboulle algorithm [43], called Fast Gradient Projection
(FGP), that was designed to solve this specific proximity
operator (see Algorithm 1).

In this algorithm, DD is the domain of the image as described
below in Eq. (8), P, is the projection on the ¢ unit ball, P¢
is the projection on the convex set C, v is set to the Lipschitz
constant of the gradient of Fg,t,. V and div are the gradient
and divergence operators, respectively.

Algorithm 1: FGP algorithm

Data: y € R, 29 € R™P, 2 = 2 and tg = 1
for n>1 do

Yn = 2n + iV(PC [y — )\div(zn)})

YA
Ty = Py, [yn]
1+ \/4ﬁ% +1
tnt1 :t f
Ap = —
tn+1

| Zn+1 = Tn + ATL(ITL - xn—l)

return prox.,(y) = Po(y — Adiv(zy))

IV. GRADIENTS FORMULATIONS

In this section, we define formally the operators presented
in the previous section: the gradient, the directional gradient
and the mixed gradient.

In the following we define a nD image f (n € N, n > 1)
as follows:

f D —- R
x - f(x)

®)

where D = [ ,[0,d; — 1] C Z™ and (d;);cq1,n] are the
dimensions of the image.

A. Standard gradient

The discrete gradient of an image can be expressed, via
finite differences such that:

Vi) = (f(x+e) — f(x), ©)
where (e;)!_; is the canonical basis of R™ and Z", namely
e; = (d;;)j—, for any i € [1,n], (with &; ; the Kronecker
delta).

B. Directional gradient

When a curvilinear structure is identified at a point x € D,
one may wish to define a gradient operator locally oriented
in the direction of this structure, in order to allow for noise
removal without altering this structure.

Let d(x) be the unit vector lying in the direction of the
curvilinear structure observed at x. We assume that d(x)
is oriented in the half-space of R™ such that d,, > 0 (see
discussion in Appendix A). We define the directional gradient
Vaf : D — R™ via finite differences such that:

Vaf(x) = (f(x +d(x)) - f(x)).d(x)

However, f(x+d(x)) is generally undefined, since d(x) €
R™ while f is a function on D C Z™. It is then necessary to
consider an interpolation of f on the part of R™ associated
to D. In particular, the standard n-linear interpolation can be
considered, namely:

2.

fx+d(x)) =
ue[-1,1]7—1x[0,1]

(10)

)‘d(x),uf(x+u) (11)



r/ff f(x + ul) (1‘1‘

Fig. 2.  Illustration of two interpolations (in red and green) in the case
n =2 d4 (resp. d?B) is the local orientation of a curvilinear structure at
point x (x = x+u1). To compute the directional gradient, the value at point
F(x 4 dA(x)) (esp. f(x+ dB(x))) is required.

where:
Ad(x),u = Hw(di(x),ui) (12)
e f Q= (1~ )
(i () ) { il (wi-di(x) + [dix) 2 1P

with x = (;)j, d(x) = (di(x))iy, w = (wi)i;.
Fig. 2 shows two examples of interpolation in the case n =
2.

C. Mixed gradient

It is possible to associate to the function f : D — R, a
directional vector field d : D — R™ that yields a unit vector
d(x) for each point x € D if a specific orientation is detected
at f(x), and the null vector O otherwise.

In particular, the definition of d(x) either as a unit vector
providing a specific orientation, or a null vector expressing the
absence of such orientation, is conditioned by the curvilinear
structure estimator used beforehand. For instance, this can be
a thresholding of the RORPO filter or of the Frangi vesselness
output. In case of a positive answer, both RORPO and Frangi
vesselness provide orientation information.

This vector field provides the information required to com-
pute the directional gradient Vg4 f, see Section IV-B. It is also
useful for computing and modeling in a matrix fashion a mixed
directional-standard gradient of f.

