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Finite element modeling of grain size effects on the ultrasonic 

microstructural noise backscattering in polycrystalline materials 

X. Bai, B. Tie
1
, J.-H. Schmitt, D. Aubry 

MSSMat, CNRS, CentraleSupélec, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France  

Abstract 

The correlation between ultrasonic wave propagation and polycrystalline microstructures has 

significant implications in nondestructive evaluation. An original numerical approach using the finite 

element method to quantify in both time and frequency domains the ultrasonic noise scattering due to 

the elastic heterogeneity of polycrystalline microstructures is presented. Based on the reciprocity 

theorem, it allows the scattering evaluation using mechanical data recorded only on the boundary of 

polycrystal instead of within its volume and is applicable to any polycrystalline aggregate regardless 

of its crystallographic or morphological characteristics. Consequently it gives a more realistic and 

accurate access of polycrystalline microstructures than the classical analytical models developed under 

the assumption of single scattering and the Born approximation.  

The numerical approach is proposed within the same unified theoretical framework as the classical 

analytical models, so it is possible to validate it in the cases of idealized microstructures for which the 

considered analytical models remain relevant. As an original result, assuming single phase, untextured 

and equiaxed microstructures, two-dimensional (2D) theoretical formulas are developed and a 

frequency-dependent coefficient is found compared to the classical three-dimensional (3D) formulas. 

2D numerical simulations are then performed for idealized microstructures composed of hexagonal 

grains with a uniform grain-size. Three grain sizes are considered herein and involve different 

scattering regions. Good comparisons are obtained between theoretical and numerical estimates of the 

backscattering coefficient, which validate the numerical approach. Effects of the grain boundary 

orientations are analyzed by modeling an irregular hexagonal grain morphology and a random grain 

morphology generated by an established Voronoi approach. The origin of the significant oscillation 

level of backscattering is then investigated and discussed. 

Keywords: Ultrasonic noise backscattering, Polycrystalline materials, Grain size effects, Reciprocity 

theorem, Elastic wave propagation, Finite element modeling. 

                                                   
1 Corresponding author. 
E-mail: bing.tie@centralesupelec.fr 



  

 

 2 

1 Introduction 

The motivation for the research on the ultrasonic wave propagation in polycrystalline materials is 

found in nondestructive evaluation (NDE). When ultrasonic waves propagate through polycrystalline 

materials, the incident energy is scattered by grain boundaries due to heterogeneities of mechanical 

properties, such as the elastic stiffness tensor and the density. Two phenomena therefore occur: 

amplitude attenuations and microstructural noise signals. Important theoretical investigations have 

been done for the scattering induced attenuation (e.g. [1]-[5]). In some circumstances the NDE 

measurement can be restricted by uncontrolled high noise-to-signal ratio, for it is difficult or even 

impossible to identify echo signals of interest when their amplitudes are of the same order of 

magnitude as noise level. Thus efforts have been dedicated to the study of scattered noise signals in 

order to improve nondestructive inspection and evaluation of microstructures and of their evolution.  

Theoretical developments to evaluate the scattering effectiveness are based on two seminal works: 

The first one initiated by Gubernatis et al. [1] is based on a single-scattering assumption and 

provides the solutions of scattering amplitudes of ultrasonic waves caused by a bounded isolated 

scatter embedded in an infinite isotropic and homogeneous elastic medium. To obtain explicit 

formulas for the scattering coefficient, the Born approximation was applied and the author concluded 

that the theoretical formulas were valid only for frequencies below the very high frequency range, 

often called the geometric region [6]. Based on the same approach, further theoretical investigations 

were proposed by Han, predicting the ultrasonic backscattering in duplex microstructures composed of 

randomly-oriented macrograins composed of colonies with crystallographically related orientations [7]. 

The second method is based on the reciprocity theorem, initially used to prove the 

interchangeability between a source and a receiver in the electromagnetic wave and elastic wave 

transmission problems [8]. Kino adapted the scattering matrix defined for electromagnetic waves to 

elastic waves to derive scattering formulas and made a fundamental contribution to the application of 

the reciprocity principle to the scattering of elastic waves by flaws [9]. Finally, explicit formulas of 

backscattering coefficient were proposed by Rose for single-phase and macroscopically isotropic and 

homogeneous polycrystalline materials with the use of the Born approximation in three-dimensional 

cases [10].  

The equivalence of both methods was proven by Rose [10] and Margetan et al. [11] with the 

assumption that the elastic properties of the macroscopic effective medium are defined by the 

unweighted Voigt average of the elastic properties of the polycrystalline microstructure and in the 

weak scattering case for which the use of the Born approximation is pertinent. Analytical formulas for 

backscattering in equiaxed polycrystals under the single-scattering assumption were developed [10] 

and extended to general pitch-catch configurations [11]. More recently, Ghoshal et al. developed a 

multiple-scattering framework using the Wigner distribution [12]. Based on this multiple-scattering 
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framework, a model for double scattering is recently developed by Hu et al. [13], which showed a 

strong potential to analyze strongly scattering materials. 

However, despite the theoretical results, significant difficulties still remain to develop analytical 

formulas of ultrasonic scattering coefficients in polycrystalline materials with a more complex 

microstructure. Therefore it is believed that numerical modeling should be a powerful alternative to 

access more real and complex polycrystalline microstructures and to improve the understanding of 

their interactions with ultrasonic waves. Among possible numerical methods, full-field numerical 

modeling using the finite element method (FEM) allows taking into account polycrystalline 

microstructures without any simplifying assumptions and therefore grasping of complex phenomena 

of wave propagation in polycrystals, especially effects of the multiple scattering [14-16]. Finite 

element modeling is applicable to quantify the scattering effectiveness due to grain boundaries of 

numerically generated polycrystalline microstructures. Furthermore, progress in the electron 

backscatter diffraction (EBSD) technique makes possible to obtain input maps of real microstructures 

to take into account by finite element meshes [17]. Its accuracy and versatility in modeling numerical 

or real polycrystalline microstructures make the finite element method a promising tool for further 

developments of nondestructive inspection. 

 Former works on finite element simulations focused on the evaluation of ultrasonic attenuation 

in polycrystalline materials, e.g. [14,15,18,19]. However there is relatively little work on the 

development of methods based on finite element full-field modeling, which allows precise evaluation 

of microstructural noise levels [20]. The purpose of the present work is to propose a versatile FE 

approach that leads to an evaluation of scattering effectiveness in an arbitrary spatial direction in any 

polycrystalline medium. The FE approach is developed within the unified framework based on the 

reciprocity theorem. Before being applied for analyzing experimental results, it must be checked the 

proposed modeling avoids any numerical artifacts. Therefore it is validated by comparison with the 

classical theoretical models in the case of analyzing grain size effects on the ultrasonic backscattering 

in single phase, untextured and equiaxed polycrystals with idealized but representative theoretical 

microstructures.  

Only 2D FE simulations are conducted. To exclude the grain size distribution effects [21], 

especially at the transition between the different regimes as, for instance, Rayleigh-to-stochastic, 

microstructures with numerically generated single-size regular hexagonal grains are mainly considered. 

This is obviously far from the actual grain structure in a polycrystal, but it gives a kind of asymptotic 

result. Such a hypothesis leads obviously to the periodicity of the grain morphology, possibly causing 

numerical artifacts. Two other cases of microstructures with geometrically varying grains are therefore 

discussed: an irregular hexagonal grain morphology and a Voronoi tessellation, both of which have a 

narrow dispersion of grain size and are geometrically close to a naturally occurring polycrystalline 

microstructure [15]. An external pressure loading is used to produce an incident signal, which 
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simulates, for instance, the broadband laser-generated ultrasound pulse [22]. Frequency content of the 

incident signal is large enough to account for different scattering regions with respect to three studied 

grains sizes. This example of laser-generated ultrasonic waves also justifies a first 2D numerical 

approach, since it is of significance to the cases where transducers with a cylindrical focus are used for 

the inspection of heterogeneous materials [20]. This is, for instance, the case for ultrasonic 

characterization of the microstructure using a laser pulse following the work by Monchalin [23]. The 

backscattering coefficient is calculated in both time and frequency domains using numerically 

recorded data at several receivers placed at the boundary of the polycrystals. Dependence of the 

backscattering coefficient on the frequency and the grain size are therefore analyzed and compared 

with theoretical predictions. 

The paper is organized as follows: A unified framework for theoretical and numerical evaluations 

of noise scattering is presented in Section 2. Classical analytical models are recalled, 2D analytical 

formulas of the backscattering coefficient are developed, especially the constant of proportionality 

between the grain-noise scattering coefficient and the received power due to the grain scattering 

proposed and already identified by Margetan et al. [11] in the 3D case is derived. The ratio of this 

constant between the 2D and 3D cases is proved to be frequency dependent. Numerical measure 

procedure is then proposed. In Section 3, FE ultrasonic propagation models for backscattering 

measurement are defined, quality analysis of numerical simulations is presented with a mesh 

convergence analysis and a study of phase velocities in polycrystalline materials. Section 4 presents 

numerical results concerning the grain size effects on the ultrasonic backscattering coefficient, 

followed by some main conclusions given in Section 5. 

