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A LATIN-basedmodel reduction approach for the simulation of cycling
damage

Mainak Bhattacharyya1,2 · Amelie Fau1 · Udo Nackenhorst1 · David Néron2 · Pierre Ladevèze2

Abstract

The objective of this article is to introduce a new method including model order reduction for the life prediction of structures

subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique,

the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique

which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected

to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A

difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations

through an internal variable transformation. A specific treatment of this issue is introduced in this work.

Keywords LATIN method · Proper Generalised Decomposition · Non-linear solid mechanics · Damage · Reduced order

model

1 Introduction

In engineering problems, the failure of structures is often

governed by the creation and growth of micro-voids and

micro-cracks. These micro-level discontinuities can coalesce

and grow into macro-cracks which may propagate through

structures resulting in failure. They are quantified in contin-

uum scale as a homogenised quantity described by an internal

variable. Damage, in its mechanical sense, is the creation

and growth of micro-voids or micro-cracks. The represen-

tation of damage as a scalar variable was first introduced

by Kachanov [20]. Many works have been followed since

then, notably by Lemaitre and Desmorat [30,32]. For ductile

materials, isotropic damage can be physically interpreted as

a volume density of micro-voids, and also as reduction in the

stiffness of the material [32]. Mostly, the isotropic damage

variable is defined between 0 and 1 [20,30,32,37], where 0

represents a virgin material and 1 represents complete failure.

It is, however, also possible to introduce a damage variable
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between 0 (undamaged) and ∞ (completely damaged) [5].

The phenomenon of low cycle fatigue (LCF) is governed by

macro-plasticity (or visco-plasticity), where the dissipative

energy for damage exists at the macro-scale [33]. For high

cycle fatigue (HCF), the structure is macroscopically elas-

tic, however plasticity and damage exist at the microscale.

In the presence of cyclic loading, damage during tension is

much higher than during compression because of the closure

of the micro-voids and the material recovers its stiffness,

partially or completely [32]. For solving this type of prob-

lems numerically, most of the developments in the field of

continuum damage mechanics are based on a classical time

incremental framework [32,33]. Numerical challenges rely

on the accuracy of the required iterative algorithm as well

as on its stability when damage increases [13] or on the

efficient computation of the response under cyclic loading

[12,18,35,48].

For the last decades, model order reduction has been

appealing for many mechanical problem to tackle large

size problems, real-time computations or parametric stud-

ies [8,15]. For that purpose, the idea of model reduction is to

seek the solution of a given problem in a reduced-order basis,

whose dimension is much smaller than the size of the origi-

nal high-dimensional model. This idea takes advantage of the

redundancy of information that usually exists when describ-

ing the solution. Model reduction techniques based on the

1



Proper Orthogonal Decomposition (POD) [4,7,8,22], involve

a learning phase which consists in solving the full-order

problem at some particular time instants and/or parameter

values arbitrarily chosen. These solutions, called snapshots,

are used to build reduced-order basis, by means of truncated

POD, and a reduced-order model is then generated (e.g. by

Galerkin projection) to solve the problem for the entire time

and/or parameter domain. Since the 80’s, the Reduced-Basis

(RB) approach has been developed and consists of a greedy

algorithm which selects the most relevant calculations to be

performed on the parametric space in order to enrich the

reduced-order basis [17,34,39,40,44,45,49]. Another appeal-

ing family of model reductions which has received a growing

interest during the last decade is based on the Proper Gener-

alised Decomposition (PGD). Roughly, PGD also consists in

seeking the solution of a problem in a relevant reduced-order

basis but this one is generated automatically and on-the-fly

by a greedy algorithm, simultaneously with the successive

approximations of the solution. The interested reader is

referred to [24,26] for structural non-linear problems and

the works of Chinesta and co-authors to solve parameterised

problems [1,3,16]. An extensive review of the literature on

this method can be found in [10].

Computation of continuum damage problems may lead to

solution bifurcation or to strain localisation. Because such

behaviours are highly sensible to any modification of the

model, computational strategies using model order reduc-

tion for damage are challenging and may be hazardous. It

is generally recommended to control with circumspection,

the accuracy of the solution provided by computations based

on POD and to prefer some adaptive schemes as A Pri-

ori Hyper Reduction Method [47] or POD coupled with

Newton–Krylov algorithms [21]. PGD also offers such a

flexibility as used recently by [36], which introduced the

coupling of PGD with a cohesive zone for delamination,

or [14] for multi-scale computations for simulating prob-

lems with a rate-dependent damage model. These different

authors have shown that model order reduction are promis-

ing to forecast damage evolution with limited computational

cost.

In the current article, a different approach is proposed,

based on the LATIN method [24] which looks for an approx-

imation of the solution on the entire time-space domain at

every iteration. Therefore, this method is said to be non-

incremental in time although discretisation schemes in space

and in time are used as usual. As it handles an approxi-

mation of the whole time-space domain at every iteration,

this approach is very suitable to include model order reduc-

tion techniques even for non-linear computations. A drastic

decrease of the computational cost compared to a classical

approach would allow to tackle sophisticated cases such as

cyclic loading for example.

The LATIN-PGD has been developed for solving plastic-

ity and visco-plasticity problems, even with cycling loading.

From the first works [11,23,24], performances and robust-

ness have improved thanks to [26–28,38,43], leading to a

mature approach for classical (visco-)plastic problems with

parameters. The aim of this paper is to extend the approach

for (visco-)plastic problems with unilateral damage. A major

difficulty comes from the state laws which can not be trans-

formed into linear relations through an internal variable

transformation in order to employ the usual LATIN-PGD

framework. An extension of the algorithm is introduced for

the treatment of this non-linearity. The powerful numerical

framework offered by LATIN-PGD seems to be robust and

efficient to also predict damage including intrinsic model

order reduction.

The article is structured as follows. In Sect. 2, the general

problem is introduced in time-space domain with corre-

sponding admissibility conditions. Constitutive formulations

for the state and internal variables are presented including

damage evolutions. In Sect. 3 the innovative LATIN algo-

rithm is presented, incorporating damage. In Sect. 4, the PGD

technique is described. The stress and strain are mathemati-

cally separated in terms of a part that depends on the plastic

strain and the other part that depends on damage. The former

is represented in a separable form of space and time which is

estimated using a hybrid technique. Finally, two numerical

examples are detailed in Sect. 5 to analyse the performances

of the new algorithm.

