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Abstract

We present a unified multidimensional variational framework for the space dis-
continuous Galerkin method for elastic wave propagation in anisotropic and
piecewise homogeneous media. Based on an elastic wave oriented formulation
and using a tensorial formalism, the proposed framework allows a better un-
derstanding of the physical meaning of the terms involved in the discontinuous
Galerkin method. The unified variational framework is written for first-order
velocity-stress wave equations. An uncoupled upwind numerical flux and two
coupled upwind numerical fluxes using respectively the Voigt and the Reuss
averages of elastic moduli are defined. Two numerical fluxes that are exact so-
lutions of the Riemann problem on physical interfaces are also developed and
analyzed in the 1D case. The implemented solvers are then applied to different
elastic media, especially to polycrystalline materials that present a particular
case of piecewise homogeneous media. The use of the three upwind numer-
ical fluxes, which only solve approximately the Riemann problem at element
interfaces, is investigated.

Keywords: Space discontinuous Galerkin method, elastic wave propagation,
anisotropy, piecewise homogeneous medium, polycrystalline materials

1. Introduction

Numerical modeling of elastic wave propagation is a classical problem and
can be performed reliably and efficiently in a large number of cases today. How-
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ever, the accurate and efficient simulation of elastic waves propagation in large
heterogeneous media still remains a challenging task, especially when high fre-5

quency ranges are involved and/or when the geometries of the whole domain or
of the interior physical interfaces of heterogeneities are complicated. Therefore,
in the past two decades, many research works have been carried on the space
discontinuous Galerkin (dG) methods that combine the advantages of finite el-
ement methods in the space with the possibilities of developing high-order time10

integration schemes and massively parallel solvers [1–8].
When space dG methods are applied the first-order elastic wave equations,

the Jacobian matrices of the hyperbolic system, if expressed in matrix form,
are very complicated due to the fourth-order Hooke elastic tensor even in the
isotropic case and are different in 2D and 3D cases [2, 3]. As a consequence,15

the physical meaning of the terms involved in the variational dG formulations,
more particularly those concerned by numerical fluxes, are hidden and it be-
comes difficult to develop and analyze numerical fluxes in more complex cases
of anisotropic and piecewise homogeneous media. The aim of the present work
is to address these concerns by defining a unified and elastic wave oriented20

variational framework for the first-order velocity-stress wave equations [2, 5, 9]
in the multidimensional and general – anisotropic and piecewise homogeneous
– case. An elastic wave oriented eigen analysis using a tensorial formalism is
presented and allows a simple, compact and intrinsic expression of the Jaco-
bian operator of the first-order hyperbolic system in terms of its eigenvalues25

and eigenmodes. Hence definition of a unified variational framework is possible
whatever the space dimension of propagation media and the characteristics of
the elastic tensor. An equivalent eigen analysis is developed in [5], however, it
is formulated within matrix forms and is quite complicated.

Three upwind numerical fluxes are considered in the present work. Firstly,30

the upwind numerical flux proposed by Käser et al. [2], which uses only material
properties from the interior of elements and from one side in the case with
discontinuous material properties, is merely modified in order to use material
properties from elements on both sides of physical interfaces. This flux is called
“uncoupled” upwind flux herein. Secondly, to reinforce the coupling between35

the discontinuous material properties on both sides of a physical interface, a
natural choice is to use their averages to define numerical fluxes. Both arithmetic
and harmonic averages are considered and lead to two other numerical fluxes,
called “coupled” upwind fluxes herein. Without discontinuous heterogeneities,
all these numerical fluxes are identical and exactly solve the Riemann problem40

on element interfaces, which is no longer true otherwise. In the general case with
discontinuous heterogeneities, the use of all the three simplified fluxes needs to
be investigated for verification.

Even though space dG methods can be combined successfully with high order
time integration schemes, such as the ADER (arbitrary high order derivatives)45

approach [2, 10], only a fourth-order Runge-Kutta method is used in the present
work as the time domain solving is not the object of the present study. The
obtained dG solver is explicit with a global mass matrix composed by completely
uncoupled elementary mass matrices. Consequently, its parallelization based on
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MPI is straightforward.50

The implemented solvers are firstly applied to both 1D and 2D media with
only one physical interface. Accuracy of the three numerical fluxes to describe
wave reflection, transmission and conversion phenomena is considered. Further-
more, to analyze the observed characteristics of both coupled upwind fluxes,
especially why in some cases the harmonic average of the Hooke tensor does55

not behave as good as the arithmetic one, unlike observations made in other
applications (e.g. [11]), two numerical fluxes that are exact solutions of the
Riemann problem defined on physical interfaces are developed and analyzed in
the 1D case.

As numerical applications, we are interested in numerical modeling of ul-60

trasound propagation in polycrystalline materials within the context of nonde-
structive testing. All the developed solvers are finally applied to single-phase
and untextured polycrystalline materials composed of a large number of ellip-
tic grains. Limitations of all the three simplified upwind numerical fluxes are
investigated.65

The paper is organized as follows. In Section 2, the first-order velocity-
stress hyperbolic system of elastic wave equations is introduced and an elastic
wave oriented eigen analysis is given. Section 3 presents a unified variational
framework within which the space dG method is introduced. The different nu-
merical fluxes considered in the present work are defined. The element-wise70

and global semi discretized formulations are given and the time domain integra-
tion using the algorithm of the fourth-stage fourth-order Runge-Kutta scheme
is introduced. Section 4 presents numerical results obtained successively in 1D
bimaterial, 2D bimaterial and 2D polycrystalline cases. Concluding remarks are
given in Section 5.75

2. First-order elastic wave governing equations

The governing equations of elastic wave propagation are given. They are
formulated as a first-order system with the velocity and stress fields as primary
unknowns and keep using the tensorial formalism for the fourth-order elastic
Hooke tensor. Compared to the usual generic form of the first-order hyperbolic80

system in which the Hooke tensor is expressed in matrix forms (e.g. [3, 6, 7, 9]),
we show that the proposed formulation allows defining the Jacobian matrices
and analyzing the eigen characteristic of the hyperbolic system in a unified and
elastic wave oriented way.

We consider the wave propagation in an elastic medium Ω ⊂ Rd of space85

dimension d (d = 1, 2, 3) and in a time interval [0, T ]. It is governed by the
following first-order equations in terms of the velocity field v(x, t) = ∂tu(x, t),
u(x, t) being the displacement field, and the second-order Cauchy stress tensor
σ(x, t): ∀(x, t) ∈ Ω×]0, T [

∂tv − ρ−1 Divx σ − ρ−1f = 0
∂tσ −C : ε(v) = 0

(1)
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with ρ the density, f the body force and C the fourth-order elasticity Hooke90

tensor. Herein, all the vectors and tensors are denoted using bold letters. In
the following the body force f will be omitted without loss of generality of the
purpose of the present work.

In (1), the first equation expresses the elastodynamic equilibrium and the
second equation is the time derivative of the Hooke’s law of elasticity:95

σ = C : ε(u) (2)

where“:” denotes the usual double dot product between two tensors defined as
(C : ε)ij = Cijklεkl. We note that herein the Einstein summation convention is
systematically used. According to the definition of the second-order infinitesimal
strain tensor ε, we have:

ε(v) =
1

2

(
Dx v + DT

x v
)

(3)

where AT denotes the transpose of A. It is useful to recall the usual space100

gradient and divergence operators in the orthonormal basis (ei)i=1,...,d:

Dx v =
∂v

∂xi
⊗ ei

Divx σ =
∂σ

∂xi
· ei

(4)

where “⊗” denotes the usual tensor product between two vectors: (a ⊗ b)ij =
aibj and “ · ” the usual dot product between a tensor and a vector: (A ·a)i =
Aijaj . In the following, the symmetrized tensor product denoted by “⊗s” is
also used: a⊗s b = (a⊗ b+ b⊗ a)/2.105

2.1. A tensorial compact form for the first-order wave equations

Now, we propose to rewrite the first-order velocity-stress system (1) into a
tensorial compact form. To do that we define a generalized unknown U(x, t) =
(v(x, t) σ(x, t))T , which is a field in Rd × Rd×dsym and defined over the open
set Ω×]0, T [. Rd×dsym indicates that σ(x, t) is a d× d symmetric second-order110

tensor field. By defining the following space derivation operator A∂x :

A∂x
( v
σ

)
=
( −ρ−1 Divx σ
−C : ε(v)

)
(5)

the first-order velocity-stress system (1) finally gets the following compact form:

∂tU +A∂x(U) = 0 (6)

The dot product in the vectorial space Rd × Rd×dsym is defined in the fol-
lowing way: ∀W 1 = (w1 τ 1)T and W 2 = (w2 τ 2)T ∈ Rd × Rd×dsym115

W 1.W 2 = w1.w2 + τ 1 : τ 2 (7)
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According to (4), it is easy to show that the Jacobian operator Ae in any
spatial direction e of the first-order system (6) is defined as: ∀W = (w τ )T

Ae(W ) =
( −ρ−1τ · e
−C : (e⊗s w)

)
(8)

Herein, the subscript index “e” indicates the dependency of Ae on e.
We remark that the first-order elastic wave formulation (6) can be written

in the following way:120

∂tU +Aei(∂xiU) = 0 (9)

When the operators (Aei)i=1,...,d are written in the matrix form in (9), the usual
generic form of the first-order hyperbolic system used in the related literature
(e.g. [3, 6, 7, 9]) can be recovered.

On the boundary of ∂Ω with outward unit normal vector n = niei, it can
be shown (see also Section 3) that the flux operator Fn associated with the125

first-order system (6) is in fact equal to An = niAei the Jacobian operator in
the n direction:

Fn(W ) = An(W ) =
( Fn,w(W )
Fn,τ (W )

)
=
( −ρ−1τ ·n
−C : (n⊗s w)

)
(10)

In the following, the local orthonormal basis defined on ∂Ω will be denoted by
(n, {tα}α=1,...,d−1).

To complete the definition of the first-order velocity-stress elastic wave prob-130

lem, the following boundary and initial conditions are prescribed:

• Boundary conditions

Fn,w(U) = −ρ−1g , on ∂ΩN×]0, T [
Fn,τ (U) = −C : (n⊗s ∂tuD) , on ∂ΩD×]0, T [

(11)

where the first equation in (11) expresses the Neumann boundary condi-
tions with imposed surface loadings g and the second one expresses the
Dirichlet boundary conditions with prescribed displacements uD. We re-135

call that the conditions ∂ΩN ∪ ∂ΩD = ∂Ω and ∂ΩN ∩ ∂ΩD = ∅ should be
verified.

