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ASYMPTOTIC BEHAVIOR OF THE COMPLETE KÄHLER-EINSTEIN METRIC IN

SOME CONVEX DOMAINS

SEBASTIEN GONTARD

Abstract. We study the complete Kähler-Einstein metric in tube domains {z ∈ C2/ Re(4pz1)+Re(z2)2p <

1} where p ∈ N∗. We obtain estimates of this metric and its holomorphic bisectional curvatures near the
weakly pseudoconvex boundary points and use these estimates to obtain non tangential estimates for the

holomorphic bisectional curvatures of the Kähler-Einstein metric in some convex domains.

Introduction. In 1980, S.-Y. Cheng and S.-T. Yau proved that every bounded strictly pseudoconvex domain
Ω ⊂ Cn, n ≥ 2, with boundary of class C7, admits a complete Kähler-Einstein metric of negative Ricci
curvature. Namely, they proved that there exists a (unique) strictly plurisubharmonic solution g ∈ Cω (Ω)
to the problem:

Det
[
gij̄
]

= e(n+1)g on Ω,(1)

g = +∞ on ∂Ω(2)

(see [3]). By comparing this solution to the approximate solutions constructed by C. Fefferman in [5],
they proved that if Ω is bounded, strictly pseudoconvex with boundary of class Cmax(2n+9,3n+6), then

e−g ∈ Cn+1+δ
(
Ω
)

for every δ ∈
[
0,

1

2

[
, and the holomorphic sectional curvatures of this metric tend to

-2 at any boundary point of Ω, which are the curvatures of the unit ball equipped with its Bergman-Einstein
metric.
The existence of a complete Kähler-Einstein metric of negative Ricci curvature has been extended to the
case of bounded domains of holomorphy by N.Mok and S.-T.Yau in [15]. Moreover, J.Bland proved that if
q ∈ ∂Ω is a ”nice” strictly pseudoconvex boundary point of ∂Ω, then there exists a neighborhood U of q such
that e−g ∈ Cn+1+δ

(
Ω ∩ U

)
(see [1]). We proved that this result still holds without the ”nice” condition, and

also proved that the holomorphic sectional curvatures of the metric tend to -2 at q (see [8]).
Although the regularity of e−g and the behavior of the holomorphic bisectional curvatures at weakly pseu-
doconvex boundary points is unknown in general, J.Bland proved that in the Thullen domains {(z, w) ∈
Cn−1 × C/|z|2 + |w|2p < 1}, the sectional curvatures are bounded from above and below by negative con-
stants if p ≥ 1. He also proved some estimates for the metric and its volume form (see [2]).
In this paper we adapt the method used by J.Bland in [2] to prove curvatures estimates in the tube domains
Tp := {z ∈ C2/ Re(4pz1) +Re(z2)2p < 1} where p ∈ N∗. More precisely, we prove:

Theorem 1. There exist positive constants 0 < c ≤ C and 0 < α < 1 such that we have the following for

every z ∈ Tp ∩
({

Re(z2)2p

1−Re(4pz1) ≤ α
}
∪
{

1− α ≤ Re(z2)2p

1−Re(4pz1) < 1
})

:

∀v, w ∈ C2 \ {0}, −C ≤ Bisz(v, w) ≤ −c,

where Bisz(v, w) stands for the holomorphic bisectional curvature of the complete Kähler-Einstein metric
induced by the potential g satisfying conditions (1) and (2) on Tp, at point z and at vectors v and w.

The regions
{

Re(z2)2p

1−Re(4pz1) ≤ α
}

and
{

1− α ≤ Re(z2)2p

1−Re(4pz1) < 1
}

are related to the geometry of the orbits

of Tp under the action of its automorphism group, and replace the usual conical regions (see Section 2 for
details).

2010 Mathematics Subject Classification. 32F45, 32Q20, 32T25, 53C55.
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The Bergman metric is another interesting metric induced by a Kähler potential. S.Fu gave estimates of
the Bergman metric and its holomorphic sectional curvatures on the axis R × {0} + iR2 in tube domains
Tp. He deduced that for every smoothly bounded complete Reinhardt domain of finite type there exists a
neighborhood of the boundary on which holomorphic sectional curvatures for the Bergman metric are pinched
between negative constants (see [6]). Following the method used in the present paper, the computations from
[6], the asymptotic expansion of the Bergman kernel in tube domains obtained by J.Kamimoto in [11], a
remark made by K.-T. Kim and S. Lee about the Bergman-Fuchs formula (see Section 6 in [12]), we notice
that the conclusion of Theorem 1 holds for the Bergman metric. However, the behavior of the holomorphic
sectional curvatures of the Bergman metric away from the axis R× {0}+ iR2 is still unknown.

Using a rescaling technique, results of J.Bland in Thullen domains (see [2]) and the results of the present
paper, we prove:

Theorem 2. Let D ⊂ C2 be a bounded convex domain with boundary of class C∞. Let q ∈ ∂D be a point of
finite type 2p such that a local model at q is either a Thullen domain or a tube domain. Let

(
z(ν)

)
ν∈N ∈ D

N

be a sequence that converges non-tangentially to q. Then, there exists positive constants 0 < c ≤ C and an
integer ν0 ∈ N such that:

−C ≤ sup
v,w∈C2\{0}
ν≥ν0

Bisz(ν) (v, w) ≤ −c.

This paper is organized as follows. In Section 1 we introduce some notations that will be used in the
paper.

In Section 2 we describe the boundary of the domain Tp, its automorphism group Aut(Tp), and introduce
a parametrization of the orbits of Tp under the natural action of its automorphism group. We also give a
relationship between the regions introduced in Theorem 1 and the notions of non-tangential and tangential
convergences.

In Section 3 we use the automorphism group of the domain to obtain an equation satisfied by the restriction
of the Kähler-Einstein potential to the subset {0}×] − 1, 1[, and we analyze this equation to deduce the
asymptotic behavior of the Kähler-Einstein potential.

In Section 4 we use the results proved in Section 3 to prove Theorem 1 (see Theorems 4.5 and 4.6). The
proofs of Theorems 4.5 and 4.6 give precise estimates of the constants c, C depending on the approach region.

Finally in Section 5 we prove Theorem 2.