2 The reference problem

The reference problem is a quasi-static isothermal evolution

of a structure defined over time-space domain [0, T ] × Ω ,

assuming small perturbation. The structure is subjected to

prescribed body forces f
d
, to traction forces Fd over a part

∂2Ω of the boundary. The structure is also subjected to pre-

scribed displacements ud over the complementary part ∂1Ω

(Fig. 1). The state of the structure is defined by the set of field

variables s =
{

ε̇ p, εe, Ẋ, Ḋ, σ , Z, Y
}

, where

– ε p is the inelastic part of the total strain ε correspond-

ing to the displacement field u, that satisfies the strain

partition relation ε = εe + ε p, with εe being the elas-

tic strain. X represents the internal variables related to

hardening. D is the isotropic damage variable associated

with damaged state of the material.

– σ is the Cauchy stress, Z is the set of variables conjugate

to X , i.e. the thermodynamic forces associated to X . Y

represents the energy release rate associated with damage

and is the conjugate variable of D.
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Fig. 1 Reference problem in domain Ω

2.1 Constitutive relations

The formulation of constitutive relations involves the descrip-

tion of the state equations and the formulation of the evolution

laws.

2.1.1 State equations

The equations of state are obtained from the Gibbs free

energy function ψ which can be decoupled into an elastic

damage part ψe and a plastic hardening part ψ p,

ρψ = ρψe (σ , D) + ρψ p (X) , (1)

where ρ is the mass density. The difference in the elastic state

equation during tension and compression is due to the fact

that during compression the material regains some stiffness,

as some of the micro-defects are closed, thereby increasing

the effective area. This can be represented by the effective

modulus of elasticity during tension Ẽ+, which is given by

Ẽ+ = E (1 − D), where E is the true modulus of elastic-

ity, and by the effective elastic modulus during compression

Ẽ− given by Ẽ− = E (1 − h D). The closure parameter h

has values between 0 (complete stiffness recovery) and 1

(no stiffness recovery). This phenomenon is described by an

elastic free energy function given as

ρψe =
1 + ν

2E

[

〈σ 〉+i j 〈σ 〉+i j

1 − D
+

〈σ 〉−i j 〈σ 〉−i j

1 − h D

]

−
ν

2E

[

〈σkk〉
2

1 − D
+

〈−σkk〉
2

1 − h D

]

, (2)

where ν is the Poisson ratio. Hardening in classical sense is

classified into isotropic and kinematic hardening. Isotropic

hardening is the phenomenon where there is an increase in the

radius of the yield surface within the Π plane and the centre

of the yield surface remains constant. Kinematic hardening

is where the yield surface translates in the Π plane without

any change in radius. For metals, pure isotropic hardening can

not describe Bauschinger effect but pure kinematic hardening

can. For practical cases, however a combination of the two

(mixed hardening) is used [31]. For mixed hardening case

the plastic free energy function can be written as

ρψ p (X) = ρψ p (α, r) =
1

2

[

αi j Cαi j

]

+ g (r) , (3)

where α is internal variable corresponding to kinematic hard-

ening, r is the internal variable for isotropic hardening. β

and R are conjugate to α and r respectively. C is a material

parameter for kinematic hardening and g (r) is a function

describing the isotropic hardening. These definitions give the

state equations as

εe
i j = ρ

∂ψe

∂σi j

=
1 + ν

E

[

〈σ 〉+i j

1 − D
+

〈σ 〉−i j

1 − h D

]

−
ν

E

[

〈σkk〉

1 − D
+

〈−σkk〉

1 − h D

]

δi j , (4a)

βi j = ρ
∂ψ p

∂αi j

= Cαi j , (4b)

R = ρ
∂ψ p

∂r
= g′ (r) , (4c)

Y = ρ
∂ψe

∂ D
=

1 + ν

2E

[

〈σ 〉+i j 〈σ 〉+i j

(1 − D)2
+ h

〈σ 〉−i j 〈σ 〉−i j

(1 − h D)2

]

−
ν

2E

[

〈σkk〉
2

(1 − D)2
+ h

〈−σkk〉
2

(1 − h D)2

]

. (4d)

It has to be noticed that the linear relationship εe = C
−1σ

between stress and elastic strain field, with C being the Hooke

tensor, is modified in Eq. (4a) to include unilateral damage.

An exponential isotropic rule is generally considered as,

g′ (r) = R∞

[

1 − exp (−γ r)
]

, (5)

with R∞ and γ being material parameters describing

isotropic hardening.

2.1.2 Evolution laws

The starting point of the formulation of the evolution equa-

tions is the second law of thermodynamics, written as

Clausius–Duhem inequality,

σi j ε̇
p

i j − Rṙ − βi j α̇i j + Y Ḋ � 0. (6)
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The evolution equations for the internal variables are obtained

from a dissipation potential φ, which is a convex function of

the associated variables to ensure that Eq. (6) is satisfied. The

dissipation potential can be decoupled as

φ = φ p + φd , (7)

where φ p represents the dissipation due to plasticity and φd

represents the dissipation due to damage. For visco-plasticity

φ p can be defined according to Norton’s law as

φ p =
k

n + 1

〈

f p
〉n+1

+
, (8)

where k and n are material dependent viscous coefficient and

exponent respectively and f p is the yield function. Consid-

ering τi j =
σ D

i j

1−D
− βi j , with σ D

i j being the deviatoric part

of the stress tensor, the yield function for J2 plasticity in a

Marquis–Chaboche model is defined as,

f p =

√

3

2
τi jτi j +

a

2C

[

βi jβi j

]

− R − σy . (9)

The second term is specific to Marquis–Chaboche model and

indicates material softening, where a is a material parameter

and σy is the yield stress. The evolution equations can then

be written as

ε̇
p

i j =
∂φ p

∂σi j

= k
〈

f p
〉n

+

⎡

⎣

3

2

τi j
√

3
2
τi jτi j

⎤

⎦

1

1 − D
, (10a)

α̇i j = −
∂φ p

∂βi j

= −k
〈

f p
〉n

+

⎡

⎣−
3

2

τi j
√

3
2
τi jτi j

+
a

C
βi j

⎤

⎦ ,

(10b)

ṙ = −
∂φ p

∂ R
= −k

〈

f p
〉n

+
(−1) . (10c)

Similar to plasticity, the damage potential φd can be

defined as

φd =
kd

nd + 1

〈

f d
〉nd+1

+
, (11)

with kd and nd being the damage coefficient and damage

exponent respectively. fd is the damage yield function given

by,

f d = Y − Y0, (12)

where Y0 describes the damage threshold. The evolution

equation for damage is then given by

Ḋ =
∂φd

∂Y
= kD

〈

f d
〉nd

+
. (13)

A similar damage evolution equation had been proposed

in [5], where an unbounded damage variable defined between

0 and ∞ was used. The damage evolution law (13) is also

thermodynamically consistent for bounded damage variable

defined between 0 and 1. Due to the presence of macro-

plasticity, it can be considered that damage occurs only

during plastic deformation and there is no evolution of dam-

age in the elastic regime, which defines the threshold Y0 as

Y0 =
σ 2

y

2E
. (14)