2 A unified framework for theoretical and numerical evaluation 

A unified theoretical framework based on the reciprocity theorem for the evaluation of the 

ultrasonic noise scattering in both 2D and 3D cases is presented. Analytical formulas for the scattering 

coefficient are obtained by considering the equivalence between the amplitudes of scattered noise 

signals obtained using two different methods: the one based on the well-known Auld’s 

electromechanical reciprocity relation, which adapts the reciprocity theorem to the evaluation of 

scattering coefficients using transducer output signals [8, 9], and the other one based on far-field 

analysis of an isolated scatterer, which also refers to the reciprocity theorem for obtaining full 

elastodynamic wave fields [24]. The key assumption is the weak scattering so the Born approximation 

can be applied.  

 As a principal result of this work, a numerical evaluation approach is defined within the unified 

framework of Auld’s reciprocity theorem and the corresponding expressions of the ultrasonic noise 

backscattering coefficient using FE modeling in both 2D and 3D cases are proposed. 
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2.1 Reciprocity gap due to the microstructural scattering 

Consider a polycrystalline material occupying a region   of space dimension            and 

bounded by a surface    and defined by a position-dependent elastic stiffness tensor      and a 

position-dependent density field      (Fig. 1.). Applying the Fourier transform to the elastic wave 

equation, the Helmholtz equation without any source term inside   can be written as: 

                     (1) 

where      denotes the usual divergence operator of a second order tensor with respect to the position 

x,                is the stress tensor,      
 

 
            

         is the strain tensor and 

  denotes the angular frequency. Herein tensors and vectors are denoted using bold letters. 

(a)        (b)  

Fig. 1. Schematic diagram of the systems considered in the measurement of scattering in (a) a 

heterogeneous medium by comparison with (b) a homogeneous reference medium  

Based on the reciprocity theorem, the basic idea of evaluating the grain-noise scattering is to 

quantify the so-called "reciprocity gap", which is derived by the comparison between the studied 

heterogeneous domain and the same domain but filled by a reference homogenous material. Denoting 

the elastic stiffness tensor and the density of the reference homogeneous material as    and   , the 

time harmonic elastic wave equation of the reference medium reads as: 

       
           (2) 

In the following, the superscript "0" always indicates a mechanical field obtained in the reference 

homogeneous medium. Then the following variational formulations are straightforward for both 

systems:  

          
 

                       (3) 

          
 

                        (4) 
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where   is the outward unit normal to the boundary   ,        and         denote integrations 

respectively over the volume   and the surface    of appropriate dot product between two vectors or 

two tensors. Subtracting (4) from (3) leads to the following general equation of the reciprocity theorem 

for elastic waves in the presence of scatterers, such as grain boundaries: 

                                      
 

             (5) 

with               ,               . It is obvious that, if there is no scatterers, i.e.      

and     , the terms on both sides of (5) are equal to zero. Both terms represent a reciprocity gap 

and can be used to measure the degree of perturbation due to the heterogeneities in the studied 

medium. Furthermore the equation (5) points out that there are two ways to evaluate the reciprocity 

gap. The first one implies to evaluate an integration over the whole volume of the studied domain by 

using a Green's function approach under the Born approximation assumption and gives rise to a 

theoretical estimation of the scattering. The second one implies to calculate a surface integration 

involving only the mechanical quantities available on the boundary of the studied domain and 

therefore can be used for experimental measurements. 

2.2 Physical signification of the reciprocity theorem applied to microstructural scattering analysis 

A brief recall of the scattering formulas proposed by Kino [9] allows an interesting insight into 

how the reciprocity gap in the case of polycrystalline materials is precisely related to the amplitude of 

elastic wave noise signals scattered by the inhomogeneities of polycrystalline microstructure.  

For both heterogeneous and homogeneous reference systems shown in Fig. 1, two transducers in 

contact with the boundary    are considered and the contact areas are respectively denoted as 

         . The transducer used as a transmitter can trigger elastic waves in   by applying prescribed 

displacements or surface loadings on its contact area and the elastic wave fields within   are assumed 

to be not perturbed by the transducers. On the remainder of the boundary, i.e.             , the 

free boundary condition is assumed. At the surface    of the transmitter    (      ), the 

displacement and stress vector fields in time domain can be described as:  

   
         

   
                  

           
   

                (6) 

Here   is a given angular frequency, the superscript     represents the fields associated to the 

transmitter and   
  is the amplitude of elastic waves triggered by the transducer  . We note that 

  
     and    

       are chosen so the associated power rate is equal to one. 

Once the prescribed displacements or the surface loadings vanish, the transducers can also serve 

as a receiver by responding to the elastic wave propagating in the opposite direction. If we assume that 

the received displacements and stress vectors have exactly the same form as (6), they can be written in 

the following form:  



  

 
 

 

 7 

   
         

   
     e p           

            
   

       e p       (7) 

where the superscript     indicates the complex conjugate, the superscript " " represents the fields 

associated to the receiver. Since the systems considered here are linear, the displacement and the stress 

vector fields on the contact area of each transducer finally read as: 

         
   

        
   

                
   

         
    

        (8) 

Then the scattering matrix               that contains ratios of received wave amplitudes to 

incident wave amplitudes is defined as: 

  
  

 

  
     

   
    

 

   
    

    
        

        
   

  
 

  
   (9) 

where      is the scattering matrix of the homogeneous reference medium. Considering the 

interchangeability of the transmitter and the receiver, the reciprocity relation simply reads as     
  

   
 . Herein only the microstructural noise scattering matrix      is of interest. Each term of      can 

be determined by different experimental settings. 

We consider as an example a typical situation: Transducer 1 used as transmitter and Transducer 2 

used as receiver for the heterogeneous medium for which the solutions are denoted as            ; 

Transducer 1 used as receiver and Transducer 2 used as transmitter for the reference medium for 

which the solutions are denoted as                . In this situation the amplitudes of the elastic 

wave signals received or emitted by the transducers in both systems can be written as: 

   
            

       
      

      
         

  (10) 

    
         

       
    

        
              

      (11) 

Taking into account (10) and (11) and substituting the displacement and stress vector fields defined in 

(8) into the left-hand side of the reciprocity relation in (5), the amplitude of microstructural noise 

signals scattered by the polycrystalline medium can be calculated as follows:  

         
   

      
                        

 
                     (12) 

         
   

      
                                        (13) 

where         
    

    denotes the incident power rate emitted by the transmitter. 

Equations (12) and (13) express two equivalent ways to evaluate the microstructural noise 

scattering amplitude      using respectively a volume and a surface integrations. In Section 2.4, the 

equation (12) is used to obtain analytical formulas of the scattering coefficient based on an isolated 

scatterer model and using a Green's function approach, while the equation (13) allows the definition of 

our numerical procedure to measure the scattering coefficient using recorded mechanical data at the 

boundary of the studied domain in Section 2.6. Otherwise it is interesting to indicate that the scattered 
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signal amplitude in any direction may be obtained by placing the two transducers 1 and 2 in the axis of 

that direction. For the particular case of the backscattering coefficient, which is the main object of the 

present work, the same formulas for the backscattering amplitude      are obtained by using two 

coincident transducers. 

2.3 Theoretical formulas of scattered amplitudes and differential cross sections based on isolated 

scatterer model 

The theoretical analysis of scattered amplitudes and differential cross sections proposed by 

Gubernatis et al. in 3D case [1,6] is recalled. As a new contribution, the development of the theoretical 

formulas in 2D case is given. The obtained 2D formulas are important for the comparison between the 

theoretical estimation and the 2D numerical simulations.  

2.3.1 Far-field scattered amplitudes 

The analysis based on an isolated scatterer model considers a bounded region of scatterers     

embedded in an infinite homogeneous region   and calculates scattered amplitudes by using the far-

field values of the scattered displacement and stress fields.  

To do this, a coordinate system is adopted whose origin is set to be coincident with the centroid 

of the scatterer domain     (Fig. 2.). 

 

Fig. 2. Diagram of the systems considered in isolated scatter model (the 3D case) 

In a very classical way, the displacement field in the whole region R is decomposed into two 

parts: the incident wave field      and the scattered wave field      : 

                       (14) 

Then according to the well-known Green's function approach, the far field solution of the 

scattered displacement       for all      reads as: 

Incident plane wave 

     

Scattered wave at     
      

   

   

      

Isolated scatterer located at the 

origin of coordinate system 
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(15) 

where             denotes the global Cartesian basis. We note that the farfield assumption allows 

replacing        , the Green’s function tensor with    as the source point, by          . 

It is obvious that the equation (15) expressing the scattered wave field in terms of an integration 

over the volume of the scatter region     cannot be directly used, as the displacement field      

within     is generally unknown. However it is useful to develop a theoretical estimation of the 

scattered amplitudes when the Green's function tensor           is known. It is precisely the case 

for an infinite isotropic and homogeneous elastic domain. 

In 3D or 2D infinite isotropic and homogeneous elastic media, with    and    as Lamé 

parameters and    as density, the Green’s function tensor reads as [25]: 

          
 

      
       

           

 
 

           

 
      

            

 
     (16) 

          
 

              
            

               
   

          
    (17) 

with       ,       ,   the 3D or 2D identity matrix,                  and            

respectively the phase velocities of the longitudinal and the shear waves in the unperturbed medium, 

and           and           respectively the corresponding wave numbers. For the 2D case, 

  
       denotes the Hankel function of the first kind, which expresses the outward-propagating 

cylindrical wave solutions since it is assumed to be uniform along the direction perpendicular to the 

plane of the 2D problem. 