• Initial conditions

σ(x, 0) = C : ε(u0(x)) , ∀x ∈ Ω
v(x, 0) = v0(x) , ∀x ∈ Ω

(12)

2.2. Elastic wave oriented eigen analysis

Before considering the variational formulation of the first-order velocity-140

stress system (6), it is worth analyzing its characteristic structure by performing
the eigen analysis of its normal Jacobian operator An defined in (10).
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To find the m = d + d(d + 1)/2 eigenvalues {λn,k}k=1,...,m of An and the
corresponding right eigenvectors {Rn,k}k=1,...,m = (wr

n,k τ
r
n,k)T , the following

eigen problem is solved:145

An(Rn,k) = λn,kRn,k or
−ρ−1τ rn,k ·n = λn,kw

r
n,k

−C : (n⊗s wr
n,k) = λn,kτ

r
n,k

(13)

It can be shown that the non-zero eigenvalues λn,k of (13) satisfy the following
eigen system of the Christoffel tensor Γn:

Γn ·γn,k = λ2
n,kγn,k (14)

with the definition of the Christoffel tensor Γn recalled in the following:

Γn ·w = ρ−1(C : (n⊗s w)) ·n , ∀w
(Γn)ij = ρ−1nkCikjlnl

(15)

The eigenvalues and eigenvectors of Γn are in fact the wave velocities and the
corresponding waves modes in Ω characterized by (ρ,C). Herein, the d positive150

eigenvalues of Γn are denoted by c2n,qL and {c2n,qTα}α=1,...,d−1, (cn,qL, cn,qTα)
being respectively the velocity of quasi-longitudinal and quasi-transverse wave
modes propagating in the n direction. The corresponding wave modes are
denoted by the unit eigenvectors γn,qL and {γn,qTα}α=1,...,d−1. For example,
in the 3D case, there are one quasi-longitudinal wave mode and two quasi-155

transverse wave modes. The subscript indices “qL” and “qT” respectively refer
to quasi-longitudinal and quasi-transverse waves. We recall that in the general
anisotropic case all the wave velocities and the waves modes depend on the
space direction n. The word “quasi” means that in the general anisotropic
case we have neither pure longitudinal wave mode verifying γn,qL ‖ n nor pure160

transverse waves modes verifying γn,qT ⊥ n, in contrast to the isotropic case.

To find the corresponding left eigenvectors {Ln,k}k=1,...,m = (wl
n,k τ

l
n,k)T

of An, we consider its transpose AT
n defined by: ∀W = (w τ )T

AT
n(W ) =

( −(C : τ ) ·n
−ρ−1n⊗s w

)
(16)

It can be shown that the eigenvalues and the corresponding eigenvectors wl
n,k

of (16) satisfy also the eigen equation of the Christoffel tensor (14), i.e. wr
n,k =165

wl
n,k, and both will be denoted by wn,k hereafter.

In summary, the m eigenvalues of the normal Jacobian operator An sorted
from the lowest to the highest values are:

{λn,k}k=1,...,m

= {−cn,qL, {−cn,qTα}α=1,...,d−1, 0, . . . , 0︸ ︷︷ ︸
m−2d times

, {cn,qTα}α=1,...,d−1, cn,qL} (17)

The right and left eigenmodes corresponding to the non-zero eigenvalues, i.e.
k = 1, . . . , d and k = m− d+ 1, . . . ,m, are:170

Rn,k =
( wn,k
−λ−1

n,kC : (n⊗s wn,k)

)
, Ln,k =

( wn,k
−ρ−1λ−1

n,kn⊗s wn,k

)
(18)
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with:

{wn,k} =
1√
2
{γn,qL, {γn,qTα}α=1,...,d−1, {γn,qTα}α=1,...,d−1,γn,qL} (19)

The right and left eigenmodes corresponding to the zero eigenvalues, i.e. k =
d+ 1, . . . ,m− d, are:

Rn,k =
( 0
τ⊥nn,k

)
, Ln,k =

( 0

τC,⊥nn,k

)
(20)

with:

τC,⊥nn,k =
C−1 : τ⊥nn,k

τ⊥nn,k : C−1 : τ⊥nn,k
(21)

where the superscript index “⊥n” of τ⊥n refers to a “perpendicular to n” stress175

state, i.e. τ ·n = 0 and the superscript index “C,⊥n” of τC,⊥n refers to a
strain state giving rise to a “⊥n” stress state, i.e. (C : τC,⊥n) ·n = 0. For
example in the 3D case, τ⊥n is a plane stress state in the plane perpendicular
to n and we can choose: τ⊥nn,4 = t1 ⊗ t1, τ⊥nn,5 = t1 ⊗s t2 and τ⊥nn,6 = t2 ⊗ t2.

It can be shown that the following orthonormality relation holds between180

the two right and left eigen bases:

Rn,i.Ln,j = δij , ∀i, j = 1, · · · ,m (22)

where δij denotes the usual Kronecker delta. Hence, the normal Jacobian oper-
ator An is decomposed using those two eigen bases as follows:

An = λ−n,kR
−
n,k ⊗L

−
n,k + λ+

n,kR
+
n,k ⊗L

+
n,k (23)

where (λ−n,k,R
−
n,k,L

−
n,k)k=qL,{qTα} are the strictly negative eigenvalues and the

corresponding right and left eigenvectors, and (λ+
n,k,R

+
n,k,L

+
n,k)k=qL,{qTα} the185

strictly positive ones.
We note that the decomposition (23) of the normal Jacobian operator An is

exactly equivalent to the one presented in the related literature, e.g. [3]. Indeed,
even if all the eigenvalues including the zero are present in the decomposition
developed in [3], by putting zeros in the diagonal of the diagonal matrix Γps of190

the eigenvalues, the final result is that all the eigenvectors corresponding to the
zero eigenvalues are not included in the decomposition (see Eq.(15) in [3]). The
decomposition (23) is more interesting as it is written in a completely intrinsic
way independent from the definition of any global and local bases.

In summary, this elastic wave oriented eigen analysis allows expressing An195

in terms of wave modes and highlighting their role played in flux exchanges
on the interface of two adjacent subdomains. For example, equations (20-21)
show that the eigen wave modes corresponding to the zero eigenvalues are in
fact the membrane wave modes in the plane perpendicular to n, which means
that both their propagation and polarization directions lay in that plane. The200

corresponding zero eigenvalues indicate that they cannot propagate in the n
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direction. In other words, as such a stress state results in a zero stress vector
τ ·n = 0, it makes no contribution to the equilibrium of the interface between
two adjacent subdomains. This is coherent with the dG formulation presented in
the next section, in which the wave modes (20) corresponding to zero eigenvalues205

are not considered in the flux terms exchanged between two finite elements
having a n-perpendicular interface.

Finally, it is interesting to give the example of the 3D isotropic case, for
which the wave velocities are independent from n: cL =

√
(λ+ 2µ)/ρ and cT1 =

cT2 =
√
µ/ρ with (λ, µ) the Lamé constants. The eigenvectors of the Christoffel210

tensor Γn represent respectively a pure longitudinal wave mode γn,L = n and
two pure transverse wave modes {γn,Tα = tα}α=1,2.

3. Unified variational framework for space dG methods

The basic idea of space dG methods is twofold. Firstly, we search for an ap-
proximated solution Uh(x, t) = (vh(x, t) σh(x, t))T of the generalized unknown215

U(x, t) = (v(x, t) σ(x, t))T . In contrast to continuous finite element methods,
this approximated solution is discontinuous from one element to another; hence
the variational formulation can be developed independently in each element. As
the fluxes coming from two adjacent elements are discontinuous on their inter-
face, the second idea is to replace them by a unique numerical flux, which in220

some way ”glues” adjacent elements together.
Let’s consider a finite element mesh Mh = {Ωk}k of the domain Ω. In the

following, any element Ωk of the mesh Mh will be denoted by E and any of
its neighboring elements by E′. The discontinuous solutions in E and E′ are
respectively denoted by Uh and U ′h.225

The variational formulation of the elastic wave model problem (1 or 6) for
any element E is obtained as follows: ∀W h(x) = (wh(x) τh(x))T

(wh, ∂tvh)E − (wh, ρ
−1 Divx σh)E = 0

(τh, ∂tσh)E − (τh,C : ε(vh))E = 0
(24)

or,
(W h, ∂tUh)E + (W h,A

∂x(Uh))E = 0 (25)

where the inner products are defined as follows by recalling the definition of the
dot product given in (7):230

(w1,w2)E =
∫
E
w1.w2 dV , (τ 1, τ 2)E =

∫
E
τ 1 : τ 2 dV

(W 1,W 2)E =
∫
E
W 1.W 2 dV = (w1,w2)E + (τ 1, τ 2)E

(26)

Then, integration by parts of (24 or 25) yields:

(wh, ∂tvh)E + (ρ−1ε(wh),σh)E− < wh, ρ
−1σh ·n) >∂E= 0

(τh, ∂tσh)E + (Divx(C : τh),vh)E− < τh,C : (n⊗s vh) >∂E= 0
(27)

or,

(W h, ∂tUh)E − (A∂x,T (W h),Uh)E+ <W h,Fn(Uh) >∂E= 0 (28)

8



where < · >∂E denotes the surface integration on the element boundary ∂E,
and A∂x,T is the transpose of A∂x defined as: ∀W = (w τ )T

A∂x,T
( w
τ

)
=
( −Divx(C : τ)
−ρ−1ε(w)

)
(29)

We notice that the flux operator Fn already defined in (10) is brought out in235

(27, 28).
As an interesting result, the well-known rotational invariance property of the

isotropic elastic wave problem (6 or 9) can be easily proved within the presented
tensorial variational framework. Indeed, by comparing the two definitions of Ae
(8) and of An (10), we notice that, in the isotropic case, their matrix forms –240

[Ae1 ] expressed in the global basis (e1, e2, e3) and [An] expressed in the local
basis (n, t1, t2) – are identical (see Appendix A1).

3.1. Upwind numerical flux on interior element interfaces

Now, to complete the development of the dG variational formulation, it is
necessary to replace the discontinuous flux Fn(Uh) on the interior element245

boundary ∂Eint = ∂E\(∂E ∩ ∂Ω) by a numerical flux F̂n(Uh,U
′
h), which

should also depend on the solution U ′h in the neighboring elements E′ of E.
As for the exterior element boundary ∂Eext = ∂E ∩ ∂Ω, the definition of the
numerical flux F̂n(Uh) should take into account the boundary conditions and
will be considered in the next subsection.250

In the elliptic case, the natural choice of numerical flux is the mean flux
1
2 (Fn(Uh)−F ′n′(U ′

h)), as there is no privileged characteristic direction inher-
ent to the system of PDEs. We note that the two outward unit normal vectors
of E and E′ on their interface verify n+ n′ = 0.

As the elastic wave problem (6) is first-order hyperbolic, the principal idea255

of defining an appropriate numerical flux is the well-known Godunov flux by
solving the Riemann problem defined on the element interfaces and leads to
the use of Upwind numerical fluxes [4, 9, 12]. In the present work, three up-
wind numerical fluxes are proposed and studied within the particular context
of piecewise homogeneous media.260

3.1.1. Uncoupled upwind numerical flux

The first numerical flux considered is derived from the one proposed by
Käser et al. [2], which is expressed only in terms of material properties from
the interior of the element E from one side of element interface, i.e.,

F̂n(Uh,U
′
h) = (λ+

n,kR
+
n,k ⊗L

+
n,k).Uh + (λ−n,kR

−
n,k ⊗L

−
n,k).U ′h (30)

By upwinding, the velocity and stress states Uh on the side of the element E are265

only combined with the wave eigenmodes corresponding to the strictly positive
eigenvalues of the flux operator, while the velocity and stress states U ′h on the
side of the neighboring element E′ are combined with the wave eigenmodes
corresponding to the strictly negative eigenvalues. On a physical interface, it is

9



obvious that the flux (30) is not conservative, i.e. it is not single-valued on the270

interface [13], as F̂n′(U ′h,Uh) 6= −F̂n(Uh,U
′
h).

Herein, this numerical flux is modified in order to use independently material
properties coming from elements on both sides of physical interfaces:

F̂n(Uh,U
′
h) = (λ+

n,kR
+
n,k ⊗L

+
n,k).Uh − (λ′+n′,kR

′+
n′,k ⊗L

′+
n′,k).U ′h (31)

The above numerical flux is called “uncoupled” upwind flux in the present work
as it does not imply further coupling between (C, ρ,U) and (C ′, ρ′,U ′) of two275

adjacent elements E and E′.
It is worth indicating that, when there are no discontinuities of material

properties between E and E′, (31) is identical to (30), because we have in this
case λ−n,k = −λ′+n′,k, R−n,k = R′+n′,k and L−n,k = L′+n′,k.