In particular, let us consider the function « : D — {0,1}
defined, for any x € D by a(x) = |/d(x)||2, namely the
norm of d(x). This function takes its values in the binary set
{0,1}. It is equal to 1 when a unit vector d(x) is defined at
x, and 0 when d(x) is the null vector 0, i.e. when no specific
orientation is defined at x.

Then, according to the binary values of «, we can build
a mixed gradient V,,f from the standard and directional
gradients V f and Vg4 f as:

Vf(x)

_ if a(x)=0
Vil (x) = { Vaf(x) if a(x) =1 (9
that is:
Vi f(x) = a(x)Vaf(x) + (1 - a(x))Vf(x) (15)

V. MATRIX FORMULATION OF THE DIRECTIONAL
REGULARIZATION

Even though the vector expression of the mixed gradient
presented above (see Eq. (15)) is simple, its implementation
and manipulation in nD (n > 2) becomes somewhat complex.
Indeed, Algorithm 1 requires the definition of our mixed
gradient operator and its associated divergence given by the
following adjoint relation:

—<din, u>S = <pv VU>S" (16)

with S = RP. The higher the dimension of the image, the more
complex the divergence definition. This is especially true in
terms of limit cases due to the discrete nature of an image.
To tackle these issues, we propose to consider the discrete
calculus framework, by proposing a matrix formulation M Y™
of the mixed gradient operator. Thus, the adjoint divergence
of this matrix operator, M V™, will be simply obtained as the
transpose matrix (MY =)T.

A. Vector formulation of functions

A function h : X — Y can be modeled as a vector V" €
Y'XI of | X| elements, representing the image of each element
of X by h, that is:

h(a)
Vi = [h@)sex = | (17)
h(z)

In particular, the function f defined in Eq. (8) is modeled

by the vector:

£((0,...,0)) v]
VI = [f(x%)]een = = :
fl(dr—1,...,d, — 1)) v{)
(18)
where D = |D)|.

In particular, for modeling f : D — R as a vector VieRP,
we need a transfer function o between D C Z™ and [1, D] C
Z.. Such a function can be defined as:

c : D = [1,D]
n n 1—1
x=(zi)iny = 1+ 30D dy)
The function o is bijective. In the sequel, we note x; =
o~1(j) e D.
Following the notations of Eq. (18), we then have:

19)

Fx) =] 20)

and we can then establish a one-to-one correspondence be-
tween the terms of f and V/

B. Matrix formulation of the gradient operator

We are now ready to establish the matrix formulation of
the standard gradient operator Vf of f. We have Vf : D —
R™. Then, it can be defined as a vector VV/ € (R™)? of D
elements or, equivalently, as a vector VV/ € R™P of n.D
elements. Practically, this vector can be split into n vectors
Vin of D elements, each of them giving the coordinates of



the gradient in the subspace R of R™ induced by a basis vector
€e;.
In other words, we have:
v
vVi=1 1)
A%
with, for all ¢ € [1,n] (see Eq. (9)):

-, _
ag,i (x1)

v = | )

7 8{137,

(22)

a
L a.gi (xp) |

f(x1+ei) — f(x1)

— | fxj e — f(x)) (23)

| f(xp +e;)— f(xp)
Consequently, Vin can be expressed as:

VY = (G~ Ip)- V! (24)

where Ip is the D x D identity matrix and G; =
(9i(4,%))j.k)e[r,pp? is the D x D matrix defined by:

gz(]a k) = 6k,d(x]'+ei) (25)

For the correct handling of boundary effects on the frontier of
the domain I, whenever we have x; + e; ¢ D we set:

9i(J, k) = Ok,o(x;) = Ok j (26)

In other words, in such a case, we consider a Neumann
condition of nullity of the gradient coordinate. (Note that this
strategy will be also involved in anisotropy effects correction;
see discussion in Appendix A.)

Finally, we can then define the vectorial expression of V f
by combining its n coordinate vectors, as:

Gy In
vV = MY v = G |- Ip Vi@
G In

where MV is a n.D x D matrix.