1. Notations

For the rest of this paper, we fix an integer p ∈ N∗.
We work with the topology induced by the Euclidean norm given by |z|2 := |z1|2 + |z2|2 for every number
z = (z1, z2) ∈ C2. We denote by S(0, 1) := {z ∈ C2/ |z| = 1} the unit sphere centered at the origin.

Let I ⊂ R be an open interval and k ∈ N. We denote by Ck (I) the set of real-valued functions that are
k-times differentiable in I, and we denote by Cω (I) the set of analytic functions in I. If f ∈ Ck (I) ∪ Cω (I)
and 0 ≤ j ≤ k is an integer, we denote by f (j) the j − th derivative of f .

Let U ⊂ C2 be a domain (that is a connected open subset) and k ∈ N. We denote by Ck (U) the set of real
valued functions that are k-times differentiable in U , and we denote by Cω (U) the set of real valued analytic

functions in U . If f ∈ C1 (U) and 1 ≤ j ≤ 2 is an integer, we use the standard notations fj := 1
2

(
∂f
∂xj
− i ∂f∂yj

)
and fj̄ := 1

2

(
∂f
∂xj

+ i ∂f∂yj

)
.

Let U, V ⊂ C2 be two domains and k ∈ N. We denote by Ck (U, V ) the set of functions f = (f1, f2) having
values in V such that the coordinate functions f1 and f2 are k-times differentiable in U , and we denote by
Cω (U, V ) the set of analytic functions in U having values in V .

If f ∈ C1 (U, V ), we denote by JacC(f) :=
[
∂fi
∂zj

]
its complex Jacobian. It is a matrix whose entries are

continuous functions in U .
2



2. Description of the domain and its automorphism group

In this section we describe the boundary of the domain Tp and its automorphism group. Recall that

Tp is a tube in the sense that Tp = Bp + iR2, with Bp := {(x1, x2) ∈ R2/4px1 + x2p
2 < 1}. The following

proposition describes the boundary points of Tp:

Proposition 2.1. Let z ∈ ∂Tp. If z ∈ ( 1
4p , 0) + iR2, ∂Tp is weakly pseudoconvex at z. Otherwise, ∂Tp is

strictly pseudoconvex at z. Moreover, every weakly pseudoconvex boundary point of ∂Tp is of finite type 2p
in the sense of D’Angelo.

We recall the description of the automorphism group of the tube, denoted by Aut(Tp):

Proposition 2.2. The automorphism group Aut(Tp) of Tp is spanned by the following affine maps:

• Translations of vectors with real coordinates: τu(z1, z2) = (z1, z2) + iu, where u ∈ R2,

• Dilations: dλ(z1, z2) =
(
λ(4pz1−1)+1

4p , λ
1
2p z2

)
, where λ > 0,

• The symmetry of complex axis {z2 = 0}: s(z1, z2) = (z1,−z2).

The translations have a Jacobian equal to the identity matrix. Also, JacC(dλ) =

[
λ 0

0 λ
1
2p

]
and

JacC(s) =

[
1 0
0 −1

]
.

For j = 1, 2, we denote by πR
j the following map:

πR
j : C2 −→ R

(z1, z2) 7−→ Re(zj),
.

Let X :=
πR

2

(1−4pπR
1 )

1
2p

. This function is well defined on the set {z ∈ C2/Re(4pz1) < 1} which contains Tp.

Moreover, observe that it satisfies the following properties:

• X ∈ C∞
(
{z ∈ C2/Re(4pz1) < 1}

)
,

• X is a parametrization of the orbits of Tp under the action of Aut(Tp), in the sense that

∀F ∈ Aut(Tp), ∀z ∈ Tp, X(F (z)) = X(z) and X|{0}×]−1,1[ is injective,

• X(Tp) =]− 1, 1[,
• q ∈ {|X| = 1} if and only if q is a strictly pseudoconvex boundary point of ∂Tp.

Let us relate the regions introduced in Theorem 1 to the notions of tangential and non-tangential con-

vergences. Let θ ∈
]
0, π2

[
. We denote by Λ(θ) :=

{
z ∈ Tp/

√
Im(z1)2+|z2|2

( 1
4p−Re(z1))

≤ tan(θ)

}
the half cone of vertex(

1
4p , 0

)
, of axis R× {0} and of angle θ.

Let (z(n))n∈N ∈ TN
p such that z(n) −→

n→+∞
( 1

4p , 0). Recall that (z(n))n∈N converges non-tangentially to

( 1
4p , 0) if there exists a constant θ ∈

]
0, π2

[
and an integer N ∈ N such that for every n ≥ N we have

z(n) ∈ Λ(θ), and that (z(n))n∈N converges tangentially to ( 1
4p , 0) if for every constant θ ∈

]
0, π2

[
there exists

an integer N ∈ N such that for every integer n ≥ N we have z(n) /∈ Λ(θ).
Now observe that we have:

∀z ∈ Tp, 4p |X(z)| (1−Re(4pz1))
1
2p−1 ≤

√
Im(z1)2 + |z2|2(

1
4p −Re(z1)

) ,
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hence we deduce that for every sequence (z(n))n∈N ∈ TN
p that converges to ( 1

4p , 0) and for every 0 < α < 1

we have:

∀0 < θ <
π

2
,
(
z(n)

)
∈ Λ(θ)N ⇒ ∃N ∈ N, ∀n ≥ N, z(n) ∈ {|X| ≤ α},(

z(n)
)
∈ {1− α ≤ |X| < 1〉}N ⇒ ∀0 < θ <

π

2
, ∃N ∈ N, ∀n ≥ N, z(n) /∈ Λ(θ).

In particular, Theorem 1 gives the non-tangential behavior of the bisectional curvatures at weakly pseudo-
convex boundary points of Tp, and also gives a ”hyper-tangential” behavior of the bisectional curvatures at
weakly pseudoconvex boundary points of Tp.

We conclude this section with the following Proposition, which directly follows from Proposition 2.2 and
the definition of X:

Proposition 2.3. Let z ∈ Tp and define ψ(z) := d 1
1−Re(4pz1)

◦ τ−(Im(z1),Im(z2)). Then the map ψ(z) is an

automorphism of Tp which sends z to (0, X(z)), and satisfies Det
(
JacC

(
ψ(z)

))
= 1

(1−Re(4pz1))
2p+1

2p

.

