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Abstract—Neural networks are considered as promising 
candidates for implementing functions in memristor crossbar 
array with high tolerance to device defects and variations. Based 
on such arrays, Neural Logic Blocks (NLB) with learning 
capability can be built to replace Configurable Logic Block (CLB) 
in programmable logic circuits. In this article, we describe a 
neural learning method to implement Boolean functions in 
memristor NLB. By using Monte-Carlo simulation, we 
demonstrate its high robustness against most important device 
defects and variations, like static defects and memristor voltage 
threshold variability. 

Keywords-component;  memristors, neural network, on-chip 
learning, defect and variation tolerance, supervised learning.   

I.  INTRODUCTION 

Nanodevices synthesized by low cost technologies (e.g. 
nanoimprint [1], bottom-up approach [2]) require post-
fabrication functionalization. However, the high fault rate of 
those devices requires special programming methods. Neural 
networks are often considered as a promising candidate to 
integrate nanodevices [8] thanks to their fault tolerance and 
adaptability.  

Neural networks have been intensely studied since the 
beginnings of integrated circuits as an alternative computing 
architecture beyond Von-Neumann [9-10]. However, little 
success has been met partly due to the lack of simple synapse-
like devices [11-12]. In 2008, the memristor predicted by L. 
Chua was physically demonstrated and presents synapse-like 
behaviors [3-13]. It can be fabricated through nanoimprint and 
is scalable to some nanometers [14]. Thanks to their two-
terminal structure, memristors can be integrated in a crossbar 
array and promise extremely high densities [15]. Different 
types of research aim at exploiting the synapse-like behavior of 
memristors. Research focused on unsupervised learning using 
Spike Timing Dependent Plasticity (STDP) falls into the 
category of long-term research [16-17]. Shorter-term, 
applications can be achieved with supervised learning rules. 
Based on the crossbar array, we show that Neural Logic Blocks 
(NLB) could be built with learning capability and good 
tolerance against device defects and variations. This 
fundamental change could allow significant improvement of 
area and power efficiency. The NLBs could perform some 
basic logic functions and thus play the same role as 
Configurable Logic Blocks (CLB) in FPGA circuits (with the 
difference that would be configured by training). A number of 

interconnected NLBs could be assembled in a Field Trainable 
Neural Array (FTNA), as illustrated in Fig. 1, in order to 
compute complex functions. The NLBs contain several inputs 
connected with outputs trough memristors and functions as 
single-layer perceptrons. The FTNA would thus act as a 
complex multi-layer neural network [18], where the number of 
NLBs used to learn the expected function depends on the 
complexity of the latter. The logic synthesis of the expected 
function can be done off-line using standard tools to instantiate 
linearly separable logic functions (e.g. [19]) as primitives. 

 

Figure 1. Architecture of a Field Trainable Neural Array (FTNA) based on 
interconnected Neural Logic Block (NLB) and Programmable Routing Switch 
(PRS) with on-chip learning. In order to perform function learning on-chip, a 

learning unit should be associated with an FTNA, which commands the 
address and learning process of each NLB. The pattern information including 
truth table and expected results for learning are stored in RAM. A Finite State 

Machine (FSM) drives then the learning process. 

In this article, we describe a neural learning method to 
implement Boolean functions in NLB, which is robust against 
device defects and variations. The rest of paper is organized in 
the following manner. First, we will show a simple memristor 
model for NLB design and simulation. Second, we present a 
supervised learning method dedicated for memristor crossbar 
array. Finally, we focus on robustness study of NLB by using 
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some probabilistic predictive models of defects. The most 
important faults of memristor such as stuck-open, stuck-close 
defects and its threshold variation have been taken into account 
in our simulation.   

II. MEMRISTOR MODEL 

A memristor features non-volatility, very small size and 
two-terminal synapse-like behaviors [3, 13]. It is considered as 
one of the most promising nanodevices to be integrated in a 
crossbar array to build nano neuromorphic computing systems. 
The conductance of memristor g(t) = I(t)/V(t) depends on its 
across current and / or voltage history. In our simulation, we 
use a simplified model of device behavior inspired by the 
measurements of [20] for example. The conductance change 
speed dg(t)/dt is a function of the voltage V, shown in Eq.1. 
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The sign of V depends on the voltage potential difference of 
the two terminals (see Fig.3). It is positive as the input voltage 
potential is higher than that of the output. 