2.2 Admissibility conditions

For the admissibility conditions of the reference problem,

the following spaces and the corresponding vector spaces

(denoted with subscript 0) are defined:

– The space U of the kinematic admissibility fields u such

that

u|t=0 = u0 and u = ud on ∂1Ω. (15)

– The space S of the statically admissible fields σ such

that,
∫

[0,T ]×Ω

σ : ε
(

u∗
)

dΩ dt =

∫

[0,T ]×Ω

f
d

· u∗ dΩ dt

+

∫

[0,T ]×∂2Ω

Fd · u∗ dS dt , ∀ u∗ ∈ U0. (16)

– The space E of the kinematically admissible fields ε such

that ∃u ∈ U , ε = ∇symu, which in weak form can be

written as,
∫

[0,T ]×Ω

σ ∗ : ε dΩ dt

=

∫

[0,T ]×∂1Ω

σ ∗n · ud dS dt , ∀ σ ∗ ∈ S0. (17)

2.3 Partial normal formulation

To use efficiently the LATIN method as a solver, the state

equations should be described by linear operators. Hence it

is necessary to introduce at this point a “normal" formulation

of the constitutive relations [11,24]. For that purpose, the state

law (4c) is transformed into linear relations by a change of

variable

R̄ = R∞r̄ (18)

where, R̄ and r̄ are the new isotropic variables, with
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r̄ =
2

γ 1/2

[

1 − exp
(

−
γ r

2

)]

,

R = R∞

(

R̄

R∞

γ 1/2

2

)(

2 −
R̄

R∞

γ 1/2

2

)

. (19)

Using these two new variables, the yield function becomes,

f p =

√

3

2
τi jτi j +

a

2C

[

βi jβi j

]

− R∞

(

R̄

R∞

γ 1/2

2

)(

2 −
R̄

R∞

γ 1/2

2

)

− σy, (20)

and the evolution Eq. (10c) can be written as,

˙̄r = −k
〈

f p
〉n

+

(

R̄

R∞

γ

2
− γ 1/2

)

. (21)

However, it has to be noted that the elasticity law (4a) can-

not be transformed into a linear relation, due to the damage

term, and it will require a specific treatment.

3 The LATIN framework

Solving the reference problem has three difficulties; first

being satisfying the global equilibrium of the structure, the

second being taking into account the non-linear elastic law,

and finally to solve the non-linear evolution equations. The

LATIN method is a non-incremental solver in time that tack-

les these sets of equations iteratively on the whole time-space

domain. The algorithm is initialised by the solution of the ref-

erence problem considering the loading is elastic and then

plastic and damage corrections are added iteratively. For

that purpose, two manifolds are introduced, based on a sub-

division of the set of equations that must be solved:

– the first is the space A which belongs to the manifold

of the admissibility conditions (15, 16, 17), the linear

state laws (4b, 18), and also the non-linear state law for

damage (4d), that although being non-linear, can be post-

processed from the stress tensor and the damage variable

at the end of each iteration;

– the second is the space Γ which belongs to the mani-

fold of the evolution equations (10a, 10b, 13, 21) and the

elastic state law (4a) which was not linearisable due to

damage.

The exact solution is then given by

sex ∈ A ∩ Γ . (22)

To find sex , an iterative algorithm is used, which consists,

at each iteration, of a non-linear local stage and a linear global

stage, seeking alternatively for an approximation of the solu-

tion field s over Γ and A. The relation between the two spaces

are governed by linear operators called search directions. The

iterative algorithm can be represented as follows:

s0 ∈ A −→ ŝ1/2 ∈ Γ · · · −→ ŝi+1/2 ∈ Γ

−→ si+1 ∈ A · · · −→ sex . (23)

An overview of the extended method including unilateral

damage is schematised in Fig. 2.

3.1 Initialisation

The beginning of the algorithm starts with an elastic initiali-

sation. The loading is considered to be elastic and a solution

set s0 ∈ A is calculated. Due to the elastic assumption, all

the internal variables X , Z, D and ε p are set equal to zero.

All the boundary conditions are taken into account in the ini-

tialisation stage. At each subsequent iteration, correction to

the elastic solution is computed.

3.2 Local stage

The objective of the local stage is to solve the evolution

equations for internal variables that are local in space and

non-linear. The elastic state law, being non-linear is also

treated in this stage. The solution field s is separated into two

parts s
p = {ε̇ p, εe, Ẋ, σ , Z} and s

d = {Ḋ, Y }. Both solution

fields are solved using linear operators having different prop-

erties. Knowing a solution set si ∈ A, the objective is to find

ŝi+1/2 ∈ Γ such that the local search directions (directions

of ascent) are satisfied

⎡

⎢

⎢

⎣

ˆ̇ε
p

i+1/2 − ε̇
p

i

−
(

ˆ̇
X i+1/2 − Ẋ i

)

ε̂
e
i+1/2 − εe

i

⎤

⎥

⎥

⎦

+ B
+

⎡

⎢

⎢

⎣

σ̂ i+1/2 − σ i

Ẑi+1/2 − Zi

σ̂ i+1/2 − σ i

⎤

⎥

⎥

⎦

= 0,

(24a)
[

ˆ̇Di+1/2 − Ḋi

]

+ b
+
[

Ŷi+1/2 − Yi

]

= 0. (24b)

Here, B
+ and b

+ are the directions of ascent for solution sets

s
p and s

d respectively. Following [24], the choice of these

search directions is given by

(

B
+
)−1

= 0 ,
(

b
+
)−1

= 0. (25)

The solution of the search direction equations (24) along

with the evolution Eqs. (10) and (13) and the non-linear elas-

tic law (4a) gives easily the complete set of solution ŝi+1/2.

Knowing the solution at the local stage ŝi+1/2, the solution

set si+1 will be obtained in the global stage.
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Initialisation
elastic computation

Local stage:

elastic state law
evolution equations

Global stage:

mechanical equilibrium

admissibility conditions

other state laws

PGD: Update

∆ε̇
p

i+1 =
m

j=1

∆λ̇j(t)ε̄
p

j (x)

∆σi+1 =
m

j=1

∆λ̇j(t)Cε̄
p

j (x)

PGD: Add a pair

∆ε̇
p

i+1 = λ̇m+1(t)ε̄
p
m+1 (x)

∆σi+1 = λ̇m+1(t)Cε̄
p
m+1 (x)

σ0, εe
0

i = 0, m = 0

{ ˆ̇εp
i+1/2

, ε̂e
i+1/2

, ˆ̇Xi+1/2, σ̂i+1/2, Ẑi+1/2}, { ˆ̇Di+1/2, Ŷi+1/2}

∆σi+1 = ∆σi+1 + ∆σ̃i+1

∆σ̃i+1 estimated from the local stage information

{∆λ̇j}
m
j=1 = f ε̇p

i , σi, σ̂i+1/2, ˆ̇εp
i+1/2

ζi < ζtol?

