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Abstract—Neural networks are considered as promising
candidates for implementing functions in memristor crossbar
array with high tolerance to device defects and vaations. Based
on such arrays, Neural Logic Blocks (NLB) with learning

capability can be built to replaceConfigurable Logic Block (CLB)

in programmable logic circuits. In this article, we describe a
neural learning method to implement Boolean functias in

memristor NLB. By using Monte-Carlo simulation, we
demonstrate its high robustness against most impant device
defects and variations, like static defects and menistor voltage

threshold variability.

Keywords-component; memristors, neural network, on-chip
learning, defect and variation tolerance, supervised learning.

. INTRODUCTION

Nanodevices synthesized by low cost technologieg. (e
nanoimprint [1], bottom-up approach [2]) require spo
fabrication functionalization. However, the highultarate of
those devices requires special programming methddaral
networks are often considered as a promising catelitb
integrate nanodevices [8] thanks to their fauletahce and
adaptability.

Neural networks have been intensely studied sifme t
beginnings of integrated circuits as an alternateenputing
architecture beyond Von-Neumann [9-10]. Howevettleli
success has been met partly due to the lack oflsigymapse-
like devices [11-12]. In 2008, the memristor préelicby L.
Chua was physically demonstrated and presents sgHie
behaviors [3-13]. It can be fabricated through mapoint and
is scalable to some nanometers [14]. Thanks ta tied-
terminal structure, memristors can be integrated trossbar
array and promise extremely high densities [15]ffebent
types of research aim at exploiting the synapse#iéhavior of
memristors. Research focused on unsupervised tearrsing
Spike Timing Dependent Plasticity (STDP) falls intbe
category of long-term research [16-17]. Shortemter
applications can be achieved with supervised lagrmules.
Based on the crossbar array, we show that NeugitlRlocks
(NLB) could be built with learning capability andoad
tolerance against
fundamental change could allow significant improeeinof
area and power efficiency. The NLBs could perforams
basic logic functions and thus play the same rote
Configurable Logic Blocks (CLB) in FPGA circuits it the
difference that would be configured by training)nAmber of
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device defects and variationsis Th;

interconnected NLBs could be assembled in a Fiekdn#ble
Neural Array (FTNA), as illustrated in Fig. 1, irrder to
compute complex functions. The NLBs contain sevemalits
connected with outputs trough memristors and fonetias
single-layer perceptrons. The FTNA would thus ast &a
complex multi-layer neural network [18], where tiember of
NLBs used to learn the expected function dependshen
complexity of the latter. The logic synthesis oé texpected
function can be done off-line using standard tdolgstantiate
linearly separable logic functions (e.g. [19]) aisnitives.
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Figure 1. Architecture of a Field Trainable Neukalay (FTNA) based on
interconnected Neural Logic Block (NLB) and Prograaftle Routing Switch
(PRS) with on-chip learning. In order to performdtion learning on-chip, a

learning unit should be associated with an FTNAicwitommands the
address and learning process of each NLB. Therpattfrmation including
truth table and expected results for learning tmeed in RAM. A Finite State
Machine (FSM) drives then the learning process.

In this article, we describe a neural learning rodtho
implement Boolean functions in NLB, which is robagfainst
device defects and variations. The rest of paperganized in
the following manner. First, we will show a simptemristor
model for NLB design and simulation. Second, wesené a
supervised learning method dedicated for memristossbar
array. Finally, we focus on robustness study of NiyBusing



some probabilistic predictive models of defects.e Timost . NEURAL LOGICBLOCK
important faults of memristor such as stuck-ope¢ucksclose
defects and its threshold variation have been takeraccount A. Neural inspired circuits and architectures
in our simulation. The architecture of NLB is composed of two parts: a
memristor crossbar array (as synapse network)tten@&MOS
neurons (see Fig. 4). The crossbar array is coedetn
differential inputs and a usual “bias input”, siamilto [22] to
A memristor features non-volatility, very small siand ©mulate signed synaptic weights with pairs of pesit
two-terminal synapse-like behaviors [3, 13]. Itensidered as  conductance. There are N synapses or inputs peomeitand
one of the most promising nanodevices to be integrin a | represents respectively the number of input amaron in the
crossbar array to build nano neuromorphic computipgems. ~ crossbar array. , , _
The conductance of memristor g(t) = I(t)/V(t) degeron its Ea}Ch Ioglpal input (X corresponds to a pair of d|fferent|.al
across current and / or voltage history. In ouruition, we ~ Physical wires (X and X), presenting pre-synaptic
use a simplified model of device behavior inspiteg the Potentials, drawn vertically in Fig. 4. Corresporgli
measurements of [20] for example. The conductamemge Memristors M. and M with conductance £ and G. located