By replacing the flux terms in (28) by the numerical flux (31), we get the280

following dG variational formulation:

0 = (W h, ∂tUh)E − (A∂x,T (W h),Uh)E+ <W h, F̂ n(Uh) >∂Eext
+ < λ+

n,kR
+
n,k ·W h,L

+
n,k ·Uh >∂Eint − < λ′+n′,kR

′+
n′,k ·W h,L

′+
n′,k ·U

′
h >∂Eint

(32)
We can also obtain another dG variational formulation equivalent to (32) by
applying once more the integration by parts to the latter and by using (23):

0 = (W h, ∂tUh)E + (W h,A
∂x(Uh))E+ <W h, F̂ n(Uh)− F n(Uh) >∂Eext

− < λ−n,kR
−
n,k ·W h,L

−
n,k ·Uh >∂Eint − < λ′+n′,kR

′+
n′,k ·W h,L

′+
n′,k ·U

′
h >∂Eint

(33)
This second variational dG formulation is also called “strong form” by some
authors, as it explicitly contains the differential operator A∂x involved in the285

strong formulation of the elastic wave problem (6), contrary to the formulation
(32) invoking the operator A∂x,T . Both formulations (32) and (33) are equiv-
alent and we have chosen to implement the latter one, i.e. the “strong form”,
because the terms involved in the differential operator A∂x are slightly more
conventional than those involved in the differential operator A∂x,T .290

3.1.2. Coupled upwind numerical fluxes

Two other numerical fluxes considered in the present work are defined by
writing the formulation (33) using averaged materials properties on element
interfaces:

0 = (W h, ∂tUh)E + (W h,A
∂x(Uh))E+ <W h, F̂ n(Uh)− F n(Uh) >∂Eext

− < λ̄−n,kR̄
−
n,k ·W h, L̄

−
n,k ·Uh >∂Eint − < λ̄+

n′,kR̄
+
n′,k ·W h, L̄

+
n′,k ·U

′
h >∂Eint

(34)

where (λ̄−n,k, R̄
−
n,k, L̄

−
n,k) are the eigenvalues and eigenvectors defined by the295

averaged material properties (C̄, ρ̄) on element interfaces. Two methods to
calculate averaged material properties are considered in this work:

(1) The first method calculates the arithmetic average for the Hooke tensors
and the harmonic average for the densities: C̄ = CV oigt = (C + C ′)/2
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and (ρ̄Reuss)−1 = (ρ−1 + ρ′−1)/2. The so-obtained averaged elastic tensor300

CV oigt is usually called the Voigt average. The corresponding numerical
flux is named “cV Flux” hereafter.

(2) The second method calculates the harmonic average for the Hooke tensors

and the arithmetic average for the densities: C̄
−1

= (CReuss)−1 = (C−1 +
C ′−1)/2 and ρ̄V oigt = (ρ + ρ′)/2. The so-obtained averaged elastic tensor305

CReuss is usually called Reuss average. The corresponding numerical flux
is named “cR Flux” hereafter.

Both fluxes are called “coupled” upwind fluxes by contrast with the previously
proposed “uncoupled” numerical flux.

When the material properties are continuous on element interfaces, it can be310

shown that the three numerical fluxes and the one proposed by Käser et al. are
identical and are the exact solution of the Riemann problem in both isotropic
and anisotropic cases. But this is no longer true in more general cases where
adjacent elements have different material properties. In such cases, they only
solve approximately the Riemann problem at those element interfaces and lead315

to different dG formulations. This is why it should be necessary to check if they
keep working well. To do this, they are numerically investigated in the next
section in several situations: 1D and 2D cases with only one interior physical
interface and 2D polycrystalline materials in which a large number of physical
interfaces exist as elastic properties are discontinuous from one crystallite to320

another. Otherwise, to get further investigations, two upwind numerical fluxes
that are exact solutions of the Riemann problem are developed in the 1D case
and are compared to the two coupled numerical fluxes.

3.1.3. Upwind fluxes that are exact solutions of the Riemann problem in the 1D
case325

Two upwind fluxes that are exact solutions of the Riemann problem at ele-
ment interfaces are introduced and considered in the 1D case. They are obtained
from two equivalent strong forms of elastic wave equations. As one of the main
results of the present work, we will show that solving exactly the Riemann prob-
lem at element interfaces is not a sufficient condition to get physically sound330

numerical solutions. Indeed, the local (that is, pointwise) wave equation can be
written in different equivalent strong forms. However, when these strong forms
are put into a weak form and integrated by part to get flux terms, they give rise
to different interface conditions in terms of velocity and stress fields, which are
not all physically coherent.335

For the first upwind flux, the Riemann problem is defined by directly con-
sidering the first-order velocity-stress system (6), while for the second one, it is
modified by taking into account the classical mechanical interface conditions in
terms of velocity and stress vector fields. The first flux is named “G Flux” with
“G” standing for “Godunov”, while the second flux is named “MG Flux” with340

“MG” standing for “mechanically based Godunov”.
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I. G Flux: Upwind flux directly derived from the first-order v-σ system (6)

When the interface of two adjacent elements E and E′ having respectively
(ρ,C,Uh) and (ρ′,C ′,U ′h) as densities, elastic moduli and initial states is con-
sidered (Figure 1), the Riemann problem defines the states that are results of
the propagation of the discontinuity Uh − U ′

h. As in the 1D case, there are
only one positive eigenvalue and only one negative eigenvalue, the subscript “k”
in (λ±n,k,R

±
n,k,L

±
n,k) is omitted. Then the following Rankine–Hugoniot jump

conditions hold for the first-order velocity-stress system (6) [7, 9, 12]:

An(Uh −Ua
h) = λ−n(Uh −Ua

h) (35a)

An(Ua
h) +A′n′(Ua′

h ) = 0 (35b)

A′n′(U ′h −U
a′

h ) = λ−
′

n′ (U
′
h −U

a′

h ) (35c)

According to the definition of the eigen problem of An (13), we can write:

Uh −Ua
h = αR−n , U

′
h −U

a′

h = α′R−
′

n′ (36)

the Rankine–Hugoniot jump conditions (35) becomes:

An(Uh)−An(Ua
h) = αλ−nR

−
n (37a)

An(Ua
h) +A′n′(Ua′

h ) = 0 (37b)

A′n′(U ′h)−A′n′(Ua′

h ) = α′λ−
′

n′R
−′

n′ (37c)

Solving the Riemann problem (37) leads to the determination of the two un-

known states (Ua,Ua′), i.e. the two characteristic coefficients (α, α′). Then

the upwind numerical fluxes defined as F̂n(Uh,U
′
h) = An(Ua

h) = 1
2 (An(Ua)−

A′n′(Ua′

h )) can be calculated using the following two equivalent forms:

F̂n(Uh,U
′
h) =

1

2
(An(Uh)−A′n′(U ′h)− αλ−nR

−
n + α′λ−

′

n R
−′

n ) (38a)

= An(Uh)− αλ−nR
−
n (38b)

Considering (35), it is obvious that the flux is conservative, i.e. from the point

of view of the neighboring element E′, we have F̂n′(U ′h,Uh) = −F̂n(Uh,U
′
h).345

In the 1D case, (α, α′) can be easily obtained (see Appendix A2):

α =∗L−n ·Uh −∗∗L−n ·U
′
h , α

′ =∗L−
′

n′ ·U ′h −∗∗L
−′

n′ ·Uh (39)

In (38), (∗L−n ,
∗∗L−n) and (∗L−

′

n′ ,∗∗L
−′

n′ ) are respectively the modified left eigen-
modes of An and A′n′ , which are calculated in the following way by using the
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material properties of the adjacent element:

∗L−n =

C ′z℘vect(L−n)

Cz℘tens(L
−
n)

 , ∗∗L−n =


ρ′

ρ

Γ′n′ ·℘vect(∗L
−
n)

λ−2
n

ρ

ρ′
℘tens(

∗L−n)

 (40a)

∗L−
′

n′ =

Cz℘vect(L−′

n′ )

C ′z℘tens(L
−′

n′ )

 , ∗∗L−
′

n′ =


ρ

ρ′
Γn ·℘vect(∗L

−′

n′ )

λ−
′2

n′

ρ′

ρ
℘tens(

∗L−
′

n′ )

 (40b)

with:

Cz =
ρλ−n

Reuss

ρλ−n
=

ρ′λ−
′

n

ρλ−n
V oigt

, C ′z =
ρλ−n

Reuss

ρ′λ−
′

n′

=
ρλ−n

ρλ−n
V oigt

(41)

where ρλ−n
Reuss

and ρλ−n
V oigt

denote respectively the harmonic and arithmetic

averages of acoustic impedances ρλ−n,k and ρ′λ−
′

n′,k, and the two operators ℘vect
and ℘tens are defined as follows: ∀W = (w τ )T ,350

℘vect(W ) = w , ℘tens(W ) = τ (42)

It is interesting to point out that the coupling terms highlighted in (40) are
complex and do not correspond neither to the method with arithmetic average of
C/harmonic average of ρ nor to the one with harmonic average of C/arithmetic
average of ρ. One important parameter to take into account is the acoustic
impedance of the eigenmodes.355

Finally, the most important remark concerning the numerical flux (38) is
that, the equation (35b) of the Rankine–Hugoniot jump conditions (35), which
is directly derived from the first-order velocity-stress system (6), leads to the
following interface conditions:

σah ·n
ρ

+
σa

′

h ·n′

ρ′
= 0 , ρΓn ·vah − ρ′Γ

′
n′ ·va

′

h = 0 (43)

It is obvious that, on a physical interface, i.e. ρ 6= ρ′ or/and Γn 6= Γ′n′ , the360

conditions (43) are not equivalent to the classical interface conditions of con-
tinuous velocity and stress vector fields, the resulting flux (38) is therefore not
physically sound. Indeed, in Section 4.1 it will be shown that this numerical
flux cannot give rise to physically sound wave propagation solutions.