 Denoting by          the considered unit scattered direction vector, i.e.           , and taking 

into account the fact that, for         and     , we have           and                when 

     , the far-field solution of the scattered displacement       and stress       can be derived 

from (15) as follows: 

                    
            

                   (18) 

                           
            

                                 
            

                   (19) 

with 

                                (20) 

                                  (21) 

        
           

         
                                                 

     
   

 (22) 
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where the symbol       indicates the asymptotic forms,     denotes the symmetric tensor product 

defined as:      
 

 
          with   denoting the usual tensor product,              

and              are the wave vectors of respectively the longitudinal waves and the shear waves.  

To gather the formulas in both 2D and 3D cases, we propose in the present work to introduce a 

space dimension dependent constant            : 

              
                 
       

    
       

  (23) 

Equation (18) shows that the scattered field       can be decomposed into a longitudinal wave 

contribution with amplitude    parallel to       and a shear wave contribution with amplitude    

perpendicular to      . Both amplitudes are determined by the vectors                , whose 

complete calculation requires the complete information of the field   inside    . 

2.3.2 Theoretical formulas of differential cross sections 

Classically the differential cross section 
     

  
        gives, for a given angular frequency  , the 

measure of the fraction of incident power scattered into a particular direction       across the surface 

   defined by the differential element of solid angle    in that direction. As               , it 

can be proved that: 

 
     

  
                  

 

 
                                         (24) 

where       is the power rate of the incident fields. When      , as       and       are 

respectively proportional to                (see (18), (19)), the equation of the differential cross 

section (24) shows that it is independent of the distance from the scatterer.  

In the case of an incident field of incident direction      and containing both longitudinal and 

shear waves of amplitude     and     defined in the following way: 

                                                         (25) 

It can be shown that the differential cross sections for both 3D and 2D cases have the same expression 

as follows: 

 
     

  
        

     
                 

                  
 

     
           

             
 (26) 

So the scattered amplitudes are directly linked to the differential cross sections.  

In the case where the incident field contains only longitudinal waves, i.e.        , we have: 

 
     

  
        

           
 

     
  

   

   

           
 

     
  (27) 
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The two terms on the right hand side of (27) are respectively longitudinal-to-longitudinal and 

longitudinal-to-shear differential cross sections. In the following, only the longitudinal-to-longitudinal 

differential cross section 
           

 

     
  is considered in the theoretical analysis.  

2.4 Theoretical evaluations of microstructural noise scattering coefficient 

The microstructural noise scattering effectiveness is quantified by the scattering coefficient 

          , defined as the differential scattering cross section per unit volume for a given angular 

frequency   and in a particular direction       per unit incident power rate. Sections 2.2 and 2.3 

present two ways to evaluate            and we recall in the present section the equivalence between 

them under the assumption of weak-scattering and with the use of the Born approximation. 

Furthermore, the comparison of both methods allows the identification of a proportionality coefficient 

between them, already given in the literature for the 3D case. Then as a new result this proportionality 

coefficient is identified in the 2D case.  

Now we consider the polycrystalline domain   by assuming that it is single phase with randomly 

oriented grains and is macroscopically isotropic and homogeneous. We denote by N the total number 

of grains in the active volume     of grain scattering [10]. The characteristic function    for the I
th

 

grain    is equal to one inside    and to zero otherwise [10]. It is assumed that there is no deviation of 

density from one grain to the other and the deviation of elastic tensor       in each grain is constant 

and is denoted as     for the grain   .  

By the first method based on the independent scattering approximation, each grain in   is 

regarded as an isolated scatterer placed in the homogeneous reference medium and their contributions 

to the total scattering are summed up incoherently. This gives rise to the following formula of the 

scattering coefficient: 

            
 

     
 

 

   
      

         
   

 

     
 

 

   

      
         

 
 

 
 (28) 

where     denotes an average over all the N grains. As previously mentioned, the longitudinal-to-shear 

scattering part is neglected in (28). 

Due to the single phase assumption and when N is large enough, it is obvious that the average 

          over all grains is equal to the average over all crystallographic orientations, denoted 

simply by          . According to the far-field scattering amplitude presented in Section 2.3 and 

using the Born approximation by replacing in (20)-(22) the scattered field       by each grain    by 

the unperturbed field         in the homogeneous medium, the scattering coefficient can finally be 

written as: 

           
 

   

              

        
  

 
     

 
 
  

 

            
                                 

                            
 

 

 

   (29) 
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with                               and               the spatial correlation function of two 

points   and   , which quantifies the possibility that they belong to the same grain   .  

The second method proposed by Rose [10] is based on Auld’s reciprocity theorem and states that 

           can be obtained from the scattered noise signal amplitude       defined by (12) in the 

following way: 

            
              

   
 (30) 

where     is an average over all samples,   is a coefficient of proportionality and can be determined by 

the equivalence between the two methods (28) and (30) by considering some particular cases. It is 

important to recall that for this method, it is required that          , so            can be 

considered as the variance measure of noises. This requirement leads to           and implies that 

we should use the Voigt average of the elastic tensor, denoted by             , as the stiffness tensor 

for the reference medium.  

By substituting (12) into (30) and by noticing that     , we obtain: 

            
 

   
 

 

      
 
 

 
  

                            
 

 

 

 
   

      (31) 

with                               . The term              refers to the correlation 

function of elastic stiffness tensors at two arbitrary points   and   .  

As                 , by assuming that the elastic constant variation and the characteristic 

functions vary independently on the one hand, and on the other hand the deviation in the elastic 

constants vary independently from grain to grain, i.e.             when    , we can write: 

                                                                    (32) 

Therefore we finally obtain: 

           
 

   
 

 

      
 
 

 
  

        ′                      
      

 

Ω

 

Ω
   

       (33) 

Once more, when the Born approximation is used if the elastic constant deviation is small and the 

weak-scattering assumption is appropriate, the unknown fields      in (33) is replaced by        the 

solution of the same problem for     
 but in the homogeneous reference medium. In the case of 

backscattering, the two transducers 1 and 2 coincide and we have furthermore       =       , then 

theoretical formulas of   of backscattering can be obtained (see Section 2.5).  

Finally to identify the constant of proportionality  , the equations (29) and (33) are compared 

under the Born approximation and in the particular case of backscattering with an incident wave that is 

assumed to be the following longitudinal plane wave with the propagating direction             

and of amplitude   
 : 



  

 
 

 

 13 

           
                      (34) 

By denoting                              , it is straightforward that       

    
                            and            

     
                          , (29) and (33) 

then respectively become: 

           
 

   

                 
 

        
   

 

  

  

                                               
 

 

 

            
             (35) 

           
 

   
 

 

      
 
 

   
      

  

  

  

                                               
 

 

 

            
             (36) 

The comparison between (35) and (36) finally results in the following formula of  , which 

depend also on the space dimension     : 

            
      

 
 
  

        
  

 

              

        
  

  (37) 

where    
    is replaced by     

    
    in order to preserve the generality when the Born 

approximation is not applied, especially for the formulas developed for the numerical approach 

presented in Section 2.6.  

In the 3D case, (37) gives the same result obtained by Margetan et al. [11]. In the 2D case, it is 

necessary to multiply by                  = 
  

   
, which is inversely proportional to the norm of the 

longitudinal wave vector    .  

Finally introducing (37) in (30), we obtained the following formula of the scattering coefficient 

based on the reciprocity theorem in general cases, which is used to define our numerical measure 

strategy (Section 2.6): 

            
 

   

 

        
  

 

              

        
  

  
      

 
 
 
              (38) 

2.5 2D and 3D analytical results for grain size effects on ultrasonic backscattering coefficient  

In this section, we recall the analytical formulas of the backscattering coefficient for a single-

phase, untextured and equiaxed polycrystalline medium without density variation in the 3D case and 

develop it in the 2D case by applying the theoretical results previously presented.  

For ease of analysis, it is assumed that the wave vector of the incident wave is in the direction 

        . When the backscattering is considered, we have            . As only the longitudinal-

to-longitudinal scattering is considered, the incident wave is assumed to be a longitudinal wave. The 

longitudinal-to-longitudinal backscattering coefficient is simply denoted as     .   
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Previous research works [2] indicate that the two-point spatial correlation function measures the 

probability that two points          belong to the same grain. For a common model of randomly-

placed and equally sized spherical grains, it is often approximated by an exponential function 

depending on the distance between the two points         : 

                             (39) 

where    is the averaged grain diameter. Then by substituting (39) into (35) and by applying the 

following change of variables:  

                    (40) 

the following equation is straightforward: 

      
              

        
  

      
                                     

  

  
  

 

 
 (41) 

Then considering the integration form (41) in the spherical coordinate and the cylindrical 

coordinate systems respectively for 3D and 2D cases, the analytical formulas for the longitudinal-to-

longitudinal backscattering coefficient are obtained: 

        
              

             
     

 

       
     

 (42) 

               
            (43) 

They are consistent with the results given by Rose [10] and Ghoshal et al. [20], respectively. Here    

measures the ratio of the averaged grain size to the wavelength     and is referred as “normalized 

frequency”: 

          
    

   
 (44) 

Concerning the correlation function of the elastic stiffness tensor, only                is needed 

in the present work and is calculated using the following equation proposed in [7] for the case of 

macroscopically isotropic and homogeneous polycrystals composed of single phase cubic symmetric 

crystallites: 

                      
       (45) 

with                       the invariant anisotropy factor for cubic symmetry crystallites. 

