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nD variational restoration of curvilinear structures
with directional regularization
Odyssée Merveille, Benoı̂t Naegel, Hugues Talbot, Nicolas Passat

Abstract—Curvilinear structure restoration in image process-
ing procedures is a specific task, which can be complicated when
these structures are thin, i.e. when their smallest dimension is
close to the resolution of the sensor. Many recent restoration
methods involve considering a local gradient-based regularization
term, assuming gradient sparsity. An isotropic gradient operator
is typically not suitable for thin curvilinear structures, since
gradients are not sparse for these. In this article, we propose a
mixed gradient operator that combines a standard gradient in the
isotropic image regions, and a directional gradient in the regions
where specific orientations are likely. This operator is proposed
in a discrete framework and its formulation / computation holds
in any dimension; in other words, it is valid in Zn, n ≥ 1.
We show how this mixed gradient can be relevantly embedded
in variational frameworks, and then involved in various image
processing tasks while preserving curvilinear structures. Exper-
iments carried out on 2D / 3D, real / synthetic images illustrate
the relevance of the proposed gradient and its use in variational
frameworks for both denoising and segmentation tasks.

Index Terms—directional gradient, proximity operator, nD
images, variational framework, filtering, segmentation

I. INTRODUCTION

CURVILINEAR structures are among the most difficult
to preserve when carrying out image processing tasks.

By curvilinear, we mean objects with a spatial dimension d
that can be considered strictly lower than the dimension n
of the space in which they are embedded. In this article, we
are interested in objects of dimension d = 1 within spaces of
dimension n ≥ 2. For n = 2, such objects can be, for instance,
roads in remote sensing images, vessels in eye fundus imaging;
for n = 3, they can be fibres in composite materials, complex
vascular networks in medical images; for n = 4, they can be
tracked trajectories of moving objects in 3D+time images; etc.

The preservation of curvilinear structures is challenging for
various reasons. They are generally sparsely distributed within
images, due to their low dimension. They are also often thin
structures, with a thickness similar to the image resolution. In
addition, they can have complex geometry and topology, with
high curvatures, tortuosity, junctions and bifurcations, etc. All
these properties make observing curvilinear structures difficult.
In particular, they are easily corrupted by noise, and they often
suffer from partial volume effect, due to the above mentioned
properties. In this context, many existing image processing
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methods cannot efficiently discriminate them from noise and
artifacts.

For tackling these issues, a relevant solution consists of
guiding the process by information related to the location
and geometric properties (size, orientation) of curvilinear
structures. The robustness of the framework then depends on
(1) the reliability of this prior information, and (2) the ability
to efficiently embed and use this information for improving
the restoration or segmentation process.

Regarding point (1), several contributions have been specif-
ically devoted to compute information of curvilinear structures
from nD images (often with n = 2 or 3). A complete state
of the art is beyond the scope of this article; a brief survey is
proposed in Section II-A.

In this article, our purpose is related to point (2). Indeed,
we aim at developing a framework that explicitly models and
uses information about curvilinear structures for improving
their efficient processing. In particular, our approach relies on
a variational paradigm, which is versatile in terms of image
dimensions, and allows one to process nD images in a unified
way.

Many variational formulations stem from a Maximum a
Posteriori Bayesian interpretation that is expressed in a sum
of two terms, namely a data-fidelity term and a regulariza-
tion term. The regularization term corresponds to an image
model. Among these, Total-Variation-like approaches aims at
regularizing the result versus image noise, by minimizing the
overall gradient of the segmentation result. Resulting from
several decades of research, this classical regularization term
usually provides good results except on curvilinear structures.
The reasons of this failure are discussed in Section III-A.

In this context, we define a mixed gradient, which merges
a standard gradient and a directional gradient that derives
from the directional information provided by any curvilinear
structure estimator, for instance [1], [2]. This mixed gradient
is then embedded in a variational formulation to form a
directional regularization term adapted to curvilinear struc-
tures. In addition, we propose an algebraic formulation of
this directional regularization, providing a unified definition,
independent from the image dimension.

This article is an extended and improved version of the
conference paper [3]. It is organized as follows. In Section II,
we propose a brief survey of curvilinear structure processing.
In Section III, we describe the drawbacks of standard gradient-
based regularization, and we summarize our strategy for
coping with the identified issues. In Section IV, we propose
our gradient definitions. In Section V, we show how both
standard and directional gradients can be expressed in a matrix
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formalism that remains homogeneous in any dimensions. In
Section VI, experiments involving our gradient-based regular-
ization are proposed for various kinds of 2D / 3D and synthetic
/ real images. Concluding remarks are provided in Section VII.