365

II. MG Flux: Upwind flux based on the mechanical interface conditions
In order to remove the physical inconsistency of the interface conditions (43),
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we propose to modify them so that the following classical interface conditions
are recovered:

σah ·n+ σa
′

h ·n′ = 0 , n⊗s vah + n′ ⊗s va
′

h = 0 (44)

It is easy to show that the interface conditions (43) and (44) differ only when the370

elastic moduli or/and the density of the propagating medium are discontinuous.
The interface conditions (44) can be in fact considered as consequence of the

following Rankine–Hugoniot jump conditions:

Ãn(Uh)− Ãn(Ua
h) = α̃λ−nM(R−n) (45a)

Ãn(Ua
h) + Ã

′
n′(Ua′

h ) = 0 (45b)

Ã
′
n′(U ′h)− Ã′n′(Ua′

h ) = α̃′λ−
′

n′M
′(R−

′

n′ ) (45c)

which correspond to another equivalent form of the studied first-order velocity-
stress system (6):

M(∂tU) + Ã
∂x

(U) = 0 or
ρ∂tv −Divx σ = 0

C−1 : ∂tσ − ε(v) = 0
(46)

To complete the previously introduced equations, the following definitions of
operators are necessary:375

M
(
w
τ

)
=
( ρw

C−1 : τ

)
, M−1

(
w
τ

)
=
(
ρ−1w
C : τ

)
Ã
∂x
( w
τ

)
=
( −Divx τ
−ε(w)

)
, Ãn

( w
τ

)
=
( −τ ·n
−n⊗s w

) (47)

The following equations are straightforward:

An = M−1 · Ãn , M(R±n,k) = ρL±n,k (48)

As in the case of “G Flux” and using (48), when the characteristic coefficients
(α̃, α̃′) are calculated, the upwind numerical fluxes are defined as follows:

F̂n(Uh,U
′
h) = M−1 · ˆ̃Fn(Uh,U

′
h) = M−1 · (Ãn(Uh)− α̃λ−nM(R−n))

= An(Uh)− α̃λ−nR
−
n

(49)

It is worth noticing that F̂n′(U ′h,Uh) 6= −F̂n(Uh,U
′
h), even if ˆ̃Fn′(U ′h,Uh) =

− ˆ̃Fn(Uh,U
′
h).380

As for the case of “G Flux”, (α̃, α̃′) can be easily obtained (see Appendix
A3):

α̃ = L̃−n · (Uh −U ′h) , α̃′ = L̃−
′

n′ · (U ′h −Uh) (50)

where L̃−n and L̃−
′

n′ are respectively the modified left eigenmodes of An and
A′n′ , which are calculated in the following way by using the material properties
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of the adjacent element:385

L̃−n =

Cz℘vect(L−n)

C ′z℘tens(L
−
n)

 , L̃−
′

n′ =

C ′z℘vect(L−′

n′ )

Cz℘tens(L
−′

n′ )

 (51)

Two important remarks can be made. Firstly, as previously mentioned, two
mathematically equivalent systems can lead to different flux definitions, it is
important to check their physical meaning and their relevance. Secondly, the
first-order velocity-strain wave equations used in [7] provides another way to get
the Rankine–Hugoniot jump conditions that are coherent with the mechanical390

interface conditions.

3.2. Boundary conditions

As for the classical finite element method, the Neumann boundary conditions
are weakly imposed through the variational framework. Indeed, by decomposing
the numerical flux as F̂n(Uh) = (F̂n,v(Uh) F̂n,σ(Uh))T and according to the395

boundary conditions (11), it is natural to impose the part F̂n,v(Uh) equal to

the Neumann boundary conditions. While the other part F̂n,σ(Uh) should be
completely determined by the element E, as there is no neighboring element.
We get:

F̂ n(Uh) =
( −ρ−1g(x, t)
Fn,σ(Uh)

)
(52)

Concerning the Dirichlet boundary conditions, they are strongly imposed using400

a well-known strategy in the following way: Uh in (33) is replaced by the
sum of a solution with homogeneous Dirichlet boundary conditions U0

h and of
ŨD = (ũD 0)T , with ũD a lifting to Ω of uD defined on ∂ΩD. The prescribed
degrees of freedom of velocity are eliminated from (33), which is solved with the
terms containing ŨD put on the right-hand side and treated as external loading405

terms.

3.3. Element-wise dG variational formulation

By taking into account the Neumann and Dirichlet boundary conditions
in (33), we get the following element-wise variational formulation of space dG
method with, for example, the uncoupled upwind numerical flux:410

(W h, ∂tUh)E + (W h,A
∂x(Uh))E

− < λ−n,kR
−
n,k ·W h,L

−
n,k ·Uh >∂Eint − < λ′+n′,kR

′+
n′,k ·W h,L

′+
n′,k ·U

′
h >∂Eint

+ < wh, ρ
−1σh.n >∂E∩∂ΩN

= < wh, ρ
−1g >∂E∩∂ΩN − < τh,C : (n⊗s ∂tũD) >∂E∩∂ΩD

(53)
In (53) the upwind numerical flux terms can be easily calculated by respectively
projecting the test field W h and the solution field Uh on the right and left eigen
bases {Rn,k} and {Ln,k} of the normal Jacobian operator An of the element E
and also on those ones of its neighboring elements E′. Each element computes
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its “outward propagating” fluxes and gives them to its neighboring elements415

and its “inward propagating” fluxes for itself.
The variational formulation (53) is developed for a general Hooke tensor

C and works for the general anisotropic case. Indeed, the anisotropy is au-
tomatically taken into account by the eigenvalues {λn,k} and the eigenvectors
{Rn,k,Ln,k}, which depend on the n direction indicating in fact how the ele-420

ment interface is oriented regarding the principal directions of anisotropy. Fur-
ther, (53) works also automatically for heterogeneous cases with discontinuous
material properties. Indeed, {λn,k,Rn,k,Ln,k} are computed with the material
properties (ρ,C) in E, while (λ′n′,k,R

′
n′,k,L

′
n′,k)k with the ones (ρ′,C ′) defined

in E′.425

Concerning the two coupled upwind numerical fluxes, the only change in the
element-wise dG variational formulation (53) is to calculate the right and left
eigenvector bases with the averaged material properties (ρ̄, C̄) of E and E′.

Concerning the two upwind fluxes “G Flux” and “MG Flux” developed in
the 1D case, the element-wise variational formulation becomes, for exemple in430

the case of “MG Flux”:

(W h, ∂tUh)E + (W h,A
∂x(Uh))E

− < λ−n,kR
−
n,k ·W h, L̃

−
n,k ·Uh >∂Eint + < λ−n,kR

−
n,k ·W h, L̃

−
n,k ·U

′
h >∂Eint

+ < wh, ρ
−1σh.n >∂E∩∂ΩN

= < wh, ρ
−1g >∂E∩∂ΩN − < τh,C : (n⊗s ∂tũD) >∂E∩∂ΩD

(54)
The modified left eigenmodes {̃Ln,k} should be calculated taking into account
the material properties of the neighbouring elements E′.

3.4. Space dG semi discretized formulation

In the present work, the same finite element basis functions ψEI (x) are used435

in each element E for the velocity and the stress unknowns and we obtain the
following expansions:

vh(x, t) |E=
∑
I,i

V EIi (t)ψEI (x)ei , σh(x, t) |E=
∑
I,ij

SEIij(t)ψ
E
I (x)ei ⊗ ej (55)

with i, j = 1, · · · , d and I = 1, · · · , NE , NE being the total number of FE basis
functions for E. If we denote the FE basis functions of the generalized unknowns
by ΨE

p for p = Ii or Iij, with ΨE
Ii = (ψEI ei 0)T and ΨE

Iij = (0 ψEI ei ⊗ ej)T ,440

the expansion of the generalized unknowns in each E reads as:

Uh(x, t) |E= Y Ep (t)ΨE
p (x) (56)

with YIi = VIi and YIij = SIij . At last, using the FE expansion (56), we get
the following element-wise semi discretized dG formulation from (53):

[M ]EE .{∂tY }E + ([K]EE + [Kf ]EE).{Y }E + [Kf ]EE
′
.{Y }E

′
= {G}E (57)

with [M ]EE the elementary mass matrix, [K]EE the elementary stiffness matrix
(by abuse of terminology), [Kf ]EE the elementary flux stiffness matrix con-445

tributed by the element E itself, [Kf ]EE
′

the elementary flux stiffness matrix
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contributed by the neighboring elements E′ and {G}E the elementary load-
ing vector. The detailed definition of those matrices and vectors are given in
Appendix A4. We remark that only the elementary mass matrix [M ]EE is
symmetric and it is also positive-definite.450

By assembling all the elementary contributions, the space dG semi dis-
cretized formulation can be written in the following matrix form:

[M ].{∂tY }+ ([K] + [Kf ]).{Y } = {G} (58)

where [M ], [K] and [Kf ] are respectively the global mass, stiffness and flux
stiffness matrices, they all have block structure and the sub block matrices are
already defined in the element-wise semi discretized formulation (57). Further,455

both [M ] and [K] are block diagonal matrices.

3.5. Time discretization using the standard four-stage fourth-order RK

Now, we consider the time domain solving of the semi discretized dG for-
mulation (58). The time interval T is partitioned into N subintervals: T =
∪
n

[tn, tn+1], tn+1 = tn + ∆t. The FE solution {Y }n+1 at the time tn+1 is com-460

puted from the already calculated {Y }n at time tn. To do that, we use the
standard four-stage fourth-order Runge-Kutta iterative method, which calcu-
lates four extra stages {Z}(k)(k = 1, · · · , 4) to advance from {Y }n to {Y }n+1.
More precisely, when it is applied to (58), the following algorithm is obtained:

{Z}(1) = [M ]−1L ({Y }n)

{Z}(2) = [M ]−1L ({Y }n +
1

2
∆t{Z}(1))

{Z}(3) = [M ]−1L ({Y }n +
1

2
∆t{Z}(2))

{Z}(4) = [M ]−1L ({Y }n +
1

2
∆t{Z}(3))

{Y }n+1 = {Y }n +
1

6
∆t({Z}(1) + {Z}(2) + {Z}(3) + {Z}(4))

(59)

with L ({Y }) = {G} − ([K] + [Kf ]).{Y }.465

It is useful to note that in practice the explicit Runge-Kutta algorithm (59)
is applied to the element-wise semi discretized formulation (57) since there is
no need to assemble the system.

The fourth-order explicit RK scheme is only conditionally stable. According
to [14], the time step should satisfy the following stability condition written in470

the general context of anisotropic and piecewise homogeneous media:

∆t ≤ CFLsDG
2Np + 1

minE{
hE

maxn{cEn,L}
} (60)

with Np the order of the FE basis function, hE the size of the element E and
CFLsDG the Courant-Friedrichs-Levy number.
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The definition of the element size hE depends on the shortest wavelength of
interest, which is defined by the highest frequency of interest. It depends also475

on the order of FE basis functions. In the present work, linear elements are
used for 1D problems and square bilinear elements for 2D problems. In both
cases, hE is chosen so that there are at least about 20 elements in the shortest
wavelength of longitudinal waves. The definition of highest frequency of interest
will be presented in the next section.480

The constant CFLsDG depends on the order of the FE basis function, on
the space dimension d (d = 1, 2, 3) as well as on the shape of the elements. In
the present work, CFLsDG is taken equal to about 0.9 in the 1D case and to
about 0.6 in the 2D case.

4. Numerical investigations of the numerical fluxes485

As previously indicated, when the elastic moduli and the density of a propa-
gating medium are continuous, all the numerical fluxes considered in the present
work are identical, are the exact solution of the Riemann problem defined at
element interfaces and give rise to physically coherent interface conditions. This
is no longer true when physical interfaces exist. The first goal of this section is490

to investigate the behavior of the upwind numerical fluxes with respect to the
degree of inhomogeneity in elastic moduli in simpler cases of 1D or 2D domains
composed of two different materials. In a second time, the behaviors of the two
coupled fluxes in the case of piecewise homogeneous media including a large
number of physical interfaces, such as 2D polycrystalline media, are studied.495

Each considered numerical flux gives rise to a space dG solver. They are
named hereafter “k sDG”, “u sDG”, “cV sDG”, “cR sDG”, “G sDG” and “MG sDG”
corresponding respectively to the flux proposed by Käser et al., the uncoupled
flux “u Flux”, the coupled flux “cV Flux” with the Voigt average CV oigt, the
coupled flux “cR Flux” with the Reuss average CReuss, and the two upwind500

fluxes “G Flux” and “MG sDG” developed in the 1D case. Some analytical so-
lutions, such as reflection and transmission coefficients or wave phase velocities,
are used when available to analyze the quality of the numerical fluxes.