Proposition 2.3 enables to reduce the study of the metric and its curvatures on Tp to the study of the
same quantities on the set {0}×]− 1, 1[ (see Sections 3 and 4 for more details).

3. Complete Kähler-Einstein metric on Tp

Since Tp is a pseudoconvex tube domain such that Bp is convex and does not contain any line, it follows
from the work of S.-Y. Cheng and S.-Y. Yau (see [3]) and N. Mok and S.-Y. Yau (see [15]) (see also Remark
3 at page 235 of [10] for more details, and also [16] for a more detailed study) that there exists a unique
strictly plurisubharmonic function g ∈ Cω (Tp) satisfying conditions (1) and (2) on Ω = Tp, and consequently
the manifold Tp equipped with the metric

[
gij̄
]

is a complete Kahler-Einstein manifold with Ricci curvature
equals to −3.

According to results obtained in [8], we know for every number that there exists a neighborhood U ⊂ C2

of (0, 1) such that for every number 0 ≤ δ < 1
2 we have e−g ∈ C3+δ

(
Tp ∩ U

)
. In particular, the boundary

behavior of the metric, of its volume, and of its curvatures at strictly pseudoconvex boundary points are
already known, contrary to their boundary behavior at weakly pseudoconvex points.

In the sequel, we study the potential g and its behavior at the weakly pseudoconvex boundary point(
1
4p , 0

)
.

Remark 3.1. Let α ≥ 0. It also follows from the work of A.Isaev (see [10]) ang N. Xiang and X.-P. Yang
(see [16]) that if the domain {Re(2αz1) + Re(z2)α < 1} possesses a complete Kähler-Einstein metric, that
is if there exists a solution to Equation (1) with boundary condition (2) on {Re(2αz1) +Re(z2)α < 1}, then
α ∈ 2N∗.

3.1. The invariance property and an expression of the Kähler-Einstein potential in terms of
a special auxiliary function. The invariance property of the Kähler-Einstein metric under the action of
Aut(Tp) enables to simplify the expression of the Kähler-Eisntein potential g:

Proposition 3.2. Let

F : ]− 1, 1[ −→ R
x 7−→ g(0, x),

and set K := 2p+1
3 . Then the following holds on Tp:

(3) g = F ◦X +
K

p
Log

(
1

1− 4pπR
1

)
.

Proof of Proposition 3.2. The Kähler-Einstein metric is invariant under the action of Aut(Tp), which means
that:

(4) ∀ψ ∈ Aut(Tp),
[
gij̄
]

= JacC (ψ)
T [
gij̄ ◦ ψ

]
JacC (ψ).
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We apply the function Log ◦Det on both sides of Equation (4) and use the Monge-Ampère Equation (1) to
deduce the following transformation formula:

(5) ∀ψ = (ψ1, ψ2) ∈ Aut(Tp), g = g ◦ ψ +
2

3
Log |Det(JacC (ψ)| .

Let z ∈ Tp. We apply identity (5) to the function ψ = ψ(z) given in Proposition 2.3 and obtain the result. �

The function F inherits from the Kähler-Einstein potential g some regularity properties.

Proposition 3.3. The function F is real analytic on ] − 1, 1[, strictly convex, and even. Moreover, e−F ∈
C3+δ ([−1, 1]) for every number δ ∈

[
0, 1

2

[
.

Proof of Proposition 3.3. The relation F (x) = g(0, x) for every number x ∈] − 1, 1[ directly implies that
F ∈ Cω (]− 1, 1[) and e−F ∈ C3+δ ([−1, 1]) for every number δ ∈

[
0, 1

2

[
. In particular, by differentiating

Equation (3) twice at the point (0, x) ∈ Tp, we obtain F (2)(x) = 4g22̄(0, x) > 0 because g is strictly
plurisubharmonic on Tp. Hence F is strictly convex on ]− 1, 1[. To prove that F is even on ]− 1, 1[, we use
the automorphism s introduced in Proposition 2.2 to deduce that for every number −1 < x < 1, we have
F (x) = g(0, x) = F (X(0,−x)) + K

p Log(1) = F (−x), hence the result. �

3.2. The Kähler-Einstein condition and two differential equations satisfied by F .
We use Equation (3) and the Monge-Ampère Equation (1) to obtain a first differential equation satisfied by
the function F :

Proposition 3.4. Denote f := F (1). Then the metric
[
gij̄
]

satisfies the following on Tp:

[
gij̄
]

=


X2f(1)◦X+(2p+1)Xf◦X+4pK

(1−4pπR
1 )2

Xf(1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

Xf(1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

f(1)◦X

4(1−4pπR
1)

1
p

 ,(6)

(7) Det(gij̄) =
Z(X)

(1− 4pπR
1 )

3K
p

,

where the function Z is defined by Z(x) :=
f (1)(x) ((2p− 1)xf(x) + 4pK)− f(x)2

4
for every number x ∈

]− 1, 1[, and satisfies the following equation:

(8) Z = e3F on ]− 1, 1[.

Proof of Proposition 3.4. On Tp we have:

[Xi] = [Xī] =

[ X
1−4pπR

1
1

2(1−4pπR
1 )

1
2p

]
,

[
XiXj̄

]
=

 X2

(1−4pπR
1 )2

X

2(1−4pπR
1 )

1
2p

+1

X

2(1−4pπR
1 )

1
2p

+1

1

4(1−4pπR
1 )

1
p

 ,
[
Xij̄

]
=


(2p+1)X

(1−4pπR
1 )2

1

2(1−4pπR
1 )

1
2p

+1

1

2(1−4pπR
1 )

1
2p

+1
0

 .
5



Differentiating Equation (3), we directly deduce:[
gij̄
]

= f ◦X
[
Xij̄

]
+ f (1) ◦X

[
XiXj̄

]
+

4Kp

(1− 4pπR
1 )2

E11,

=


X2f(1)◦X+(2p+1)f◦X+4pK

(1−4pπR
1 )2

Xf(1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

Xf(1)◦X+f◦X

2(1−4pπR
1 )

1+ 1
2p

f(1)◦X

4(1−4pπR
1)

1
p

 .
Then we apply the function on Det both sides of relation (6) to directly Equation (7). Finally, recall that
according to Equations (1) and (3) one has on Tp:

Det
[
gij̄
]