Particular attention should be paid to the single-scattering assumption and the Born approximation 

used in the derivation of analytical expressions for the backscattering coefficient. They are expected to 

be good approximations on the condition that the inhomogeneity degree of polycrystals   is much less 

than unity, which can be expressed in terms of the effective elastic constants as proposed in [2]: 
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  (46) 

where      has the proper value for the longitudinal wave or shear wave. For example, for longitudinal 

and shear waves propagating along the    direction within the untextured polycrystals with cubic 

symmetry, it can be respectively approximated as: 

   
   

 

   
  

    
 

      
  

  ,   
   

 

   
  

    
 

      
  

   (47) 

This fundamental assumption makes sure that the variation of elastic properties from crystallite to 

crystallite is small. Furthermore, the formula of the backscattering coefficient is expected to be valid 

for the early time portion so that the scattering-induced attenuation is not significant [7]. 

Finally 3D and 2D analytical curves of longitudinal-to-longitudinal backscattering coefficient 

versus frequency              for the polycrystalline material studied in this work are presented 

for three grain sizes of                      (Fig. 3.(a)). The material properties of the studied 

material, a titanium alloy [26], are presented in Table 1. Its anisotropy degree for longitudinal waves is 

twice larger than the one of weak-scattering material of aluminum [2].  

 

Properties 

Elastic Stiffness Constant Relative 

Anisotropy    

Relative 

Anisotropy    
       ) 

     (GPa)                 (GPa) 

Heterogeneous 

polycrystalline material 
134.0 110.0 36.0                     4428.0 

Reference homogeneous 

and isotropic material 
153.0 100.0 26.5 0.0 0.0 4428.0 

Table 1. Material Properties of the studied polycrystalline material 

 Fig. 3.(a) shows that the larger grains backscatter more energy at low frequency, whereas at high 

frequency, smaller grains backscatter more energy and the backscattering coefficient of the largest 

grain becomes constant. The scattering plateau can be attributed to the transition from the stochastic 

scattering region to the geometric one. Otherwise the comparison between the 3D and the 2D cases 

shows that the 2D case gives rise to larger backscattering coefficients than the 3D case as predicted by 

the effect of the multiplier coefficient            and that the asymptotic value in high frequency 

range for the 2D case is   times the one for the 3D case. Finally as referred to (42) and (43), the 

differential backscattering cross section per crystallite    is independent of the grain size and a master 

curve is therefore obtained (Fig. 3.(b)). 
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(a)  (b)  

Fig. 3. Analytical results of longitudinal-to-longitudinal backscattering coefficient for different grain 

sizes in the 3D and 2D cases (a)                   ; (b) master curves                      

2.6 Numerical measure of the scattering coefficient 

Within the theoretical framework based on Auld’s reciprocity theorem, we define a new 

numerical approach for the evaluation of the microstructural noise scattering coefficient using FE 

simulations.  

We propose to utilize the same procedure shown in Fig. 1.: Considering a single-phase, 

macroscopically isotropic and homogeneous polycrystalline medium with randomly oriented grains, 

for a given distribution of grain crystallographic orientations denoted by  , two FE transient 

simulations are performed in the time domain. The first one in the heterogeneous media of interest, by 

applying external loadings (prescribed displacements or surface forces) on the emitter part of 

boundary   , and by recording displacements on the receiver part of boundary   . The second one is 

performed with the homogeneous reference medium by interchanging roles played by    and   . The 

rest of the boundary   remains free surface. With such a configuration, the unit vector directed from 

   toward    defines the scattering direction       of interest. When    coincides with   , the 

backscattering is considered.  

As the scattered solution      is completely given by the FE analysis for a given distribution  , 

there is no need to use the Born approximation. According to (38), the Fourier transform in the 

frequency domain of FE data are then used to calculate the scattering coefficient as follows: 

               
 

   

 

        
  

 

              

        
  

  
      

 
 
 

                (48) 

where    and   
  are respectively the averaged displacement amplitudes of incident waves in both 

simulations. The amplitude of scattered signals         is calculated as integration over the 

boundary instead of the volume for the sake of numerical effectiveness:  

         
   

      
               

  
             

  
   (49) 
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with the stress vectors          on    and             on    and the displacements      on    

and        on    given by both simulations.  

Finally by performing FE simulations on the samples with different distributions  , the scattering 

coefficient of the polycrystalline medium is estimated in the following way: 

                           (50) 

For real experimental or numerical tests in general cases, it is tricky to estimate     the volume of 

grains involved in the scattering. We propose here to define two limits of    : 

The lower limit        is the volume of the "straight beam" connecting the two surfaces    and 

   and it can be shown that a good estimate of        reads as: 

        
 

 
                          

  (51) 

with      the area of    (       ),    the total observation time and      
 the distance between the 

centers of    and   .  

The upper limit        is the volume of all grains that can be traversed by waves propagating 

from    to    for       , not only the grains lying on the straight paths connecting    and    

considered by the lower limit. In the case where the geometry of   is convex, it can be shown that a 

good estimate of        is: 

                                      (52) 

where                 denotes an ellipsoid with two equal semi-diameters and with the centers of    

and     as the two foci on the third principal axis, whose length is equal to      . In the particular case 

of the measurement of the backscattering coefficient,   and    are completely superposed, the 

calculation of        does not change, while for       ,                 becomes a sphere with the 

center of    as its center and       as diameter.  

Then to compare numerical calculation and the theoretical estimation of the scattering coefficient, 

we propose to compare      instead of  . That means the following numerical output: 

                   
 

 

    
    

  
 

              

        
  

  
      

 
 
 
              (53) 

is compared with the two theoretical lower and upper limits                 and                 . 

The analytical formula of            is given in Section 2.5. 

It is important to note that the proposed numerical procedure measures the actual reciprocity gap, 

as the Born approximation is not used. Multiple scattering effects, if exist, are contained within the 

numerically calculated scattering coefficient. Therefore our numerical testing procedure breaks 

through the limitations of the use of the Born approximation and the single-scattering assumption 

made in the theoretical evaluation. It has the ability to simulate precisely the time-domain noise 
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signals of elastic wave propagating in polycrystalline materials including complex physical 

mechanisms, such as multiple scattering and attenuation. Thus it has wider generality and higher 

accuracy than the analytical evaluation and can be applicable to complex media with strong scattering 

due to high degree of anisotropy, textured microstructure or multi-phase microstructure etc. 

Furthermore, the effectiveness of our procedure based on reciprocity theorem is obvious, since it is 

much easier to record and integrate displacement and stress fields at the boundary rather than in the 

volume. This approach is versatile since the scattering coefficient in any given direction can be 

evaluated by only changing the position of the receivers.  

3 FE modeling of elastic wave propagation in polycrystalline materials 

FE simulations of ultrasonic wave propagation in polycrystalline materials presented in this work 

are performed by using an in-house software OOFE (Object Oriented Finite Element program) [14, 

27]. The elastodynamic equations governing elastic wave propagation are solved in the time domain 

by an implicit solver based on a time-discontinuous space-time Galerkin method [17, 27]. Grain size 

effects on the backscattering coefficient of single-phase and equiaxed polycrystalline materials with 

randomly distributed crystallographic orientations are numerically investigated. According to the 

theoretical analysis, the equivalent homogeneous and isotropic medium defined by the Voigt average 

of the anisotropic elastic stiffness tensor over all crystallographic orientations is taken as the reference 

medium.  The Voigt average stiffness tensor is given in Tables 1 and 2. Only 2D FE simulations are 

presented in the present work.  

3.1 Definition of 2D FE models of ultrasonic wave propagation 

2D FE models used in the present work to calculate the backscattering coefficient are shown in 

Fig. 4.. The first one considers the polycrystalline material of interest (the grey part in Fig. 4.(a)) 

embedded in the homogeneous reference material (the white part in Fig. 4.(a)). The whole domain is 

chosen sufficiently large in order to avoid arrival on the receiver of waves reflected by the external 

lateral boundaries during the time interval of analysis. The second one (Fig. 4.(b)) considers the 

reference material. The same FE mesh is used to discretize both heterogeneous and homogeneous 

reference domains. 

The studied polycrystalline materials have an idealized theoretical microstructure with hexagonal 

grains. It is single phase with cubic crystal symmetry. Crystallographic orientations of grains defined 

in terms of the Euler angles           , which define the anisotropic axes with respect to the global 

Cartesian basis, are randomly distributed by providing the following set up: 

 

                

                     

                 

(54) 
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 (a) (b)  

Fig. 4. 2D FE models for (a) the heterogeneous polycrystalline medium; (b) the homogeneous 
reference medium. 