speed dg(t)/dt is a function of the voltageshown in Eq.1. gt connection; between _ vertipal and horizontal sline
implement a signed synaptic weight;¥(G;. - Gj.).K| (see
dg (t) Eq. 2). Consequently, the horizontal wires corresipto the
o v @) post-synaptic potentials described by Eq. 3. Thestentials
are compared to a common reference voltage (typithe
The sign ofV depends on the voltage potential difference of@round) to obtain a binary output state of eachrorecell

the two terminals (see Fig.3). It is positive as ithput voltage N
potential is higher than that of the output. Kj‘l = ZGiH -G;_ 2
i=1

1. MEMRISTOR MODEL

To implement supervised learning, programming \gdta
(Vp) pulses will update the conductance progressivély. where K is a normalized factor the neuron j.
should remain insensitive to low voltage pulseské¢ep the N N
history of patterns learned a}nd perform the co.mlg.JIQQ, 8]. v, = ZWH xX; =K, Z[Gij+ -G,_|x X, 3)
As a consequence, a memristor for learning ciraeitgires a oy oy
"neutral” voltage range separated by two threshalidages ) . . o
(Vr. and V) as has been observed experimentally forVij is the post-synaptic potential, which is compateda
example in [20, 25]. No conductance change occurkeference threshold (e.g.. ground) to generate thpub state
(f(V)=dg/dt=0) as the across voltage of memriswiiri this Xi (See Eq. 4) of neuron j (1 or -1).
range. When a voltage pulse exceeding those thossh®

applied its conductance changes as shown in FigufEhis X, =sign {v;) (4)
simple model of memristor is used in our learningcuit
design and robustness simulation shown in the iatig Memristors CMOS
sections. - A ~ — —- ~
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Figure 3. Example of one shape of the charaatef{s)=dg/dt for ©

memristive devices and the corresponding statiy lyysteresis. Figure 4. A) Architecture of NLB including a mestar crossbar array and
CMOS neuron circuits. B) Memristor is formed atleamction where two
nanowires cross. C) Learning cell to send programgmoltage pulses (M/
Vp) when there is an error (e.g. the calculated dutpis different to the
expected output Y. Different steps can be used to eliminate thersrr



For this architecture, two operating steps havebto conductance of memristor is normalized compareH;t(see
distinguished: the first is the learning processemhthe Eg. 2). Consequently, in our simulation we assuha e€ach
conductance of memristors is adjusted to defineftinetion  programming voltage pulsepy or Vp. leads to a unitary
of the NLB; the second is the logic computing litber logic  conductance change. In addition, the conductanksited at
blocks, without function change. the range from @, to Ghax The memristor model considered

here is perfectly symmetrical (i.ezV=-V1.).
B. Conditional learning

In the learning circuit of NLB (see Fig. 4A), theost- V. ROBUSTNESS SIMULATION
synaptic potential Vis connected to either a positives(y or The simulation is based on a model of NLB with ongput
a negative programming voltageg)/ which are equal to the and several logical inputs (see Fig. 5). The pwpos this
threshold voltage (¥ or V). In addition, the polarity of all work is to study the reliability of a single pertem that can
the inputs can be optionally inverted (IP+/IP-). Alse |earn all linearly separable Boolean functions [2fpst of
amplitude of post-synaptic potential equals to timeshold, jmportant memristor synapse defects and variati@we been
the across voltage of the synapses will be greatawer than  (aken into account, supposing that the output meaem work
the threshold depending on the sign of their inputsperfectly. Each defect has been treated indiviguam the
Consequently, the change conductance is conditise! EQ.  oyhers, which allows us to know their impact on takability

?r? If the across voltage ?f a memrlsf[or IS gtreﬁ‘a” r:/faa”‘_jt of the NLBs and to develop an analytical model logit
e maximum conductance nfz is not reached, its probability of succeeding learning.

conductance will be increased by an increment véiiecO.