II. CURVILINEAR STRUCTURE PROCESSING

The state of the art of curvilinear structure processing and
analysis is, amusingly, both thin wide. It is thin because
it is not a mainstream topic in image processing, and it
is wide because applications cover many different fields. In
particular vascular imaging —i.e., 2D eye fundus imaging and
3D, 3D+time angiographic imaging— is certainly the object
of the most intensive activity in this context. Thousands of
bibliographic contributions have been proposed during the 25
last years. They took advantage of most paradigms classically
proposed in image or signal processing and, more recently, in
machine learning.

The short bibliographic discussion proposed hereafter is
necessarily incomplete and focuses on the topics that are
the most related to our proposed contributions. The readers
interested in a more general discussion will find a global
survey in [4, Chapters 1, 2]; a medical-oriented survey may
also be found in [5].

A. Curvilinear structure detection / description

Before actually processing / analysing a curvilinear struc-
ture, it is often relevant to make it more easily detectable in
the image. This can be viewed as a filtering task, by improving
the signal-to-noise and / or signal-to-background ratio. It can
also be viewed as a more semantic task, by determining higher
level information, for instance, local size and / or orientation
of the curvilinear structure. In this context, two main families
of approaches have been developed.

The first relies on linear operators, based on local, differen-
tial analysis of images. In particular, the analysis of second-
order derivatives of 3D images were proposed in [6], [7]. In
these pioneering works, the eigenvectors of multiscale Hessian
matrices and their associated eigenvalues are analysed to char-
acterise blobs (3D), planar (2D) and curvilinear (1D) structures
as well as their scale and orientation. This led to the proposal
of measures combining differential information into heuristic
formulations. The measure proposed in [1] is often considered
the current gold-standard. Several variants have been proposed
since then, for instance in [8], [9]. Alternatively, steerable
filters [10] can be expressed, for similar purposes, in terms of a
linear combination of basis filters. As such, they are often used
to detect oriented features such as curvilinear structures. A
framework for 3D steerable filters was, in particular, proposed
in [11], using a nth Gaussian derivative basis filter.

The second family relies on nonlinear approaches. In par-
ticular, notions of optimal path detection in graph and math-
ematical morphology were involved in the development of
these approaches. At the frontier between these two domains,
geodesic paths [12] were introduced to consider long-range,
non-local interactions while still coping with the constraints of
thin objects, in particular noise. A curvilinear object detector
was also proposed in [13] using geodesic voting, similar to

path density. In [14], a notion of local optimal path was
pioneered. Its purpose is to restrict the research to a given
distance, and in a given cone of orientations. This paradigm led
to the development of a notion of path opening [15], enabling a
higher flexibility in geometry and size, while preserving a 1D
semantics. Algorithmic efforts were conducted to make such
approach computationally efficient [16] and robust to noise
[17], [18], leading to a notion of robust path opening. In [2],
[19], the notion of RORPO (ranking the orientation responses
of path operators), finally built upon these notions, in order
to provide a semi-global, nonlinear alternative to the Hessian
based approaches in the 2D and 3D cases.

B. Variational paradigm

In this article, we consider the classical variational image
restoration problem expressed as the minimization of a two-
term energy defined as follows:

f̂ = argmin
f

Edata(f) + λEreg(f) (1)

where f̂ is the restored image, Edata is the data fidelity
term and Ereg is the regularization term. This framework was
popularized in the 1990s with active contour, level sets and
image restoration models.

Mathematically speaking, image restoration is an ill-posed
inverse problem. For solving it, it is necessary to impose some
regularity on the solution. In [20], a quadratic regularization
term is used. This is highly efficient, however, this can generate
blurring effects. This quadratic regularization can be replaced
by a `1 gradient norm, called total variation (TV), which better
preserves edges [21].

This framework is very flexible and can be used with sparse
and/or a blurring operator in the data fidelity for non-blind
deconvolution, for instance in the context of alpha-matting [22]
and super-resolution [23], [24]. With missing image values in
the input, it can be used for image inpainting [25].

By constraining the output image to take a restricted set
of values, this framework can be used for segmentation. In
particular, the Chan-Vese model [26] divides the image into
two regions of piecewise constant intensities. If these two
constant values are known, it results in a convex problem that
can be solved exactly [27].

In the context of curvilinear structure segmentation, ex-
tensions of the Chan-Vese model were proposed by adding
curvilinear priors, for instance, superellipsoids [28], B-splines
framelet [29], adaptive dictionaries [30] and elastical regular-
ization [31]. In [32], we also proposed a variational approach
for tubular structure restoration. By considering the Frangi
measure [1], we designed an adaptive regularization parameter
to avoid intensity loss in curvilinear structures, which is an in-
trinsic problem of classical variational frameworks. However,
this approach can prevent regularization within the curvilinear
structures, thus leading to various problems, such as potential
disconnections.