In this work, regular hexagonal grains are mainly considered. For a regular hexagonal grain, its 

grain size is defined as the diameter of its inscribed circle and denoted by H. The equivalent grain size 

defined as the diameter of the circular grain having the same grain surface is then        . FE 

models for the samples with single-size regular hexagonal grains, with three different grains sizes 

                       , are defined. For the three considered grain sizes, the polycrystalline 

domain is composed of respectively 35630, 8855 and 2125 randomly oriented hexagonal crystallites. 

For a given grain size, ten different random distributions of crystallographic orientations are 

considered.  

Furthermore, to investigate if there are any numerical artifacts due to the use of the regular 

hexagonal grains, which results in regularly oriented grain boundaries (Fig. 4.(a)), two microstructures 

composed of geometrically varying grains are considered: an irregular hexagonal grain morphology 

obtained by slight and random perturbation of regular hexagonal grain shape, and a random grain 

morphology generated by using the Voronoi approach. Ten samples of different crystallographic 

orientations for each case are carried out. The simulation with irregular hexagonal grain shape has no 

other goal than proving the specific orientations of the grain boundaries do not matter. Accordingly we 

keep the same center points and the same crystallographic orientation for each grain, but changed only 

the grain boundary orientations. By contrast, the crystallographic orientation distributions for the ten 

samples with a Voronoi-type grain morphology can be more or less different as grains are randomly 

shaped. 

 Equivalent grain sizes (H, d) are calculated for each grain using the hexagonal regular grain 

having the same grain surface. For the samples with irregular grains, Fig. 5.(a) and (b) show in blue 

the distribution of angles formed by grain boundaries with the horizontal axis and the distribution of 

grain size, respectively. Both distributions for samples composed of regular grains are also shown with 

red vertical lines. Concerning the grain boundary orientation, it is shown that the distribution of the 

orientations of irregular hexagonal grain boundaries is the sum of three Gaussian distributions with 

mean value respectively equal to the three orientations -90°, -30° and 30° of regular grain boundaries. 

Emitters line 
   

Pressure Loadings 

free boundary outside the emitters  

      
   

   

        
 

Pressure Loadings 
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Concerning the distribution of grain size, it reveals that microstructures with irregular hexagonal 

grains present a Gaussian grain size distribution with the unweighted average equal to the size of 

regular grains. By contrast, for the Voronoi tessellation, a random distribution of seeds leads to a 

random distribution of grain boundary orientation (Fig. 5.(c)), and a Gaussian grain size distribution is 

also generated with the same average grain size and slightly larger standard deviation than the one of 

irregular hexagonal grains. Numerical results on these samples allow ruling out any suspicion of 

possible artifact due to the use of regular hexagonal grains for the numerical simulations (Section 4.2).  

(a)  (b)   

(c)         (d)    

Fig. 5. (a) Grain boundary orientation distributions w.r.t. the horizontal axis and (b) grain size 

distributions for polycrystals with irregular hexagonal grains; (c) Voronoi-type grain morphology and 

(d) its grain size distribution. In blue: Gaussian type distributions for microstructures with 

geometrically varying grains with  H =80 m; In red: Vertical lines for microstructures with regular 

hexagonal grains with H=80     

Concerning the external loadings and the data recording, an emitter line    of 2.8mm length on 

the external top boundary of the studied domain is defined (Fig. 4). Twenty-two uniformly distributed 

points are defined on    and serve as emitters and receivers. To simulate a broadband ultrasonic 

incident signal produced by a laser pulse [23], ultrasonic waves are generated by applying a pressure 

loading          on   . For a given  ,        is the sum of two Ricker signals varying in time within 

a period   , whose central peak frequency         is respectively equal to 5MHz and 10MHz. Each 

Ricker signal             reads as: 
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 (a) (b)  

Fig. 6. Combined Ricker signal used as the external pressure loadings presented in both (a) time and (b) 

frequency domains 

              
             

    
 

  
 
 
          

    
 

  
 
 
               

                                                                                                       

  (55) 

Furthermore in order to reduce effects of shear waves, which would be triggered when 

discontinuities in boundary conditions occur at the ends of the emitter line, the peak amplitudes       

of both Ricker signals are chosen to have a Gaussian distribution along the emitter line. Thus the peak 

amplitudes of input signals smoothly decrease down to zero at the ends of the emitter, which is better 

suited to the free boundary condition imposed on the other side. Fig. 6. presents the external pressure 

loading used in the present work in both time and frequency domains. The quality of FE simulations 

can be deteriorated in frequency ranges where the spectral amplitude of incident waves are very small, 

therefore according to the frequency spectrum of the combined Ricker signal (Fig. 6.(b)), the valid 

frequency domain of our numerical simulations presented herein is about [2, 16] MHz. 

Unstructured FE meshes using both triangular and quadrilateral finite elements have been used in 

the numerical simulations without significant differences. Hence only simulations using quadrilateral 

elements are presented here. An example of FE mesh of microstructures with the grain size   

      is presented in Fig. 7 and shows the great flexibility offered by the FEM to exactly models the 

grain boundaries. 

(a) (b) (c)  

Fig. 7. FE meshes of microstructures composed of (a) regular and (b) irregular hexagonal grains and (c) 

a random Voronoi-type grain morphology with averaged grain size of      . 
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3.2 Mesh convergence analysis 

In order to account for the impedance variations between two adjacent grains and have a good 

representation of wave front, a sufficient number of elements included in one grain and in the shortest 

wavelength of interest is essential for the quality of numerical simulations [16, 27]. However, the 

computational cost increases greatly when the mesh becomes more refined. To control the quality and 

optimize the efficiency, the mesh convergence analysis is of great importance.  

For the mesh convergence analysis presented in this Section, FE models with all the three grain 

sizes                      are used but they are only of half sizes of those described in Fig. 4. in 

order to reduce the computational cost. Different ratios of grain size to element size     are 

considered. The following mechanical quantity      is chosen to quantify the mesh convergence: 

      
  

 
    

        
    

   

  

 
            

    
   

 (56) 

where M = 22 is the total number of emitter/receiver probes,   
        and           represent 

respectively the backscattered noise and the incident signals, they are in fact the Fourier transform of 

the corresponding velocity component in the direction    recorded at the jth probe   .      is 

therefore a frequency-dependent coefficient calculated as the ratio of the root-mean-square (rms) 

velocity between the backscattered noise and the incident signals. It is associated to the percentage of 

the energy loss due to scattering in the backscattered direction. The backscattering mesh convergence 

is evaluated by           with the converged solution    obtained by the highest available density 

mesh of all studied FE models. 

Fig. 8. presents the backscattering mesh convergence for the frequency         as 

respectively a function of the number of elements per grain size     and a function of the number of 

elements per wavelength    .  

On the one hand, it is seen that a sample with a smaller grain size converges more rapidly with 

respect to the number of elements per grain size     (Fig. 8.(a)). Indeed for a given ratio    , a larger 

number of elements per wavelength     is obtained for the sample with a smaller grain size and thus 

results in less mesh scattering. At         and for       , only the grain size of      has 

converged for the threshold of 1%, which agrees with the results obtained by Van Pamel et al. [15] 

and Shahjahan et al. [16]. Otherwise it is worth to remark that the errors for the grain size of       

are significantly higher than the other two grain sizes since this grain size is comparable to the studied 

wavelengths.  

On the other hand, a sample with a smaller grain size converge less rapidly with respect to the 

number of elements per wavelength     (Fig. 8.(b)), because there are less elements per grain size for 

a given ratio    . Our analysis concludes that there should be at least 20 elements per wavelength to 

ensure the beginning of a converging process. 
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(a) (b)  

Fig. 8. Backscattering mesh convergence           w.r.t. (a) the number of elements per grain size 

    and (b) the number of elements per wavelength     for three grain sizes for        .  

Fig. 9. presents the backscattering mesh convergence as a function of the number of elements per 

grain size     at six different frequencies for each of the three grain sizes. For a given ratio of    , it 

is observed that the lower the frequency is, the more rapid the convergence is because of a larger 

number of elements per wavelength    .  

The numerical results presented in the next section are obtained using the FE meshes with 

         and    respectively for the three grain sizes              and      . Therefore 

according to our mesh convergence analysis, the backscattering coefficient is converged at least for 

the threshold of 7% at all frequencies and for all three grain sizes (Fig. 9.). It can be concluded that the 

FE models used herein are appropriately defined and adequate convergence is achieved in the 

measurement of noise levels. 

3.3 Ultrasonic phase velocity in polycrystals 

In this section, different ways to calculate effective elastic properties and longitudinal wave phase 

velocities of the studied polycrystalline material are considered. Numerically estimated phase velocity 

is compared with the theoretical effective phase velocities. It allows determining which effective 

elastic tensor should be used as equivalent reference medium on the one hand, and on the other hand 

validating our FE models in the term of quality of estimating the arrival time of waves. 

Firstly three averages of elastic stiffness tensor classically defined by static homogenization 

studies to get effective elastic properties are considered. The Voigt average results in an upper bound 

of effective elastic stiffness tensors under the assumption of uniform strain, i.e.             