= e3g,

= e3F◦X− 3K
p Log(1−4pπR

1),

=
e3F◦X(

1− 4pπR
1

)2+ 1
p

,

hence Equation (8). �

We use Equation (8) to obtain a differential equation satisfied by f and f (1):

Proposition 3.5. The function f satisfies the following equation for every x ∈]− 1, 1[:

((2p− 1)xf(x) + 4pK) f (1)(x) = (2p− 1)xf(x)3 + (6pK + 1) f(x)2 − 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0).(9)

Proof of Proposition 3.5. Let x ∈]− 1, 1[. We multiply both sides of Equation (8) by 12f , use the defintion
of the function Z and integrate from 0 to x to obtain:

4(3f(x)e3F (x)) = 3(2p− 1)xf(x)2f (1)(x) + 12pKf(x)f (1)(x)− 3f(x)3,

4Z(x) = 4e3F (x) = 3(2p− 1)

∫ x

0

tf(t)2f (1)(t) dt+ 6pKf(x)2 − 3

∫ x

0

f(t)3 dt+ 4e3F (0).

We integrate by part the first term of the right hand side:∫ x

0

tf(t)2f (1)(t) dt =

[
tf(t)3

3

]x
0

− 1

3

∫ x

0

f(t)3 dt =
xf(x)3

3
− 1

3

∫ x

0

f(t)3 dt.

Using again the definition of Z we obtain:

((2p− 1)xf(x) + 4pK) f (1)(x)− f(x)2 = (2p− 1)xf(x)3 + 6pKf(x)2 − 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0),

((2p− 1)xf(x) + 4pK) f (1)(x) = (2p− 1)xf(x)3 + (6pK + 1) f(x)2 − 2(p+ 1)

∫ x

0

f(t)3 dt+ 4e3F (0). �

3.3. Asymptotic analysis of the auxiliary function.
In this subsection we use condition (2), Proposition 3.3 and Equation (9) to study the function F and its
derivatives. Since F is an even function, we may restrict its study to the set [0, 1[.
We point out that Propositions 3.6, 3.8, Corollary 3.9 and part of Proposition 3.10 may also be deduced
from the work done in [8] because the function F is the restriction of the Kähler-Einstein potential g to the
set {0}×]− 1, 1[, and ∂Tp is smooth and strictly pseudoconvex at (0, 1). In this paper, we use Equation (9)
and the interior regularity of F to derive these results.
From the strict convexity of F and condition (2) we have the following:

Proposition 3.6. Every derivative of F is unbounded in a neighborhood of 1−. Moreover, f(x) −→
x→1−

+∞.

Proof of Proposition 3.6. If there existed an integer k ∈ N such that F (k) was bounded in a neighborhood
of 1−, then g(0, ·) would be bounded in a neighborhood of 1−, which contradicts the hypothesis (2), hence
every derivative of F is unbounded in a neighborhood of 1−.
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Since F is a strictly convex, even function in ] − 1, 1[, its derivative f is a non negative increasing function
on [0, 1[. Since the function f is not bounded bounded on [0, 1[, we directly deduce that f(x) −→

x→1−
+∞. �

We use the following lemma to deduce the asymptotic behavior of f (1) at x = 1−:

Lemma 3.7. Let F ∈ C1(]0; 1[) be a convex function satisfying lim
y→1−

F (1)(y) = +∞. Then: lim
y→1−

F (y)

F (1)(y)
=

0.

Proof of Lemma 3.7. Since F satisfies lim
y→1−

F (1)(y) = +∞, there exists a constant a ∈]0, 1[ such that F (1) >

0 on ]a, 1[. Let a < x < y < 1. Then F (1)(y) > 0 and F (x) ≤ F (y). We apply the fundamental theorem of
calculus to the function F to obtain the following:

0 ≤ F (y)− F (x) =

∫ y

x

F (1)(t) dt ≤ (y − x)F (1)(y),

so that F (x)
F (1)(y)

≤ F (y)
F (1)(y)

≤ (y − x) + F (x)
F (1)(y)

. Hence we deduce:

∀x ∈]0; 1[, 0 ≤ lim sup
y→1−

F (y)

F (1)(y)
≤ 1− x,

therefore we obtain lim
y→1−

F (y)

F (1)(y)
= 0 by letting x tend to 1−, hence the result. �

We use Equation (9), Proposition 3.6 and Lemma 3.7 to obtain the first order asymptotic of f at x = 1−:

Proposition 3.8. We have: lim
x→1−

f (1)

f2
(x) = lim

x→1−
f(x)(1− x) = 1.

Proof of Proposition 3.8. Let x > 0. Since f(0) = 0 and f is increasing on [0, 1[, we have f(x) > 0. We
divide Equation (9) both sides by f(x) to obtain the following:

(10)

(
(2p− 1)x+

4pK

f(x)

)
f (1)(x)

f(x)2
= (2p− 1)x+

6pK + 1

f(x)
− 2(p+ 1)

∫ x

0

f(t)3 dt

f(x)3
+

4e3F (0)

f(x)3
.

Let us prove that lim
x→1−

∫ x

0

f(t)3 dt

f(x)3
= 0. Define f̃(x) :=

∫ x

0

f(t)3 dt for x ∈ [0, 1[. Then f̃ ∈ C1 (]0, 1[), is

convex and satisfies lim
x→1−

f̃ (1)(x) = +∞. We apply Lemma 3.7 to f̃ to deduce that lim
x→1−

f̃

f̃ (1)
(x) = 0.

Define b(x) :=
6pK + 1

f(x)
− 2(p+ 1)

∫ x

0

f(t)3 dt

f(x)3
+

4e3F (0)

f(x)3
for x ∈ [0, 1]. Then b ∈ C ([0, 1]) and lim

x→1−
b(x) = 0.