On the contrary, if the across voltage is lowentia and the % Y " PP+
minimum conductance {, is not reached, its conductance ° L

. . T [
will be decreased with a decrement valug.\WW 1 X0

[ X1+ Bias | —— VL

input Vo VT:\ step(1:4]
|
v /J L\
" Mpj- K Mpj v
\%\ \%\ vj 5(1_, <
iy

As X is active (i.e. X= 1), X./Xi. = Vy / VL. Vy and 2] pa] e
correspond respectively a positive and negativetinpltage. \%\3\
On the contrary, X/X;. = V| / Vy as X is inactive (i.e. X=

0). In general, V=-Vy and \b/Vp.=V1/V1.. W) Leam!ng l
Vi-Vp. >V, 2 Gincreases (+) Figure 5. Simplified perceptron model based orssiar of memristors with
Vi -Vp< V1. = No G change (0) one output and several input.
V_-Vp: < V7. = G decreases (-) (5) ) ) .
Vi -Vp, > V. & No G change (0) As any nanoscale devices fabricated using low cost

technologies [1-2], memristors suffer from a higifedtt rate
The main idea of this method is to apply differsequences and high variability. In order to evaluate theirpact during
(see Fig. 4C) of programming pulses that implemant the learning process, we integrated the devicectefand

simplified (Boolean) version of the Windrow-Hoff§23] variability in the memristor model shown in Fig.f@r the
Mean Least Square “Delta” rule (Eq. 6). robustness simulation of NLB architecture.

AW; = a X; (Y-X) (6) Fig. 6 shows some possible defects in memristors:

Defective memristors where the conductance, sttick a

one of the extreme value (&FGmnay, cannot be

changed (see Fig. 6 a).

1) Learning conditions: - Variability of memristor conductance range, (seg. Fi
Vi - [Ve>|Vr| & V- [Vp|<| V7| 6 b).

- Variability of the threshold ¥, and . (see Fig. 6 c).

- Variability of the f(v)=dg/dt slope (Fig. 6 d).

There are two conditions to implement this rule in
memristor crossbar array:

2) Operating condition:
IVil< [Vrl

The first condition ensures the differential effe€tinputs;
the programming pulses £/ Vp) change only the
conductance of one of the couple of memristorg.{M.).
The second condition ensures that the operatintag®el at
inputs () will not change the conductance of memristors.

In this paper, we focus on the cases of stuck-opertk-
close defects and the variation of threshold veltagf
memristors. Forthcoming works will include all kidof
variability.

In order to evaluate the learning method suitalole the
NLB, a high level functional model has been devetbpsing
Matlab® code. Each memristor is characterized by it
conductance state, which depends on the acrossgeolt
compared to Y. and \;. as described in Eq. 4. The
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Figure 6. Defect and variability models. (a) Thedel of defective
memristors. (b) The range variability of conductr(c) The variability of
threshold voltage. (d) The f(v) slope variability.

A. Robustness of NLB to device defect

At first, we investigated the robustness of therresy
process against defective synapses (stuck-openak-slose).
There are at most three inputs in these functiand, then a
NLB 8x1 with one output and eight inputs is suffiti to
implement these functions, where there are sixerfitial
inputs (X.+ X1, X0+ X5, X3+ X3) and two differential input for
the bias (%+ Xp). The learning of three Boolean functions F
= Xy, B = Xy and X2, F3 = (X and %)and(notX) has been
experimented in presence of synaptic defect, iagbct
randomly in the NLB for each simulation and therihdg
successfully is measured with the average of lialst(see
Fig. 7).

The choice of the functions; FF, and K is based on the
number of synaptic weights (memristoid), needed to learn
these functions. There is only a subset of synaggimections
that are programmed during the learning stage efseh
functions. This subset depends on the functioreton. The
three functions require different numbers of metars For
example, to learn the function,Ft is necessary to have the
synaptic weight of the inputphigher than the others, why the
memristor M. should work correctly. To learn the function
F,, the neuron needs a positive synaptic weight@irtbut X,

a positive synaptic weight of the input, Xand a negative
synaptic weight of the bias input, then three metars
(N=3) are required to learn this function {M, Mxo+, Mxp}.
For the function k; five memristors are needed (&5) for
learning {Mx1+, Myo., Mps, Mp}. Knowing the number of
memristors needed to learn a given function F§ fiassible to
calculate the probability of success to learn thisction. If P;
is the probability to have one defective memristotise
probability to findN,,, memristors to learn a functidnis given
by the function(1-P;)™.