In the current manuscript, we propose a framework for
defining and embedding a mixed gradient operator coupling
the directional and standard gradient. This allows us to more
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robustly take advantage of prior knowledge related to curvi-
linear structure analysis. Indeed, regularization can be carried
out everywhere in the image while remaining adapted to
the geometric context. In addition our proposed variational
framework remains fully n-dimensional, thus encompassing
any images considered in potential applications.

III. CURVILINEAR STRUCTURE RESTORATION USING
DIRECTIONAL REGULARIZATION

In this section, we first explain the limitations of classical
regularization terms in the context of curvilinear structure
restoration. Then, we give the intuition behind our directional
regularization and why it is a better suited term for curvi-
linear structure restoration. More formal explanations on the
directional regularization and its implementation details are
exposed in Section IV.

A. Regularization principle and limitations

The regularization term in a variational restoration problem
can be interpreted as choosing a solution with desirable
properties within a solutions space. A property often desired is
to minimize image noise while retaining image content. This
property is translated into a regularization term that minimizes
the norm of the image gradient, under the assumption that the
image content has sparse contours. When this norm is the `1
norm, the regularization term is called total variation (TV):

Ereg TV(f) = ‖∇f‖1 (2)

where ∇f is the discrete gradient of f and ‖ · ‖1 is the `1
norm.

Interpreting this regularization term as a statistical model, it
says that gradient intensities follow an exponential distribution.
This is indeed observed to be the case for natural images [33].
Interpreting it as an image model, it says that natural images
should have a sparse gradient, meaning that most variations in
images are small, except near a few contours where they can
be large. This corresponds to an intuitive piecewise smooth
image model.

This regularization term is effective at decreasing the image
noise in natural images; however it may also suppress image
contours when they are not highly contrasted. Moreover,
structures with a high perimeter over surface ratio (for n = 2)
or a high surface over volume ratio (for n = 3) are highly
penalized. For these reasons, classical regularization terms are
not a good model for curvilinear structures, which tend to
disappear in the resulting restored images.

To cope with this problem, Miraucourt et al. [32] proposed
to include a curvilinear structure position prior in order to
regularize more strongly outside the curvilinear structures
than inside (see Fig. 1(b)). This strategy effectively prevents
curvilinear structures from disappearing, but is not effective at
decreasing noise inside the curvilinear structures, where only
a weak regularization is applied.

(a) (b) (c)

Fig. 1. Regularization principle. The dark (resp. bright) blue areas represent
high (resp. low) isotropic (i.e. with no privileged direction) regularization,
whereas the red area represents a directional regularization. (a) The classical
regularization is performed in all directions with the same intensity every-
where. (b) The regularization proposed by Miraucourt et al. [32] acts with a
low intensity inside curvilinear structures and a high intensity elsewhere, but
always in all directions. (c) Our directional regularization acts with the same
intensity inside and outside curvilinear structures; however, inside curvilinear
structures, we only regularize along the curvilinear structure direction.

B. Directional regularization motivation

The motivation behind [32] was to keep the good behavior
of the total variation outside curvilinear structures and decrease
its effects within them. However, nothing specific was done
to regularize and restore the curvilinear structures specifically.
We propose to extend the total variation formulation to better
preserve curvilinear structures, while keeping its good prop-
erties on other structures. To this end, we consider not only
a positional prior, as in [32], but also an orientation prior.
Instead of a weaker regularization inside curvilinear structures,
we apply a strong regularization but solely along the local
curvilinear structure direction. In other words, we propose an
intensity and directional spatially variant regularization term
(see Fig. 1(c)).

The total variation is an isotropic regularization term as
the discrete gradient lacks a privileged direction. Indeed, the
discrete gradient is computed by finite differences in all the
directions of the Cartesian basis. Our goal is to change the
total variation behavior inside curvilinear structures to better
preserve them. We define a directional gradient ∇df which
has a privileged direction, namely the local direction of the
curvilinear structure itself.

Based on both isotropic (∇f ) and anisotropic (∇df ) gra-
dients, we propose to adapt the total variation formulation to
better preserve curvilinear structures, while keeping its good
properties on other structures. This new regularization term,
called directional regularization is defined by:

Ereg(f(x)) = ‖∇mf(x)‖1 (3)

where:

∇mf(x) =
{
∇df(x) if x ∈ curvilinear structure
∇f(x) otherwise (4)

C. Implementation

In practice, we aim at solving the following problem (see
Eq. (1)):

f̂(x) = argmin
f∈C

Edata(f(x)) + λEreg(f(x))

= argmin
f∈C

Edata(f(x)) + λ‖∇mf(x)‖1 (5)
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where C is a closed convex subset of the image domain,
Edata(f) is a convex, differentiable function and ‖∇mf‖1 is
a convex, but non-differentiable function that forbids using
a gradient descent approach. For many inverse problems
including segmentation, the convex C is a centered unit ball
that ensures output values are consistent with the input image
data.

