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Parameter identification of two‑time‑scale 
nonlinear transient models
Guillaume Puel* and Denis Aubry

Background
Context

Material fatigue is one of the key phenomena whose study is essential to design and 
develop modern industrial parts: many of the classical methods used in the industry, such 
as those described in Ref. [1], allow to estimate fatigue life through cumulative formulas. 
However, these latter do not take into account the history associated with the loading, 
and tend to give poor results as soon as the loading frequencies are high and the inertia 
effects should be considered. One particularly difficult case of study corresponds to com-
bined cycle fatigue (CCF), where two different periodic loads (generally, one being ‘slow’, 
the other ‘fast’) are involved. In the meantime, more and more complex material laws have 
been proposed to describe cyclic behaviors, and the ideal way to use these models consists 
in solving them in the time domain.

As far as the numerical calculation of a time-dependent model is concerned, the ques-
tion of the computational cost can be of utmost relevance, especially when the consid-
ered model deals with fast phenomena, which require the use of very small time steps, 
when compared with the length of the time interval of study. In order to drastically 
reduce the computational cost, a periodic time homogenization method can be used 
when two well-separated time scales exist, and when the components of the applied 
loading are periodic with respect to the fast time scale [2]. The resulting homogenized 
model can then be solved with a drastically reduced computational cost, using time 
steps related to the slow time scale only, whereas the fast time scale is taken into account 
in an average way in the homogenization scheme.

Abstract 

The aim of this paper is to study two-time-scale nonlinear transient models and their 
associated parameter identification. When it is possible to consider two well-separated 
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time homogenization scheme, similar to what exists in space homogenization, can 
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In order to give accurate predictions, such time-homogenized models have to be com-
pared with experimental data. The key point is to define an identification strategy able 
to deal with such models and using a process that remains cheap and efficient. The aim 
of this paper is to analyze on a specific academic example how a relevant identification 
strategy can be proposed, and to comment on the different choices that can be made 
throughout the whole identification process. First, the basic elements of the periodic time 
homogenization method are described, as well as one particular case of study showing the 
efficiency of the method; then, the general parameter identification strategy that will be 
adapted to the case of time-homogenized models is introduced. After this introduction, 
the main part of the paper focuses on a simple academic example allowing to give the 
theoretical developments associated with a truly two-time-scale identification strategy, 
and to analyze the associated numerical results upon which conclusions can be drawn.

Periodic time homogenization method

Main ingredients

Periodic time homogenization, as it was initially proposed in  Ref. [2], can be seen as a 
transposition to time of the classical periodic space homogenization methods, such as the 
techniques described in Ref. [3] or in Ref. [4]: it is typically based on the introduction of a 
two-scale asymptotic expansion for every time-dependent variable sought for in the equa-
tions of the reference problem:

where t stands for the so-called slow time scale and τ = t/ξ for the fast time scale. 
Indeed, when the ratio ξ is very small, it is possible to separate the two time scales by 
considering that they are independent one from the other, implying that any derivative 
with respect to time has to use the partial derivatives with respect to the two time scales:

where dt•, ∂t• = •̇ and ∂τ• = •′ stand for the total time derivative, the partial deriva-
tive with respect to the slow time and the partial derivative with respect to the fast time 
respectively. Moreover, if the applied loading has a component, which is periodic with 
respect to the fast time τ, it is possible to assume that each variable is quasiperiodic, 
meaning that it is periodic with respect to τ . Figure 1 gives an illustration of such a quan-
tity. This quasiperiodicity assumption is all the more justified as the ratio ξ is small, and 
can then be written as:

where Tf  is the period associated with the fast periodic component of the loading.
Using the asymptotic expansion (1) for each quantity in the reference equations, and 

balancing the different orders of ξ, the time-homogenized equations are determined by 
averaging over a fast period the different quantities:

(1)α(t, τ ) = α0(t, τ )+ ξα1(t, τ )+ ξ2α2(t, τ )+ O(ξ3)

(2)dtα = ∂tα + 1

ξ
∂τα = α̇ + 1

ξ
α′

(3)α(t, τ ) = α

(

t, τ +
Tf

ξ

)

∀t, τ

(4)
�α�(t) = ξ

Tf

∫ Tf /ξ

0
α(t, τ ) dτ
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This fast-time average actually allows to separate slow-evolving phenomena and fast-
time periodic components by using the fact that the quasiperiodicity assumption can 
actually be rewritten for any time-dependent variable as:

In addition to the different time-homogenized quantities 〈α〉, the residuals associated 
with this fast-time average are then denoted as α∗ = α − �α�, and depend on both time 
scales t and τ a priori. They usually have to verify a very simple problem (typically a 
linear, elastic one), which will be solved for a time interval corresponding to one fast 
period Tf . Eventually, the obtained time-homogenized equations are solved relatively to 
the slow time scale only, by introducing the averaged influence of the fast cycles cor-
responding to the solution of the fast problem at each slow time step, hence allowing to 
solve for all the zeroth-order time-homogenized variables with a drastic reduction in the 
computational cost when compared with what would be required to solve the reference 
problem (for example by using the classical rule of thumb of 20 time steps per fast cycle).

Cases of study

References on the time homogenization method still tend to be quite scarce, as showed a 
recent tentative review in Ref. [5]. Nevertheless, the possible applications are numerous, 
as we can see with a significant number of references dealing with topics as diverse as the 
behavior of viscoelastic materials in Ref. [6], the vibration of preloaded beams in Ref. [7], 
the ultrasonic welding of composites in Ref. [8], the ultrasonic imaging of tissues in Ref. 
[9], the cyclic loading of normally consolidated clay in Ref. [10] or the viscoelastic-visco-
plastic behavior of polymers in Ref. [11].

Recently, we focused on validating the method for different cases of simulations of 
structures withstanding fatigue loads with two periodic components:

•  • material fatigue with a viscoplastic law defining two hardening variables in Ref. [12];
•  • material fatigue with an isotropic damage law in Ref. [13];
•  • extension of the method to three different time scales in Refs. [5] and [14];
•  • extension of the method to the case of a resonant excitation in Ref. [5].

(5)�α′� = 0

Figure 1  Periodic time homogenization. Illustration of the two main assumptions required in the method.
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In this latter case, a real case example, coming from the European Project PREMECCY 
on fatigue, related to gas turbine blades, and briefly described in Ref. [15], was pre-
sented: indeed, these latter, during operation, withstand a loading with two periodic 
components whose time evolution is sketched in Figure  2. The PREMECCY project’s 
principle was to experimentally study CCF with several blade-shaped specimens, such as 
the one depicted in Figure 3. Numerical simulations using the periodic time homogeni-
zation method have been run on such a geometry, with a loading implying frequencies 

Figure 2  PREMECCY project. Schematic representation of the loading, after [15].

Figure 3  Numerical results for a specific specimen. Bending II mode at 1,400 Hz and final local longitudinal 
plastic strain after 100 slow cycles and 1,000,000 fast cycles.
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F = 0.14 Hz and F/ξ = 1,400 Hz, this latter value corresponding to the specimen’s sec-
ond bending eigenfrequency. A specific result is shown in Figure  3, where it is easily 
seen that the highest values of the longitudinal plastic strain are located at the speci-
men’s edges, and that these values nearly vanish everywhere else. More details can be 
found in Ref. [5].

Gradient‑based parameter identification using adjoint state formulations

To improve the quality of the model’s predictions, especially the fatigue life estimate, it is 
mandatory to compare computed quantities with experimental data and to define an iden-
tification scheme allowing to update the model’s parameters judiciously. In this section, a 
general description of the proposed identification strategy is given, which, as we will see, is 
relevant for both reference and time-homogenized problems: it will thus be illustrated in 
this latter case in the “Methods”.

The forward problem is considered as an implicit formulation with a vector function 
F  over a time interval [0,T ] :

where dt and d2t  are the first- and second-order time derivatives respectively. U0 and V0 
stand for the initial conditions of the dynamic problem. Whereas u is the state vector of 
size N , composed of all the time-dependent degrees of freedom (DOFs) describing the 
studied problem, p stands for the vector containing the P scalar parameters associated 
with the differential equation (6).

Formulation of the identification problem

The identification problem consists in finding the parameter vector popt such that the 
solution u(t;popt) of  (6) obtained with the parameters popt is as close to the available 
experimental data as possible. These latter are indeed compared with the corresponding 
quantities Au(t;p), where A is a projection operator allowing to select, for each quantity, 
the closest DOF to the experimental measurement point. In order to use consistent nota-
tions, the corresponding experimental quantity is denoted Auexp(t); however, it does not 
mean that such a vector uexp(t) actually exists.