To obtain reference numerical solutions used for comparison, two dynamic
solvers using continuous finite elements in the space have been used: the implicit505

Newmark method with (γ, β) = ( 1
2 ,

1
4 ) and a time discontinuous space-time

Galerkin method. As the two solvers give substantially identical solutions, only
the solutions calculated by the time discontinuous space-time Galerkin method,
named hereafter “tDG”, are presented.

We recall that the basic idea of the time discontinuous space-time Galerkin510

method is to subdivide the studied space-time domain Ω×]0, T [ into a series of
space-time slabs Ω×]tn, tn+1[ and to write in each space-time slab a variational
formulation for the displacement and velocity fields simultaneously in space
and in time. Within each space-time slab, continuous finite elements are used,
but between two successive slabs, both displacement and velocity fields are515

discontinuous [15–18]. When space-time FE basis functions are chosen equal
to the product of FE basis functions in space and FE basis functions in time,
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it can be shown that time dG methods often lead to unconditionally stable
implicit time-stepping schemes. The numerical damping inherent to the time
dG methods, due to energies dissipated in time jumps between two subsequent520

space-time slabs, increases with the frequency and allows filtering numerical
spurious noises. The time dG solver used in this work discretizes the space
with a finite element mesh combined with one linear element in time for each
space-time slab. It has been validated by our previous studies [18–20] and also
by other authors [17, 21].525

Regarding the choice of the element size in space, the strategy defined in
Section 3.5 is adopted for all the solvers. As for the definition of the time step
for the time dG solver “tDG”, it is necessary to take a sufficiently small time step
to prevent higher frequency modes of interest from numerical damping, even if
the solver “tDG” is unconditionally stable and does not suffer from instability530

concern. Consequently, the following condition is applied with the constant
CtDG−damping taken equal to about 1.0 according to our numerical experiences:

∆t ≤ CtDG−dampingminE{
hE

maxn{cEn,L}
} (61)

Generally, the time step for the solver “tDG” can be taken larger than the one
for the solvers “sDG” for a same element size.535

For all the numerical examples presented hereafter, the dependency of the
external loadings upon the time t is always chosen to be a ricker signal, i.e.:

g(x, t) = ag(x)
(

1− 2
(2π(t− Tr/2)

Tr

)2)
e
−
(2π(t− Tr/2)

Tr

)2
(62)

with Tr the period of the ricker signal. This choice is motivated by the fact
that ricker signals provide a perfectly controlled frequency content, whose cen-
tered frequency is fmax = 2T−1

r and whose cutoff frequency can be reasonably540

considered as fc = 2.5fmax. Figure 2 shows a normalized ricker signal and its
normalized frequency content. As indicated in the previous section, for all the
numerical simulations presented in the present section, the highest frequency of
interest is chosen equal to fc and the associated shortest wavelength is used to
define the element size hE .545

In the following, the orthonormal bases of 1D and 2D spaces are respectively
denoted by (ex) and (ex, ey).

4.1. Reflection and transmission behaviors in the 1D case

A 1D elastic rod Ω = Ω1 ∪Ω2 composed of two materials is studied and two
types of discontinuities are considered (Figure 3):550

• Case 1 (Figure 3(a)). For this case, the density ρ = 2500kg.m−3 is uniform
in the whole rod while the Young’s modulus in the two subdomains is
respectively E1 = 22.5GPa and E2 = a2E1. The phase velocity in the two
subdomains is respectively equal to cL1 = 3000m.s−1 and cL2 = a cL1.
The total length of the rod is L = L1 + L2 = (1 + a)L1, with L1 = 900m.555
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• Case 2 (Figure 3(b)). For this case, the density and the Young’s modulus
in the two subdomains are respectively (ρ = 2500kg.m−3, E1 = 22.5GPa)
and (ρ2, E2) = (a ρ1, aE1). The phase velocity in the two subdomains
is the same cL1 = cL2 = 3000m.s−1. The total length of the rod is
L = L1 + L2, with L1 = L2 = 900m.560

For both cases, the impedance contrast between the two subdomains is
√
E2ρ2/√

E1ρ1 = a.
A pressure loading g(t) is applied on the left end and the free boundary

condition is prescribed on the right end. g(t) is a ricker signal with period Tr =
0.04s and cutoff frequency fc = 125Hz. The corresponding shortest wavelength565

to consider is `L(fc) = 24m. The time that waves need to propagate from the
left end to the physical interface is equal to 0.2s, so is the time from the physical
interface to the right end. According to the previously presented strategy, we
have the following element sizes in the two subdomains: hE1 = 0.6m and hE2 =
a hE1 for the case 1; hE1 = hE2 = 0.6m for the case 2. This choice results in570

40 elements in the shortest longitudinal wavelength of interest. The time step
∆t = 62.5µs is chosen according to (60) and is used also for the solver “tDG”,
which leads to CFLsDG = 0.94 and CtDG−damping = 0.31.

We recall that the reflection and transmission coefficients UR and UT are
analytically known in the 1D case:575

UR =
1− a
1 + a

, UT =
2

1 + a
(63)

The parameter a measures the degree of inhomogeneity of the physical interface.
Different values of a ∈ (0.9, 0.8, 0.5, 0.25, 0.2, 0.15, 0.1, 0.05) are considered to
study the quality of the six numerical fluxes as a function of the degree of
inhomogeneity.

The Case 1 (Figure 3(a)), where only the Young’s modulus is discontinu-580

ous, is mainly studied. The first result is that both uncoupled flux “u Flux”
and the flux “G Flux” resulting in mechanically incoherent interface conditions
fail to properly represent the wave reflection and transmission at the physical
interface. Indeed, Figure 4 compares the velocity field v(x) at four instants
t = 0.1, 0.2, 0.3 and 0.4s solved by the solvers “u sDG”, “G sDG” and “tDG”585

in the case of a = 0.5. The results obtained by the other solvers “k sDG”,
“cV sDG”, “cR sDG” and “MG sDG” are not presented as they give nearly the
same results than those obtained by the solver “tDG”. We recall that the wave
front arrives at the physical interface at t = 0.2s. It can be noticed that, after
the waves have passed through the physical interface, the results obtained by590

both solvers “u sDG” and “G sDG” completely differ from those obtained by
the solver “tDG”: the reflected wave front has a negative amplitude while it
should be positive and the amplitude of the transmitted wave front is largely
overestimated. We notice that this behavior remains unchanged even if the
degree of inhomogeneity is low, that is when a → 1. Therefore, both solvers595

“u sDG” and “G sDG” are not considered in the following studies.
As another important result, all the space dG solvers using a numerical

flux that does not exactly solve the Riemann problem encounter the instability
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problem when the degree of inhomogeneity increases, whilst for both solvers
“G sDG” and “MG sDG” no instability problem is observed and the same sta-600

bility condition applies regardless of the degree of inhomogeneity. For the two
solvers using the coupled fluxes “cV sDG” and “cR sDG”, the time step should
be divided by 2 for a = 0.15, 0.1 and by 4 for a = 0.05. For the two solvers
“k sDG” and “u sDG”, the instability phenomenon appears with a higher degree
of inhomogeneity a = 0.01 and the time step should be divided by 4.605

To assess the quality of each solver to represent the physical interface, relative
errors eR and eT for the reflection and transmission coefficients calculated in
the following way are considered:

eR =
|UR,h − UR|
|UR|

, eT =
|UT,h − UT |
|UT |

(64)

where UR and UT are the analytical coefficients given by (63) and UR,h and
UT,h are their numerically calculated values.610

It is worth noticing that the relative errors calculated in this way include also
discretization errors (including the treatment of boundary conditions), which de-
pend on the element size and type and on the time integration procedure. To
quantify the contribution of sources of errors other than the treatment of physi-
cal interfaces, the case with a = 1.0 is also computed, which corresponds to the615

homogeneous case without physical interfaces. In this way, the accumulation of
error with propagation distance in the homogeneous part of the studied domain
is quantified. We note that for a = 1.0 only the relative error of the transmission
coefficient can be obtained, as UR = 0.

The relative errors (64) are firstly calculated after only one crossing through620

the interface, UR,h and UT,h being calculated as the ratio of maximum ampli-
tudes between the reflected and transmitted wave fronts recorded at t = 0.3
and the initial wave front recorded at t = 0.1s. Between those two instants, the
distance waves have propagated is equal to 24 times the shortest wavelength of
interest. Figure 5(a) shows the evolution of the relative errors for all solvers as625

a function of the parameter a. It can be noticed that the errors of the solver
“tDG” do not depend on the parameter a and there is no difference in the er-
rors in the reflection and transmission coefficients. When the Riemann problem
on physical interfaces is defined in a relevant way and exactly resolved, the so-
defined upwind flux leads to a solver that behaves in the same way. Indeed, the630

errors obtained by the solver “MG sDG” do not depend on the parameter a and
both reflection and transmission errors are equal and are furthermore slightly
smaller than those obtained by the solver “tDG”. On the other hand, the errors
obtained by the space dG solvers “k sDG”, “cV sDG” and “cR sDG” increase
when a decreases. The error in the transmission coefficient are larger than the635

one in the reflected coefficient and it increases rapidly for the solver “cR sDG”
when a→ 0. For a ≥ 0.5, all the errors remain inferior to 0.15%. Furthermore,
for a → 1, all measured errors decrease and reach a plateau, the value of the
plateau is the one obtained in the homogeneous domain (with a = 1), which
should be controlled by the discretization parameters in space and in time.640
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When we consider their long-term behavior, the relative errors are calcu-
lated for eight successive instants from t = 0.3s to t = 5.9s. The instant t = 5.9s
corresponds to a propagation distance equal to about 730 times the shortest
wavelength of interest. Figures 6(a) and (b) show that the relative errors of the
space dG solvers “k sDG”, “cV sDG” and “MG sDG” increase linearly with645

Ninterface the number of interface crossings. Comparing with the curves ob-
tained with a = 1.0, we can conclude that in the accumulation of error for both
solvers “k sDG” and “cV sDG”, there is a part that is due to the inaccuracy of
the numerical flux to represent the physical interface. This part increases with
the increase of the degree of inhomogeneity. Once more, it is found that the ac-650

curacy of the solver “MG sDG” is independent on the degree of inhomogeneity.
Indeed, a unique curve is observed for both reflection and transmission errors
regardless of the parameter a (Figures 6(b)). It can be concluded that there
is only the accumulation of discretization errors. The same conclusion is made
for the reference solver “tDG”. However, the discretization errors of the solver655

“tDG” increase more rapidly than those of the solver “MG sDG”.
Reflected wave fronts calculated at different instants by the two solvers

“cV sDG” and “tDG” are plotted in Figure 7 in the case of a = 0.25. They
are much better captured by the solver “cV sDG” than the solver “tDG”. The
numerical results of the solvers “k sDG”, “cR sDG” and “MG sDG” are not660

presented as they are nearly identical to those obtained by “cV sDG”.
The Case 2 (Figure 3(b)) is considered as the type of discontinuity, disconti-

nuities only in E or in both E and ρ, has effects on the arithmetic and harmonic
averages used to define the coupled fluxes. For this case, the same results are
obtained for the solver “MG sDG”. Namely, there is no worsening of the sta-665

bility condition when the degree of inhomogeneity increases, the errors in both
reflection and transmission coefficients are the same and do not depend neither
on the degree of inhomogeneity nor on the type of discontinuities (Figure 5(b)).
As for the solver “k sDG”, the same errors are obtained as in the Case 1. It can
be concluded that the behavior of the solver “k sDG” does not depend on the670

type of discontinuity. Concerning the two solvers with the coupled numerical
fluxes “cV sDG” and “cR sDG”, unlike in the Case 1 of discontinuous Young’s
modulus, the errors in the transmission coefficient are similar, while the error
in the reflection coefficient of “cV sDG” increases more rapidly with the degree
of inhomogeneity than “cR sDG”. For a ≥ 0.05, all relative errors for the three675

solvers “k sDG”, “cV sDG” and “cR sDG” remain smaller than 0.33%.
In summary, we get the following conclusions in the 1D case:

• For the space dG solvers, neither “u sDG” with the uncoupled numerical
flux nor “G sDG” with the upwind flux that are exact solutions of the Rie-
mann problem with the mechanically incoherent interface conditions (35b)680

(see also (43)) works. The solver “MG sDG” with the upwind flux that
are exact solutions of the Riemann problem with the classical mechanical
interface conditions (45b) (see also (44)) works perfectly. Its accuracy,
its long-term behavior and its stability condition are independent of the
degree of inhomogeneity and of the type of discontinuities.685

22



• All the space dG solvers using a numerical flux that does not exactly solve
the Riemann problem, “k sDG”, “u sDG”, “cV sDG” and “cR sDG”, can
encounter instability problems. Indeed, the stability condition is more
and more worsened when the degree of inhomogeneity increases, that is
a → 0. The precise mechanism of this worsening has not yet been well690

understood. However, as for the fluxes “G sDG” and “MG sDG” the
stability condition is not altered regardless the degree of inhomogeneity,
we believe that the fact that the Riemann problem is not exactly solved
by the simplified numerical fluxes should be the main cause, if not the
only.695

• For a ≥ 0.25, both coupled numerical fluxes give similar results than the
one proposed by Käser et al.. When a→ 0, errors obtained by the Reuss
average coupled numerical flux “cR sDG” increase rapidly in the case of
discontinuous Young’s modulus. For a ≥ 0.5, both coupled fluxes and
the one proposed by Käser et al. are interesting as they give rise to an700

error in the reflection coefficient smaller than the one obtained by the flux
“MG sDG”, while the errors in the transmission coefficient obtained by
all the four fluxes are close.

• The long-term behavior of the space dG solvers “MG sDG” (for all a),
“k sDG” and “cV sDG” (for a ≥ 0.25) is much better than the refer-705

ence solver “tDG”, even when there is no physical interface. We believe
that is because the space discontinuous elements with appropriate numer-
ical fluxes are more accurate than the continuous one to capture waves,
all other things being equal. The H1-classe finite element methods seem
more appropriate to deal with the wave propagation problems, as they710

provide continuous displacement and velocity solutions. However, as they
use piecewise polynomial basis functions for the displacement field that
is the primary unknown field, the corresponding stress vector fields are
discontinuous between elements and no treatment specific to the hyper-
bolic characters of the wave propagation problem is involved within the715

space continuous weak formulation, which leads to numerical dispersion
errors. With the use of numerical fluxes that directly take into account
wave propagation velocities and modes, the space discontinuous finite el-
ement methods give a better control to such errors, even if both velocity
and stress solution fields are discontinuous.720

4.2. Reflection and transmission behaviors in the 2D bimaterial case

The first 2D example considers a 2D rectangular elastic domain Ω = Ω1∪Ω2

with two vertical interfaces. Both materials are isotropic and have the same
density ρ = 4428kg.m−3. The dimensions and the material properties are indi-
cated in Figure 8. The width of the whole domain is Lx = 20.32mm and the725

Hooke tensor C1 of the softer material at the center is the same as the refer-
ence Voigt average Hooke tensor Cref−V oigt of the polycrystal considered in the
next section, their values are presented in Table I. The corresponding Young’s
moduli of both materials are E1 = 73.95GPa and E2 = (1.5)2E1 and they have
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the same Poisson’s ratio ν = 0.395. The phase velocities of the longitudinal730

and the transverse waves are respectively cL1 = 5879m.s−1, cT1 = 2446m.s−1,
cL2 = 1.5 cL1 = 8819m.s−1, cT2 = 1.5 cT1 = 3670m.s−1. In terms of degree
of inhomogeneity, measured by the parameter a defined for the previous 1D
example, we have a = 1/1.5 = 0.67 for the present example.

Elastic waves are generated by applying a pressure loading g(x, t)ey on an735

extremely short segment Le of length 50µm at the center of the external top
boundary of Ω, while free surface boundary conditions are prescribed on the
remaining parts. The pressure g(x, t)ey is uniformly distributed in space and
its period of ricker signal in time is Tr = 0.64µs, resulting in fmax = 3.1MHz
and fc = 7.8MHz. According to the setting of the numerical model, the Oy axis740

is in fact a line of symmetry of the problem.
The space dG solvers using different numerical fluxes “k sDG”, “u sDG”,

“cV sDG” and “cR sDG” are applied to the 2D example and are compared to
the reference solver “tDG”. Concerning the numerical flux “MG sDG”, which
solves exactly the Riemann problem, its implementation is currently verified in745

both 2D and 3D cases and is therefore not considered hereafter.
Bilinear square finite elements of size h = 25µm are used to discretize the

whole domain. This choice corresponds to respectively 30 and 45 elements in
the shortest longitudinal wavelengths of interest `L1(fc) = 0.75mm in Ω1 and
`L2(fc) = 1.1mm Ω2. The time step used for the space dG solvers ∆tsDG is750

calculated using the maximum longitudinal wave cL2 and is equal to 0.533ns,
resulting in CFLsDG = 0.56 (see (60)). As in the case of the 1D example,
this time step is also used for the implicit solver “tDG”. Concerning the total
analysis time, it is equal to 4µs so that main wave fronts reflected by the bottom
boundary of the rectangular domain have time to arrive at the top boundary.755

The present 2D problem is slightly different to the two quarter-spaces prob-
lem presented in [22] due to its additional symmetric setting and free boundary
conditions, which reflect wave back into the domain. However, the main phe-
nomena analyzed in [22] remain unchanged. As suggested in [22], seismograms
recorded along the external top horizontal boundary and the internal veritical760

physical interface on the right are displayed respectively in Figures 9 and 10.
Only the seismograms obtained by the solver “cV sDG” are presented as those
obtained by the other solvers “k sDG”, “cR sDG” and “tDG” are identical. The
main phenomena of reflection, transmission and conversion of the longitudinal
and Rayleigh waves are shown in Figure 9. We remark that the amplitudes of765

reflected L waves are too small to be noticeable in the seismograms. Figure 10
presents another main phenomenon, that is an interface wave generated from
the incident Rayleigh and propagating downwards along the vertical physical in-
terface. It will be shown by the following quantitative analyses that the interface
wave propagates with a velocity equal approximately to cI = 3440m.s−1.770

Concerning the space dG solver using the uncoupled numerical flux “u sDG”,
it gives rise to important differences in velocity components when compared to
the other solvers, as shown in Figure 11. This confirms the conclusion made in
the 1D case. Nevertheless, the phenomenon of wavefront inversion, i.e. positive
amplitudes become negative, is not observed as in the case 1D, which means775
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that only a qualitative comparison of wavefronts would not be capable to reveal
the problem. As for the space dG solvers “k sDG”, “cV sDG” and “cR sDG”,
it has been verified using the seismograms that they allow correct captures of all
the wave phenomena triggered at the physical interface. However, it is necessary
to perform quantitative comparison with the reference solver “tDG”.780

The different wave fronts captured by the solvers “tDG”, “k sDG”, “cV sDG”
and “cR sDG” are compared at first. The wave fronts are identified by searching
local maximum and minimum amplitude using an automatic procedure. Mark-
ers indicating the local maximum and minimum points are displayed in Fig-
ures 9 and 10. They are gathered and compared in Figure 12. The three space785

dG solvers “k sDG”, “cV sDG” and “cR sDG” give identical results, which is
coherent with the previous 1D analyses as the degree of inhomogeneity chosen
for the 2D example is low corresponding to a = 0.67. Compared to the results
obtained by “tDG”, differences are nearly negligible.

Then, more quantitative analyses are presented in Figures 13 and 14. For the790

sake of clarity, the curves obtained by the solver “cR sDG” are not presented.
Figure 13 compares maximum and minimum amplitudes of different wave fronts
during their propagation calculated by the different solvers and shows that the
curves calculated by the different solvers are very close. Figure 14 considers the
accuracy of the phase velocity estimated by the different solvers. The compari-795

son is made in terms of a relative error, which is defined in the following way:

er,j =
cnum,j − cj

cj
(65)

where j ∈ {L,R, reflR, I} for different types of wave, reflR indicating the re-
flected R wave for which we define creflR = −cR. Numerically estimated phase
velocities cnum,j are obtained by calculating the slopes of the numerically iden-800

tified wave fronts. We recall that in an isotropic elastic material, the Rayleigh
wave velocity can be expressed as a function of the Poisson’s ratio ν and the
transverse wave velocity cT as follows:

cR =
0.862 + 1.14ν

1 + ν
cT (66)

We have, for the present numerical example, (cR1, cR2) = 0.94(cT1, cT2). As
there is no analytical solution of the velocity of the interface wave, an approxi-805

mately estimated value cI = 1.125 (cT1+cT2)/2 = 3440m.s−1 is used. We notice
that, far from boundaries, interfaces or meeting points of two waves, where the
estimation of phase velocities is not easy, the relative errors presented in Fig-
ure 14 are small. The worst result is obtained for the interface wave but the
errors still remain smaller than 10%. The best result are obtained for the in-810

cident and transmitted Rayleigh waves, which are the waves propagating the
most energy in the studied problem.

In summary, the conclusions made in the 1D case are confirmed by the study
of the 2D bimaterial problem. The uncoupled numerical flux fails to correctly
represent wave propagation phenomena at a physical interface, even in the case815
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of a relatively low degree of inhomogeneity in terms of wave velocities (a = 0.67).
Both coupled numerical fluxes work well in this case as they give quantitatively
good comparisons with the reference solvers.

4.3. Upwind numerical fluxes applied to polycrystalline materials

The considered space dG solvers using the proposed coupled fluxes, “cV sDG”820

and “cR sDG”, are applied to single-phase and untextured polycrystalline mate-
rials. A single-phased polycrystal is an assembly of small single crystals bonded
together. Each crystallite (grain) is anisotropic and they all have the same elas-
tic Hooke tensor but with differently and randomly oriented basis of anisotropy.
Such a polycrystalline material is a heterogeneous medium with piecewise ho-825

mogeneous elastic moduli, which are discontinuous at grain interfaces, elastic
waves propagating in it are scattered and attenuated due to interactions between
waves and grain interfaces.