λm+1(t), ε̄
p
m+1 (x)

orthonormalise ε̄
p

m+1 (x), correct {λj(t)}
m+1

j=1

λm+1 satisfying?

rejection

{ε̇p
i+1

= ε̇p
i + ∆ε̇p

i+1
, εe

i+1, Ẋi+1, σi+1 = σi + ∆σi+1, Zi+1}, {Ḋi+1, Yi+1}

ζi < ζend?

yes

no

yes

i = i + 1no

no

m = m + 1

yes

{ε̇p, εe, Ẋ, σ, Z}, {Ḋ, Y }

Fig. 2 Scheme of the innovative LATIN algorithm including unilateral damage (i : iteration of LATIN method, m: number of PGD pairs involved

in the separable form)

3.3 Global stage

In the global stage, apart from the state laws and admissibility

conditions, the solution set si+1 ∈ A must also satisfy the

descent search directions, i.e.

⎡

⎢

⎣

ε̇
p

i+1 − ˆ̇ε
p

i+1/2

−
(

Ẋ i+1 − ˆ̇
X i+1/2

)

εe
i+1 − ε̂e

i+1/2

⎤

⎥

⎦
− B

−

⎡

⎣

σ i+1 − σ̂ i+1/2

Zi+1 − Ẑi+1/2

σ i+1 − σ̂ i+1/2

⎤

⎦ = 0,

(26a)
[

Ḋi+1 − ˆ̇Di+1/2

]

− b
−
[

Yi − Ŷi+1/2

]

= 0, (26b)
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where B
− =

[

H
− 0

0 C
−1

]

. The choice of the operator H
−

is such that it belongs to the tangent space associated with

the solution set ŝi+1/2 in the manifold Γ . It is defined as the

second derivative of the visco-plastic dissipation potential

φ p. For mixed hardening, this is of the form

H
− =

⎡

⎢

⎣

Hσ Hσβ Hσ R

Hβσ Hβ Hβ R

HRσ HRβ HR

⎤

⎥

⎦
. (27)

For the sake of simplicity, only an approximation of the tan-

gent is computed and the off-diagonal terms are considered

to be zero, which results to

H
− =

⎡

⎣

Hσ 0 0

0 Hβ 0

0 0 HR

⎤

⎦ =

[

Hσ 0

0 HZ

]

, (28)

where,

HZ =

[

Hβ 0

0 HR

]

. (29)

At each space-time point, the operator H
− obtained from

the viscoplastic potential is a symmetric matrix, positive but

semi-definite so its inverse is not always defined. Hence it is

necessary to regularise it by

H
− = H

− + cM
−1, (30)

where ζ is the regularisation coefficient taken herein to be

0.15, and

M =

⎡

⎣

C 0 0

0 C 0

0 0 R∞

⎤

⎦ . (31)

The search direction operator for damage b
−, is taken to be

zero, that is the damage variable does not change in the linear

stage.

The new difficulty, compared to former works with the

LATIN method, is that the elastic state law (4a) is non-linear

due to the presence of damage, leading to solve a non-linear

problem at the global stage. This point is particularly tricky

as it prevents the introduction of a model reduction strategy at

this stage. The idea proposed herein is to transform this non-

linear problem into separate linear equations by decomposing

stress and total strain into two parts depending on plastic

deformation and damage respectively.

The quantities of interest at this point σ i+1, εe
i+1 and ε̇

p

i+1

are represented in a corrective form at iteration i + 1 as

∆σ i+1 = σ i+1 − σ i , ∆εe
i+1 = εe

i+1 − εe
i and ∆ε̇

p

i+1

= ε̇
p

i+1 − ε̇
p

i . (32)

The stress correction in the global stage at iteration i + 1

is separated into a part ∆σ ′
i+1 that depends on the plastic

deformation and another part ∆σ̃ i+1 that is obtained from

the non-linear state law,

∆σ i+1 = ∆σ ′
i+1 + ∆σ̃ i+1. (33)

Similarly the total strain correction ∆εi+1 = ∆εe
i+1+∆ε

p

i+1

at iteration i + 1 is also separated into a part ∆ε′
i+1 that

depends on plasticity and a part ∆ε̃i+1 that depends on dam-

age,

∆εi+1 = ∆ε′
i+1 + ∆ε̃i+1. (34)

Now, the corrective terms given by Eq. (32) help to rewrite

the search direction equation C
−1 as

∆σ i+1 = C∆εe
i+1 − ∆Ri+1, (35)

where ∆Ri+1 represents a residual stress term at iteration

i + 1 and is given by

∆Ri+1 = (σ i − σ̂ i+1/2) − C

(

εe
i − ε̂

e
i+1/2

)

. (36)

From the previous separations along with the additive

strain decomposition relation, it can be established that

∆σ ′
i+1 + ∆σ̃ i+1

= C
(

∆ε′
i+1 − ∆ε

p

i+1

)

+ C

(

∆ε̃i+1 − ∆εR
i+1

)

, (37)

where ∆εR
i+1 can be interpreted as a residual strain obtained

from non-linear state law at iteration i + 1 and is given by

∆εR
i+1 = C

−1∆Ri+1. (38)

On the other hand, if only the plastic part is considered,

the search direction defined by Eq. (26a) is written as

∆ε̇
p

i+1 − Hσ ∆σ i+1 + Δ̄i+1 = 0, (39)

with

Δ̄i+1 = Hσ (σ̂ i+1/2 − σ i ) −
(

ˆ̇ε
p

i+1/2 − ε̇
p

i

)

. (40)

7



Due to the separation of the stress tensor, only the part

depending on plasticity is included in Eq. (39), which can

thereby be re-written as

∆ε̇
p

i+1 − Hσ ∆σ ′
i+1 + Δ̄i+1 = 0. (41)

The objective of the global stage is then to calculate

(∆ε̇
p

i+1,∆σ i+1,∆εe
i+1) by solving the weak form of the

equilibrium equation.

4 PGD formulation of the global stage

The Proper Generalised Decomposition (PGD) is based on

the idea that any quantity of interest which is dependent on

several independent variables can be approximated as a sum

of products of one-variable functions [9,24]. This decom-

position includes thus an error due to the assumption of a

separable form. For instance a field v(x, t) dependent on

space and time variables is approximated as

v(x, t) ≈

n
∑

i=1

vx
i (x)vt

i (t). (42)

The usage of PGD in the LATIN framework lies in the fact

that the quantities of interest are defined by Eq. (32) at every

successive iteration on the whole time-space domain and are

estimated from a linear problem, allowing easily to estimate

them as separable forms. Although, this type of representa-

tion is general and can be applied to any given field [24], it

is only efficient to solve a problem if the solution is sepa-

rable. If is not the case, for example in the case of moving

loads, some adaptations can be proposed to make this type

of approximation efficient [2].