The following misfit function is then introduced: it consists of a norm measuring the 
discrepancy between the quantities predicted with the forward model  (6) and experi-
mental data:

where u(t;p) satisfies Eq. (6). The L2-norm proposed here is completed with a Tikhonov 
regularization term, allowing to deal with the ill-posedness of the identification problem, 
by bounding the magnitude of the parameter vector p to be identified: this regularization 
term uses a vector p0 containing nominal values corresponding to a priori experience, 

(6)

F

(

u(t), dtu(t), d
2
t u(t),p, t

)

= 0

u(0) = U0

dtu(0) = V0

(7)J (p) = 1

2

∫ T

0

∣

∣A(u(t;p)− uexp(t))
∣

∣

2
dt + 1

2
|R(p− p0)|2
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and a diagonal weighing matrix R. Eventually, the solution of the identification problem 
can be sought as the parameter vector popt minimizing the misfit function J (p):

Adjoint state formulation

The determination of this minimum is achieved using gradient-based minimization meth-
ods, therefore the question of avoiding local minima by means of an appropriate regulari-
zation process should be carefully addressed. In some cases, rather than using the classical 
Tikhonov regularization term, the a priori experience can be introduced in some specific 
ways, as in Ref. [16]. Similarly, the fact of using a homogenized model in the parameter 
identification process can introduce a regularizing effect, just as explained in Ref. [17]. 
However, we will not address here this specific question, but rather focus on the identifica-
tion process itself.

To estimate the gradient of the misfit function, we solve here an adjoint state problem. 
A typical example in mechanical engineering is given in Ref. [18], where the parame-
ters of an elastoplastic material law are identified with indentation tests. In the strategy 
proposed here, the generic form of the adjoint state problem, which can be obtained by 
expressing the stationarity of a Lagrangian as in Ref. [19], is as follows:

where ∇uF , ∇dtuF  and ∇d2t u
F  stand for the directional derivatives of F  with respect 

to u, dtu and d2t u respectively. The adjoint state problem is then a time-backward dif-
ferential equation with two final conditions, and where the first-order sensitivities of the 
forward problem are concerned.

Once the adjoint state problem (9) is solved, it can be shown that the misfit function’s 
gradient with respect to the parameter vector p can be expressed as:

This specific way of estimating the misfit function’s gradient can be compared with a 
classical finite difference formula, such as the central finite difference scheme: in this 
latter case, when the parameter vector is of size P, the gradient calculation is obtained 
by evaluating the misfit function in 2P additional ‘points’, each couple of points corre-
sponding to two symmetrical perturbations of the misfit function associated with each 
parameter in the vector p. The resulting computational cost for each gradient evaluation 
consists of 2P solutions of the forward problem (6) and 2P time integral evaluations. By 
contrast, when the adjoint state solution is used, only two differential equation solutions 
are required: one for the forward problem (6) and one for the adjoint problem (9). The 
associated computational cost for each gradient evaluation is then two differential equa-
tion solutions, and P time integral evaluations. The resulting gain is as high as the num-
ber of parameters to be identified. Moreover, it is easier to control the accuracy of the 

(8)popt = arg min
p

J (p)

(9)

∇uF
Tz − dt(∇dtuF

Tz)+ d2t (∇d2t u
FTz) = ATA(u − uexp)

(∇d2t u
FTz)|t=T = 0

(∇dtuF
Tz)|t=T = 0

(10)∇pJ (p) = RTR(p− p0)−
∫ T

0
∇pF

Tz(t) dt
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gradient estimate with the adjoint state method than with finite difference formulas, for 
which the choice of the discretization steps has a strong influence on the final estimate.

Methods
We propose to study an academic example in order to discuss the different steps of the 
parameter identification problem associated with a time-homogenized model. To the best 
of our knowledge, it is the first time that such a two-time-scale identification strategy using 
an adjoint state formulation is proposed: only one alternative has been briefly studied in Ref. 
[20] with the use of a genetic method. First, we will recall how the identification process is 
formulated on a classical reference problem, i.e. with no time homogenization. Then, we will 
apply the identification strategy on the time-homogenized version of the problem, and see 
what connections exist with the identification process associated with the reference problem.

The case of study detailed here consists of a straight bar of length L, clamped at one 
end, and withstanding at the other end a normal force with two periodic components. 
The measured displacement at this end is then used to determine the parameter values 
of the material elastic viscoplastic law.