To implement supervised learning, programming voltage 
(VP) pulses will update the conductance progressively. It 
should remain insensitive to low voltage pulses to keep the 
history of patterns learned and perform the computing [20, 8]. 
As a consequence, a memristor for learning circuits requires a 
"neutral" voltage range separated by two threshold voltages 
(VT- and VT+) as has been observed experimentally for 
example in [20, 25]. No conductance change occurs 
(f(V)=dg/dt=0) as the across voltage of memristor is in this 
range. When a voltage pulse exceeding those thresholds is 
applied its conductance changes as shown in Figure 3. This 
simple model of memristor is used in our learning circuit 
design and robustness simulation shown in the following 
sections.  

 

Figure 3.  Example of one shape of the characteristic f(v)=dg/dt for 
memristive devices and the corresponding static g(v) hysteresis. 

III.  NEURAL LOGIC BLOCK  

A. Neural inspired circuits and architectures 

The architecture of NLB is composed of two parts: a 
memristor crossbar array (as synapse network), and the CMOS 
neurons (see Fig. 4). The crossbar array is connected to 
differential inputs and a usual “bias input”, similar to [22] to 
emulate signed synaptic weights with pairs of positive 
conductance. There are N synapses or inputs per neuron; i and 
j represents respectively the number of input and neuron in the 
crossbar array.  

 Each logical input (Xi) corresponds to a pair of differential 
physical wires (Xi+ and Xi-), presenting pre-synaptic 
potentials, drawn vertically in Fig. 4. Corresponding 
memristors Mij+ and Mij with conductance Gij+ and Gij- located 
at connections between vertical and horizontal lines 
implement a signed synaptic weight Wij=(Gij+ - Gij-).K j (see 
Eq. 2). Consequently, the horizontal wires correspond to the 
post-synaptic potentials described by Eq. 3. These potentials 
are compared to a common reference voltage (typically the 
ground) to obtain a binary output state of each neuron cell 
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where Kj is a normalized factor the neuron j. 
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V j is the post-synaptic potential, which is compared to a 
reference threshold (e.g. ground) to generate the output state 
X j  (see Eq. 4) of neuron j (1 or -1). 

                                     ( )jj VsignX =                                  (4)                        

 

Figure 4.  A) Architecture of NLB including a memristor crossbar array and 
CMOS neuron circuits. B) Memristor is formed at each junction where two 

nanowires cross. C)  Learning cell to send programming voltage pulses (VP+/ 
VP-) when there is an error (e.g. the calculated output Xj is different to the 
expected output Yj). Different steps can be used to eliminate the errors.  



For this architecture, two operating steps have to be 
distinguished: the first is the learning process where the 
conductance of memristors is adjusted to define the function 
of the NLB; the second is the logic computing like other logic 
blocks, without function change. 

B. Conditional learning 

In the learning circuit of NLB (see Fig. 4A), the post-
synaptic potential Vj is connected to either a positive (VP+) or 
a negative programming voltage (VP-), which are equal to the 
threshold voltage (VT+ or VT-). In addition, the polarity of all 
the inputs can be optionally inverted (IP+/IP-). As the 
amplitude of post-synaptic potential equals to the threshold, 
the across voltage of the synapses will be greater or lower than 
the threshold depending on the sign of their inputs. 
Consequently, the change conductance is conditional (see Eq.  
5). If the across voltage of a memristor is greater than VT+ and 
the maximum conductance Gmax is not reached, its 
conductance will be increased by an increment value Winc0.  
On the contrary, if the across voltage is lower than VT- and the 
minimum conductance Gmin is not reached, its conductance 
will be decreased with a decrement value Winc0. 

As Xi is active (i.e. Xi = 1), Xi+/X i- = VH / VL. VH and VL 
correspond respectively a positive and negative input voltage. 
On the contrary, Xi+/X i- = VL / VH as Xi is inactive (i.e. Xi = 
0). In general, VL=-VH and VP-/VP+=VT-/VT+. 

       VH-VP- >VT+  � G increases (+) 
       VL-VP-< VT+  � No G change (0) 

    VL-VP+ < VT-   � G decreases (-)                 (5) 
       VH -VP+ > VT-  � No G change (0) 

The main idea of this method is to apply different sequences 
(see Fig. 4C) of programming pulses that implement a 
simplified (Boolean) version of the Windrow-Hoff’s [23] 
Mean Least Square “Delta” rule (Eq. 6).  