In a single-phase polycrystalline material, the degree of inhomogeneity in
elastic properties is completely determined by the degree of anisotropy of the830

crystallite’s Hooke tensor: the stronger the anisotropy, the higher the degree of
inhomogeneity. In the related literature, the degree of inhomogeneity of such
a polycrystal is usually expressed by measuring its departure from its Voigt
average homogeneous equivalent medium in the following way [23]:

ξ2
ijkl =

1

4

< (Cijkl(θ)− CV oigtijkl )2 >θ

(Cref−V oigtijkl )2
(67)

where the subscript “ijkl” has the proper value for either longitudinal or trans-835

verse waves and < · >θ stands for the average over all orientations of the
local material anisotropic axes denoted by θ. Furthermore, in order to remain
consistent with the previously presented analyses, we also keep measuring the
dispersion in the phase velocity of quasi-longitudinal waves with the parameter
a defined as follows:840

a =
minθ{cqL}
maxθ{cqL}

(68)

A 2D finite element model for rectangular polycrystals composed of 2106
elliptic grains of size 480µm× 240µm is defined (Figure 15(a)). The dimensions
of the rectangular domain and the boundary conditions are exactly the same as
those of the 2D example of the previous section, except that the emitter segment
Le of pressure loading is longer with a length equal to 2.8mm. Concerning the845

external pressure loadings, a Gaussian distribution along the emitter segment
is chosen for the amplitude of the pressure loading. This is to reduce as much
as possible the generation of transverse waves, which would be triggered when
discontinuities in boundary conditions occur at the ends of the emitter seg-
ment. The period of ricker signal in time of the pressure loadings is Tr = 0.4µs,850

resulting in fmax = 5MHz and fc = 12.5MHz.
Two polycrystals with different degrees of inhomogeneity are considered:
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(1) Reference material denoted by “ref”: it is a titanium alloy with crystallites
of cubic symmetry. It is orthotropic and its Hooke tensor is denoted by
Cref .855

(2) Material denoted by “strong”: to define an orthotropic material with a
stronger degree of anisotropy, the Hooke tensor Cstrong of a fiber-reinforced
material is used and results in very high degree of anisotropy.

For both materials, their homogenized equivalent media are isotropic and the
corresponding Voigt average Hooke tensors are respectively denoted byCref−V oigt

860

and Cstrong−V oigt. The elastic moduli in the local material anisotropic basis
(a1,a2,a3) of both polycrystals are given in Table I, as well as the parame-
ters ξL and a measuring the degree of inhomogeneity of each material. Their
densities are ρref = 4428kg.m−3 and ρstrong = 2710kg.m−3. Wave velocities
in the local material anisotropic plane (a1,a2) of quasi-longitudinal and quasi-865

transverse waves are presented in Figure 16 and show the dependency of wave
velocities on space directions. The high degree of anisotropy of the material
“strong” is coherent with the values of ξL and a shown in Table I.

Ciiii Ciijj,i 6=j Cijij,i 6=j ξL a

Cref (GPa) 134.0 110.0 36.0 0.028 0.899

Cref−V oigt(GPa) 153.0 100.0 26.5 0 1

C1111 Ciiii,i=2,3 C2233 C11ii,i=2,3 C1i1i,i=2,3 C2323 ξL a

Cstrong(GPa) 132.5 10.3 0.4 3.6 4.0 5.0 0.563 0.266

Cstrong−V oigt(GPa) 35.4 35.4 10.6 10.6 12.4 12.4 0 1

Table I: Elastic moduli and degrees of inhomogeneity of the studied materials “ref” and
“strong”, and their homogenized equivalent media “ref-Voigt” and “strong-Voigt”

With randomly distributed crystallographic orientations, wave velocities in
the global plane of study (ex, ey) are different from grain to grain. Ten sam-870

ples with different random distributions {Θi}i=0,··· ,9 of crystallographic orien-
tations are considered. To present the crystallographic texture of the studied
polycristals, Figure 15 displays, in the case of the random distribution Θ0, dis-
persions dV/Vm in the phase wave velocity cqL(k) with k = ey, Vm being the
averaged wave velocity < cqL(k) >grains over all grains and dV = cqL(k)− Vm875

for each grain.
As for the choice of numerical parameters, square finite elements of size h =

25µm are used for all numerical simulations of the present section and leads to
have at least about 19 elements in the shortest quasi-longitudinal wavelength for
the cut-off frequency fc for all the studied materials, except the material “strong-880

Voigt” for which the number is about 12. As the principle results considered
are numerical measures of the attenuation coefficient and of the noise levels of
the quasi-longitudinal waves, the finite element size is defined with respect to
the shortest quasi-longitudinal wavelength, which is approximately twice the
shortest quasi-transverse wavelength (Figure 16). We note that the influence885

of the finite element size on these numerical measures has been studied in [25,
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27]. Table II gives the time step used for each material and each solver, and
the associated parameters CFLsDG and CtDG−damping. Concerning reference
numerical solutions, only numerical results obtained with the time dG solver
“tDG” are considered hereafter.

“ref” “ref-Voigt” “strong” “strong-Voigt”
cqL,max(m.s−1) 6122.8 5884.2 6991.6 3612.2
`qL,min(µm) 489 471 559 289
`qL,min/h

E 20 19 22 12
∆tsDG(ns) 0.89 0.89 0.78 0.78
CFLsDG 0.65 0.63 0.65 0.33

∆ttDG(ns) 4 4 4 4
CtDG−damping 0.98 0.94 1.12 0.58

Table II: Wave velocities, shortest longitudinal wavelengths, time steps and values of CFL for
the studied materials “ref” and “strong”, and their homogenized equivalent media “ref-Voigt”
and “strong-Voigt”

890

As a first result, numerical solutions show that the uncoupled numerical flux
does not work in either cases. Indeed, instability phenomena are encountered
by the solver “u sDG” as shown in Figure 17(a). This confirms the previously
obtained conclusion. The second important result is that the Reuss average
numerical flux does not work when the degree of inhomogeneity is high. Fig-895

ure 17(b) shows the same instability phenomena are encountered by the solver
“cR sDG” in the polycrystal “strong”. It seems that the worsening of the sta-
bility condition encountered in the previously considered 1D examples is greatly
aggravated by the large number of physical interfaces, the instability problem
remains even a very small time step is used.900

Now, more quantitative comparisons between the two solvers “cV sDG” and
“tDG” are presented. Numerical time-series signals are recorded at 22 probes,
which are uniformly distributed on the emitter segment Le. Numerical evalu-
ations of the attenuation and the backscattered noise levels in polycrystals by
both solvers are compared.905

In a polycrystal, the attenuation measures the amplitude decay of elastic
waves during their propagation and it can be caused by dissipation, geometri-
cal spreading or scattering-induced diffusion. Since in the application of NDE
by ultrasounds, the dissipation by energy transformation into heat due to dis-
locations and the damping is generally negligible, only the scattering-induced910

attenuation is considered herein and it is usually quantified by a scalar α called
the attenuation coefficient, which defines an exponential decay law. Numerical
calculation of α in the frequency domain is done in the following way [24, 25]:
Discrete Fourier Transform is used to decompose the time-series signal of the
reflected wave fronts vry(xj , t) at the jth probe xj into the frequency domain and915

gives rise to the corresponding amplitude spectrum v̂ry(xj , f). Using those data,
the attenuation coefficient α(f) as a function of the frequency f is measured as:
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α(f) = −10

D
ln(

∑M
j=1 |v̂ry(xj , f)|2∑M

j=1 |v̂
r,ref
y (xj , f)|2

) (69)

To eliminate the attenuation due to the geometrical spreading of wavefront, the
ratio in (69) is calculated with respect to v̂r,refy (xj , f) the reflected echo signals920

recorded in the equivalent homogeneous medium instead of the incident signals.
In (69) we have M = 22, the constant 10 is for the unit conversion from Neper
(Np) to decibel (dB) and D stands for the wave propagation distance just before
the arrival of reflected echoes at the probes.

The attenuation coefficient is numerically evaluated in the ten samples only925

in the polycrystal “ref”, as it is difficult to record coherent echo signals in the
polycrystal “strong” due to high levels of backscattered noises (see Figure 17(b)).
Figure 18 presents comparisons between the numerical measures by two solvers
“cV sDG” and “tDG” either for one sample or for all the ten samples by plotting
the averaged measures and the minimum and maximum bounds for all the930

measures. The numerical measures are in quite good agreement. Up to 11kHz,
the attenuation level calculated by the solver “cV sDG” is slightly higher than
the one calculated by the solver “tDG”. The attenuation coefficient calculated
by the solver “cR sDG” is also plotted in Figure 18(a) and shows poor agreement
with the other two solvers.935

On the other hand, backscattered noise levels are numerically measured in
the time domain for a given frequency f0 by calculating normalized root-mean-
square (rms) noise levels Nrms(f0; t) in the following way [25–27]:

Nrms(f0; t) =

√
1

10×M
∑10×M
j=1 (vby(f0;xj , t)− b(f0; t))2

Emax(f0)
(70)

with

b(f0; t) =
1

10×M

10×M∑
j=1

vby(f0;xj , t) (71)

where 10 ×M means the average is taken over all probes and over all the ten940

samples. For a given frequency f0, Equation (70) defines in the time domain
the rms positional average of the difference between the noise signal vby(f0;xj , t)

and the mean noise level b(f0; t). The noise signal vby(f0;xj , t) is calculated by

applying a frequency filtering to the noise signal vby(xj , t) = vy(xj , t)−vrefy (xj , t)
recorded at the jth receiver xj . The mean noise level b(f0; t) would be zero if945

the total number of measures 10 ×M , equal to 220 in the present work, was
sufficiently large. In this case, Nrms(f0; t) is identical to the standard deviation
of the noise level, normalized by Emax(f0) in order to eliminate the dependence
of the noise level on the incident power. Emax(f0) is taken equal to one half
of the peak-to-peak amplitude of the incident signals for the frequency f0, as950

proposed in [26].
A comparison between different solvers of the normalized rms noise levels

Nrms(f0; t) in the time domain for the ten samples of the polycrystal “ref” is
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presented in Figure 19 for two frequencies f0 = 5 and 10MHz. Backscattered
noise levels evaluated by the three solvers “cV sDG”, “cR sDG” and “tDG” are955

in quite good agreement. However, it can be noticed that, for f0 = 5MHz, both
space dG solvers underestimate noise levels with respect to the levels calculated
by the solver “tDG”. On the other hand, Figure 19(b) shows that, for f0 =
10MHz, the noise level calculated by the solver “cR sDG” begins to exceed the
levels obtained by the other two solvers, which probably indicates the beginning960

of a instability problem. This observation is consistent with the previously
obtained conclusions.

A comparison between the two solvers “cV sDG” and “tDG” of the nor-
malized rms noise levels Nrms(f0; t) in the time domain for the ten samples
of the polycrystal “strong” is presented in Figure 20 for two frequencies f0 =965

5 and 10MHz. The gaps between the measures obtained by the two solvers are
greater and the backscattered noise levels evaluated by the solver “cV sDG” is
much lower for both frequencies.

In summary, the conclusions made in the 1D and 2D cases with only one
physical interface are confirmed. The uncoupled numerical flux does not work970

at all whatever the degree of inhomogeneity. The space dG solver using the
Reuss average coupled flux encounters instability problems when the degree of
inhomogeneity is high and gives bad measure of the attenuation coefficient even
in the case of low degree of inhomogeneity. The space dG solver using the Voigt
average coupled flux gives results in good agreement with the reference solvers975

in the case of low degree of inhomogeneity both for the attenuation coefficient
and for the backscattered noise levels. However, it underestimates the noise
levels and the underestimation becomes more important with the increase of
the degree of inhomogeneity.