         , so                   . The Reuss average results in a lower bound by assuming a 

uniform stress state, i.e.                           , so                       . A self-

consistent (SC) average [29] gives an estimate between the Voigt and Reuss bounds, by calculating 

equivalent elastic properties when either the elastic stiffness tensor      or the compliance tensor 

       is averaged over all possible orientations.  
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 (a) (b)  

 (c)  

Fig. 9. Backscattering mesh convergence           w.r.t. the number of elements per grain size     

at six different frequencies for the grain sizes of (a)     , (b)       and (c)      ; The number of 

elements per grain size     of the FE meshes used for the numerical analysis presented in the Section 

4 and their precision are indicated for each grain size. 

For a polycrystalline sample containing 2125 grains of the grain size        , the effective 

elastic properties of the three different averages and the corresponding phase velocities     

            of longitudinal waves propagating in the direction    are listed in Table 2. The phase 

velocities are quite different: Those given by the SC and Reuss averages are about 1.3% and 2.8% 

smaller than the one given by the Voigt average.    

 

Properties         ) 

Elastic Constants 

       (GPa)                     (GPa) 

                  

av = Voigt 5878 153.0 100.0 26.5 

av = SC 5800 149.0 102.0 23.9 

av = Reuss 5714 144.6 104.6 20.0 

Table 2. Effective elastic properties and phase velocities of longitudinal waves of a polycrystalline 

sample containing 2125 grains of size       
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The numerical evaluation of phase velocities is based on a spectral autocorrelation method with 

numerical data recorded at 11 inner probes placed 2mm below the emitter-receiver line   . Fig. 10. 

compares, for the same polycrystalline sample containing 2125 grains of size      , the numerical 

estimate and the analytical prediction of the longitudinal-wave phase velocity in terms of relative 

difference with the phase velocity defined by the Voigt average tensor C(x) Voigt . The analytical 

prediction is calculated using the dispersion relation developed in [28] for the 2D case, which is 

similar to the one obtained by Stanke and Kino for the 3D case [2]. We note that the analytical 

predictions are obtained by using the Voigt average medium as reference medium. Good agreement is 

observed between both numerical and analytical predictions. This confirms the relevancy of the 

classical choice of using the Voigt average to determine the equivalent homogenized elastic tensor and 

wave velocities in polycrystalline materials with randomly oriented grains. 

 

Fig. 10. Comparison between numerical and analytical estimates of the longitudinal-wave phase 

velocity    , in a polycrystalline sample containing 2125 grains of size      , in terms of relative 

difference with the phase velocity in the Voigt average reference medium             
        . 

3.4 Post-processing of numerical ultrasonic data 

Two kinds of post-processing of FE data are used here.  

The first one is based on the Helmholtz’s decomposition: Displacement fields are decomposed 

into two vector fields, the one curl-free and the other divergence-free. In the case of isotropic and 

homogenous elastic media, the curl-free part    is in fact the longitudinal wave component as it is 

solution of the longitudinal wave equation, while the divergence-free part    is the shear wave 

component being solution of the shear wave equation [24, 30]. Therefore by displaying the scalar field 

      (       ) and the vector field        (        ), longitudinal and shear wavefronts are 

respectively represented.  

Now we consider the case of 2D anisotropic and homogeneous elastic media in which a quasi-

longitudinal or a quasi-shear wave of wave vector k propagates:                   , with 

             , where    and     are the amplitude components respectively parallel and 

perpendicular to the wave vector,     and     being unit vectors. Then we have: 
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                            (57) 

                                    (58) 

Therefore the field       can still reveal the wavefronts of quasi-longitudinal waves since       

     generally remains true, and the field        can still reveal the wavefronts of quasi-shear waves 

since            remains generally true. Finally in the general case of anisotropic and 

heterogeneous media, it is impossible to distinguish the different wave modes generated by the 

complex scattering at the grain boundaries behind the principle wavefronts. However, this post-

treatment based on the Helmholtz’s decomposition remains interesting and is used in the present work 

because it allows revealing the propagation of the principle wavefronts in these complex 

polycrystalline media. 

As an example, Fig. 11. shows wavefronts of quasi-longitudinal waves and quasi-shear waves in 

a polycrystalline sample with the grain size        at three different moments. We observe a 

principal quasi-longitudinal wavefront (      predominant) propagating in the direction     at first 

and then in the opposite direction after being reflected by the bottom of the sample. Behind the 

principal quasi-longitudinal wavefront, scattered noises in terms of       are easily recognized. Fig. 11. 

shows also two principal quasi-shear wavefronts (         predominant). The faster one propagates 

together with the principal quasi-longitudinal wavefront because        vanish no longer on the quasi-

longitudinal wave fronts, but also due to the conversion from quasi-longitudinal waves to quasi-shear 

waves every time when the quasi-longitudinal waves encounter a grain boundary. The slower one 

propagates with the velocity of quasi-shear waves, nearly two times smaller than the velocity of quasi-

longitudinal waves. It is obvious that the quasi-shear wave modes seem to be more sensitive to grain 

boundaries than the quasi-longitudinal wave modes and result in high-level noises in terms of         . 

The second kind of post-processing is the calculation of the backscattering coefficient according 

to the formula (49) and (53) developed in Section 2.4. To do this, the prescribed external pressure 

loadings and the velocity components    in the direction    recorded at the 22 receivers on the 

emitter-receiver line    are used. As an example, Fig. 12. illustrates the normalized velocities  
  

        
 

observed at the 10
th
 receiver located at the middle of    for a polycrystalline sample with grain size of 

80   and for the homogeneous reference medium. The first and second peaks on both curves 

correspond to the incident signals and the echo signals reflected by the bottom side of the sample. For 

the polycrystalline sample, perturbations of much smaller amplitude than incident and echo signals are 

in fact backscattered noise signals, which are absent in the reference case. 
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 (a)  

(b)  

(c)  

Fig. 11. Propagation of the quasi-longitudinal waves in terms of       (left) and of the quasi-shear 

waves in terms of          (right) in a polycrystalline sample with grain size of 80   at different 

moments (a)         , (b)          and (c)         . 

The noise signals are recorded during a time period        (Fig. 12), where            is the 

arrival time of the reflected echoes at the receivers. The comparison between the theoretical and the 

numerical calculations requires the volume of the involved polycrystalline microstructure to be 

defined (Section 2.4.1). A minimum limit and a maximum limit,        and       , are proposed in 

equations (51) and (52). In the 2D case, these are in fact surface areas,        and       , 

respectively corresponding to the pink rectangular area and the green semi-circular area shown in Fig. 

13.. Comparing Fig11.(b) and Fig. 13, it is interesting to point out that the minimum and maximum 

limits,        and       , more likely correspond to the active grain volumes of respectively 

longitudinal-to-shear wave scattering and longitudinal-to-longitudinal wave scattering. Furthermore, 

the positional averaged displacement amplitudes of incident waves    in (53) is calculated by: 

                
  

    , with          denoting the displacement amplitude of the longitudinal 

wave at the receiver    in the frequency domain. 
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Fig. 12. Normalized velocity in    direction recorded at 10
th
 receiver in both polycrystalline (upper 

curve) and reference media (lower curve) 

 

Fig. 13. Minimum and maximum limits        and        of polycrystalline surface involved by 

backscattering during the analysis period        

4 Numerical evaluation of grain size effects on the backscattering 

In this section, numerical results of investigating grain size effects on the backscattering are 

presented. As indicated in Section 3.1, three grain sizes of     ,       and       are studied, ten 

random distributions of crystallographic orientations are calculated for each grain size. Different kinds 

of grain morphologies, such as regular and irregular hexagonal grain shapes as well as a random grain 

morphology generated by the Voronoi tessellation, are considered. 

4.1 Grain size effect  

The numerically and theoretically evaluated backscattering coefficients are firstly considered in 

the frequency domain (Section 4.1.1). Then the backscattered noise levels are measured and analyzed 

in the time domain (Section 4.1.2).  

4.1.1  Backscattering coefficient in the frequency domain 

Comparisons between theoretical and numerical estimates of the backscattering coefficient in the 

frequency domain for all the three grain sizes are shown in Fig. 14.(a)-(c). For the numerical results, 

three curves of respectively maximum values, mean values and minimum values of the backscattering 

coefficient for the ten random distributions of crystallographic orientations are plotted respectively in 
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dash-dotted, solid and dotted lines. Circle markers are used on the curves of the mean values. The 

analytical predictions                     are plotted in solid and dash lines. 

For all the three considered grain sizes, the averaged response over ten samples obtained by the 

numerical simulations fluctuates between the two analytical bounds         and        , its variation 

tendency with respect to the frequency is consistent with the analytical prediction. The backscattered 

energy increases with frequency whatever the grain size. However, in low frequency region, the larger 

the grain size is, the larger the backscattered noise levels are, while in high frequency region, the 

larger the grain size is, the less important the backscattered noise levels are. Moreover in high 

frequency region, the backscattering coefficient in the sample with the largest grains, i.e.      , 

becomes nearly constant while the backscattering coefficient of the other two samples with smaller 

grain sizes keeps increasing with frequency.  

(a) (b)  

(c) (d)  

Fig. 14. Comparisons in the frequency domain between theoretical and numerical estimates. 