Hence B :=

∫ 1

·
b(t) dt is well defined and B ∈ C1 ([0, 1]). Let x ∈]0, 1[. We integrate Equation (10) between

x and 1 to obtain:

(2p− 1)
x

f(x)
+ (2p− 1)

∫ 1

x

dt

f(t)
+

2pK

f(x)2
=

∫ 1

x

(
(2p− 1)t+

4pK

f(t)

)
f (1)

f2
(t) dt,

=
2p− 1

2
(1− x2) +B(x),

(2p− 1)

(
1 +

2pK

f(x)

)
x

f(x)(1− x)
+ (2p− 1)

∫ 1

x

dt

f(t)

1− x
=

2p− 1

2
(1 + x) +

B(x)

1− x
.(11)
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Note that

∫ 1

·

dt

f(t)
is the primitive of the function

1

f
∈ C (]0, 1]), so that lim

x→1−

∫ 1

x

dt

f(t)

1− x
= 0. Like-

wise by construction of B we have lim
x→1−

B(x)

1− x
= 0. We let x tend to 1− in Equation (11) to deduce

lim
x→1−

2p− 1

f(x)(1− x)
= lim
x→1−

(2p− 1)

(
1 +

2pK

f(x)

)
x

f(x)(1− x)
= 2p− 1, hence lim

x→1−
f(x)(1− x) = 1. �

Proposition 3.8 directly gives the asymptotic behaviour of Z, and also an asymptotic expansion of F :

Corollary 3.9. We have: lim
x→1−

(1− x)3Z(x) =
2p− 1

4
, and F (x) = Log

(
1

1− x

)
+
Log

(
2p−1

4

)
3

+ o (1)
x→1−

.

Proof of Corollary 3.9. Proposition 3.8 and the definition of the function Z directly gives the first result.

We apply formula (7) to deduce that lim
x→1−

(
(1− x)eF (x)

)3

=
2p− 1

4
, hence lim

x→1−
F (x) − Log

(
1

1− x

)
=

Log
(

2p−1
4

)
3

, hence the second result. �

We directly deduce from Corollary 3.9 the asymptotic behavior of the potential g, or equivalently its
volume form (see Proposition 3.4). In order to estimate the curvatures of the Kähler-Einstein metric, we
also need the asymptotic behavior of the derivatives of higher order of F at x = 1−. We have the following:

Proposition 3.10. For every integer k ∈ N, one has:

lim
x→1−

(1− x)k+3Z(k)(x) =
2p− 1

8
(k + 2)! and lim

x→1−
f (k)(x)(1− x)k+1 = lim

x→1−

f (k)

fk+1
(x) = k! .

Proof of Proposition 3.10. The fact that lim
x→1−

f (k)

fk+1
(x) = k! directly follows from Proposition 3.8 and

lim
x→1−

f (k)(x)(1 − x)k+1 = k!. Let us prove the other assertions by induction. Proposition 3.8 and Corol-

lary 3.9 ensure that the formulas are true for k = 0. Let k ≥ 0 be an integer and assume that the
formulas are true for any integer 0 ≤ l ≤ k. We differentiate Equation (8) (k + 1) times to obtain

Z(k+1) =
(
Z(1)

)(k)
= 3

∑k
l=0

(
k
l

)
f (l)Z(k−l), hence the following:

lim
x→1−

(1− x)k+4Z(k+1)(x) = 3

k∑
l=0

(
k

l

)
lim
x→1−

(
(1− x)l+1f (l)(x)

)
lim
x→1−

(
(1− x)k−l+3Z(k−l)(x)

)
,

= 3
2p− 1

8

k∑
l=0

(
k

l

)
l!(k + 2− l)!,

= 3
2p− 1

8
k!

k∑
l=0

(k + 2− l)(k + 1− l),

= 3
2p− 1

8
k!

k+1∑
l=1

l(l + 1) =
2p− 1

8
(k + 3)!.

8



We differentiate Equation (8) k times to obtain:

(k + 2)!

2
= lim
x→1−

4(1− x)k+3 Z(k)

2p− 1
(x) = lim

x→1−

k∑
l=0

(
k

l

)(
(1− x)l+2f (l+1)(x)

)(
(1− x)k+1−lf (k−l)(x)

)
,

=

k−1∑
l=0

(
k

l

)
(l + 1)!(k − l)! + lim

x→1−

(
(1− x)k+2f (k+1)(x)

)
,

= k!

k−1∑
l=0

(l + 1) + lim
x→1−

(
(1− x)k+2f (k+1)(x)

)
,

=
k(k + 1)!

2
+ lim
x→1−

(
(1− x)k+2f (k+1)(x)

)
,

lim
x→1−

(
(1− x)k+2f (k+1)(x)

)
=

(k + 2)!

2
− k(k + 1)!

2
= (k + 1)!,

hence the result. �

Remark 3.11. • We conjecture that e−F satisfies the following:

(12) ∃(ηk)k∈N ∈ C∞ ([0, 1])
N
, e−F (x) ∼

x→1−
(1− x)

+∞∑
k=0

ηk
(
(1− x)3Log(1− x)

)k
,

with lim
x→1−

η1(x) 6= 0 except for p = 1. Especially, apart from the case of the ball (p = 1), one would have

e−F /∈ C4 ([0, 1]) so that the regularity given in Proposition 3.3 is almost optimal.
Conjecture (12) is motivated by results of J.Lee and R.Melrose (see [14]) and of R. Graham (see [9]) in the
case of smooth strictly pseudoconvex domains, and by J.Kamimoto (see [11]) in the case of the Bergman
metric in tube domains.

• In a forthcoming note, we will prove that in the case of the Thullen domains {|z1|2+|z2|2p < 1} ⊂ C2, there
exists a positive function η ∈ C∞ ([0, 1]) such that for every x ∈ [0, 1] we have e−g(0,x) = (1 − x)η(x) (so
that in the sense of conjecture (12) all the functions η′ks are equal to 0 for every integer k ≥ 1), and that

if we denote by K the Bergman kernel of {|z1|2 + |z2|2p < 1} we have x 7→ K(0, x)e−3g(0,x) ∈ C∞ ([−1, 1]),
and deduce from this a comparison of the Kähler-Einstein metric and its curvatures to the Bergman metric
and its curvatures, globally on the Thullen domain.

4. Curvatures estimates

In this Section we use the analysis of the function f obtained in Section 2 to get estimates of the holo-
morphic bisectional curvatures of the Kähler-Einstein metric.

4.1. General properties of the holomorphic bisectional curvatures in Tp. We wish to estimate the
holomorphic (bi)sectional curvatures of the Kähler-Einstein metric g. If v, w ∈ C2 \ {0}, and z ∈ Tp, we
denote by Bisz(v, w) the holomorphic bisectional curvature of the metric g at point z between the vectors
v and w, and we denote by Sz(v) = Bisz(v, v) the holomorphic sectional curvature of g at point z and at
vector v. We shall omit the point at which we compute it and use the notations Bis(v, w), S(v) to simplify
the notations when possible.