The boundary conditions have been taken into account in

the elastic initialisation, so here the solution set searched in

terms of corrections has to be kinematically admissible to

zero, i.e. belonging to A0. The static admissibility condition

(16) can be written as

∫

[0,T ]×Ω

∆σ ′
i+1 : ε

(

u∗
)

dΩ dt = 0 , ∀ u∗ ∈ U0, (43)

with

∆σ ′
i+1 = C

(

∆ε′
i+1 − ∆ε

p

i+1

)

. (44)

Also the part that is related to damage can be written in a

similar weak form as

∫

[0,T ]×Ω

∆σ̃ i+1 : ε
(

u∗
)

dΩ dt = 0 , ∀ u∗ ∈ U0, (45)

with

∆σ̃ i+1 = C

(

∆ε̃i+1 − ∆εR
i+1

)

. (46)

4.1 Separable representation of the quantities of
interest

The quantities of interest represented in corrective forms are

currently ∆σ ′
i+1, ∆σ̃ i+1, ∆ε̇

p

i+1, ∆εe
i+1. The plastic strain

rate is written as

∆ε
p

i+1 = λp (t) ε̄ p
(

x
)

⇒ ∆ε̇
p

i+1 = λ̇p (t) ε̄ p
(

x
)

. (47)

The total strain that depends on plastic deformation and the

corresponding displacement field can also be separated as

∆ui+1 = λu (t) ū
(

x
)

⇒ ∆ε′
i+1 = λu (t) ε̄

(

x
)

. (48)

For the following development, the indices are dropped

for simplicity and used if necessary. Introducing the PGD

approximation, the test field in Eq. (43) becomes u∗ =

λu∗ū + λu ū∗ with ū∗ ∈ U0 and λu∗ does not have any con-

dition. The space-time problem then can be separated into a

space problem and a time problem. The time problem con-

sists in finding λu such that ∀λu∗,

∫

[0,T ]

λuλu∗ dt

∫

Ω

Cε̄ : ε
(

ū
)

dΩ

=

∫

[0,T ]

λpλu∗ dt

∫

Ω

Cε̄ p : ε
(

ū
)

dΩ. (49)

This gives that λu and λp are proportional and the simplest

choice is to assume λu = λp = λ. With this choice of the

time function, the space problem simply consists in seeking

ū ∈ U0 such that

∫

Ω

Cε̄ : ε
(

ū∗
)

dΩ =

∫

Ω

Cε̄ p : ε
(

ū∗
)

dΩ, ∀ ū∗ ∈ U0.

(50)

This allows to define an operator E [43] such that

ε̄ = Eε̄ p. (51)

Equation (44) can then be written as

∆σ ′ = λC (E − I) ε̄ p = λCε̄ p, (52)

with C = C (E − I) and I being the identity matrix. Finally

including PGD in the global stage, at LATIN iteration i + 1,

8



the description of the quantities of interest depending on the

plastic strain becomes

∆ε̇
p

i+1 = λ̇ (t) ε̄ p
(

x
)

, (53a)

∆σ ′
i+1 = λ (t) Cε̄ p

(

x
)

. (53b)

The quantities that depend on damage, namely ∆σ̃ i+1 and

∆ε̃i+1, are obtained from the weak form of Eq. (45) along

with Eq. (46) giving

∫

[0,T ]×Ω

C

(

∆ε̃i+1 − ∆εR
i+1

)

: ε̃
(

u∗
)

dΩ dt = 0 , ∀ u∗ ∈ U0,

(54)

where ∆εR
i+1 is a known quantity. ∆ε̃i+1 can be calculated

using the same operator E as

∆ε̃i+1 = E∆εR, (55)

and the stress tensor depending on damage is calculated as

∆σ̃ i+1 = C∆εR . (56)

Finally the total stress and elastic strain tensors in correc-

tive terms are obtained as

∆σ i+1 = ∆σ ′
i+1 + ∆σ̃ i+1, (57a)

∆εe
i+1 = ∆ε′

i+1 + ∆ε̃i+1 − ∆ε
p

i+1. (57b)

4.2 Hybrid method to construct the PGD
reduced-order basis

For calculating the approximation of the corrective terms in

a separable form, it is possible to enrich the reduced-order

basis by calculating a new product of a function of space and

a function of time, or to re-use the space functions generated

at previous iterations and only update the time functions.

As updating time functions is less expensive, this strategy

is considered at the beginning of the global stage of every

LATIN iteration, then enriching the reduced-order basis is

done only if necessary as shown on Fig. 2.

4.2.1 Update of the time functions

Considering that m pairs have been generated at the end of

the global stage of LATIN iteration i , at LATIN iteration i +1

the objective is to re-use the spatial basis. This phase is thus

equivalent as a POD computation on the current PGD basis.

The quantities of interest which depend on plastic deforma-

tion can be written as

∆ε̇
p

i+1 =

m
∑

j=1

∆λ̇ j (t) ε̄
p

j

(

x
)

,

∆σ ′
i+1 =

m
∑

j=1

∆λ j (t) Cε̄
p

j

(

x
)

.

(58)

These updates of the time functions are calculated from the

minimisation of a mechanical residual which is defined by

the norm of the search direction operator, i.e.

{

∆λ j

}m

j=1
= arg min

{∆λi }
m
j=1

∥

∥

∥

∥

∥

∥

m
∑

j=1

∆λ̇ j ε̄
p

j − Hσ

m
∑

j=1

∆λ j Cε̄
p

j + �̄i+1

∥

∥

∥

∥

∥

∥

H
−1
σ

.

(59)

The minimisation problem gives a multi-variable differen-

tial equation, which is solved using discontinuous Galerkin

method of order zero. More information on discontinu-

ous Galerkin method for solving minimisation problems in

LATIN method can be found in [29,42]. Subsequently the

total stress and elastic strain are calculated using Eq. (57).

After the calculation of all the quantities of interest, if the cor-

rection provided by the update of the time functions is not

satisfactory, a new space-time pair will be added. For a min-

imisation problem both in space and in time, a criterion for

adding a space-time pair was suggested in [43]. Currently,

the criterion to enrich the reduced-order basis is estimated

by the saturation of the error indicator. Similar criterion was

proposed in [19], a modified version is given as,

ζ =
ξi − ξi+1

ξi + ξi+1
. (60)

If this indicator is larger than a particular pre-defined value

ζ tol, the approximation for this LATIN iteration is consid-

ered satisfactory. Then, the internal variables are calculated

before pursuing with the subsequent LATIN iteration. At the

contrary, if the indicator is lower than ζ tol, a space-time PGD

pair is added to enrich the reduced-order basis.