                             ∆Wij = α Xi (Yj-X j)                              (6) 

There are two conditions to implement this rule in 
memristor crossbar array: 

1) Learning conditions: 
VH - |VP|>|VT| & VL- |VP|<|VT| 

2) Operating condition:   
  |Vi|< |VT|  

The first condition ensures the differential effect of inputs; 
the programming pulses (VP+/ VP-) change only the 
conductance of one of the couple of memristors (Mij+/M ij-). 
The second condition ensures that the operating voltage at 
inputs (Vi) will not change the conductance of memristors.  

In order to evaluate the learning method suitable for the 
NLB, a high level functional model has been developed using 
Matlab® code. Each memristor is characterized by its 
conductance state, which depends on the across voltage 
compared to VT+ and VT- as described in Eq. 4. The 

conductance of memristor is normalized compared to K j (see 
Eq. 2). Consequently, in our simulation we assume that each 
programming voltage pulse VP+ or VP- leads to a unitary 
conductance change. In addition, the conductance is limited at 
the range from Gmin to Gmax. The memristor model considered 
here is perfectly symmetrical (i.e. VT+ = -VT-).  

IV. ROBUSTNESS SIMULATION 

The simulation is based on a model of NLB with one output 
and several logical inputs (see Fig. 5). The purpose of this 
work is to study the reliability of a single perceptron that can 
learn all linearly separable Boolean functions [24]. Most of 
important memristor synapse defects and variations have been 
taken into account, supposing that the output neuron can work 
perfectly. Each defect has been treated individually from the 
others, which allows us to know their impact on the reliability 
of the NLBs and to develop an analytical model of their 
probability of succeeding learning.  

 

Figure 5.  Simplified perceptron model based on crossbar of memristors with 
one output and several input. 

As any nanoscale devices fabricated using low cost 
technologies [1-2], memristors suffer from a high defect rate 
and high variability. In order to evaluate their impact during 
the learning process, we integrated the device defects and 
variability in the memristor model shown in Fig. 3 for the 
robustness simulation of NLB architecture.  

Fig. 6 shows some possible defects in memristors: 

- Defective memristors where the conductance, stuck at 
one of the extreme value (Gmin/Gmax), cannot be 
changed (see Fig. 6 a).  

- Variability of memristor conductance range, (see Fig. 
6 b).  

- Variability of the threshold VT+ and VT- (see Fig. 6 c). 
- Variability of the f(v)=dg/dt slope (Fig. 6 d). 

In this paper, we focus on the cases of stuck-open, stuck-
close defects and the variation of threshold voltage of 
memristors. Forthcoming works will include all kinds of 
variability. 
 



 
 

Figure 6.  Defect and variability models. (a)  The model of defective 
memristors. (b) The range variability of conductance. (c) The variability of 

threshold voltage. (d) The f(v) slope variability.  

A. Robustness of NLB to device defect 

At first, we investigated the robustness of the learning 
process against defective synapses (stuck-open or stuck-close). 
There are at most three inputs in these functions, and then a 
NLB 8×1 with one output and eight inputs is sufficient to 
implement these functions, where there are six differential 
inputs (X1+ X1-, X2+ X2-, X3+ X3-) and two differential input for 
the bias (Xb+ Xb-). The learning of three Boolean functions F1 
= X1, F2 = X1 and X2, F3 = (X1 and X2)and(notX3) has been 
experimented in presence of synaptic defect, injected 
randomly in the NLB for each simulation and the learning 
successfully is measured with the average of 100 trials (see 
Fig. 7).  

The choice of the functions F1, F2 and F3 is based on the 
number of synaptic weights (memristors) Nm needed to learn 
these functions. There is only a subset of synaptic connections 
that are programmed during the learning stage of these 
functions. This subset depends on the function to learn. The 
three functions require different numbers of memristors. For 
example, to learn the function F1, it is necessary to have the 
synaptic weight of the input X1 higher than the others, why the 
memristor MX1+ should work correctly. To learn the function 
F2, the neuron needs a positive synaptic weight of the input X1, 
a positive synaptic weight of the input X2 and a negative 
synaptic weight of the bias input, then three memristors 
(Nm=3) are required to learn this function {MX1+, MX2+, MXb-}. 
For the function F3, five memristors are needed (Nm=5) for 
learning {MX1+, MX2+, Mb+, Mb-}. Knowing the number of 
memristors needed to learn a given function F, it is possible to 
calculate the probability of success to learn this function. If Pf 
is the probability to have one defective memristors, the 
probability to find Nm memristors to learn a function F is given 
by the function (1-Pf)

Nm.  