Reference problem

Forward problem

The dynamic equilibrium of the bar is a scalar equation, with the normal (nonviscous) 
stress σ(x, t) and the longitudinal displacement u(x, t) defined at each point x ∈ [0, L] and 
for any t ∈ [0,T ]:

where ∂x is the partial space derivative, ρ is the mass density, and cK  is the damping ratio 
where damping is assumed as proportional to stiffness. Homogeneous initial conditions 
for the displacement and the velocity are assumed. No load is applied along the bar, and, 
whereas this latter is clamped at x = 0, a surface force fs(t) is applied at x = L for any 
t ∈ [0,T ]:

This surface force is biperiodic, with the ratio of the associated low frequency over the 
fast one equal to 10−4.

The constitutive relation links the normal (nonviscous) stress to the longitudinal strain 
along the bar for any (x, t) ∈ [0, L] × [0,T ]:

where E is the Young’s modulus, and εp(x, t) stands for the longitudinal plastic strain. 
One assumes that this latter verifies a Norton’s viscoplastic evolution law for any 
(x, t) ∈ [0, L] × [0,T ], which depends on the nonviscous stress only:

(11)∂xσ + cKdt∂xσ = ρd2t u

(12)u|x=0 = 0

(13)(σ + cKdtσ)|x=L = fs

(14)σ = E
(

∂xu− εp
)

(15)dtε
p =

( |σ |
K

)n

sign σ
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with εp |t=0 = 0 ∀x ∈ [0, L]. K  and n are the two constant parameters to be identified.
The numerical implementation consists of quadratic 1D finite elements under MAT-

LAB for the spatial discretization of the displacement, whereas the longitudinal plastic 
strain is linearly interpolated using the ‘external’ nodes of the different elements. The 
time integration uses the ‘ode45’ procedure, based on a fourth-order embedded Runge–
Kutta formula according to Ref. [21]: depending on the number of finite elements used, 
the time step to be chosen can verify the classical rule of thumb of 20 time steps per fast 
cycle, or must be smaller than the maximal time step associated with the Courant–Frie-
drichs–Lewy condition, making in both cases the computational cost become unafford-
able as soon as a high number of cycles is calculated.

Parameter identification process

It is assumed that experimental data consist of the knowledge of the displacement uexp(t) 
measured at x = L. The proposed misfit function is then:

where u(x, t;K , n) is the solution of the forward problem (11)–(15) with parameter val-
ues K  and n.

In order to derive the adjoint state problem, the following Lagrangian is introduced:

where (u, εp,K , n, z, �) are considered as independent quantities. The minimization of 
the misfit function (16) under the constraints (11)–(15) is then equivalent to express the 
stationarity of the Lagrangian (17) with no constraint [19].

The adjoint states z(x, t) and �(x, t) are Lagrange multipliers verifying, for any 
(x, t) ∈ (0, L)× [0,T ], equations coming from the stationarity of the Lagrangian with 
respect to u:

(16)
J (K , n) = 1

2

∫ T

0
(u(L, t;K , n)− uexp(t))

2dt

+ αK

2
(K − K0)

2 + αn

2
(n− n0)

2

(17)

L(u, εp,K , n, z, �) = 1

2

∫ T

0
(u(L, t)− uexp(t))

2dt

+ αK

2
(K − K0)

2 + αn

2
(n− n0)

2

−
∫ T

0

∫ L

0
ρ(d2t u)z dx dt +

∫ T

0
fsz|x=L dt

−
∫ T

0

∫ L

0

[

E
(

∂xu− εp
)

+ cKEdt
(

∂xu− εp
)]

∂xz dx dt

+
∫ T

0

∫ L

0

[

dtε
p −

(

E|∂xu− εp|
K

)n

sign
(

∂xu− εp
)

]

� dx dt

(18)∂x

[

E∂xz − cKEdt∂xz + n
E

K

(

E|∂xu− εp|
K

)n−1

�

]

= ρd2t z

(19)

(

E∂xz − cKEdt∂xz + n
E

K

(

E|∂xu− εp|
K

)n−1

�

)

|x=L

= u|x=L − uexp
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and εp:

Formally, the latter equations correspond to a dynamic elasto–viscoplastic problem 
(with negative damping), when one considers the first Lagrange multiplier z as a kind 
of displacement (even if it is not homogeneous to a length) and the second Lagrange 
multiplier � as a kind of plastic strain (even it is not dimensionless). The discrepancy 
between the forward model’s predictions and experimental data is directly imposed as 
a Neumann boundary condition at x = L, i.e. where the measurements are available. 
One should notice that this problem is time-backward with final conditions (at t = T): 
once the adjoint state problem has been properly discretized with respect to space, the 
obtained time differential equations can be solved with classical time integration meth-
ods by applying a change in variables θ = T − t in order to deal with initial conditions 
rather than final ones.