4.2.2 Addition of space-timemodes

To enrich the reduced-basis, a hybrid strategy is used, that

combines a Galerkin formulation to approximate the space

fields and a minimisation technique to estimate the corre-

sponding time functions [26]. The search direction equation

during the stage of enrichment becomes

∆ε̇
p

i+1 − Hσ ∆σ ′
i+1 + Δ̄i+1 = 0, (61)

with

Δ̄i+1 = Hσ

(

σ̂ i+1/2 − σ
up
i+1

)

−
(

ˆ̇ε
p

i+1/2 − ε̇
p , up
i+1

)

, (62)
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where ε̇
p , up
i+1 and σ

up
i+1 are the quantities obtained from the

update stage. The quantities of interest are written in a sepa-

rable form as

∆ε̇
p

i+1 = ∆λ̇m+1 (t) ε̄
p
m+1

(

x
)

,

∆σ ′
i+1 = ∆λm+1 (t) Cε̄

p
m+1

(

x
)

.
(63)

A fixed point algorithm is used to calculate the space-

time pair. All the superscripts and subscripts that have been

used previously are dropped for simplicity for the following

development to calculate the space function by a Galerkin

technique. The strain partition relation combined with the

state equation is written as

∆ε̇′ = ∆ε̇ p + C
−1∆σ̇ ′, (64)

where ∆ε̇ p is obtained from Eq. (61) and ∆σ ′ = λσ̄ with

σ̄ = λCε̄p. The kinematic admissibility condition in rate

form is written as

∫

[0,T ]×Ω

∆ε̇′ : σ ∗ dΩ dt = 0, ∀ σ ∗ ∈ S0, (65)

which leads, introducing 〈·〉 =
∫

[0,T ]

· dt and σ ∗ = λσ̄ , to

∫

Ω

[〈

Hσ λ2
〉

σ̄ + 〈λ̇λ〉C−1σ̄ − 〈Δ̄λ〉
]

: σ̄∗ dΩ = 0, ∀ σ̄∗ ∈ S0.

(66)

By defining ¯̃ε such that

¯̃ε = W
−1σ̄ − δ̄, (67)

with W
−1 = 〈Hσ λ2〉 + 〈λ̇λ〉C−1 and δ̄ = 〈 ¯̄Δλ〉, it is estab-

lished that

∫

Ω

¯̃ε : σ̄ ∗ dΩ = 0, ∀ σ̄ ∗ ∈ S0. (68)

The static admissibility to zero of σ̄ reads

∫

Ω

σ̄ : ε(ū∗) dΩ = 0, ∀ ū∗ ∈ U0, (69)

which is rewritten using Eq. (67) and by introducing dis-

placement ¯̃u ∈ U0 such that ε( ¯̃u) = ¯̃ε:

∫

Ω

Wε( ¯̃u) : ε(ū∗) dΩ = −

∫

Ω

Wδ̄ : ε(ū∗) dΩ = 0, ∀ ū∗ ∈ U0.

(70)

This problem is solved classically to obtain ¯̃u and thereby

calculate the associated strain ¯̃ε. The space function ε̄
p
m+1 is

thereby calculated as,

ε̄
p
m+1 =

1

〈λλ̇〉

[

¯̃ε − 〈λλ̇〉C−1
W( ¯̃ε + δ̄)

]

. (71)

Then the time function λm+1 is calculated using a minimisa-

tion technique similar to the update stage

λm+1 = arg min
λm+1

∥

∥

∥
λ̇m+1ε̄

p
m+1 − Hσ λm+1Cε̄

p
m+1 + �̄i+1

∥

∥

∥

H
−1
σ

.

(72)

The spatial basis is orthonormalised using Gram–Schmidt

algorithm [46]. The new space function is orthonormalised

with respect to the previously existing spatial bases, and in the

numerical process all the former time functions are updated.

The new time function is also modified and the corresponding

space-time pair may be rejected if the corresponding mod-

ified time function has an insignificant norm. Finally, the

global stage is concluded by estimating the hardening and

damage variables.

4.3 Internal variables at the global stage

As the internal variables are local in space, they are calculated

without any PGD approximation, but by simply solving first

order ordinary differential equations in time locally at each

Gauss point (GP). The hardening variables represented by

X and Z are obtained by the state laws and search direction

operators. The “normal” formulation allows to represent the

hardening state laws as

Zi+1 = 
X i+1, (73)

where 
 is a linear operator describing the “normal" formu-

lation. The search direction equation for hardening variables

(26a) combined with the state equation (73) can be written

as

− (Ẋ i+1 − ˆ̇
X i+1/2) = HZ (Zi+1 − Ẑi+1/2)

= HZ (
X i+1 − Ẑi+1/2). (74)

For damage, the search direction operator b
− is taken to be

zero, leading to

Ḋi+1 = ˆ̇Di+1/2, (75)

and finally, the energy release rate Yi+1 is calculated through

Eq. (4d).
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Fig. 3 A bar in traction
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4.4 Relaxation of the solution field and convergence
criterion

To ensure convergence of the algorithm, the global step is

modified by adding a relaxation step. From the solution

set s̆i+1 obtained at the end of the iterative PGD process,

the approximation provided by the global stage is defined

as µs̆i+1 + (1 − µ) si . The relaxation parameter µ is cho-

sen to be 0.8. The convergence of the iterative algorithm

is determined by a relative LATIN indicator. This indicator

is basically the distance between the local solution and the

global solution, given by

ξ =
‖ŝ

p

i+1/2 − s
p

i+1‖

‖ŝ
p

i+1/2‖ + ‖s
p

i+1‖
, (76)

with

‖s
p‖2 =

∫

[0,T ]×Ω

(

σ : Hσ σ + Z : HZ Z + ε̇ p : H
−1
σ ε̇ p + εe : Cεe

+ Ẋ : H
−1
Z Ẋ

)

dΩ dt . (77)

It has to be noted that the relaxation parameter µ, the reg-

ularisation coefficient ζ , and the error indicator tolerance ξ

mostly affect the rate of convergence and not the conver-

gence itself. The values of these parameters that have been

used here are from the numerical experiments published in

previous works [25,41].

5 Numerical examples

The innovative algorithm has been tested on academic exam-

ples in one-dimensional and two-dimensional cases.

5.1 Bar under traction

The first test problem considered is a bar in traction repre-

sented in Fig. 3. The geometry of the structure is defined

by the length L = 1000 mm and area of cross section

A = 100 mm2. The bar is constrained at x = 0. At x = L ,

a sinusoidal prescribed displacement loading of amplitude

1.2 10−3 L is applied with a time period ∆T = 10 s, for 20

Table 1 Material properties

E 134,000 MPa

ν 0.3

R∞ 30 MPa

γ 2 MPa

C 5500 MPa

a 250 MPa

kD 2.778 MPa−nd s−1

nD 2

K 1220 MPa s1/n

n 2.5

k K −n

h 0.2

σy mat. 1 mat. 2 mat. 3

80 MPa 82.5 MPa 85 MPa

cycles. The structure is composed of three different elasto-

viscoplastic materials denoted by mat. 1, mat. 2 and mat. 3.