C. Matrix formulation of directional gradient

In a similar way, it is also possible to express a matrix
formulation of the directional gradient. This formulation is,
however, slightly different from that of the standard gradient.
Indeed, for any x € D, V f(x) is expressed by its n coordi-
nates with respect to the canonical basis (e;)?_;. In contrast,
Vaf(x) has only one coordinate with respect to a unit vector
d(x) on the 1D line locally oriented in the specific direction

observed at x. In particular, this vector d(x) depends on x,
and the coordinate system is then spatially variant.

As a consequence, we have to compute only one coordinate
of the directional gradient for each x € ID, but this computation
is more complex than for standard gradient, as it theoretically
involves 3" points of D around x (in practice, only 2™ actually
contribute to the result); see Eqs. (11-13).

The vectorial representation V' Va/ of V4 f is then expressed
as:

[ gt (1) ]
vVl = | is(x5) (28)
)
L 7ad(:{p)<xD) i
f(x1 +d(x1)) — f(x1)
= | fx+d(x)) - fx5) (29)
| f(xp +d(xp)) — f(xp)
Consequently, VVa/ can be written as:
vVal = MVa. Vi =By (Ga—1Ip)- VI (30)
where Ip is the D x D identity matrix, Gq =
(9a(4, %)) ke g2 is the D x D matrix defined by:
ga(j, k) = Z Ok, (x;4u)-Ad(x;),u (31
uel[—1,1]"
and Ep = [g;]5, € {0,1}" is defined by:
€ = 1 - 6O’Hue[[—1‘1]]n o(x;+u) (32)

For the correct handling of boundary effects on the frontier
of the domain DD, we still extend —by convention— ¢ out
of D by setting o(x) = 0 for any x € Z" \ D. With this
formulation, a useful feature is that the directional gradient
Vaf vanishes exactly on the border of the domain D, i.e. for
points x = (z;)7—; with at least one coordinate x; = 0 or
d; — 1.

D. Matrix formulation of the mixed gradient
A matrix representation M V™ of the mixed gradient V,,
can be formulated from the above matrix representations of
V4 and V, see Eqgs. (27) and (30). Indeed, we have:
(1p — V%) - (G1 — Ip)

(1p — V) - (Gi — Ip)

MYm = (33)
(Ip = V) (Gn — Ip)
V. Ep-(Ga—Ip)

where 1y is the vector representation of the constant function

x — 1 on D, and V* is the vector representation of the
function «. Note that MV is a (n + 1).D x D matrix.



VI. EXPERIMENTS

In this section, we experimentally assess the relevance of the
proposed restoration framework. To emphasize the versatility
of our approach in terms of dimensionality and application, we
first present a segmentation application on 2D images; then we
show denoising results on 3D images. For both experiments,
the prior information on estimated orientations of putative
curvilinear structures was obtained by the RORPO operator

[1].

A. Segmentation

The DRIVE database [44] is a well known dataset of 40
eye fundus images associated with their blood vessels ground-
truth. In this section, we apply our restoration framework to
the blood vessel segmentation problem. In this case, we use
the data fidelity term proposed by Chan et al. [34], Ega =
(cf,u)p, where:

o ¢ € RP is the function x — (1 — f(x))? — (c2 — f(x))?
(with ¢, € R some constant values assumed to corre-
spond to the background and foreground of the image);

e (-, )p the Frobenius product.

To assess the relevance of our regularization term in a
segmentation framework, we compare the classic Chan et al.
segmentation model [34] that uses the total variation:

@ =arg min (cf,u)r + A|Vul21 (34)

u€l0,1]P
with our segmentation model that uses the proposed directional
regularization:

G =arg min (cs,u)p + A|Vull21 (35)

u€[0,1]P
Both standard and directional versions of the method share
the same parameters: ¢y, co and A. We optimized these
parameters based on the images of the DRIVE training set.
The optimization scheme and parameters values are presented
in Appendix B.