Once solved, the adjoint state solution is used to evaluate the misfit function’s gradi-
ent, whose components are equal to the partial derivatives of the Lagrangian (17) with 
respect to the parameters:

One should notice that, beside the forward state solutions, only the second Lagrange 
multiplier � appears in the previous expressions: this is logical here, because one is inter-
ested in the parameters (K , n) of the evolution law (15) only. The first Lagrange multi-
plier z would have appeared in these expressions if one had tried to identify parameters 
associated with the dynamic equilibrium equation, such as the Young’s modulus E or the 
damping ratio cK .

These estimates of the misfit function’s gradient components are used by the minimi-
zation algorithm to determine the best search direction and step size. However, even if 
the strategy using the adjoint state problem is the cheapest one in terms of computa-
tional cost, this latter can be awfully prohibitive if a high number of fast cycles has to 

(20)z|t=T = 0, dt z|t=T = 0

(21)dt� = n
E

K

(

E|∂xu− εp|
K

)n−1

�+ E∂xz − cKEdt∂xz

(22)�|t=T = 0

(23)

∂J

∂K
(K , n) = ∂L

∂K
(u(K , n), εp(K , n),K , n, z(u, εp), �(u, εp))

=
∫ T

0

∫ L

0

n

K

(

E|∂xu− εp|
K

)n

sign
(

∂xu− εp
)

� dx dt

+ αK (K − K0)

(24)

∂J

∂n
(K , n) = ∂L

∂n
(u(K , n), εp(K , n),K , n, z(u, εp), �(u, εp))

= −
∫ T

0

∫ L

0

(

E|∂xu− εp|
K

)n

sign
(

∂xu− εp
)

log

(

E|∂xu− εp|
K

)

� dx dt

+ αn(n− n0)
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calculated, as it is the case here, since viscoplasticity is a slow-evolving phenomenon, 
implying that the change in the longitudinal viscoplastic strain is very small for each 
individual fast cycle.

Time‑homogenized problem

In order to obtain a drastic reduction in the computational cost, the periodic time homog-
enization method is applied. Following the different steps briefly described in the “Back-
ground”, the time-homogenized equations to be solved are obtained.

Dynamic equilibrium equation

The first equation to be dealt with is the dynamic equilibrium equation, which can be 
rewritten in a normalized way in order to compare the orders of magnitude of the different 
terms:

where F  is the frequency of the slow component of the loading, and the different nor-
malized quantities are denoted as •̂. Different cases arise, depending on the orders of 
magnitude of ρL2F2/E and FcK . Here, we assume that:

where β ≤ O(1) and γ ≤ O(1). Physically, the first assumption (26) is equivalent to hav-
ing L/� = √

β , where � is the wavelength associated with the fast loading frequency: this 
means that the order of magnitude of � should be at least equal to the length of the bar.

Using these two assumptions and introducing an asymptotic expansion of the dis-
placement u = u0 + ξu1 + ξ2u2 + O(ξ3) allows to express the acceleration as follows:

It can then be shown [5] that the two time scales are separable and that the homogeniza-
tion method can be applied: the zeroth-order dynamic equilibrium equation becomes:

and the associated zeroth-order boundary condition at x = L reads:

Eventually, by taking the fast-time average  (4) of the two previous equations, and by 
using the quasiperiodicity assumption (5), one can obtain the time-homogenized zeroth-
order dynamic equilibrium equation:

(25)∂x̂σ̂ + FcKdt̂∂x̂σ̂ = ρL2F2

E
d2
t̂
û

(26)
ρL2F2

E
= βξ2

(27)FcK = γ ξ

(28)ρd2t u = βE

L2F2
u′′0 + ξ

βE

L2F2

(

2u̇′0 + u′′1
)

+ ξ2
βE

L2F2

(

ü0 + 2u̇′1 + u′′2
)

+ O(ξ3)

(29)∂xσ0 +
γ

F
∂xσ

′
0 =

βE

L2F2
u′′0

(30)
(

σ0 +
γ

F
σ ′
0

)

|x=L
= fs

(31)∂x�σ0� = 0
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for any (x, t) ∈ (0, L)× [0,T ], and the time-homogenized zeroth-order boundary 
condition:

which corresponds to the solution of a quasistatic problem.