We compare in Fig. 7 the probability of successNgr=1
(F), N.=3 (F,) andN,=5 (F3) to the simulation curves. The
increasing of defect ratB; decreases the successful of the
NLB. The theoretical curves are close to the sitmuta
curves.

Successful of the NLB 8x1

Defect rate Pf

Figure 7. Success convergence of one neuron vgih physical inputs for
different rate of defect (stuck close). The solidves obtained by simulation
for 100 trials, and the dashed curves obtainedhéyalcul of probability.

In order to understand this hypothesis, we yareal more
deeply the results of the learning stage for thaction
F.=(X1)And(X,) by inspecting influence of stuck defects in
each memristor. The set-up is to put one of meorgsstuck
open or close, and see if the learning succeed®toBy this
way, we can locate the memristors responsibleferfailure
to learn function i Table 1 and 2 show respectively the
conductance of memristors after learning, in theeaaf stuck-
open and stuck-close.

To learn the function g-the synaptic weights (W) should be
updated following Eqgs. 7, extended from Eq. 3 amal ttuth
table of three inputs with complementary binary @antion
(i.e. low level=-1 and high level=+1):

Wh- Wi~ Wyo-Wy3<0
W+ Wi~ Wyo-Wy3<0
Wip-Wi1:Wxo-Wx3<0
WWy1,Wyo-Wx3>0
Wh-Wi1-Wio+Wx3<0
Wh+Wy1-Wyo+Wy3<0
Wi-W1 + W+ Wy3<0
Wt W + Wi+ Wxz>0

()

TABLE 1. LOCATION OF THE CRITICAL MEMRISTORS TO LEARNF; IN CASE OF
STUCK-OPEN DEFECT(I.E. Gx,=0)

Memuristors | M+ | Msey | Myoy | Mseo | Myzay | Mses | My, | My, | Convergence
(Nb epochs)
Stuck open defec
none 205(1.021402]0.08|1.03]1.0110.05[3.03| Success(3)
Gyp4=0 0 |001]201/001]1.00|1.08/106/102| Fail(50)
Gy =0 302 0 |305]105|1.06|1.04/0.07|3.00| Success(4)
Gy =0 203{0.09] 0 |0.04]1.09/1.03|1.05/1.09( Fail(50)
G =0 20611011307 0 |1.09]1.02/0.01|3.03| Success (4)
Gy3,=0 1.0610.08] 1.0510.05] 0 |0.00]0.06|1.03| Success(2)
Gy =0 1.01]0.01]1.0310.04] 0.1 | 0 10.00|1.04] Success(2)
G =0 2041101306003 1.00{1.05] 0 |3.01| Success(4)
G,=0 3.0010.01]3.0211.02]0.03|3.09/0.05| 0 | Fail (50)
Gy =0, G =0, 0091 0 | 107] 0 0 0 | 0 |1.01| Success(2)
Gy =0,Gy3,=0, Gy, =0




TABLE 2. LOCATION OF CRITICAL MEMRISTORS TO LEARN™; IN CASE OF
STUCK-CLOSE DEFECT(I.E. Gx,=Gyax =12).