For our experiments, we consider the single-channel version
of these images, i.e. the grey-level version of the data. We
subtracted the median filter to each image in order to homog-
enize the image background, since the Chan et al. data fidelity
assumes homogeneous background and foreground intensities.
An example of such image is shown in Fig. 3(a).

We computed the true positive rate / sensivity (TPR) and
true negative rate / specificity (TNR), along with the accuracy!
(Acc) in the field of view area provided by the DRIVE dataset
of each segmentation:

TP
TPR = ————
TP + FN
TN
TNR = ———— 36
TN + FP (36)
TP + TN
Acc =
TP + TN + FP + FN

Tn Section VI-B, we will consider the Matthews correlation coefficient
(MCC) [45] instead of accuracy, as it is better suited in the case of sparse
structures. Here, the choice of accuracy was motivated by the fact that most
of the methods benchmarked on the DRIVE dataset were compared using the
accuracy measure.

TABLE 1
QUANTITATIVE SEGMENTATION RESULTS ON THE DRIVE DATABASE [44].
TPR: TRUE POSITIVE RATIO (SENSITIVITY). TNR: TRUE NEGATIVE RATIO
(SPECIFICITY). ACC: ACCURACY.

TPR TNR Acc
Chan [34] 0.6615 0.9833  0.9423
Our approach 0.6820 0.9809 0.9427
Staal et al. [44] — — 0.9442
Lupascu et al. [46] — — 0.9597
Al-Rawi et al. [47] — — 0.9514
Human observer — — 0.9473

(g) Box 3

(e) Box 1 (f) Box 2

Fig. 3. Comparison of segmentation results with the classical Chan et al.
model (c) and our directional TV model (d) on the first DRIVE image (a)
and its ground-truth (b). (e—g) Zoom on distal parts of blood vessels of the
Chan model results (bottom) and our proposed model results (top).

where TP (resp. FP) is the number of true (resp. false) positives
and TN (res. FN) is the number of true (resp. false) negatives.

The mean quantitative results are summarized in Table I and
illustrated in Fig. 3. For comparison, we also provide some
state of the art results.

Qualitatively, the segmentation improvements mostly con-
cern the distal part of the blood vessels. In particular, our direc-
tional regularization successfully reconnects these extremities,
as shown in Fig. 3(e—g). This leads to a better connected vessel



network, which is a highly desired feature in blood vessel
related applications.

Quantitatively, the directional regularization improves the
accuracy of the classical Chan er al. segmentation. As the
reconnections represent only a few pixels within the image,
the accuracy of our directional regularization is only slightly
higher than the Chan ef al. accuracy even if the improvement
is real and significant as can be seen on the images.

Moreover, the accuracy of our method is close to state
of the art methods, even though our purpose was not to
propose a dedicated segmentation model for retinal images, but
only a generic directional regularization term for curvilinear
structures.

B. Denoising

In this section, we assess the performance of our method in
the case of 3D image denoising. It is difficult to have access to
reliable ground-truth for 3D images with curvilinear structures.
Thus, we generated synthetic images using the VascuSynth
software package” [48]. We generated 10 images containing
curvilinear patterns, organized as a connected acyclic structure,
constituting our ground-truth. We then added a Gaussian
random field background to these images, in order to simulate
undesired, non-homogeneous, smooth, blob-like features. Fi-
nally, we introduced a non-additive, spatially variant noise by
subjecting each image with 7 different intensities of Poisson
noise, determined by the gain g. This resulted in a database
of 70 images. An example of such image is presented in
Figures 5(b) and 6(b).

We compared our results with three methods: the exact ROF
model [27], [49], which is a classical variational denoising
filter, and is thus used as the baseline experiment showing
how our directional regularization improves the curvilinear
structures restoration; the hybrid diffuson using continuous
switch (HDCS) [16], which is a state of the art anisotropic
diffusion filter designed to preserve and enhance curvilinear
and blob-like structures while filtering the noise; and BM4D
[50], which is the 3D version of BM3D, considered as one
of the gold standard denoising algorithms. These experiments
were performed using the TubeTK implementation of HDCS?
and the original implementation of BM3D in Matlab®.