Evolution law

In the same way, the evolution law (15) gives, up to order zero:

First, the 1/ξ-order has to be considered, giving: εp0
′ = 0. This is equivalent to say that 

the zeroth-order plastic strain only depends on the slow time variable:

The physical interpretation of this latter result is that viscoplasticity is a slow-evolving 
phenomenon, even if the material withstands a high-frequency loading. This slow varia-
tion is described by the zeroth-order evolution law, which can be expressed as:

In order to make the contribution of the first-order plastic strain disappear from this 
relation, the fast-time average  (4) of this latter is evaluated. Since, on the one hand, 
Eq.  (34) is equivalent to say that �ε̇p0� = ε̇

p
0, and, on the other hand, the quasiperiodic-

ity assumption  (5) implies that �εp1 ′� = 0, this average eventually gives that, for any 
(x, t) ∈ [0, L] × [0,T ]:

with a zero initial condition.

Zeroth‑order time‑homogenized problem

The final system consists of the following equations to be solved at the slow time scale only, 
for any (x, t) ∈ (0, L)× [0,T ]:

(32)�σ0�|x=L = �fs�

(33)
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ξ
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sign σ0

(36)ε̇
p
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K
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sign σ0

〉

(37)∂x�σ0� = 0

(38)�σ0� = E
(

∂x�u0� − ε
p
0

)

(39)�u0�|x=0 = 0

(40)�σ0�|x=L = �fs�

(41)ε̇
p
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K
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sign σ0

〉
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The resulting system then corresponds to a quasistatic, elastic viscoplastic problem, 
where the loading consists of the slow component of the surface force.

Of course, the fast component does have an effect on these homogenized equations, 
by means of the evolution law (41): since this latter is nonlinear, it is required to calculate 
the zeroth-order ‘instantaneous’ stress field σ0 instead of directly using the correspond-
ing homogenized quantity 〈σ0〉. To do this, it is mandatory to estimate the residual quan-
tity σ ∗

0 (x, t, τ ), defined according to the following relation:

This residual is then the solution of the following system of residual equations:

obtained by subtracting the equations of the time-homogenized problem  (37)–(40) to 
the zeroth-order equations of the reference problem. This residual system consists in 
solving, for the fast time scale τ, and at each slow time step tk, a dynamic problem for 
a purely viscoelastic material, with a surface force f ∗s = fs − �fs�. Since viscoplasticity 
(which is the only source of nonlinearity here) appears in the zeroth-order time-homog-
enized equations only, this residual problem is linear, and can be conveniently solved 
in the frequency domain. If needed, additional orders could be addressed, as detailed 
in Ref. [5].

The evaluation of the fast-time average appearing in (41) can be achieved by means of 
a numerical integration formula, such as the trapezoidal rule with N + 1 points, defined 
as:

This choice is not only related to its formal simplicity, but can actually be justified using 
the conclusions presented in Ref. [22]: the author shows that the trapezoidal rule con-
verges extremely fast when integrating smooth periodic functions, as it is the case here, 
and that no substantial additional gain would be obtained with the use of more elabo-
rated formulas, such as Simpson’s for example.

Associated parameter identification strategy

The identification strategy using adjoint state formulations described in the “Background” 
is applied now on the time-homogenized problem. First, a consistent misfit function has to 

(42)σ0(x, t, τ ) = �σ0�(x, t)+ σ ∗
0 (x, t, τ )

(43)∂xσ
∗
0 +
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F
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∗
0
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(44)σ ∗
0 = E∂xu

∗
0
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be selected, then the adjoint state problem required to estimate the misfit function’s gradi-
ent is introduced.

Choice of the misfit function

The first step consists in describing, through the misfit function, the discrepancy between 
the time-homogenized model’s predictions and experimental data: indeed, on the one 
hand, the model has been solved on slow time steps only, whereas, on the other hand, the 
experimental data can be available on a much finer scale.

The most efficient choice in terms of computation cost is to use time-homogenized 
quantities in the misfit function (16), since it allows to address the time integral on slow 
time steps only:

Whereas �u0�(L, t;E,K , n) is the solution of the zeroth-order time-homogenized for-
ward problem  (37)–(41), 〈uexp〉(t) stands for the corresponding experimental quantity, 
which is obtained by fast-averaging the experimental data for each slow time step tk of 
the time-homogenized displacement:

Adjoint state problem

The misfit function’s gradient is evaluated in the same way as in the section associated with 
the reference problem, using the solution of an adjoint state problem. Starting from the 
Lagrangian associated with the misfit function  (48) and the time-homogenized forward 
problem (37)–(41), it is first obtained that the second Lagrange multiplier depends on the 
slow time scale only:

because it is associated with the zeroth-order time-homogenized evolution law  (41), 
which depends on t only. On the contrary, the first Lagrange multiplier is decomposed as 
�z0�(x, t)+ z∗0(x, t, τ ) to deal with the two systems (37)–(40) and (43)–(46) respectively.