The materials are distinguished by the yield stress σy . The

material considered is a Cr–Mo steel at 580◦C and its prop-

erties are given in Table 1 [32].

The discretisation in space is done with classical finite

element scheme and 90 linear bar elements are used to dis-

cretise the structure such that each part has the same number

of elements. For the time discretisation, the time step chosen

is 0.1 s, so for the given loading there are 100 time elements

per cycle and in total 2000 time elements. In the computa-

tional model, the criterion ζ tol to enrich the reduced-order

basis is taken to be 0.1. The algorithm is stopped if the satu-

ration parameter ζ is lower than 10−4. The search direction

operators have been defined in [24] and the formulation is

extended here to incorporate damage:

Hσ = kn
〈

f p
〉n−1 1

(1 − D)2
, (78a)

Hβ = kn
〈

f p
〉n−1

(

−sign

(

σ

1 − D
− β

)

+
a

C
β

)2

+ k
〈

f p
〉n a

C
, (78b)

HR = kn
〈

f p
〉n−1

γ

(

1 −
R̄γ 1/2

2R∞

)2

+ k
〈

f p
〉n γ

2R∞
.

(78c)
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Fig. 4 Evolution of the LATIN

indicator with respect to the

number of PGD pairs or LATIN

iterations for the bar problem
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Fig. 5 Space-time modes needed to approximate ε̇ p (x, t) in the bar

under cyclic loading at convergence

The convergence of the algorithm is measured by the quan-

tity ξ defined by Eq. (76) and depicted in Fig. 4. The LATIN

indicator ξ stagnates at the end which reflects that neither

updating the reduced-order basis, nor its enrichment will

improve the approximated solution. A finer time step size

could decrease the final value of ξ . After the convergence

of the algorithm, the quantity of interest ε̇ p is obtained as

the sum of products of three space-time modes, where the

spatial basis is orthonormal (Fig. 5). Due to the rejection of

the insignificant space-time modes after orthonormalisation

a maximum of three modes is obtained. The time functions

generated have increasing amplitude with respect to time.

The quantities of interest (internal variables in rate form

and the corresponding associated variables) for the three sec-

tions of the bar are depicted in Fig. 6. Due to the particular

loading, the stress is constant all over the structure for a par-

ticular time, and with respect to time the stress amplitude

decreases. The plastic strain rate and kinematic hardening

variables have increasing amplitude with respect to time for

mat. 1. For mat. 2 and mat. 3, the amplitudes decrease. The

isotropic hardening variables show similar behaviour, i.e. for

mat. 1 there is a monotonic increase in the amplitude of ˙̄r ,

and for mat. 2 and mat. 3, the amplitude of ˙̄r decreases. The

associated variable R̄ increases for all the three materials.

The quantities that indicate loss of stiffness in the material

under the direct influence of unilateral condition are depicted

in Fig. 7. The damage variable D does not practically increase

during the compressive part of the loading and all the evo-

lution takes place during the tensile part. The energy release

rate Y during compression is much less than during tension.

The elastic strain εe also shows a higher value during ten-

sion than in compression. Finally after 20 cycles the values

of D are 0.22, 0.18 and 0.15 for mat. 1, mat. 2 and mat. 3

respectively.

For general engineering problems both plastic deforma-

tion and damage are often highly localised phenomena. The

presence of stress raisers (e.g. notches, holes, defects and

such others) in most engineering components, concentrates

the effect of plasticity and damage to a very limited region,

while the rest of the structure remains mostly undamaged

and elastic. To depict the localised nature of plasticity and

damage, classical two-dimensional mechanical problems are

considered in Sects. 5.2 and 5.3.

5.2 “L” shaped structure

The test problem considered here is an “L” shaped struc-

ture subjected to a concentrated load represented in Fig. 8.

The geometry of the structure is defined by the length L =

120 mm, and width W = 20 mm. The structure is filleted
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Fig. 6 Evolution of quantities of interest in mat. 1 (blue line), mat. 2

(red line) and mat. 3 (green line) for the bar under cyclic loading. (Color

figure online)

at the inside corner with fillet radius r = 5 mm to avoid

stress singularity. The thickness of the structure is taken to

be 1 mm. A prescribed sinusoidal displacement Ud (t) of

amplitude 1.5 mm is applied with a time period ∆T = 10 s,

for 5 cycles.

The material properties used are the same as in the one-

dimensional example of Sect. 5.1, and are given in Table 1,

with σy = 85 MPa. The discretisation in space is done with

classical finite element scheme. 277 linear two-dimensional

quadrilateral isoparametric plane stress elements with 4

Gauss points per element are used to discretise the struc-

ture, which generates 337 nodes. For the time discretisation,

the time step chosen is 0.2 s. In the computational model, the

criterion to enrich the reduced-order basis ζ tol is taken to be

10−2. The search direction operators Hσ , Hβ and HR have

to be defined for a two-dimensional problem. Theoretically,

any symmetric positive definite matrices, used as the search

direction operators, suffice to guarantee the convergence of

the algorithm, however, the fastest route to convergence is to

use the search direction operators associated to the tangent
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Fig. 7 Evolution of quantities describing damage in mat. 1 (blue line),

mat. 2 (red line) and mat. 3 (green line) for the bar under cyclic loading.

(Color figure online)

Ud

W

L

r

Fig. 8 An “L” shaped structure subjected to a concentrated load

space of the manifold Γ [25]. The search direction operator

has been specified in [43] for perfect plasticity problems. This

idea is extended to include damage and hardening variables,

Hσ = kn
〈

f p
〉n−1 1

(1 − D)2

3/2τ

J2
⊗

3/2τ

J2
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Fig. 9 Evolution of the LATIN

indicator with respect to the

number of PGD pairs or LATIN

iterations for the “L” shaped

structure
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Fig. 10 Distribution of accumulated plastic strain in the “L” shaped

structure at t = T

+ k
〈

f p
〉n 1

(1 − D)2

3/2
(

J2I − 3/2 τ⊗τ
J2

)

J 2
2

, (79a)

Hβ = kn
〈

f p
〉n−1

(

−
3/2τ

J2
+

a

C
Iβ

)

⊗

(

−
3/2τ

J2
+

a

C
Iβ

)

+ k
〈

f p
〉n

3/2
(

J2I − 3/2 τ⊗τ
J2

)

J 2
2

a

C
I, (79b)