It can be shown from [34] that Eq. (5) admits a solution
given by the proximal point splitting algorithm:

un+1 = proxγh
(
un − γ∇Edata(un)

)
(6)

where γ ∈ (0,+∞) is a step-size parameter and h =
λ‖∇mf(un)‖1.

The reader may refer to [35] for a review on proximal
splitting point algorithm. Here, we only recall the definition
of the proximity operator of a function φ:

proxφ(y) = argmin
x

(
φ(x) +

1

2
‖x− y‖22

)
(7)

where ‖ ·‖2 is the `2 norm. There is no generic strategy in the
literature, that allows one to compute the proximity operator of
any function φ. Nonetheless, several algorithms were proposed
to compute the proximity operator of specific functions.

To solve our restoration problem (Eq. (5)), we use the
iterative method of Eq. (6), that requires to compute the
proximity operator of γh. In particular, we choose the Beck
and Teboulle algorithm [36], called Fast Gradient Projection
(FGP), that was designed to solve this specific proximity
operator (see Algorithm 1).

Algorithm 1: FGP algorithm

Data: y ∈ RD, x0 ∈ RnD, z1 = x0 and t0 = 1
for n ≥ 1 do

yn = zn +
1

γλ
∇
(
PC
[
y − λ div(zn)

])
xn = P`2 [yn]

tn+1 =
1 +

√
4t2n + 1

2

λn =
tn − 1

tn+1
zn+1 = xn + λn(xn − xn−1)

return proxγh(y) = PC
(
y − λ div(zN )

))
In this algorithm, D is the domain of the image as described

below in Eq. (8), P`2 is the projection on the `2 unit ball, PC
is the projection on the convex set C, γ is set to the Lipschitz
constant of the gradient of Edata. ∇ and div are the gradient
and divergence operators, respectively.

IV. GRADIENTS FORMULATIONS

In this section, we define formally the operators presented
in the previous section: the gradient, the directional gradient
and the mixed gradient.

In the following we define a nD image f (n ∈ N, n ≥ 1)
as follows: ∣∣∣∣ f : D → R

x 7→ f(x)
(8)

Fig. 2. Illustration of two interpolations (in red and green) in the case
n = 2. dA (resp. dB) is the local orientation of a curvilinear structure at
point x (x = x+u1). To compute the directional gradient, the value at point
f(x+ dA(x)) (resp. f(x+ dB(x))) is required.

where D =
∏n
i=1[[0, di − 1]] ⊂ Zn and (di)i∈[[1,n]] are the

dimensions of the image.

A. Standard gradient

The discrete gradient of an image can be expressed, via
finite differences such that:

∇f(x) =
(
f(x+ ei)− f(x)

)n
i=1

(9)

where (ei)
n
i=1 is the canonical basis of Rn and Zn, namely

ei = (δi,j)
n
j=1 for any i ∈ [[1, n]], (with δi,j the Kronecker

delta).

B. Directional gradient

When a curvilinear structure is identified at a point x ∈ D,
one may wish to define a gradient operator locally oriented
in the direction of this structure, in order to allow for noise
removal without altering this structure.

Let d(x) be the unit vector lying in the direction of the
curvilinear structure observed at x. We assume that d(x)
is oriented in the half-space of Rn such that dn ≥ 0 (see
discussion in Appendix A). We define the directional gradient
∇df : D→ Rn via finite differences such that:

∇df(x) =
(
f(x+ d(x))− f(x)

)
.d(x) (10)

However, f(x+d(x)) is generally undefined, since d(x) ∈
Rn while f is a function on D ⊂ Zn. It is then necessary to
consider an interpolation of f on the part of Rn associated
to D. In particular, the standard n-linear interpolation can be
considered, namely:

f(x+ d(x)) =
∑

u∈[[−1,1]]n−1×[[0,1]]

λd(x),uf(x+ u) (11)

where:

λd(x),u =

n∏
i=1

w(di(x), ui) (12)

w(di(x), ui) =

{
(1− |ui|)(1− |di(x)|)
+|ui|(ui.di(x) + |di(x)|)/2

(13)

with x = (xi)
n
i=1, d(x) = (di(x))

n
i=1, u = (ui)

n
i=1.

Fig. 2 shows two examples of interpolation in the case n =
2.
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C. Mixed gradient
It is possible to associate to the function f : D → R, a

directional vector field d : D → Rn that yields a unit vector
d(x) for each point x ∈ D if a specific orientation is detected
at f(x), and the null vector 0 otherwise.