Memuristors | Mxie | Msar | Mxoe | Msgo [ Mscay | Mz, | Mgy | My | Convergence
(NDb epochs)
Stuck-close defe¢
none 4.0210.03] 3.08 |0.02| 1.08 | 1.09 |1.02| 2.04 | Success(3)
Gy1r= Gy 12 |5.06] 5.05 |0.08| 1.01| 0.04 [0.09] 5.03 | Success(4)
Gy1.= Gy 11.99] 12 | 3.04 |0.03]| 2.05 | 1.02[1.09| 3.04 | Fail (50)
Gyr+= Gy 5.04 10.08] 12 |5.08| 1.04|0.06|0.05|5.02 | Success(4)
Gyr.= Gy 3.0710.0411.99| 12 [ 2.08 | 1.05 |1.06] 3.02 | Fail (50)
Gya+= Gax 4.06 | 1.05] 6.05 | 0.09| 12 |10.05/0.07| 5.03 | Success (4)
Gy3= G 501 10.01]3502]0001|11.08] 12 |1.09] 5.04 | Success (4)
Gy= Gy 4.00 |0.01] 407 [1.02{001|3.02| 12 [11.99] Fail (50)
Go.= Gonns 503 0.07]5.07 |0.06] 0,09 1.00|5.09] 12 | Success (4)
Gy1+ =G G2s=Gmas| 12 | 1.02] 12 |006| 12 | 12 [0.04] 1.07 | Success (2)
Gy3 =Gy Gxe3=Ginax
Gy1r =G Gy2s =G| 12 0.03| 12 |0.09| 12 | 12 [0.02] 12 | Success (1)
Gz =Gy Gxa+=Ginax
Gb—= Gm:\.\:

The first row of table 1 shows the conductanéethe
different memristors in the case of no defect:

WXl:GXl+ - G)(l.: 2.05-1.02=1.03

Wis= Gyos - Gyp.=4.02-0.08=3.94

W)(3 = G)(3+ - Gx3:103'101:002
W= Gy: - G,=0.05-3.03=-2.98

We note that these values confirm the previous téms
and the inactive synapses during function learrikg W3
are neutralized and their weight are always vewy ihearly to
zero.

As shown in table 1, the cases where the learraiigdf
confirm that there is a set of critical memristtmsdetermine
the success of function learning. Fos, Ehe set is {Mu.,

My2+, Mp}. They should be functional to ensure the NLB

learning.

complementary memristors {M, Mx,., Mp.}. The existence
of critical memristors in order to learn a givemdtion can be
seen as an issue, since a defect on one of thésealcr
memristors prevents the NLB from converging. It akso
advantageous, because not all synapses are ngcssaarn
the expected function. To improve the toleranceirsga
defects of the NLB, a possible solution is to degie the
inputs to improve the likelihood to find,, memristors. It is
also possible to duplicate the output neurons,aeelseveral
neurons to learn the same function in same time thed
winner takes the expected function (“competitivarteng”),
as we demonstrated in [27].

B. Robustness of NLB to the variability of V;

In this section, we will address one of the mospaontant
issues in the memristor crossbar array: the thidskariation
between memristors. Experimental measurements 625-2
demonstrated that the threshold voltage of nanadsviike
memristor is far from being uniform and follows armal
distribution around a mean valugy/Although the situation is
expected to improve when the technology maturehjga
level of variability is probably intrinsic due the small size of
the devices and the physical nature of switchindpisT
variability can lead to errors during the learnimgpcess and
cause the divergence of neuron. The purpose oftody is to
investigate the variation rate of threshold voltapat the
neuron can tolerate, which allows us to developacaleh for
convergence prediction in presence gf Wariation. Two sets
of simulations have been performed to explore retbpay the
reliability impact of the extreme Walues and the deviation
of normal distribution.

1) Impact of low and high V¢

As the threshold voltage\of memristors follows a normal

In the case of stuck-close defect, table 2 showes thdistribution around the mean 3/ only a minority of

successful convergence of neuron and the final wctadce of
memristors after learning. The first row of tablelws that
the neuron converges quickly with only 03 learnampchs.
There are three cases {M Myxo., My}, where the neuron
diverges due to the defects. As these memristaga’tam
defect, the learning process can adjust the coadoetof the
other functional memristors to compensate thesecti®fand
learn the functions successfully.