5. Conclusions980

A unified variational framework for the space discontinuous Galerkin method
for elastic wave propagation in anisotropic and piecewise homogeneous media
was presented in multidimensional cases and for a general Hooke tensor. Its
compact, wave oriented and intrinsic tensorial form allows a better understand-
ing of the physical meaning of the terms involved in the variational formulation,985

especially concerning the development of numerical fluxes.
Three upwind numerical fluxes were proposed and analyzed. As the numer-

ical flux proposed by Käser et al., they solve only approximately the Riemann
problem defined at physical interfaces in piecewise homogeneous media with
discontinuous material properties. Numerical investigations were made firstly990

in 1D and 2D cases with only one physical interface and secondly in 2D cases
of polycrystalline materials. As an important conclusion of the present work,
it was shown that the necessary condition for a space dG solver of having a
stability behavior independent from the degree of inhomogeneity is that its nu-
merical flux solves exactly the Riemann problem. The uncoupled upwind flux995

does not work at all even if the degree of inhomogeneity is low. Concerning the
two coupled fluxes, as an interesting result, the Reuss average has been shown
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to be less pertinent than the Voigt average in the present context. Indeed,
the space dG solver using the Reuss average coupled flux encounters instabil-
ity problems with the increase of the degree of inhomogeneity and gives bad1000

evaluation of the attenuation level in polycrystalline materials. The space dG
solver using the Voigt average coupled flux was shown to be interesting, as it is
easy to implement and gives good evaluation in terms of both attenuation and
backscattered noise levels when the degree of inhomogeneity is low. However,
its underestimation of noise levels increases with the degree of inhomogeneity,1005

it is necessary to develop more appropriate upwind numerical fluxes in the most
general case of anisotropic and piecewise homogeneous media.

The proposed unified variational framework greatly facilitates this develop-
ment. Indeed, in our current work several upwind numerical fluxes are derived
using exact solutions of the Riemann problem. Part of this work, namely the1010

upwind fluxes in the 1D case, were presented herein. Their comparison with
the proposed simplified numerical fluxes leads to a better understanding of the
characteristics of these latter. As one of the main results of the present work,
we believe that our analysis of interface conditions is the key to design appropri-
ate numerical fluxes. Indeed, the importance of defining a flux operator, which1015

is coherent with the mechanical interface conditions regardless mathematically
equivalent forms of the first-order hyperbolic wave equations, has been high-
lighted.
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Appendix A1

The well-known rotational invariance property of the isotropic elastic wave1115

problem (6 or 9) is proved hereafter in the tridimensional case.

Lemma A1.1. In the isotropic case, the two matrices, [Ae1 ] expressed in the
global basis (e1, e2, e3), [An] expressed in the local basis (n, t1, t2) are identical.

Proof. In the global basis (e1, e2, e3), the term of the matrix [Ae1 ]γ,αβ;k,ij can
be calculated as follows:1120

[Ae1 ]γ,αβ;k,ij =
( eγ
eα ⊗s eβ

)
·Ae1

( ek
ei ⊗s ej

)
=

(
eγ

eα ⊗s eβ

)
·
( −ρ−1(ei ⊗s ej) · e1

−C : (e1 ⊗s ek)

)
= − 1

2ρ
(δ1iδγj + δ1jδγi)− Cαβ1k

(72)

with Cαβ1k = (eα ⊗s eβ) : C : (e1 ⊗s ek) due to the definition of Ae1 (8) and
the symmetry properties of the elastic tensor C.
In the local basis (b1 = n, b2 = t1, b3 = t2), the term of the matrix [An]γ,αβ;k,ij

can be calculated as follows:

[An]γ,αβ;k,ij =
( bγ
bα ⊗s bβ

)
·An

( bk
bi ⊗s bj

)
=

( bγ
bα ⊗s bβ

)
·
( −ρ−1(bi ⊗s bj) ·n
−C : (n⊗s bk)

)
= − 1

2ρ
(δ1iδγj + δ1jδγi)− Clocalαβ1k

(73)

with Clocalαβ1k = (bα ⊗s bβ) : C : (n ⊗s bk). In the isotropic case, Cijkl is inde-1125

pendent from the basis, for ∀i, j, k, l, i.e. Cαβ1k = Clocalαβ1k, which finally leads to
[Ae1 ]γ,αβ;k,ij = [An]γ,αβ;k,ij . �

Appendix A2

The expressions (39) of the solutions (α, α′) of the Riemann problem (37) is
proven hereafter.1130

By adding the three equations of (37), i.e. Eqn.(37a) + Eqn.(37b) +
Eqn.(37c), we get:

An(Uh)− αλ−nR
−
n +A′n′(U ′h)− α′λ−

′

n′R
−′

n′ = 0 (74)
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According to the definition of the Jacobian operator (10), the eigenmodes (18)
and the definition (15) and the property (14) of the Christoffel tensor Γn, we
obtain the following equations by considering separately ℘vect(Eqn.(74)) and
n ·℘tens(Eqn.(74)):

−σh ·n
ρ
− σ

′
h ·n′

ρ′
= αλ−n

γn√
2

+ α′λ−
′

n′
γ′n′√

2
(75a)

−ρΓn ·vh + ρ′Γ′n′ ·v′h = −αρλ−2
n

γn√
2

+ α′ρ′λ−
′2

n′
γ′n′√

2
(75b)

Then, to obtain the expressions for α and α′ given in (39), the following manip-
ulations of (75) are made:

• For α, C ′z
γn√

2
· (−

ρ′λ−
′

n′

ρλ−2
n

Eqn.(75a) +
1

ρλ−2
n

Eqn.(75b));1135

• For α′, Cz
γ′n′√

2
· (− ρλ−n

ρ′λ−
′2

n′

Eqn.(75a)− 1

ρ′λ−
′2

n′

Eqn.(75b)).

Appendix A3

The expressions (50) of the solutions (α̃, α̃′) of the Riemann problem (45) is
proven hereafter.

By adding the three equations of (45), i.e. Eqn.(45a) + Eqn.(45b) +1140

Eqn.(45c), we get:

Ãn(Uh)− α̃λ−nM(R−n) + Ã
′
n′(U ′h)− α̃′λ−

′

n′M
′(R−

′

n′ ) = 0 (76)

According to the definition of Ãn (47), the eigenmodes (18), the definition (15)
and the property (14) of the Christoffel tensor Γn and the relation (48), we
obtain the following equations by applying ℘vect( · ) and ℘tens( · ) on Eqn.(76):

−σh ·n− σ′h ·n′ = α̃ρλ−n
γn√

2
+ α̃′ρ′λ−

′

n′
γ′n′√

2
(77a)

−n⊗s vh − n′ ⊗s v′h = −α̃n⊗s
γn√

2
− α̃′n′ ⊗s

γ′n′√
2

(77b)

Then, to obtain the expressions for α̃ and α̃′ given in (50), the following manip-1145

ulations of (77) are made:

• For α̃, Cz(−
1

ρ′λ−
′

n′

γn√
2
·Eqn.(77a) +

1

ρλ−2
n

(n⊗s
γn√

2
) : C : Eqn.(77b));

• For {α̃′k}, C ′z(−
1

ρλ−n

γ′n′√
2
·Eqn.(77a)+

1

ρ′λ−
′2

n′,k

(n′⊗s
γ′n′√

2
) : C ′ : Eqn.(77b)).
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Appendix A4

The elementary mass, stiffness, flux stiffness matrices and the elementary1150

loading vector are detailed as follows:

MEE
pq = (ΨE

p ,Ψ
E
q )E

KEE
pq = (ΨE

p ,A
∂x(ΨE

q ))E

Kf,EE
pq = − < λ−n,kR

−
n,k ·Ψ

E
p ,L

−
n,k ·Ψ

E
q >∂Eint + < Πv(Ψ

E
p ), ρ−1Πσ(ΨE

q ).n >∂E∩∂ΩN

Kf,EE′

pq = − < λ′+n′,kR
′+
n′,k ·Ψ

E
p ,L

′+
n′,k ·Ψ

E′

q >∂Eint

GEp = < Πv(Ψ
E
p ), ρ−1g >∂E∩∂ΩN − < Πσ(ΨE

p ),C : (n⊗s ∂tũD) >∂E∩∂ΩD

(78)
with

Πv(W ) = Πv

(
w
τ

)
= w , Πσ(W ) = Πσ

(
w
τ

)
= τ (79)
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Figure 1: Sketch illustrating the Rankine–Hugoniot jump conditions in the Riemann problem
in the 1D case

0 0.2 0.4 0.6 0.8 1

t/Tr

-0.5

0

0.5

1

N
o
rm

a
li
ze
d
ri
ck
er

si
g
n
a
l

0 0.5 1 1.5 2 2.5

f/fmax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N
or
m
al
iz
ed

sp
ec
tr
u
m

(r
ic
ke
r
si
gn

al
)

(a) (b)

Figure 2: (a) Normalized ricker signal and (b) its normalized spectrum with td = Tr/2

(a)

(b)

Figure 3: 1D elastic rod with one physical interface. (a) Case 1 with discontinuous Young’s
modulus; (b) Case 2 with discontinuous Young’s modulus and density
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Figure 4: Longitudinal wave propagation in the studied elastic rod for Case 1 (Figure 3(a))
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Figure 6: Evolution of relative errors in the reflection and transmission coefficients as a
fonction of the number of interface crossing for the solvers (a) “cV sDG”, (b) “k sDG”, (c)
“MG sDG” and (d) “tDG”
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Figure 7: Reflected wave fronts calculated at different instants by the solvers (a) “cV sDG”
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Figure 8: 2D rectangular elastic domain with two vertical physical interfaces
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Figure 9: 2D bimaterial problem. Seismograms calculated by the solver “cV sDG” along
the top horizontal boundary of the studied domain for the velocity components vx and vy .
The symbols L, R and RL refer to longitudinal, transverse and from R to L converted waves
respectively
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Figure 10: 2D bimaterial problem. Seismograms calculated by the solver “cV sDG” along
the vertical physical interface in the studied domain for the velocity components vx and vy .
The symbols L, T, HT and I to longitudinal, transverse, transverse head and interface waves,
respectively.
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Figure 14: 2D bimaterial problem, comparison between the solvers “k sDG”, “cV sDG” and
“tDG”. Relative errors in phase velocities obtained by the different solvers for the (a) incident
and transmitted L, (b) incident and transmitted R, (c) reflected R and (d) interface waves
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(a)
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Figure 15: (a) FE model of a single-phase polycrystal composed of elliptic grains with pressure
loading applied on the emitter segment Le with a Gaussian distribution. Dispersions dV/Vm
in the phase wave velocity cqL(k) with k = ey for the polycrystals (a) “ref” and (b) “strong”,
Vm being the averaged wave velocity < cqL(k) >grains over all grains and dV = cqL(k)−Vm
for each grain
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Figure 16: Wave velocities of the anisotropic materials (a) “ref” and (b) “strong” in the local
material anisotropic plane (a1,a2) defined by the two first principle axes of anisotropy
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Figure 17: Velocity component vy at the middle of the emitter segment Le calculated by
different solvers. (a) Instability phenomena encountered by the solver “u sDG” in the case
of the polycrystal “ref”; (b) Instability phenomena encountered by the solvers “u sDG” and
“cR sDG” in the case of the polycrystal “strong”
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Figure 18: Comparison between different solvers of numerical measure of the attenuation co-
efficient α in the polycrystal “ref”. (a) α measured in the sample Θ0; (b) Discrepancies of
numerical measure with meanΘ(α), minΘ(α) and maxΘ(α) denoting respectively the aver-
aged numerical measures, the minimum and maximum bounds of numerical measures over
the ten samples Θ0 − Θ9
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Figure 19: Comparison between different solvers of the normalized rms noise levels Nrms(f0; t)
for the ten samples of the polycrystal “ref”. (a) f0 = 5MHz; (b) f0 = 10MHz
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Figure 20: Comparison between different solvers of the normalized rms noise levels Nrms(f0; t)
for the ten samples of the polycrystal “strong”. (a) f0 = 5MHz; (b) f0 = 10MHz
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