For each of these methods, we optimized the parameters
on the first image of the dataset and for each level of noise.
Then, we used this fixed set of parameters on the whole
dataset. Parameter optimization was performed by sampling
the parameter space for each method in reasonable ranges.
The sets of parameters used for each method is provided in
Appendix B.

For each method and level of noise, we computed the mean
ROC curve over the 10 images as the true positive rate /
sensivity (TPR) against the false positives rate (FPR). As
the amount of negatives is much higher than the amount of
positives in these images, we define the FPR as the number

Zhttp://vascusynth.cs.sfu.ca/Software.html

3https://public.kitware.com/Wiki/Tube TK/Anisotropic_Hybrid_Diffusion_
with_Continuous_Switch

“http://www.cs.tut.fi/~foi/GCF-BM3D

TABLE 11
QUANTITATIVE DENOISING RESULTS ON VASCUSYNTH IMAGES. THE
MEAN MCC VALUE OVER THE 10 IMAGES FOR THE SAME LEVEL OF NOISE
IS GIVEN FOR EACH METHOD.

Noise (g) Ours ROF [27] HDCS [16] BM3D [50]
2 0.668 0.659 0.593 0.564
5 0.580 0.560 0.528 0.460
10  0.457 0.441 0.438 0.375
15  0.510 0.442 0.464 0.400
20 0.463 0.407 0.432 0.379
30 0.336 0.275 0.321 0.264
50  0.286 0.227 0.265 0.212
1.0 1

0.8 1

o
o

TPR = TP/P

0.21(;

—— Directional

=== ROF
i., —:- HDCS
ood e BM4D

0 2 4 6 8 10
FPR = FP/P

Fig. 4. Mean ROC curves over the 10 VascuSynth images with with a Poisson
noise of gain g = 15, for FPR values between O and 10. (Note that due to
the sparsity of the images, the maximum TPR is reached for all methods only
for a FPR around 100.)

of false positives over the number of positives (P), namely
FPR = FP / P. For instance, a FPR of 2 means that there is
twice as many false positives as ground truth positives. We also
computed the Matthews correlation coefficient (MCC) [45] of
the best threshold of each result:
TP-TN — FP - FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(37
The choice of MCC is motivated by the fact that it is well
suited for sparse images. The closer to 1 the MCC, the more
similar the result to the ground-truth. We chose to analyze
these denoising results based on two criteria that are usually
considered as segmentation metrics because the ground-truths
of this denoising are the binary images of curvilinear structures
used for the dataset generation. In this case, the best denoising
result is the closest to these binary structures.

A summary of the results is shown in Table II, and the mean
ROC curves for a representative noise level (gain g = 15)
is shown in Figure 4. From a quantitative point of view, we
observe that the MCC scores are significantly higher with our
directional regularization, compared to the other three methods
irrespective of the noise level. The ROC curves show that
our directional regularization outperforms all the compared
methods when the FPR is between 0 and 2. For a FPR
between 2 and 4, our proposal still outperforms ROF and

MCC =




(a) Ground-truth (b) Initial image (g = 15)

(c) Directional regularization (d) ROF [49]

(e) HDCS [16]

(f) BM4D [50]

Fig. 5. Denoising results on a 3D synthetic image (2D slices). (a) Synthetic
image generated with VascuSynth [48]. (b) Noisy image generated from (a)
with Poisson noise (gain g = 15). (c) Denoising image with total variation
(ROF model). (d) Denoising image with directional regularization.

BM4D, but in this situation HDCS provides the best results.
In other words, our method is the best for preserving the
3D curvilinear structures in the most challenging and useful
situations, corresponding to the cases were the TPR is high
while the FPR must remains low.

This quantitative analysis is qualitatively confirmed by
visual inspection of Figures 5 and 6. We observe that the
reconstruction of the thinnest structures, with thickness close
to the image resolution, is better with the directional gradient.
This is indeed coherent since the directional regularization is
carried out only in orientations that do not lead to alteration
of the contours of the structures of interest. BM4D appears to
have the best restoration result but it actually oversmooths.