Recall that the holomorphic bisectional curvature of g between non zero vectors v and w is given by:

(13) Bis(v, w) =

∑
1≤i,j,k,l≤2

Rij̄kl̄viv̄jwkw̄l(∑
1≤i,j≤2 gij̄vivj

)(∑
1≤i,j≤2 gij̄wiwj

) ,
and that the curvature coefficients satisfy the following:

(14) ∀1 ≤ i, j, k, l ≤ 2, Rij̄kl̄ = −gij̄kl̄ +
∑

1≤α,β≤2

gikᾱg
ᾱβgβj̄l̄,

9



where
[
gᾱβ
]

:=
[
gij̄
]−1

. Recall that the holomorphic bisectional curvature of a metric does not depend on
the length of the vectors at which it is computed, namely it satisfies the following:

(15) ∀v, w ∈ C2 \ {0}, Bis(v, w) = Bis

(
v

|v|
,
w

|w|

)
.

Moreover, since the Kähler-Einstein metric is invariant under the action of Aut(Tp), its holomorphic
bisectional curvatures satisfies the following transformation formula:

(16) ∀z ∈ Tp, ∀ψ ∈ Aut(Tp), ∀v, w ∈ C2 \ {0}, Bisψ(z)(∂ψz(v), ∂ψz(w)) = Bisz(v, w).

The following formula is specific to the tube domains:

Proposition 4.1. If v = (v1, v2), w = (w1, w2), α is an argument of v1v2 and β is an argument of w1w2,
then the following holds:
(17)(∑

1≤i,j≤2 gij̄vivj

)(∑
1≤i,j≤2 gij̄wiwj

)
Bis(v, w) = R11̄11̄|v1|2|w1|2

+2R11̄12̄|v1||w1|(|v1||w2|cos(β) + |v2||w1|cos(α))
+R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))
+2R12̄12̄|v1||v2||w1||w2|cos(α+ β)
+2R12̄22̄|v2||w2|(|v1||w2|cos(α) + |v2||w1|cos(β))
+R22̄22̄|v2|2|w2|2.

Proof of Proposition 4.1. From the expression of the curvature coefficients (14) and the fact that g and all
its complex derivatives are real numbers, we have for 1 ≤ i, j, k, l ≤ 2: Rij̄kl̄ = Rkj̄il̄ = Rjīlk̄. Hence we may
simplify formula (13) by gathering the terms depending on the number of 2 occuring in the 4-uple (i, j, k, l):

 ∑
1≤i,j≤2

gij̄vivj

 ∑
1≤i,j≤2

gij̄wiwj

Bis(v, w) = R11̄11̄|v1|2|w1|2

+R11̄12̄

(
|v1|2(w1w2 + w1w2) + (v1v2 + v1v2)|w1|2

)
+R11̄22̄

(
|v1|2|w2|2 + |v2|2|w1|2 + v1v2w1w2 + v1v2w1w2

)
+R12̄12̄ (v1v2w1w2 + v1v2w1w2)

+R12̄22̄

(
(v1v2 + v1v2)|w2|2 + |v2|2(w1w2 + w1w2)

)
+R22̄22̄|v2|2|w2|2,

= R11̄11̄|v1|2|w1|2

+ 2R11̄12̄|v1||w1|(|v1||w2|cos(β) + |v2||w1|cos(α))

+R11̄22̄(|v1|2|w2|2 + |v2|2|w1|2 + 2|v1||v2||w1||w2|cos(α− β))

+ 2R12̄12̄|v1||v2||w1||w2|cos(α+ β)

+ 2R12̄22̄|v2||w2|(|v1||w2|cos(α) + |v2||w1|cos(β))

+R22̄22̄|v2|2|w2|2.

�

Observe that Proposition 16 reduces the study of the behavior of the curvatures on Tp to the study of the
behavior of the curvatures on the subset {0} × [−1, 1].

4.2. Holomorphic bisectional curvatures when X −→ 0. First we compute the curvature coefficients
at the origin in the following:

10



Proposition 4.2. The curvature coefficients satisfy the following at the origin:

R11̄11̄ = −32p3K,

R12̄12̄ = (p− 1)f (1)(0),

R11̄22̄ = −pf (1)(0),

R22̄22̄ =

(
−3 +

1

K

)
f (1)(0)2

16
,

all the other coefficients being equal to 0.

Proof of Proposition 4.2. Recall that F is an even function, hence f = F (1) = g2(0, ·) is an odd function.
From this we directly deduce that, at z = 0:

g12 = g21 = 0,

g112 = g121 = g211 = 0,

g222 = 0,

g1112 = g1121 = g1211 = g2111 = 0,

g1222 = g2122 = g2212 = g2221 = 0.

Hence the coefficients in Equation (14) simplify into:

R11̄11̄ = −g11̄11̄ + g111̄g
1̄1g11̄1̄,

R12̄12̄ = −g12̄12̄ + g111̄g
1̄1g12̄2̄,

R11̄22̄ = −g11̄22̄ + g122̄g
2̄2g21̄2̄,

R22̄22̄ = −g22̄22̄ + g221̄g
1̄1g12̄2̄,

R11̄12̄ = R12̄22̄ = 0.

We use formula (6) to compute the derivatives of g at the origin. We have, at z = 0:

[
gij̄
]

=

 4pK 0

0 f(1)(0)
4

 , [gᾱβ] =

 1
4pK 0

0 4
f(1)(0)

 ,
g111 = 16p2K, g122 =

f (1)(0)

2
, g1111 = 96p3K, g1122 = (p+ 1)f (1)(0), g2222 =

f (3)(0)

16
.

Thus we obtain:

R11̄11̄ = −32p3K,

R12̄12̄ = (p− 1)f (1)(0),

R11̄22̄ = −pf (1)(0),

R22̄22̄ = −f
(3)(0)

16
+
f (1)(0)2

16pK
.