HR = kn
〈

f p
〉n−1

γ

(

1 −
R̄γ 1/2

2R∞

)2

+ k
〈

f p
〉n γ

2R∞
, (79c)

with J2 =

√

3
2
τ · τ . Unlike the one-dimensional problem

introduced in Sect. 5.1, the calculation of the search direction

operators is considerably expensive, so they are not calcu-

lated at every iteration.The Reference Point Method, a hyper

reduction technique, has been proposed in [6], and will be

introduced in the future. In the current stage, search direc-

tion operators are only updated if the difference between two

successive global solutions becomes lower than a certain tol-

erance. This can be measured by the criterion ζ defined by

Eq. (60) with the tolerance being 10−2. The decrease in the

LATIN indicator ξ is shown in Fig. 9. A total of 35 modes

are generated to obtain ξ = 9 × 10−4. An indicator value of

5 × 10−2 is obtained at the end of iteration 1. After 21 iter-

ations, the LATIN indicator becomes 9 × 10−3 with 8 PGD

modes. The indicator seems to saturate at ξ = 8 × 10−4, and

the total number of modes added saturates to 40. This sat-

uration of LATIN indicator at a relatively high value is due

to the fact that a coarse temporal mesh has been used. For

a finer temporal mesh this LATIN indicator can be lowered

further, as shown in the next numerical example (Sect. 5.3).

The quantity of interest to describe the contribution of the

plastic deformation is the accumulated plastic strain given

by

p
(

x, t
)

=

∫ t

0

(

2

3
ε̇ p

(

x, τ
)

: ε̇ p
(

x, τ
)

)1/2

dτ, ∀t ∈ [0, T ] .

(80)

The distribution of the accumulated plastic strain at time

t = T is depicted in Fig. 10. It is distributed on both sides

of the vertical web, with the inner side being predominant

and the maximum at the filleted corner of the structure.

Although the main part of the structure has not been perma-

nently deformed, some plastic deformation can be observed

on the inner side of the vertical web, and to a lesser degree,

on the outer side of the web.

The distribution of damage variable D at the end of the

loading (t = T ) is represented in Fig. 11. The distribution

is similar to the one of the accumulated plastic strain, i.e.

maximum at the filleted corner. The spread of damage in this

region of interest after each load cycle is also represented in

Fig. 11. The evolution of damage with respect to time for
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Fig. 11 Damage distribution in

the “L” shaped structure at

t = T and the spread of damage

in the region of interest after

certain load cycles

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5
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D

Fig. 12 Damage evolution at the weakest GP of the “L” shaped structure

the weakest GP of this region is shown in Fig. 12 with the

maximum value being 0.073.

The distribution of the residual von Mises stress at the

end of the loading is shown in Fig. 13, which similar to the

distribution of damage and plastic strain, is concentrated at

the filleted corner.

5.3 Plate with a hole

The numerical example considered here is a rectangular plate

of length L = 40 mm and width W = 60 mm, with a

central circular hole of diameter φ = 20 mm. The plate is

subjected to uniformly distributed sinusoidal displacements

of amplitude 0.012 mm and time period ∆T = 10 s on both

ends, as shown in Fig. 14, for 10 cycles. Due to symmetry

of the structure only a quarter of the plate, with symmetric

boundary conditions on the interior of the plate, is considered

for the analysis. The thickness of the plate is considered to

be 1 mm.

The material properties used are the same as in Table 1

with σy = 85 MPa. The discretisation in space is done with

classical finite element scheme. 129 linear two-dimensional

quadrilateral isoparametric plane stress elements with 4

Gauss points per element are used to discretise the struc-
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Fig. 13 Distribution of residual von Mises stress in the “L” shaped

structure at t = T

ture, which generates 154 nodes. For the time discretisation,

the time step chosen is 0.1 s.

The primary goal of this example is to depict a comparative

study for virgin and pre-damaged structures. The discretised

1

2

Fig. 15 FE mesh depicting the virgin and pre-damaged Gauss points

structure along with all the GPs is shown in Fig. 15. The first

numerical test is to solve the problem considering the struc-

ture to be virgin. Thereafter, the GPs near the circumference

of the quarter circle except the two corner GPs are assigned

Fig. 14 A plate with a hole

subjected to distributed loads

and the symmetric part

considered for analysis

W

L

Ud

Ud

φ

Ud
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Fig. 16 Evolution of the LATIN

indicator with respect to the

number of PGD pairs or LATIN

iterations for the virgin structure
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Fig. 17 Evolution of the LATIN

indicator with respect to the

number of PGD pairs or LATIN

iterations for the pre-damaged

structure
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Fig. 18 Comparison of damage distribution at t = T and the spread of damage in the region of interest after certain load cycles
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Fig. 19 Damage evolution at

the weakest GP of the plate with

hole, i.e. GP 1 for the virgin

structure, and GP 2 for the

pre-damaged structure
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initial damage values of 0.02. These pre-damaged GPs are

marked with ∗ to distinguish from the virgin GPs which are

marked in • (Fig. 15).

The decrease in the LATIN indicator ξ for the virgin struc-

ture is shown in Fig. 16. A total of 34 modes are generated to

obtain ξ = 9 × 10−5. Unlike Sect. 5.2, the LATIN indicator

obtained is relatively low. This expected result is due to the

usage of finer temporal mesh in this example and it confirms

the fact that the LATIN indicator is dependent on temporal

discretisation [25] (Fig. 17).

For the pre-damaged structure, compared to the virgin

structure, 38 PGD modes are generated to obtain ξ =

9 × 10−5. Also a total of 83 iterations are needed, compared

to 75 iterations needed for the virgin structure.

The distribution of damage variable D, for both the cases,

at the end of the loading (t = T ) are represented in Fig. 18.

The spread of damage for both cases after certain load cycles

in the regions of interest are also depicted in Fig. 18. It is quite

evident from Fig. 18, that there is a shift of the maximum

damaged point in the pre-damaged case, compared to the

virgin case. The weakest Gauss point for the virgin structure

GP 1 (Fig. 15) is shifted to GP 2 (Fig. 15) for the pre-damaged

structure. The evolution of damage for GP 1 and GP 2 for

the virgin and pre-damaged cases respectively is shown in

Fig. 19, with a maximum of 0.05 for the virgin case and 0.07

for the pre-damaged case.

6 Conclusion

In this work, the LATIN-PGD has been developed for solv-

ing damage-visco-plasticity problems under cyclic loading.

A major difficulty comes from the state laws which can not

be transformed into linear relations through an internal vari-

able transformation in order to use the classical LATIN-PGD

framework. An extension of the algorithm has been intro-

duced for the treatment of this non-linearity and seems to be

robust and efficient.

Further works are in progress for the damage detection in

the case of fatigue loading involving large number of cycles.

For that purpose a new computational framework will be

introduced, allowing a multi-scale description of the fields

along the time and leading to a strong decrease of the com-

putational cost.
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