Then, the two following PDEs corresponding to the adjoint state problem are obtained, 
for any (x, t) ∈ (0, L)× [0,T ]:

(48)
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2
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0
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and they actually correspond to the zeroth-order time-homogenized versions of 
Eqs.  (18)–(22) giving the adjoint state solutions associated with the identification pro-
cess for the reference problem. Figures 4 and 5 show the comparison between the two 

(53)�̇0 = n
E

K

〈(

E
∣

∣∂xu0 − ε
p
0

∣

∣

K

)n−1〉

�0 + E∂x�z0�

(54)�0 |t=T = 0

Figure 4  Adjoint state. Adjoint state solutions for reference (in red) and time-homogenized (in blue) prob-
lems, at x = 0 and x = L.

Figure 5  Adjoint state. Zoom of Figure 4 (same color conventions).
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corresponding adjoint state solutions � and �0 for the identification process detailed in 
the “Results and discussion”: the adjoint state solution �0 corresponding to the time-
homogenized problem is homogeneous along the bar, and is very close to the (homoge-
neous) fast-time average of the (heterogeneous) adjoint state solution � associated with 
the reference problem.

Indeed, in this case, the previous equations can be decoupled in order to get the PDE 
verified by the second Lagrange multiplier �0 for any (x, t) ∈ [0, L] × [0,T ]:

finally implying that, for any (x, t) ∈ [0, L] × [0,T ]:

which is a time-backward ODE with a final condition equal to zero. This equation can be 
solved using the slow time steps tk only, which allows to derive the solution in a way as 
efficient as for the time-homogenized forward solution.

Misfit function’s gradient

The misfit function’s gradient then consists of the two following partial derivatives:

Once again, these relations correspond to the zeroth-order time-homogenized estimates 
of the two misfit function’s gradient components (23)–(24) obtained for the identifica-
tion problem associated with the reference problem. Actually, this is a result that already 
occurs in periodic space homogenization, as shown for example in Ref. [23].

Results and discussion
Validation of the time homogenization method

The studied bar, which is 1 m long, is discretized in ten quadratic finite elements. The 
surface force at x = L is a combined cycle load, defined as the sum of two sines of fre-
quencies F and F/ξ. For this case of study, the assumption (26) is verified, since the two 
loading frequencies are F = 0.05 Hz and F/ξ = 500 Hz (cyclic loads with respective 
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amplitudes 1 kN and 0.25 kN) and the material considered is a typical steel (E = 200 GPa 
and ρ = 7, 800 kgm−3). Moreover, the damping ratio cK is equal to 10−5, hence verifying 
assumption (27).

The reference calculations consist in solving the Eqs. (11)–(15) of the reference prob-
lem for a time interval corresponding to the first slow loading period [0, 20]s: the time 
step is chosen according to the classical rule of thumb of 20 time steps per fast loading 
period, i.e. 10−4 s. MATLAB’s ‘ode45’ procedure is used.

The zeroth-order time-homogenized equations  (37)−(41) are solved with the same 
algorithm, but the chosen time step is 0.01 s, which reduces by 100 the number of itera-
tions required for the calculation. Since the loading is the sum of two periodic compo-
nents (one slow and one fast), the residual problem, consisting in Eqs. (43)–(46), depends 
on the fast time scale only, and can be solved in the frequency domain once and for all.

The associated results are compared in Figure 6 presenting how evolves, for the first 
slow period, the zeroth-order longitudinal plastic strain at x = 0 and x = L: the esti-
mates are in excellent agreement, as confirmed by Table 1, and tend to indicate that the 
predictions can remain good even if a high number of slow cycles is applied. Figure 7 
shows the previous time evolutions (at x = 0) between two close time steps, and allows 
us to see that the zeroth-order longitudinal plastic strain evolves smoothly, while the 
reference strain increases step by step for each fast loading period. All these results allow 
to validate with this typical example the periodic time homogenization method, and to 
get an estimate of the computational gain it allows through the drastic reduction in the 

Figure 6  Validation of the periodic time homogenization method. Reference (in red) and zeroth-order time-
homogenized (in blue) estimates, at x = 0 and x = L, of the longitudinal plastic strain.