We compare in Fig. 7 the probability of success for Nm =1 
(F1), Nm=3 (F2) and Nm=5 (F3) to the simulation curves. The 
increasing of defect rate Pf decreases the successful of the 
NLB. The theoretical curves are close to the simulation 
curves.  

 

 
Figure 7.  Success convergence of one neuron with eight physical inputs for 
different rate of defect (stuck close). The solid curves obtained by simulation 

for 100 trials, and the dashed curves obtained by the calcul of probability.     

    In order to understand this hypothesis, we analyzed more 
deeply the results of the learning stage for the function 
F2=(X1)And(X2) by inspecting influence of stuck defects in 
each memristor. The set-up is to put one of memristors stuck 
open or close, and see if the learning succeeds or not. By this 
way, we can locate the memristors responsible for the failure 
to learn function F2. Table 1 and 2 show respectively the 
conductance of memristors after learning, in the case of stuck-
open and stuck-close.   

 To learn the function F2, the synaptic weights (W) should be 
updated following Eqs. 7, extended from Eq. 3 and the truth 
table of three inputs with complementary binary convention 
(i.e. low level=-1 and high level=+1): 

  Wb- WX1- WX2-WX3<0 
   Wb+ WX1- WX2-WX3<0 

 Wb-WX1+WX2-WX3<0 
                                Wb+WX1+WX2-WX3>0                        (7) 

  Wb-WX1-WX2+WX3<0 
    Wb+WX1-WX2+WX3<0 
   Wb-WX1+WX2+WX3<0 
    Wb+WX1+WX2+WX3>0 

TABLE 1.   LOCATION OF THE CRITICAL MEMRISTORS TO LEARN F2 IN CASE OF 
STUCK-OPEN DEFECT (I.E. GX I=0) 

 

 



TABLE 2.   LOCATION OF CRITICAL MEMRISTORS TO LEARN F2 IN CASE OF 
STUCK-CLOSE DEFECT (I.E. GX I=GMAX  =12). 

 

     The first row of table 1 shows the conductance of the 
different memristors in the case of no defect:   

  WX1=GX1+ - GX1-= 2.05-1.02=1.03 
  WX2= GX2+ - GX2-=4.02-0.08=3.94 
  WX3 = GX3+ - GX3-=1.03-1.01=0.02 

                        Wb = Gb+ - Gb-=0.05-3.03=-2.98 

We note that these values confirm the previous equations 
and the inactive synapses during function learning like WX3 
are neutralized and their weight are always very low nearly to 
zero.  

As shown in table 1, the cases where the learning failed 
confirm that there is a set of critical memristors to determine 
the success of function learning. For F2, the set is {MX1+, 
MX2+, Mb-}. They should be functional to ensure the NLB 
learning.  

In the case of stuck-close defect, table 2 shows the 
successful convergence of neuron and the final conductance of 
memristors after learning. The first row of table 2 shows that 
the neuron converges quickly with only 03 learning epochs. 
There are three cases {MX1-, MX2-, Mb+}, where the neuron 
diverges due to the defects. As these memristors aren’t in 
defect, the learning process can adjust the conductance of the 
other functional memristors to compensate these defects, and 
learn the functions successfully.  

The simulation results of both type of defects stuck-open 
and stuck-close, showed that the neuron can learn the expected 
function F2 even in the presence of several defects on 
memristors (synapses). We have seen that the number of 
defects in the memristors is not very important as long as the 
neuron found correct memristor to compensate these defects. 
However the position of defect performs a critical role. When 
a defect affects one of the crucial memristors, it prevents the 
synaptic weight to move in the right direction in order to learn 
the expected function, and the neuron will be certainly going 
to fail. This confirms that the neuron cannot tolerate the stuck-
open defects affecting the memristors {MX1+ MX2+ Mb-}, on 
the contrary, the stuck-close defects affecting the 

complementary memristors {MX1-, MX2-, Mb+}. The existence 
of critical memristors in order to learn a given function can be 
seen as an issue, since a defect on one of these critical 
memristors prevents the NLB from converging. It is also 
advantageous, because not all synapses are necessary to learn 
the expected function. To improve the tolerance against 
defects of the NLB, a possible solution is to duplicate the 
inputs to improve the likelihood to find Nm memristors. It is 
also possible to duplicate the output neurons, to have several 
neurons to learn the same function in same time and the 
winner takes the expected function (“competitive learning”), 
as we demonstrated in [27].  