VII. CONCLUSION

In this article, we have proposed a regularization term
for curvilinear structure restoration based on the design of a

(b) Initial image (g = 15)

e

(e) HDCS [16]

(f) BM4D [50]

Fig. 6. Denoising results on a 3D synthetic image (maximum intensity
projections). (a) Synthetic image generated with VascuSynth [48]. (b) Noisy
image generated from (a) with Poisson noise (gain g = 15). (c) Denoising
image with total variation (ROF model). (d) Denoising image with directional
regularization.

mixed gradient operator. This spatially-variant operator can be
computed from orientation measures provided by curvilinear
structure detectors. This regularization term has a different
behaviour depending on the location in the image. Within
curvilinear structures, it regularizes only in the local main
direction of the considered structure. Within isotropic struc-
tures, it behaves like an isotropic gradient. Using the formalism
of discrete calculus, this operator has a consistent behaviour
everywhere. In particular it handles border effects gracefully
both on the border of the image and at the interface between
oriented and isotropic areas. The adjoint divergence operator
is immediately derived again thanks to the discrete calculus
formulation.

The mixed gradient developed in this work was developed
and formalized in a non-dimensional way, thus leading to
restoration approaches that can proceed irrespective of the
space dimension (2D, 3D, etc.).

We illustrated our approach on segmentation using the



classical Chan et al. data fidelity term, and image denoising
using the /> norm fidelity term. However, other formulations
may be considered, as long as they include a regularization
term expressed as a gradient measure. For instance, it would
make sense to use the exact Poisson log-likelihood as data
fidelity term for the Poisson noise case [51]. Our next work
will augment these strategies with additional priors (for in-
stance considering connectivity), as well as non-local oriented
gradient approaches.

Our approach may also be compliant with deep-learning
strategies recently investigated in the field of curvilinear
structure analysis. Indeed, deep-learning is emerging in this
domain, mainly focusing on 2D cases at this stage [52], with
a specific focus, e.g. on retinal imaging [53]. However, very
recent works also aim at considering more complex cases, in
3D (bio)medical imaging modalities [54], [55], [56]. In this
context, our mixed gradient may be involved as an additional
loss term for strengthening connectivity of thin, curvilinear
structures in complex nD images.
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APPENDIX
A. Gradient anisotropy correction

As most discrete gradient formulations, the one proposed
in this article is anisotropic. Indeed, the standard gradient
formulation described in Section IV-A is based on finite
differences between values at x and at x+e; for the e; vectors
of the canonical basis of Z™ (see Eq. (9)). The choice of x+e;
versus X — e; is arbitrary, and leads to compute the gradient
in a cone that represents 1/2" of the neighbourhood of x in
7",

This anisotropy, together with the combined use of two
kinds of gradients within a same image, may cause some slight
boundary effects at the frontier between regions with / without
specific directions. For instance, let us consider two neighbour
points x and y such that a(x) = 0 and a(y) = 1 (see
Eq. (14)), i.e. with a standard gradient at x and a directional
gradient at y.

At y, the gradient formulation V,,f(y) = Vaf(y) will
take into account the difference of intensities between I(y)
and I(x) only if the direction d(y) is mainly the same as
x—y. Then, at y, the global behaviour of V,, f is as expected.

By contrast, at x, the gradient formulation V,,f(x) =
Vf(x) will take into account the difference of intensities
between I(y) and I(x) whenever y —x is one of the e; vectors
of the canonical basis. In such case, a gradient value will
be computed in x, while it may correspond to the (external)
border of a curvilinear structure, where we expect to vanish
the gradient. This phenomenon happens, by definition, on one
side of the objects, oriented opposite to the canonical vector
basis. This may cause, for instance, non-symmetric, blurring
effects in segmentation results.