This vector field provides the information required to com-
pute the directional gradient ∇df , see Sec. IV-B. It is also
useful for computing and modeling in a matrix fashion a mixed
directional-standard gradient of f .

In particular, let us consider the function α : D → {0, 1}
defined, for any x ∈ D by α(x) = ‖d(x)‖2, namely the
norm of d(x). This function takes its values in the binary set
{0, 1}. It is equal to 1 when a unit vector d(x) is defined at
x, and 0 when d(x) is the null vector 0, i.e. when no specific
orientation is defined at x.

Then, according to the binary values of α, we can build
a mixed gradient ∇mf from the standard and directional
gradients ∇f and ∇df as:

∇mf(x) =
{
∇f(x) if α(x) = 0
∇df(x) if α(x) = 1

(14)

that is:

∇mf(x) = α(x)∇df(x) + (1− α(x))∇f(x) (15)

V. MATRIX FORMULATION OF THE DIRECTIONAL
REGULARIZATION

Even though the vector expression of the mixed gradient
presented above (see Eq. (15)) is simple, its implementation
and manipulation in nD (n > 2) becomes somewhat complex.
Indeed, Algorithm 1 requires the definition of our mixed
gradient operator and its associated divergence given by the
following adjoint relation:

−〈div p, u〉S = 〈p,∇u〉Sn (16)

with S = RD. The higher the dimension of the image, the more
complex the divergence definition. This is especially true in
terms of limit cases due to the discrete nature of an image.
To tackle these issues, we propose to consider the discrete
calculus framework, by proposing a matrix formulation M∇m

of the mixed gradient operator. Thus, the adjoint divergence
of this matrix operator, M∇m , will be simply obtained as the
transpose matrix (M∇m)T .

A. Vector formulation of functions
A function h : X → Y can be modeled as a vector V h ∈

Y |X| of |X| elements, representing the image of each element
of X by h, that is:

V h = [h(x)]x∈X =

 h(a)
...

h(z)

 (17)

In particular, the function f defined in Eq. (8) is modeled
by the vector:

V f = [f(x)]x∈D =

 f((0, . . . , 0))
...

f((d1 − 1, . . . , dn − 1))

 =

 vf1
...
vfD


(18)

where D = |D|.
In particular, for modeling f : D→ R as a vector V f ∈ RD,

we need a transfer function σ between D ⊂ Zn and [[1, D]] ⊂
Z. Such a function can be defined as:∣∣∣∣ σ : D → [[1, D]]

x = (xi)
n
i=1 7→ 1 +

∑n
i=1(

∏i−1
j=1 dj)xi

(19)

The function σ is bijective. In the sequel, we note xj =
σ−1(j) ∈ D.

Following the notations of Eq. (18), we then have:

f(x) = vfσ(x) (20)

and we can then establish a one-to-one correspondence be-
tween the terms of f and V f

B. Matrix formulation of the gradient operator

We are now ready to establish the matrix formulation of
the standard gradient operator ∇f of f . We have ∇f : D →
Rn. Then, it can be defined as a vector V ∇f ∈ (Rn)D of D
elements or, equivalently, as a vector V ∇f ∈ Rn.D of n.D
elements. Practically, this vector can be split into n vectors
V ∇fi of D elements, each of them giving the coordinates of
the gradient in the subspace R of Rn induced by a basis vector
ei.

In other words, we have:

V ∇f =

 V ∇f1
...

V ∇fn

 (21)

with, for all i ∈ [[1, n]] (see Eq. (9)):

V ∇fi =



∂f
∂xi

(x1)
...

∂f
∂xi

(xj)
...

∂f
∂xi

(xD)


(22)

=


f(x1 + ei)− f(x1)

...
f(xj + ei)− f(xj)

...
f(xD + ei)− f(xD)

 (23)

Consequently, V ∇fi can be expressed as:

V ∇fi = (Gi − ID) · V f (24)

where ID is the D × D identity matrix and Gi =
(gi(j, k))(j,k)∈[[1,D]]2 is the D ×D matrix defined by:

gi(j, k) = δk,σ(xj+ei) (25)

For the correct handling of side effects on the boundary of the
domain D, whenever we have xj + ei /∈ D we set:

gi(j, k) = δk,σ(xj) = δk,j (26)
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In other words, in such a case, we consider that the gradient co-
ordinate is null. (Note that this strategy will be also involved in
anisotropy effects correction; see discussion in Appendix A.)

Finally, we can then define the vectorial expression of ∇f
by combining its n coordinate vectors, as:

V ∇f =M∇ · V f =




G1

...
Gi
...
Gn

−


ID
...
ID
...
ID



 · V
f (27)

where M∇ is a n.D ×D matrix.