Backscattering coefficient for respectively three grain sizes (a)     , (b)       and (c)      ; (d) 

Backscattering coefficient per crystallite as a function of the normalized frequency    

Significant gaps between the curves of maximum values and minimum values of the 

backscattering coefficient for the ten studied samples are obtained and highlight important dispersions 

in backscattered noise levels between two random distributions of crystallographic orientations. More 

particularly, we remark that the maximum values of backscattering coefficient obtained by ten 
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numerical samples are larger than the theoretical upper bound         in the case of grain sizes equal 

to      and       in high frequency range. This point will be further discussed in Section 4.2. 

Otherwise, Fig. 14.(d) compares the master curves obtained theoretically and numerically, i.e. the 

previously compared curves are plotted again in terms of the backscattering coefficient per crystallite 

        and the normalized frequency          . The two master curves numerically calculated of 

grain sizes      and       are well superposed in the low frequency range (        and are 

consistent with the lower bound of theoretical prediction            . Then they rapidly increase with 

slight fluctuation, keep being more or less superposed and are bounded by the lower and upper 

theoretical bounds. Finally in the high frequency range (      the two numerically calculated 

master curves of grain sizes of       and       gradually decrease and tend to the constant level 

defined by the lower theoretical bound            rather than the upper bound            . This 

phenomenon has not been well understood yet. However we believe that the relatively high degree of 

anisotropy of the studied material may be the cause as the use of the Born approximation should be no 

more relevant [6]. 

4.1.2 Backscattered noise levels in the time domain 

It is also interesting to measure the backscattered noise levels in the time domain. For a given 

frequency f0 , the root-mean-square (rms) positional average of the difference between the observed 

noise signal and the positional averaged noise level, i.e.            is measured [31]: 

             
 

    
    

                   
     

    
   

 (59) 

with 

         
 

    
   

          
    
    (60) 

where      means the average is taken over all receivers and over all the ten samples, so we have 

in fact 220 measures.   
           is calculated by applying a frequency filtering, corresponding to the 

frequency f, to the velocity component    
        in    direction of the noise signal recorded at the  th 

receiver    [32].         is interpreted as the mean of the noise level at the time t for a given 

frequency    and would be zero if the total number of measures, equal to      in the present work, 

is sufficiently large [31]. In this case,            is identical to the standard deviation of the noise 

level. To eliminate the dependence of the noise level on the incident power, normalized rms noise 

level            is defined [31]: 

                                (61) 

 where      is taken equal to one half of the peak-to-peak amplitude of the incident signals for the 

frequency   . 
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Fig. 15. presents, for the three grain sizes, the normalized rms noise level in the time domain for 

the two central frequencies      and       defined by the two incident Ricker signals. With the 

properties of the equivalent homogeneous medium and the emitter line width of the pressure loading, a 

limit of the Fresnel zone indicating the beginning of the far-field region is estimated theoretically and 

verified numerically to be between 0.6 µs and 1.1 µs. Therefore, the peaks of the curves in Fig. 15 are 

consistent with this limit. Afterwards, the drop with depth of noise levels is observed for two reasons: 

one associated with the attenuation and the other resulting from the beam spread. It is well known that 

the single Gaussian beam model describes the beam spread as inversely proportional to the frequency 

[1]. As the drop with depth at its beginning in the cases of grain sizes of 80 µm and 160 µm is more 

rapid for   = 10MHz than for   =5MHz (Fig. 15), it seems that the attenuation would play a more 

important role for   = 10MHz than the beam spread. However this conclusion should be confirmed by 

further quantitative analyzes.  

The highest noise level is given by the grain size of       for         and by the grain size 

of      for         . By comparison with the theoretical results (Fig. 3.), it seems that the 

transition from the stochastic region to the geometric scattering regime should numerically occur 

earlier than the theoretical prediction. Indeed in Fig. 3. the theoretical curve for the grain size of 

      is still above the one for the grain size of     , while in Fig. 15.(b)) the numerical simulation 

gives a noise level for the grain size of       lower than the one for the grain size of     . For 

        , the grain size of       gives the lowest noise level, which is also in good agreement 

with the previous analysis in the frequency domain (Fig. 14.). 

 (a) (b)  

Fig. 15. Normalized rms noise level in the time domain for three grain sizes at the central frequencies 

(a)         and (b)         . 

The main purpose of this paper is the development of a numerical approach for estimating the 

diffusion coefficient in the frequency domain. Nevertheless the evolution in the time domain of grain 

noise levels is also very important and many theoretical, numerical and experimental works have been 

carried in the literature (e.g. [20, 31, 33-35]), further comparisons with the analytical models are to be 
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done and constitute an interesting way to validate numerical tools. The numerical simulation would 

allow investigating in return the hypothesis used by the theoretical models. 

4.2 Grain boundary orientation effect  

To check possible numerical artifacts due to the shape of regular hexagonal grains, FE 

simulations are performed for the microstructures with irregular hexagonal grains and the Voronoi-

type random grain morphology presented in Section 3.1. Comparisons of the backscattering coefficient 

between these two microstructures and the one with single-size regular hexagonal grains for the grain 

size of  H =80 m are shown in Fig. 16.(a). For the grain size of  H =160 m, only comparisons 

between regular and irregular hexagonal grain morphologies are considered in Fig. 16.(b). Good 

agreement is obtained with only slight deviations in the high frequency region of        .  

(a) (b)  

Fig. 16. Comparison of the backscattering coefficient between microstructures with (a) three different 

grain morphologies of averaged grain size of      and (b) two different grain morphologies of 

averaged grain size of      . 

The very small differences of the backscattering coefficient observed between the three different 

grain morphologies can be explained by considering the spatial correlation function. Indeed, according 

to (35) or (36), differences in the backscattering coefficient between microstructures containing 

different grain morphologies but with the same randomly-distributed crystallographic orientations are 

only due to the spatial correlation functions                     , which depends upon the grain 

size and shape. Under the assumption that the media are statistically isotropic and ergodic,      has a 

spherical symmetry and depends only on        the distance between two points. Therefore it is 

convenient to calculate      in the wave propagation direction, which is the direction    in our study. 

As referred to Stanke [36], an approximation of       can be deduced considering a microstructure 

composed of a sufficiently large number N of grains in the following way: 

        
         

   

   
 
   

  (62) 
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Here    is the length of a line segment parallel to the propagation direction passing through one grain 

with its end points falling on the grain boundary, named chord length (Fig. 17.),      is the positive 

part of     and     represents the spatial average over the whole sample.  

For the microstructure with single-size regular hexagonal grains,       is independent on   and 

is therefore simple to calculate. For geometrically varying grains, it is possible to obtain the chord 

lengths in each grain along any line parallel to    but the computation amount is huge since a 

sufficiently large number of grains have to be processed. Thus, an alternative approach is proposed by 

considering an equivalent diameter    of inscribed circle to the regular hexagonal grain with an 

identical surface area for the grain   : 

        
         

   

   
 
   

  (63) 

Indeed, under the assumption that the media are statistically isotropic and ergodic, (63) gives a good 

estimation of (64). 

Spatial correlation functions for the microstructures with three different grain morphologies are 

presented in Fig. 18.. They are compared with the spatial correlation function of polycrystals 

containing random-shaped equiaxed grains with Poisson grain size distribution expressed in an inverse 

exponential form (39). It is obvious that the differences in       between the three microstructures 

with the same effective grain size are very small. Hence this study provides an analytical insight into 

little differences observed in the backscattering coefficient between them. Moreover, it is noticed that 

the differences between the regular hexagonal single-size grains and the theoretical model of randomly 

shaped and equiaxed grains with Poisson distribution are no more than 10%. The maximum difference 

occurs at the distance equal to the mean grain size     .  

 

Fig. 17. Diagram of spatial correlation function measurement for microstructures with irregular or 
regular hexagonal grains 



  

 

 34 

 

Fig.18. Comparison of the spatial correlation function between microstructures with four different 

grain morphologies: regular and irregular hexagonal grain morphologies, the Voronoi-type random 
grain morphologies with normal and Poisson grain size distribution. 

Therefore it can be concluded that no numerical artifact results from the idealized microstructure 

composed of single-sized regular hexagonal grains. The large oscillations of the backscattering 

coefficient are then not due to any periodic morphology of the grain microstructure. The observed 

peaks and troughs of the backscattering, with a similar intensity whatever the grain shape, have 

probably a “physical” origin, which is discussed in the following section. 

4.3 Crystallographic misorientation effect 

The theoretical formulas give an averaged evaluation of the backscattering coefficient over all 

untextured distributions of crystallographic orientations and under the assumption of independent 

scattering approximation. Any microstructure should however deviate more or less from this averaged 

prediction. Fig. 19. presents, in the case of the grain size of     , large variations between the 

numerically calculated backscattering coefficient for samples having different distributions of 

crystallographic orientations. It is worth mentioning that all the different distributions give a nearly 

same Voigt average of elastic stiffness tensor. However the backscattering coefficient in the frequency 

domain for each sample fluctuates greatly up and down with erratically placed peaks and at some 

frequencies the backscattering coefficient can be very low and approach zero (Fig. 19.(a)). Numerical 

evaluations of the backscattering coefficient for one sample, then by averaging over five and ten 

samples are compared in Fig. 19.(b). As expected, increasing the number of samples can obviously 

smooth out fluctuations and improve the comparison between theoretical and numerical evaluations.  