The simulation results of both type of defects ktapen
and stuck-close, showed that the neuron can learexpected

function B even in the presence of several defects on

memristors (synapses). We have seen that the nuwiber
defects in the memristors is not very importantoag as the
neuron found correct memristor to compensate tdesects.
However the position of defect performs a criticak. When
a defect affects one of the crucial memristor@révents the
synaptic weight to move in the right direction irder to learn
the expected function, and the neuron will be @astagoing
to fail. This confirms that the neuron cannot taterthe stuck-
open defects affecting the memristors M Myo. My}, on
the contrary, the stuck-close defects affecting

memristors presents a particularly high threshotd law
threshold. However these extreme values could bestlurce
of failures in learning. As mentioned in Ill. I, is based
on conditional learning (Eg. 7). For this study, weke
normalized units such thatpWp.=V1o=1 (Vp. and \b. are
chosen equal to ¢ as explained in section 111.B). We chose
Vy/V=0.4/-0.4, which ensures the operating conditiarsaf
large range of ¥ values. In case of a memristor having an
especially low ¥ value (for example ¥/V+=0.5/-0.5), the
learning conditions can be described as following:

Vu-Vp>V1 2 0.4+1=1.4>0.D G increases (+)

Vi -Vp< V1, 2 -0.4+1=0.6>0.D G increases (+)

V1 -Vp:< V1. 2 -0.4-1=-1.4<-0.D G decreases (-)

Vy-Vp: > Vi 0.4-1=-0.6<-0.5> G decreases (-)
This configuration does not meet completely theditional

requirement to achieve a good learning. The secamd
fourth conditions should not change the conductafde

thdlirection of conductance change depends only orsigne of

Vp, it is positive (negative) for a negative (pogdiwe. As a



result, the conductance may oscillate around thalirvalue (8): -V Vqg < Vioté <Vi+Vqg
throughout a learning stage.

g gstag (9):  -\-Vip <=V <Vi-Vpgo

In the case of high threshold;W+=2/-2, if V4/V =0.4/-

0.4, Vb/Vp,=V1o=1, the learning conditions can be described e <V (10)
as following: Eq. 10 describes the margin of ergpmwhich is defined by
Vy-Vp>Vr, > 0.4+1=1.4 <2-> No G change the input voltage —vVand VM. Consequently, if we want to

improve the tolerance of threshold variation, weouth

Vi-Vp< V1. 2 -0.4+1=0.6 <22 No G change increase the input voltage of NLB. Neverthelesg thput

V. -Vp:< Vi > -0.4-1=-1.4 >-2>No G change voltage is also limited by the operating conditizee Ill. B),

in which the tolerated margin of error becomesodlews:
Vy-Vps > V.2 0.4-1=-0.6 >-2> No G change
) ! . . Ml< V|l = Vi<Vy, & -Vi> Vo
In this configuration, the conductance of memristannot
be updated during the learning stage, asmill never reach = Vi<Vt & -Vi> Vg
V+. The impact of high ¥ is similar to that of stuck-open 2 &>V -V (11)
defect, when the conductance is initialized arozerd. On the
contrary, when the conductance is initialized atb@,,, the

The error& of V; is distributed randomly following a
impact of high \ is similar to the effect of stuck-close defect. G 5 T 1S CIsTbY y wing

aussian form Eq. 12 (see Fig. 8).

The above discussions have been confirmed by the
simulation of a NLB 8x1 (see Fig. 5) to learn thadtion b. 1 V -V,,)?
Table 3 shows the average rate of successful cgemee for (V)= —,—2€XF{‘2—;O] (12)
100 trials. Each time one of eight memristors pnesaigh or 2rmo g
low V¢ and the initial conductance is set to eithgf,(&;.~0)
or Gnad{Ginit=12). The results demonstrate that the successful
learning rate becomes very low (e.g. 0.02) as thitcal o=1
memristor is affected by the low or high-\AS Gi=Gmin, the Vro 0 =02
set of critical memristors causes the divergencthefneuron :
correspond to those found in the case of stuck-apefact
M1+, Myor, Mp}. As Gii=Gmax the set of critical
memristors correspond to those found in the casetufk-
close {Mx1., Mx,., My.}. These results confirm our theoretical
conclusion mentioned in the previous paragraphs.

Memristor counts

0 Vio-Vi  Vrot+Vi \
TABLE 3. AVERAGE RATE OF SUCCESSFUL CONVERGENCE FAROTRIALS. I I v
THE LOW AND HIGH V1 IS RESPECTIVELY0.5V AND 2V.

Figure 8. Gaussian distribution of Yor the memristor crossbar array. The

M | Mxi+ | Mxa- | Mo+ | M. | Mxgs | Mxa. | Mps | M. o ) .

e e e e e e standard deviation valuecan be changed while keeping the same mean value

Vqo. The gray zone shows the margin aftd ensure the intrinsic tolerance of
threshold variation (see Eq. 10).