A simple way to get rid of such undesired effects consists
of vanishing the i component of the standard gradient at x
whenever x + e; is a point of D where a specific orientation
is defined.

Practically, we only have to modify the conditions of
validity of Eqs (25-26) as follows. We set:

Dy ={xeD]|ax)=0}
D ={xeD|a(x) =1}

(38)

In other words, Dy (resp. D) corresponds to the part of
D where a standard (resp. directional) gradient is valid (see
Eq. (14)). Then, we slightly modify the definition of the
matrices Gy, @ € [1,n] (see Eq. (24)) constituting the gradient
matrix of V'V as follows:

9i(j. k) = {

In other words, we now apply the Neumann condition of
nullity of the gradient coordinates on the border of Dy, i.e. on
the frontier of the whole area of non-oriented points, and not
only on the boundary of the image. The overall idea remains
the same, that is avoiding to compute a classical gradient
coordinate when the information carried by one of the two
points is not known / not relevant for this kind of gradient.

Ok,o(x;+e;) if X5+ €Dy

5k,j if Xj + €; ¢ ]D)O (39)

B. Parameter optimization

In the following, the parameters of each method used in the
experiments of Section VI are enumerated, and we present the
parameter values used in these experiments.

1) Segmentation: Both compared methods share the same
parameters: the background and foreground constants c¢; and
co, and the regularization weight A balancing between the
data fidelity and the directional regularization. The constants
c1 and cy depend on the initial image. The images were
preprocessed to homogenize the background, resulting in a
mean background intensity of almost ¢c; = 0. We then chose
to set the co constant to the Otsu threshold value of each
image. Finally we performed a heuristic optimization of the
A parameter by looking for the best value in the range
[0.001,0.5] for each training image for both methods; we
chose for each method the most frequent \ value. This resulted
in A = 0.10 for the ROF method and A = 0.15 for our method.
One may note that our directional regularization allows for a
higher regularization power without losing performance.

The directional regularization also requires a directional
information provided here by the RORPO operator. RORPO
has 3 parameters: the minimum scale s, the factor f and the
number of scales n. They mostly depend on the dimension of
the structure of interest, and the results are robust to parameter
variations. We set them to: s = 10, f =2, n = 5.

2) Denoising: The parameter optimization of this exper-
iment was performed on the first image of the VascuSynth
dataset. We sampled the parameter space of each method in
reasonable ranges and we kept the set of parameters leading
to the best MCC on this image.

« Directional regularization — The directional regularization
requires a directional information provided in this work



[1]

[2]

[3]

[4]

TABLE III
ROF AND DIRECTIONAL REGULARIZATION PARAMETERS.

Noise A ROF )\ directional
2 0.001 0.010
5 0.010 0.050
10 0.010 0.010
15 0.050 0.050
20 0.010 0.050
30 0.050 0.050
50 0.050 0.050
TABLE IV
HDCS PARAMETERS.
Noise Ap,  Aec  Ae  scale
2 20 40 20 0.5
5 20 40 20 0.5
10 40 20 20 0.5
15 30 30 10 1.0
20 20 40 10 1.0
30 40 30 10 1.0

by the RORPO operator. RORPO has 3 parameters: the
minimum scale s, the factor f and the number of scales n.
These parameters mostly depend on the size of the struc-
tures of interest, but the results are robust to parameter
variations. We set them once for all noise levels: s = 20,
f = 1.7 and n = 4. The directional regularization itself
has one parameter, namely the regularization weight .
The results of the parameter optimization are presented
in Table III.

ROF — The ROF model has one parameter, namely the
regularization weight A. The results of the parameter
optimization are presented in Table III.

HDCS — The HDCS model has 4 parameter: the hybrid
contrast parameter A, the CED contrast parameter A,
the EED contrast parameter . and the scale parameter.
The results of the parameters optimization are presented
in Table IV.

BM4D - The original BM4D implementation has a
default option that estimates the best parameters for the
given image. We used this option to compute all the
BM4D denoising results.
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