To provide some insight into the fluctuations of the backscattering coefficient with frequency, we 

consider in the following a group of seven adjacent grains of     , denoted   and embedded in the 

homogeneous reference medium (Fig. 20.(a)). Each grain has a randomly defined crystallographic 

orientation   and a different level of phase velocity deviation                          from 

the reference medium along the    direction for the longitudinal wave. Actually, for a randomly-

oriented polycrystalline titanium,         has an upper bound of +5.6% and a lower bound of -5.2%. 
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For the grain whose centroid locates at the origin of the coordinate system, the phase velocity is 

chosen to approach to the one in the equivalent homogeneous medium, then the six adjacent grains are 

chosen to have two levels of phase velocity deviations approaching to the material limits, two negative 

levels of phase velocity deviations and two slight magnitude of phase velocity deviations. The seven 

grains are numbered as indicated in Fig. 20.(a) and their phase velocity deviation         are 

respectively equal to -0.06%, +5.3%, -4.1%, -0.8%, +0.5%, +1.7%, +4.5%. According to the 

theoretical principle of the isolated scatterer model, eight numerical simulations are performed: One 

simulation with all seven grains involved and seven simulations each of which has only one grain 

involved without changing its location.  

 (a) (b)  

Fig. 19. Backscattering coefficient in the frequency domain for the grain size of     : (a) Variations 

between three samples; (b) Effects of the number of samples to analyze on the averaged backscattering 

coefficient. 

To illustrate the numerical results, Fig. 21. presents the time domain response recorded at the 

10th receiver and the backscattering coefficient in the frequency domain for three grains: 2th, 3th and 

6th. In the time domain, two primary noise signals scattered by a single grain are observed, which 

correspond respectively to longitudinal-to-longitudinal scattering and longitudinal-to-shear wave 

scattering. In the frequency domain, the backscattering coefficient remains oscillating but with very 

small amplitudes and is increasing with frequency on the whole. There's no more backscattering level 

fluctuating down to zero. It seems that a larger velocity deviation           results in higher levels of 

backscattered noise signals in both time and frequency domains. Moreover with equal level of velocity 

deviation   a grain slower than the reference background seems to send higher level of noises 

backwards than a grain faster than the reference background.  

Based on the independent scattering approximation using the isolated scatterer model, individual 

contributions of each grain to the backscattered noise signals are added independently 

   
         

   
   . Fig. 21.(a) compares this sum to   

          , which is the backscattered 

displacement fields in the e2 direction recorded at the   th
 receiver     for the medium  , with all 
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seven grains involved. Insignificant differences between them are observed, which are in fact the part 

due to the multiple scattering.  

Otherwise in the frequency domain, the backscattering coefficient directly calculated using the 

numerical simulation involving all the seven grains as        
 

   
               , can be 

compared to the average over independent contribution of each grain 
 

  
                   , which 

is exactly the application of the independent scattering approximation. Significant differences are then 

observed between them and also with the analytical prediction (Fig. 21.(b)).  

To explain those differences, the following estimation of                 in the frequency 

domain is written based on the assumption that the scattered noise signal            recorded at  th
 

receiver is the sum of the contribution of each individual grain          
  : 

 

(a) (b)  

Fig. 20. (a) Time-series scattered noise signals at the 10
th
 receiver and (b) frequency dependence of the 

backscattering coefficient for three isolated grains within a homogeneous isotropic medium 

 (a) (b)  

Fig. 21. Analysis of the independent scattering approximation. (a) Comparison of time domain signals 

recorded at the 10
th

 receiver     between   
           and    

         
   

   ; (b) Comparison of 

backscattering coefficient calculated using                    and                         
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                                          (64)  

where    is the distance between two adjacent receivers. We note that (64) is true because the stress 

vector         =          is prescribed on the emitter line and is therefore identical in all the 

simulations (see (49)). Two terms are therefore emphasized in (64), an auto-correlation term of each 

grain and a cross-correlation term between different grains. When the number of grains contributing to 

noise echo signals tends to infinity, the cross-correlation term tends to zero, according to the 

assumption that             when    . Thereby the incoherent sum of grain contribution 

                       should be a good approximation to                   , which is far 

from the case with only seven grains. In the same way, only in the case of a sufficiently large number 

of grains contributing to the received noise echo signals, the backscattering coefficient estimated by 

using                        would be comparable to the analytical prediction. Otherwise the 

cross-correlation term leads to oscillations due to the alternatively positive and negative phase velocity 

deviations and results in fluctuations in the backscattering coefficient for a sample, as the volume of 

grains travelled by the ultrasonic beam always contains only a limited number of grains.  

We believe that the number of grains contributing to the backscattering has a significant influence 

on the oscillatory levels of the numerically estimated backscattering coefficient. Increasing the number 

of studied samples should lead to a smoother curve of the backscattering coefficient. Generally 

Margetan et al. propose to use 100 to 1000 waveforms per analysis, given that the receiver positions 

are chosen to be as widely spaced as possible to reduce the interactions [31]. We note that for the 

averaged numerical results shown in Fig.14, with 22 receivers and 10 samples calculated, 220 

waveforms have been analyzed.  

To investigate how many realizations need to be executed to get an accurate prediction in terms 

of grain noise levels of an ensemble of various microstructures, ten more realizations of the 

microstructure with the grain size of      are carried out, with 22 noise waveforms for each 

realization acquired. Convergence at different frequencies of the backscattering coefficient as a 

function of the number of waveforms is analyzed (Fig. 22). It is noticeable that the lower the 

frequency, the more rapidly the grain noise measurements converge. Specifically, for the considered 

titanium alloy, there is a beginning of convergence with about 100 noise waveforms for the frequency 

range f < 6MHz         , about 250 noise waveforms for the frequency range f < 12MHz (   

    . Obviously, more waveforms are needed for higher frequencies. In summary, the convergence 

between ten and twenty realizations is obvious, however, future studies are necessary to know 

precisely the number of realizations needed to achieve convergence for a required accuracy and for a 

frequency range of interest. Otherwise, it is important to emphasize that in a real polycrystal, the 
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number of grains in the investigated volume is limited and so FE simulation on a limited volume could 

be a better way to understand and estimate variabilities between the experimental results than the 

analytical approach assuming an infinite medium. 

 

Fig. 22 Convergence of the numerical evaluation of the backscattering coefficient of an ensemble of 

microstructures with the grain size of 80m in terms of the number of analyzed waveforms  

5 Conclusions 

A versatile approach to numerically evaluate the scattering coefficient in polycrystalline materials 

has been proposed. It is based on the reciprocity theorem and on the full-field FE modeling in the time 

domain of the ultrasonic wave propagation in polycrystalline materials. It is applicable for any 

polycrystal regardless of its anisotropy, crystallographic or morphological textures (grain size, grain 

elongation, etc.). The effects of multiple scattering is automatically included in the measure of the 

scattering coefficient as actual scattered fields are solved by the FE simulation, which makes it a 

powerful and promising tool to investigate real polycrystalline materials even with strong-scattering 

microstructures. We note the developed numerical approach is capable to simulate more complex 

microstructures. For example, microstructures with bimodal grain-size distributions have been studied 

[28]. Numerical tools have also been developed to consider real microstructures defined by EBSD 

measurements. 

In the 2D case of single-phase, un-textured and equiaxed polycrystals, the backscattering has 

been analyzed analytically and numerically in a unified theoretical framework. Coherent variation 

tendency of the backscattering coefficient in the frequency domain was observed between the 

numerical measurements and the analytical prediction. Effects of the grain size, the grain boundary 

orientations and the distribution of crystallographic orientations in the backscattering have been 

numerically investigated. Discussions on the two-point spatial correlation functions of microstructures 

have been made to improve the understanding of slight influence of grain boundary orientations.  

As indicated in Introduction, the analytical formulas for the diffusion coefficient developed 

within the same framework based on the reciprocity has been extended to general pitch-catch 
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configurations [11], we believe that the proposed numerical evaluation approach would be versatile 

enough to consider these general configurations. However, mode-conversion scattering measurements 

are more complicated, so the numerical approach should be validated and perhaps need to be enriched. 

The numerical simulation that allows accessing full-field data should further progress the 

understanding of mode-conversion scattering phenomena and better quantify each conversion 

mechanism. 

Finally, it is important to perform 3D numerical simulations, as polycrystalline textures are 

inherently a 3D concept. For example, recent research works have been developed by Van Pamel et al. 

[15, 37] to compare effects of the 2D and 3D modelings on the ultrasonic scattering. The 2D analytical 

formulas we developed for both diffusion and attenuation coefficients (see [2] for the 2D formulas of 

the attenuation coefficient) confirm the dimensionality of the ultrasonic scattering within 

polycrystalline materials. However, the 2D modeling is still interesting and useful. Indeed, it can be 

relatively pertinent in particular configurations, such as the case of polycrystals composed of very 

elongated grains and inspected with ultrasonic beams perpendicular to the longest axis of the grains. 

Otherwise, the 2D modeling allows efficient capture of some key features of ultrasonic scattering, 

such as the transition between different scattering regimes, which are similar and so representative for 

the 3D scattering phenomena. 
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