Table 1  Validation of the periodic time homogenization method

Reference and zeroth-order time-homogenized estimates, at t = 20 s, of the longitudinal plastic strain at x = 0 and x = L.

x = 0 x = L

Reference 1.874891 × 10–6 1.652784 × 10–6

Time-homogenized 1.874898 × 10–6 1.652791  × 10–6
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number of required time steps for the numerical simulation. This number is indeed the 
main criterion concerning the computational cost of the time homogenization method, 
since, when compared with the reference problem, the only additional calculations con-
sist in solving the fast residual system (once and for all) and in estimating the fast-time 
averages with the trapezoidal rule (47).

Parameter identification

In order to evaluate how the misfit function performs, synthetic data uexp(t) are 
created by solving the Eqs.  (11)–(15) of the reference forward problem, using 
Kexp = 100× 106 SI Units and nexp = 10 as parameter values. As previously, the 
bar withstands a combined cycle loading with F = 0.05 Hz and F/ξ = 500 Hz. 
K0 = 50× 106 SI Units and n0 = 5 are chosen as initial parameter values for the identifi-
cation process, which is based on an interior-reflective Newton method [24] with a BFGS 
formula in order to minimize the misfit function J0. Since we do not want to address spe-
cifically the question of regularization, no regularization term is added to the misfit func-
tion (48). Eventually, given the fact that the two parameters have very different orders of 
magnitude, a normalization is introduced, using the values of K0 and n0, in order to pre-
vent numerical inaccuracies in the gradient estimate. The logarithm of the misfit function 
is depicted in Figure 8, showing a well-defined global minimum despite a crescent-shaped 
valley.

Subsequent results are listed in Table 2: the parameter values identified are very close 
to the ones used to create the synthetic data. Figure 9 shows the comparison between 
the identified model and the synthetic reference, more precisely the variations of the 
longitudinal plastic strain, which is not directly observable.

In addition, to demonstrate the robustness of the process, centered Gaussian 
noise is added to the synthetic data used in the identification strategy: different lev-
els (corresponding to a standard deviation proportional to the mean of the measured 

Figure 7  Validation of the periodic time homogenization method. Zoom of Figure 6 (same color conven-
tions).
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displacement) are proposed, and the associated identification results are listed in Table 2. 
They show that the identification works, even for high levels of noise: the choice of the 
misfit function (48) with the application of the fast-time average to the noisy data has 
allowed to filter significantly the introduced noise, hence strongly limiting its impact on 
the identification results. This is a particularly interesting property, whereas identifying 
using the reference model and the whole set of noisy data undoubtedly would have led to 
poor results: indeed, as said above, the fact of using a homogenized model in a param-
eter identification process generally introduces a regularizing effect, as explained in Ref. 
[17]; unfortunately, even in this academic case of study, the numerical cost for solving 
the reference identification problem is too prohibitive to rigorously check this property.

Eventually, the computational cost associated with the identification process is signifi-
cantly reduced when compared with what is obtained when the inverse problem related 

Figure 8  Misfit function. Contour plot of the logarithm of J0(K , n) for synthetic data.

Table 2  Parameter identification process

Results obtained for synthetic data (with Kexp = 100× 106 SI Units and nexp = 10) and different noise levels.

Noise level Number of iterations Kid (SIUnits) nid

0 24 100.89 × 10–6 9.94

10% 23 100.96 × 10–6 9.95

20% 22 100.87  × 10–6 9.94

50% 37 99.40 × 10–6 9.78

100% 35 97.36 × 10–6 9.56
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to the reference problem  (11)–(15) is considered, which allows to address the case of 
slow-evolving phenomena, requiring the simulation over a large time interval.

Conclusions
Here we have proposed a first preliminary study of a two-time-scale parameter identifica-
tion process, using time-homogenized models: the adaptation of a classical identification 
strategy based on an adjoint state formulation to estimate the misfit function’s gradient can 
be used in this specific framework: this leads, on the proposed example, to the determina-
tion of the time-homogenized counterpart of the adjoint solution associated with the ref-
erence identification problem. Despite its simplicity, the academical example studied here 
showed the relevance of the strategy and its reduced computational cost: these results can 
be viewed as a first step before dealing with more complex cases of study.

To come back more specifically to CCF life prediction, a possible prospect could be 
to use the experimental information available (with classical high cycle fatigue tests for 
instance) to tune correctly the parameters of the considered material laws. In addition, 
to further improve the reduction in the computational cost, the extension to models 
with three different time scales, such as those described in Ref. [5], should be straight-
forward as well.
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