According to Equation (8), we have Z(2)(0) = 3f (1)(0)Z(0), that is 4pKf (3)(0) + 4(p − 1)f (1)(0)2 =

12pKf (1)(0)2, hence R22̄22̄ =
(
−3 + 1

K

) f(1)(0)2

16 . �

From the computations of Proposition 4.2 we deduce the precise upper and lower bounds for the holo-
morphic bisectional curvatures and holomorphic sectional curvatures at the origin:

Proposition 4.3. Let v, w ∈ C2 \ {0}. Then we have:

−3 +
3

2p+ 1
≤ Bis0(v, w) ≤ − 3

2p+ 1
and S0(v) ≤ −3

2
− 1

2pK
.
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Moreover,

Bis0((1, 0)(1, 0)) = −3 +
3

2p+ 1
, Bis0((1, 0)(0, 1)) = − 3

2p+ 1
,

and S0

((
1√

4pK
,

√
f (1)(0)

2

))
= −3

2
− 1

2pK
.

Proof of Proposition 4.3. Let C := −3 + 3
2p+1 . Using Proposition 4.2 we have:

R11̄11̄

g2
11̄

= −2p

K
= C,

R22̄22̄

g2
22̄

= −2p

K
= C,

R11̄22̄

g11̄g22̄

= − 1

K
=
C

2p
,

R12̄12̄

g11̄g22̄

=
p− 1

pK
= − (p− 1)C

2p2
,

hence:

1

C

 ∑
1≤i,j≤2

gij̄vivj

 ∑
1≤i,j≤2

gij̄wiwj

Bis(v, w) = g2
11̄|v1|2|w1|2 + g11̄g22̄(|v1|2|w2|2 + |v2|2|w1|2) + g2

22̄|v2|2|w2|2︸ ︷︷ ︸
=(

∑
1≤i,j≤2 gij̄vivj)(

∑
1≤i,j≤2 gij̄wiwj)

− 2p− 1

2p
g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2

− 2

2p− 1
|v1||v2||w1||w2|cos(α− β)

+
2(p− 1)

p(2p− 1)
|v1||v2||w1||w2|cos(α+ β)

)
,

− 2p

2p− 1

(
1

C
Bis(v, w)− 1

) ∑
1≤i,j≤2

gij̄vivj

 ∑
1≤i,j≤2

gij̄wiwj

 = g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2

− 2

2p− 1
|v1||v2||w1||w2|cos(α− β)

+
2(p− 1)

p(2p− 1)
|v1||v2||w1||w2|cos(α+ β)

)
.

Observe that the lower bound of the right-hand side is achieved if cos(α−β) = −cos(α+β) = 1, and the
upper bound is achieved if cos(α − β) = −cos(α + β) = −1, so that we only need to investigate two cases
to obtain the bounds for Bis(v, w). Note that in the case of the holomorphic sectional curvatures, we have
α = β, so that the condition cos(α−β) = −cos(α+β) = −1 cannot occur, hence we have to study this case
differently.

• Case 1: cos(α− β) = −cos(α+ β) = 1. Computations yield to:

g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2 −

2

2p− 1
|v1||v2||w1||w2| −

2(p− 1)

p(2p− 1)
|v1||v2||w1||w2|

)
= g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2 −

2

p
|v1||v2||w1||w2|

)
≥ g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2 − 2|v1||v2||w1||w2|

)
= g11̄g22̄(|v1||w2| − |v2||w1|)2 ≥ 0,

12



and equality holds if |v1||w2| = |v2||w1|, for instance if v1 = w1 = 0. Hence C = −3 +
3

2p+ 1
≤ Bis0(v, w)

for every vectors v, w ∈ C2 \ {0}.
• Case 2: cos(α− β) = −cos(α+ β) = −1. Computations yield to:

g11̄g22̄

(
|v1|2|w2|2 + |v2|2|w1|2 +

2

p
|v1||v2||w1||w2|

)
= |v|2g|w|2g − g2

11̄|v1|2|w1|2 − g2
22̄|v2|2|w2|2 +

2

p
g11̄g22̄|v1||v2||w1||w2|

≤ |v|2g|w|2g − g2
11̄|v1|2|w1|2 − g2

22̄|v2|2|w2|2 + 2g11̄g22̄|v1||v2||w1||w2|
= |v|2g|w|2g − (g11|v1||w1| − g22|v2||w2|)2

≤ |v|2g|w|2g,

and equality holds for instance if u1 = v2 = 0. Hence Bis0(v, w) ≤ − 3

2p+ 1
for every vectors v, w ∈

C2 \ {0}.
• Case 3: v = w. We have:

− 2p

2p− 1

(
1

C
S(v)− 1

) ∑
1≤i,j≤2

gij̄vivj

2

= 2g11̄g22̄|v1|2|v2|2
(

1− 1

2p− 1
+

(p− 1)

p(2p− 1)
cos(2α)

)

≤
(

1− 1

p(2p− 1)

) (∑
1≤i,j≤2 gij̄vivj

)2

2
,

K

2p
S(v) ≤ −1 +

2p− 1

4p

(
1− 1

p(2p− 1)

)
= −3K

4p
− 1

4p2

S(v) ≤ −3

2
− 1

2pK
,

and equality holds if g11̄ |v1|2 = g22̄ |v2|2. Hence S0(v) ≤ −3

2
− 1

2pK
for every vector v ∈ C2 \ {0}. �

Remark 4.4. It can be deduced from the computations done by J.Bland in [1] that we obtain the same upper

and lower bounds for the curvatures of the Kähler-Einstein metric in the Thullen domains {|z1|2+|z2|2p < 1},
although Thullen domains and tube domains are not biholomorphic except for p = 1.

We can deduce from Proposition 4.3 part of Theorem 1:

Theorem 4.5. There exist positive constants 0 < c ≤ C and α > 0 such that

∀v, w ∈ C2 \ {0}, ∀z ∈ {|X| ≤ α}, −C ≤ Bisz (v, w) ≤ −c.