C. Matrix formulation of directional gradient

In a similar way, it is also possible to express a matrix
formulation of the directional gradient. This formulation is,
however, slightly different from that of the standard gradient.
Indeed, for any x ∈ D, ∇f(x) is expressed by its n coordi-
nates with respect to the canonical basis (ei)

n
i=1. In contrast,

∇df(x) has only one coordinate with respect to a unit vector
d(x) on the 1D line locally oriented in the specific direction
observed at x. In particular, this vector d(x) depends on x,
and the coordinate system is then spatially variant.

As a consequence, we have to compute only one coordinate
of the directional gradient for each x ∈ D, but this computation
is more complex than for standard gradient, as it theoretically
involves 3n points of D around x (in practice, only 2n actually
contribute to the result); see Eqs. (11–13).

The vectorial representation V ∇df of∇df is then expressed
as:

V ∇df =



∂f
∂d(x1)

(x1)
...

∂f
∂d(xj)

(xj)
...

∂f
∂d(xD) (xD)


(28)

=


f(x1 + d(x1))− f(x1)

...
f(xj + d(xj))− f(xj)

...
f(xD + d(xD))− f(xD)

 (29)

Consequently, V ∇df can be written as:

V ∇df =M∇d · V f = ED · (Gd − ID) · V f (30)

where ID is the D × D identity matrix, Gd =
(gd(j, k))(j,k)∈[[1,n]]2 is the D ×D matrix defined by:

gd(j, k) =
∑

u∈[[−1,1]]n
δk,σ(xj+u).λd(xj),u (31)

and ED = [εj ]
D
j=1 ∈ {0, 1}D is defined by:

εj = 1− δ0,∏u∈[[−1,1]]n σ(xj+u) (32)

For the correct handling of side effects on the boundary of the
domain D, we still extend —by convention— σ out of D by
setting σ(x) = 0 for any x ∈ Zn \ D. With this formulation,
a useful feature is that the directional gradient ∇df vanishes
exactly on the border of the domain D, i.e. for points x =
(xi)

n
i=1 with at least one coordinate xi = 0 or di − 1.

D. Matrix formulation of the mixed gradient

A matrix representation M∇m of the mixed gradient ∇m
can be formulated from the above matrix representations of
∇d and ∇, see Eqs. (27) and (30). Indeed, we have:

M∇m =



(1D − V α) · (G1 − ID)
...

(1D − V α) · (Gi − ID)
...

(1D − V α) · (Gn − ID)
V α · ED · (Gd − ID)


(33)

where 1D is the vector representation of the constant function
x 7→ 1 on D, and V α is the vector representation of the
function α. Note that M∇m is a (n+ 1).D ×D matrix.

VI. EXPERIMENTS

In this section, we experimentally assess the relevance of the
proposed restoration framework. To emphasize the versatility
of our approach in terms of dimensionality and application, we
first present a segmentation application on 2D images; then we
show denoising results on 3D images.

For all experiments, we obtained the prior information, i.e.
the position and orientation of curvilinear structures, from the
RORPO operator [2].

A. Segmentation

The DRIVE database [37] is a well known dataset of 40
eye fundus images associated with their blood vessels ground-
truth. In this section, we applied our restoration framework to
the blood vessel segmentation problem. In this case, we use
the data fidelity term proposed by Chan et al. [27], Edata =
〈cf , u〉F , where:
• cf ∈ RD is the function x 7→ (c1−f(x))2−(c2−f(x))2

(with c? ∈ R some constant values assumed to corre-
spond to the background and foreground of the image);

• 〈 · , · 〉F the Frobenius product.
To assess the relevance of our regularization term in a

segmentation framework, we compare the classic Chan et al.
segmentation model [27] that uses the total variation:

û = arg min
u∈[0,1]D

〈cf , u〉F + λ‖∇u‖2,1 (34)

with our segmentation model that uses the proposed directional
regularization:

û = arg min
u∈[0,1]D

〈cf , u〉F + λ‖∇mu‖2,1 (35)

For our experiments, we considered the single-channel version
of these images, i.e. the grey-level version of the data. We
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TABLE I
QUANTITATIVE SEGMENTATION RESULTS ON THE DRIVE DATABASE [37].
TP: TRUE POSITIVE RATIO. TN: TRUE NEGATIVE RATIO. ACC: ACCURACY.

TP TN Acc
Chan [27] 0.6632 0.9846 0.9427
Our approach 0.6940 0.9823 0.9447
Staal et al. [37] − − 0.9434
Lupascu et al. [38] 0.6728 0.9874 0.9597
Al-Rawi et al. [39] − − 0.9535
Human observer − − 0.9470

also subtracted the median filter to each image in order to
homogenize the image background, since the Chan et al. data
fidelity assumes homogeneous background and foreground
intensities. An example of such image is shown in Fig. 3(a).