B. Robustness of NLB to the variability of VT 

In this section, we will address one of the most important 
issues in the memristor crossbar array: the threshold variation 
between memristors. Experimental measurements [25-26] 
demonstrated that the threshold voltage of nanodevices like 
memristor is far from being uniform and follows a normal 
distribution around a mean value VT0. Although the situation is 
expected to improve when the technology matures, a high 
level of variability is probably intrinsic due to the small size of 
the devices and the physical nature of switching. This 
variability can lead to errors during the learning process and 
cause the divergence of neuron. The purpose of our study is to 
investigate the variation rate of threshold voltage that the 
neuron can tolerate, which allows us to develop a model for 
convergence prediction in presence of VT variation. Two sets 
of simulations have been performed to explore respectively the 
reliability impact of the extreme VT values and the deviation 
of normal distribution.  

1) Impact of low and high VT 

As the threshold voltage VT of memristors follows a normal 
distribution around the mean VT0, only a minority of 
memristors presents a particularly high threshold or low 
threshold. However these extreme values could be the source 
of failures in learning. As mentioned in III. II, NLB is based 
on conditional learning (Eq. 7). For this study, we take 
normalized units such that VP-/VP+=VT0=1 (VP- and VP+ are 
chosen equal to VT0 as explained in section III.B). We chose 
VH/VL=0.4/-0.4, which ensures the operating conditions for a 
large range of VT values. In case of a memristor having an 
especially low VT value (for example VT+/VT-=0.5/-0.5), the 
learning conditions can be described as following:  

VH-VP->VT+  � 0.4+1=1.4>0.5� G increases (+) 

 VL-VP-< VT+  � -0.4+1=0.6>0.5� G increases (+) 

  VL-VP+ < VT-  � -0.4-1=-1.4<-0.5� G decreases (-) 

  VH-VP+ > VT- � 0.4-1=-0.6<-0.5 � G decreases (-) 

This configuration does not meet completely the conditional 
requirement to achieve a good learning.  The second and 
fourth conditions should not change the conductance. The 
direction of conductance change depends only on the sign of 
VP, it is positive (negative) for a negative (positive) VP. As a 



result, the conductance may oscillate around the initial value 
throughout a learning stage. 

In the case of high threshold, VT+/VT-=2/-2, if VH/VL=0.4/-
0.4, VP-/VP+=VT0=1, the learning conditions can be described 
as following:  

VH-VP->VT+   �  0.4+1=1.4 <2  � No G change 

VL-VP-< VT+  �  -0.4+1=0.6 <2 � No G change 

VL-VP+ < VT-  �  -0.4-1=-1.4 >-2 �No G change 

VH-VP+ > VT- �  0.4-1=-0.6 >-2 � No G change 

In this configuration, the conductance of memristor cannot 
be updated during the learning stage, as VP will never reach 
VT. The impact of high VT is similar to that of stuck-open 
defect, when the conductance is initialized around zero. On the 
contrary, when the conductance is initialized around Gmax, the 
impact of high VT is similar to the effect of stuck-close defect.  

The above discussions have been confirmed by the 
simulation of a NLB 8×1 (see Fig. 5) to learn the function F2. 
Table 3 shows the average rate of successful convergence for 
100 trials. Each time one of eight memristors presents high or 
low VT and the initial conductance is set to either Gmin(Ginit≈0) 
or Gmax(Ginit≈12). The results demonstrate that the successful 
learning rate becomes very low (e.g. 0.02) as the critical 
memristor is affected by the low or high VT. As Ginit=Gmin, the 
set of critical memristors causes the divergence of the neuron 
correspond to those found in the case of stuck-open defect 
{M X1+, MX2+, Mb-}. As Ginit≈Gmax, the set of critical 
memristors correspond to those found in the case of stuck-
close {MX1-, MX2-, Mb+}. These results confirm our theoretical 
conclusion mentioned in the previous paragraphs.  

TABLE 3.   AVERAGE RATE OF SUCCESSFUL CONVERGENCE FOR 100 TRIALS. 
THE LOW AND HIGH VT IS RESPECTIVELY 0.5V AND 2V. 