Vr
Ginit=Gimin | low [ 002 | 1 002 1 |099| 1 |0.95)0.06

high | 0 1 0 1 1099 0990.97]0.07

GG dow | 1 (001 1 003 1 T 1001 1 wherec_s _is standard_deviation. _Based on the Egs. 10-12, th
i : probability of a functional memristor m denotegl..s(m) can
high) 11 0 ) 1 10 ) 1T 11002 1 be calculated by the Gaussian error functdix):
. If we consider only the first condition Eq. 10:
2) Gaussian distribution of Vp
According to the learning conditions described @ E, \4 = (m) =| erf ( V, ) (13)
should meet both the following conditions to enssurecessful Success o2
learning:
. If we combine the two conditions Eq.10-11 :
M Vp. < V5 < Vy-Vp. (8) " ! " " a
V- Vp, < V7. <V -Vp, ) 1 V,

P (m)= (erf (L\}_)J X(E erfc(V‘_—\/_TO)J (14)
If an error& is added to the V/of memristor, the interesting av2 av2

thing to obtain the margin of error that neuron ta@erate. For As shown in IV. A, several critical memristors aegjuired
example, if MJVi=Vigte/-V1otE, Ve=Vro, VWV =Vil-Vi  to learn some functions by the neuron. If we cozrdig, is the
(voltage of the input i), Eq. 10 can be obtained:



necessary number to learn a function F. The prdibabf N,
functional memristors can be given by Eq. 15:
Pae (N, ) = [P()] ™ (15)

Based on the Egs. 13-15 the impact of deviatioon
successful learning rate can be plotted Nige3 (blue dotted
curve in Fig. 9). To compare the theoretical caltah and
simulation results with same condition (e\g,); the NLB 8x1

was simulated to learn the function. IBaussian distribution
of V1 is implemented in all the memristors.

Fig. 9 (red solid curve) shows the simulation resafl
successful learning rate in function of standardat®n. The
two curves are very close, which validates agaimpoedictive
model. From these curves, we can observe that ¢ueon
successes 100% as0.3. For the values af greater than 0.3
the successful convergence starts to decreaseeacti 80%
for 6=0.4. The successful rate becomes lower than 10%6 fr

6=0.4.
= Simulation ]
= = Probability |

0.9

08

0.7

0.6

05

04

03

0.2

0.1

Successful convergence of NLB 8x1

standard deviation

Figure 9. Successful convergence of NLB 8x1 tonlélae function F2.
VT+NT.=VTo+é/-VTO-§, VPJVP;VTQ/-VT():].V/-J.V, VH/VL=V|/-V|=0.4/-O.4. The
solid curve represents the average rate of suaddsafning. The dotted curve
corresponds to probability calculation of threediimnal memristors. For each

value ofe the learning process was repeated 500 times.

V. CONCLUSION AND PERSPECTIVES

In this paper, we presented a new logic block daNeural
Logic Block (NLB) to build FTNA. It is based on aemristor
crossbar array and capable of learning logic famsti An
innovative learning approach for NLB, inspired framificial
neural network, is introduced in order to demortetits easy
use and fault tolerance. Two types of defects,kstyen and
stuck-close and the threshold variability of metorishave
been studied to investigate the fault-tolerant bdipa For
this purpose, predictive models have been developed
calculate the likelihood of successful learningpiesence of
certain rate of defect or variation. Simulationsvéhebeen
performed to demonstrate the intrinsic fault toheedefect of
NLB, and confirm the predictive models. These msdaill
allow us to study the performances of the NLB watltarge
size without being limited by the simulation timeasuming.

The NLB architecture presents considerable toleranc
against defects andyWariation thanks to the intrinsic fault
tolerance of neural network. It could be furtheproved by
adding redundant neurons. Indeed, we showed in {2af
competitive strategy during the learning stagevalo
increasing significantly the robustness forecast @o full
FTNA made of huge number of synapses and NLB. VW&vsh
also in [28] that the fine grain FTNA and NLB argdture is
well suited to implement arithmetic operators ééiitly. This
present work suggests its potential for use withssively
defective technologies.
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