We optimized the parameters of both methods and com-
puted the true positive (TPR) and true negative (TNR) rates
along with the accuracy (Acc) of each best segmentation (see
Equation 36).

TPR =
TP

TP + FN

TNR =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

(36)

where TP (resp. FP) is the number of true (resp. false)
positives and TN (res. FP) is the number of true (resp. false)
negatives.

The mean quantitative results are summarized in Table I and
illustrated in Fig. 3. For comparison, we also provide some
state of the art results.

Qualitatively, the segmentation improvements mostly con-
cern the extremities of the blood vessels. In particular, our
directional regularization successfully reconnects these ex-
tremities, as shown in Fig. 3 (e–g). This leads to a better
connected vessel network, which is a highly desired feature in
blood vessel related applications.

Quantitatively, the directional regularization improves the
accuracy of the classical Chan et al. segmentation. As the
re-connections represent only a few pixels within the image,
the accuracy of our directional regularization is only slightly
higher than the Chan et al. accuracy even if the improvement
is real and significant as can be seen on the images.

Moreover, the accuracy of our method is close to state of
the art methods, even though our purpose is not to propose
a dedicated segmentation model for retinal images, but only
a generic directional regularization term for curvilinear struc-
tures.

B. Denoising

In this section, we assessed the performance of our method
in the case of 3D image denoising. The classical model for
variational denoising is the ROF model [21]:

û = arg min
u∈RD

‖u− f‖22 + λ‖∇u‖2,1 (37)

where f ∈ RD is the noisy initial image.

(a) Initial image (b) Ground-truth

(c) Chan model (d) Proposed model

(e) Box 1 (f) Box 2 (g) Box 3

Fig. 3. Comparison of segmentation results with the classical Chan et al.
model (c) and with our directional TV model (d) on the first DRIVE image
(a) and its ground-truth (b). (e–g) Zoom on distal parts of blood vessels of
the Chan model results (top) and our proposed model results (bottom).

As for the segmentation application, we replaced the total
variation of the ROF model by our directional regularization
and compared the results.

It is difficult to have access to reliable ground-truth for
3D images with curvilinear structures. Thus, we generated
synthetic images using the VascuSynth software package1

[40]. We generated 10 images containing tree-like curvilinear
structures constituting our ground-truth. We then added a
Gaussian random field background to these images, in order to
simulate undesired, non-homogeneous, smooth, blob-like fea-
tures. Finally, we added 7 levels of Gaussian noise, determined
by the Gaussian variance σ, to each image. This results in a
database of 70 images. An example of such image is presented
in Figure 4(b).

For each level of noise and image, we computed the ROC

1http://vascusynth.cs.sfu.ca/Software.html
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TABLE II
QUANTITATIVE DENOISING RESULTS ON VASCUSYNTH IMAGES. THE

MEAN MCC VALUE OVER THE 10 IMAGES FOR THE SAME LEVEL OF NOISE
IS GIVEN FOR BOTH METHODS.

Noise (σ) MCC ROF [21] MCC directional gradient
0 0.9673 0.9809
10 0.9162 0.9372
20 0.8675 0.8946
30 0.7679 0.8194
40 0.7357 0.7843
50 0.6984 0.7489
60 0.6145 0.6648

curves for both methods based on the number of true positives
(TP) and false positives (FP) of each threshold set of the
denoised images. We also computed the Matthews correlation
coefficient (MCC) [41] of the best threshold of each result
(see Equation 38).

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(38)

The MCC is a similarity criterion, such as Accuracy, but it
is better suited for sparse images like those containing tree-like
structures. Nonetheless, the reader may note that we computed
the Accuracy instead of the MCC in the previous experiment in
order to compare our results with the state of the art methods.
The closer to 1 the MCC, the more similar the result to the
ground-truth.

A summary of the results is shown in Table II, and the
mean ROC curves for the maximum level of noise is shown
in Figure 5. From a quantitative point of view, we observe that
the MCC scores are significantly improved with the directional
regularization, compared to the standard ROF model for any
level of noise. This is confirmed by visual inspection of
Figure 4(c–d). In particular, we can observe that the contrast
is improved in (d), compared to (c). More importantly, the
reconstruction of the thinnest structures, with thickness close
to the image resolution, is better with the directional gradient.
This result is indeed coherent, since the directional regular-
ization is carried out only in orientations that do not lead to
alteration of the object contours.