 

2) Gaussian distribution of  VT 

According to the learning conditions described in Eq. 7, VT 
should meet both the following conditions to ensure successful 
learning: 

                          VL- VP- < VT+ < VH-VP-             (8) 

                         VL - VP+ < VT- < VH -VP+                       (9) 

If an error ξ is added to the VT of memristor, the interesting 
thing to obtain the margin of error that neuron can tolerate. For 
example, if VT+/VT-=VT0+ξ/-VT0+ξ, VP=VT0, VH/VL=V i/-V i 

(voltage of the input i), Eq. 10 can be obtained:   

           (8) :    -Vi+ VT0  < VT0+ξ <Vi+VT0  

      (9) :     -Vi- VT0  < -VT0-ξ <Vi-VT0 

                                        -Vi < ξ <Vi                                  (10) 

Eq. 10 describes the margin of error ξ, which is defined by 
the input voltage –Vi and Vi. Consequently, if we want to 
improve the tolerance of threshold variation, we should 
increase the input voltage of NLB. Nevertheless, the input 
voltage is also limited by the operating condition (see III. B), 
in which the tolerated margin of error becomes as follows:    

       |Vi|< |VT|  �    Vi< VT+    &    -Vi> VT- 

                       �    Vi< VT0+ξ &  -V i> -VT0-ξ   

                      �    ξ  > Vi -VT0                                           (11) 

The error ξ of VT is distributed randomly following a 
Gaussian form Eq. 12 (see Fig. 8).  
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Figure 8.  Gaussian distribution of VT for the memristor crossbar array. The 
standard deviation value σ can be changed while keeping the same mean value 
VT0. The gray zone shows the margin of VT to ensure the intrinsic tolerance of 

threshold variation (see Eq. 10). 

where σ is standard deviation. Based on the Eqs. 10-12, the 
probability of a functional memristor m denoted PSuccess(m) can 
be calculated by the Gaussian error function erf(x):  

• If we consider only the first condition Eq. 10: 

                          







= )

2
()(
σ

i
Success

V
erfmP                    (13) 

• If we combine the two conditions Eq.10-11 : 
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As shown in IV. A, several critical memristors are required 
to learn some functions by the neuron. If we consider Nm is the 



necessary number to learn a function F. The probability of Nm 
functional memristors can be given by Eq. 15:  

                         [ ] mN

mSuccess mPmNP )(),( =                         (15) 

Based on the Eqs. 13-15 the impact of deviation σ on 
successful learning rate can be plotted for Nm=3 (blue dotted 
curve in Fig. 9). To compare the theoretical calculation and 
simulation results with same condition (e.g. Nm); the NLB 8×1 
was simulated to learn the function F2. Gaussian distribution 
of VT is implemented in all the memristors. 

Fig. 9 (red solid curve) shows the simulation result of 
successful learning rate in function of standard deviation. The 
two curves are very close, which validates again our predictive 
model. From these curves, we can observe that the neuron                
successes 100% as σ≤0.3. For the values of σ greater than 0.3 
the successful convergence starts to decrease and reach 90% 
for σ=0.4. The successful rate becomes lower than 10% from 
σ=0.4.  

 
Figure 9.  Successful convergence of NLB 8×1 to learn the function F2. 

VT+/VT-=VT0+ξ/-VT0-ξ, VP+/VP-=VT0/-VT0=1v/-1v, VH/VL=Vi/-V i=0.4/-0.4. The 
solid curve represents the average rate of successful learning. The dotted curve 
corresponds to probability calculation of three functional memristors. For each 

value of σ the learning process was repeated 500 times. 

V. CONCLUSION AND PERSPECTIVES 

In this paper, we presented a new logic block called Neural 
Logic Block (NLB) to build FTNA. It is based on a memristor 
crossbar array and capable of learning logic functions. An 
innovative learning approach for NLB, inspired from artificial 
neural network, is introduced in order to demonstrate its easy 
use and fault tolerance. Two types of defects, stuck-open and 
stuck-close and the threshold variability of memristor have 
been studied to investigate the fault-tolerant capability. For 
this purpose, predictive models have been developed to 
calculate the likelihood of successful learning in presence of 
certain rate of defect or variation. Simulations have been 
performed to demonstrate the intrinsic fault tolerance defect of 
NLB, and confirm the predictive models. These models will 
allow us to study the performances of the NLB with a large 
size without being limited by the simulation time-consuming.    

The NLB architecture presents considerable tolerance 
against defects and VT variation thanks to the intrinsic fault 
tolerance of neural network. It could be further improved by 
adding redundant neurons. Indeed, we showed in [27] that 
competitive strategy during the learning stage allows 
increasing significantly the robustness forecast for a full 
FTNA made of huge number of synapses and NLB. We show 
also in [28] that the fine grain FTNA and NLB architecture is 
well suited to implement arithmetic operators efficiently. This 
present work suggests its potential for use with massively 
defective technologies. 
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