VII. CONCLUSION

In this article, we have proposed a regularization term
for curvilinear structure restoration based on the design of a
mixed gradient operator. This spatially-variant operator can be
computed from orientation measures provided by curvilinear
structure detectors. This regularization term has a different
behaviour depending on the location in the image. Within
curvilinear structures, it regularizes only in the local main
direction of the considered structure. Within isotropic struc-
tures, it behaves like an isotropic gradient. Using the formalism
of discrete calculus, this operator has a consistent behaviour
everywhere. In particular it handles border effects gracefully
both on the border of the image and at the interface between
oriented and isotropic areas. The adjoint divergence operator
is immediately derived again thanks to the discrete calculus
formulation.

(a) Ground-truth (b) Initial image (σ = 60)

(c) ROF [21] (d) Directional regularization

Fig. 4. Denoising results on a 3D synthetic image. All images are
viewed as maximum intensity projections. (a) Synthetic image generated with
VascuSynth [40]. (b) Noisy image generated from (a) with a noise level
σ = 60. (c) Denoising image with total variation (ROF model). (d) Denoising
image with directional regularization.
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Fig. 5. Mean ROC curves over the 10 VascuSynth images with a Gaussian
noise of σ = 60. Here, the TPR is the same as presented in Equation 36 but
the FPR is the number of false positives divided by the number of positives
in the image (i.e. ground truth) instead of the number of negatives. As the
images are sparse, the number of negatives is very high compared with the
number of positives making the FPR defined as in Equation 36 meaningless.
With this definition, a FPR of 2 means that the image contains twice as much
false positives as true positives.

The mixed gradient developed in this work was developed
and formalized in a non-dimensional way, thus leading to
restoration approaches that can proceed irrespective of the
space dimension (2D, 3D, etc.).

We illustrated our approach on segmentation using the
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classical Chan et al. data fidelity term, and image denoising
using the least-square fidelity term. However, other optimiza-
tion strategies may be considered, as long as they include a
regularization term expressed as a gradient measure.

Our next work will augment these strategies with additional
priors (for instance considering connectivity), as well as non-
local oriented gradient approaches.
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APPENDIX

A. Gradient anisotropy correction

As most discrete gradient formulations, the one proposed
in this article is anisotropic. Indeed, the standard gradient
formulation described in Section IV-A is based on finite
differences between values at x and at x+ei for the ei vectors
of the canonical basis of Zn (see Equation (9)). The choice
of x+ ei versus x− ei is arbitrary, and leads to compute the
gradient in a cone that represents 1/2n of the neighbourhood
of x in Zn.

This anisotropy, together with the combined use of two
kinds of gradients within a same image, may cause some
slight side effects at the frontier between regions with /
without specific directions. For instance, let us consider two
neighbour points x and y such that α(x) = 0 and α(y) = 1
(see Equation (14)), i.e. with a standard gradient at x and a
directional gradient at y.

At y, the gradient formulation ∇mf(y) = ∇df(y) will
take into account the difference of intensities between I(y)
and I(x) only if the direction d(y) is mainly the same as
x−y. Then, at y, the global behaviour of ∇mf is as expected.

By contrast, at x, the gradient formulation ∇mf(x) =
∇f(x) will take into account the difference of intensities
between I(y) and I(x) whenever y−x is one of the ei vectors
of the canonical basis. In such case, a gradient value will
be computed in x, while it may correspond to the (external)
border of a curvilinear structure, where we expect to vanish
the gradient. This phenomenon happens, by definition, on one
side of the objects, oriented opposite to the canonical vector
basis. This may cause, for instance, non-symmetric, blurring
effects in segmentation results.

A simple way to get rid of such undesired effects consists
of vanishing the ith component of the standard gradient at x
whenever x+ ei is a point of D where a specific orientation
is defined.

Practically, we only have to modify the conditions of
validity of Equations (25–26) as follows. We set:

D0 = {x ∈ D | α(x) = 0} (39)
D1 = {x ∈ D | α(x) = 1}

In other words, D0 (resp. D1) corresponds to the part of
D where a standard (resp. directional) gradient is valid (see
Equation (14)). Then, we slightly modify the definition of the

matrices Gi, i ∈ [[1, n]] (see Equation (24)) constituting the
gradient matrix of V ∇f as follows:

gi(j, k) =

{
δk,σ(xj+ei) if xj + ei ∈ D0

δk,j if xj + ei /∈ D0
(40)
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versité de Strasbourg. His scientific interests include
mathematical morphology, document processing and
medical imaging.

Hugues Talbot received the Habilitation from Uni-
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Université Paris-Saclay. He is the co-author of 6
books and over 200 articles in the area of mathemat-
ical morphology, discrete geometry, combinatorial
and continuous optimization.

Nicolas Passat obtained the MSc and PhD from
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