Proof. Since the map

]−1, 1[× S(0, 1)2 −→ R
(x, v, w) 7−→ Bis(0,x)(v, w)

is continuous, it is uniformly continuous on every subset of the form J × S(0, 1)2 where J ⊂] − 1, 1[ is a
compact set. Especially, we deduce that for every positive number ε > 0 there exists a positive constant
α > 0 such we have the following:

(18) ∀(x, v, w) ∈ [−α, α]× S(0, 1)2,
∣∣Bis(0,x)(v, w)−Bis0(v, w)

∣∣ ≤ ε.
13



Let ε ∈
]
0, 3

2p+1

[
. Let α > 0 be such that (18) holds. We use relations 16 and 15 to obtain that for every

point z ∈ {|X| ≤ α} and every vectors v, w ∈ S(0, 1)2:∣∣∣Bisz(v, w)−Bis0(∂ψ(z)
z (v), ∂ψ(z)

z (w))
∣∣∣ =

∣∣∣Bis(0,X(z))(∂ψ
(z)
z (v), ∂ψ(z)

z (w))−Bis0(∂ψ(z)
z (v), ∂ψ(z)

z (w))
∣∣∣ ,

=

∣∣∣∣∣∣Bis(0,X(z))

 ∂ψ
(z)
z (v)∣∣∣∂ψ(z)
z (v)

∣∣∣ , ∂ψ
(z)
z (w)∣∣∣∂ψ(z)
z (w)

∣∣∣
−Bis0

 ∂ψ
(z)
z (v)∣∣∣∂ψ(z)
z (v)

∣∣∣ , ∂ψ
(z)
z (w)∣∣∣∂ψ(z)
z (w)

∣∣∣
∣∣∣∣∣∣ ,

≤ ε,

therefore, using Proposition 4.3 we deduce:

−3 +
3

2p+ 1
− ε ≤ Bis0(∂ψ(z)

z (v), ∂ψ(z)
z (w)) ≤ Bisz (v, w) ≤ Bis0(∂ψ(z)

z (v), ∂ψ(z)
z (w)) ≤ − 3

2p+ 1
+ ε < 0,

hence the result. �

4.3. Holomorphic bisectional curvatures when |X| −→ 1. In this subsection, we use the asymptotic
behavior of F obtained in Proposition 3.10 up to order 4 to prove the remaining part of Theorem 1. It will
follow from the computation of limx→1− Bis(0,x)(v, w):

Theorem 4.6. There exist positive constants 0 < c ≤ C and α > 0 such that

∀v, w ∈ C2 \ {0}, ∀z ∈ {|1− |X|| ≤ α}, −C ≤ Bisz (v, w) ≤ −c.

Proof of Theorem 4.6. Because of the invariance of Tp under the symmetry s introduced in Proposition 2.2,
it is enough to prove that there exist positive constants 0 < c ≤ C and 0 < α < 1 such that:

∀v, w ∈ C2 \ {0}, ∀z ∈ {1− α ≤ X < 1}, −C ≤ Bisz (v, w) ≤ −c.

First we prove the following:

(19) lim
x→1−

sup
v,w∈S(0,1)2


Bis(0,x)(v, w) + 1 +

∣∣∣∣∣∣
∑

1≤i,j≤2

gij̄(0, x)viwj

∣∣∣∣∣∣
2

 ∑
1≤i,j≤2

gij̄(0, x)vivj

 ∑
1≤i,j≤2

gij̄(0, x)wiwj




= 0.

The conclusion then follows from the invariance properties of the metric.

First we prove that
Rij̄kl̄(0,x)

f(x)4 ∼
x→1−

−2
(
XiXj̄XkXl̄

)
(0, x) and

(gij̄gkl̄+gil̄gkj̄)(0,x)

f(x)4 ∼
x→1−

2
(
XiXj̄XkXl̄

)
(0, x).

Let 1 ≤ i, j, k, l, α, β ≤ 2. We differentiate relation (6) to obtain:

gij̄ = f (1)XiXj̄ + fXij̄ +
K

p
Log

(
1

1− 4pπR
1

)
ij̄

,

Zgᾱβ = (−1)α+β

(
f (1)X3−αX3−β + fX3−α3−β +

K

p
Log

(
1

1− 4pπR
1

)
3−α3−β

)
,

gij̄k = f (2)XiXj̄Xk + f (1)
(
Xij̄Xk +XikXj̄ +Xkj̄Xi

)
+ fXij̄k +

K

p
Log

(
1

1− 4pπR
1

)
ij̄k

,

gij̄kl̄ = f (3)XiXj̄XkXl̄

+ f (2)
(
Xij̄XkXl̄ +XikXj̄Xl̄ +Xil̄Xj̄Xk +Xkj̄XiXl̄ +Xkl̄XiXj̄ +Xj̄l̄XiXk

)
+ f (1)

(
Xij̄kXl̄ +Xij̄l̄Xk +Xikl̄Xj̄ +Xj̄kl̄Xi +Xij̄Xkl̄ +XikXj̄l̄ +Xil̄Xkj̄

)
+ fXij̄kl̄ +

K

p
Log

(
1

1−Re(4pz1)

)
ij̄kl̄

.

14



We directly deduce from the expression of gij̄ and Proposition 3.10 that gij̄(0, x) ∼
x→1−

f(x)2
(
XiXj̄

)
(0, x),

hence
(
gij̄gkl̄ + gil̄gkj̄

)
(0, x) ∼

x→1−
2f(x)4

(
XiXj̄XkXl̄

)
(0, x).

Likewise we obtain gij̄kl̄(0, x) ∼
x→1−

6f(x)4
(
XiXj̄XkXl̄

)
(0, x).

Moreover, in the expression gikᾱg
ᾱβgβj̄l̄, the contribution of a term of the form (−1)αXᾱX3−α or (−1)βXβX3−β

is 0. Using Proposition 3.10 we obtain: ∑
1≤α,β≤2

gikᾱg
ᾱβgβj̄l̄

 (0, x) ∼
x→1−

((
f (2)

)2
f

Z

)
(x)

XiXj̄XkXl̄

∑
1≤α,β≤2

(−1)α+βX3−α3−βXᾱXβ

 (0, x)

=

((
f (2)

)2
f

Z

)
(x)
(
XiXj̄XkXl̄

)
(0, x)

2p− 1

4

∼
x→1−

4f(x)4
(
XiXj̄XkXl̄

)
(0, x).

Therefore we deduce that Rij̄kl̄(0, x) ∼
x→1−

−2f(x)4
(
XiXj̄XkXl̄

)
(0, x). Hence we have at point (0, x) for

0 < x < 1:

sup
v,w∈S(0,1)2

Bis(0,x)(v, w) + 1 +

∣∣∣∣∣∣
∑

1≤i,j≤2

gij̄(0, x)viwj

∣∣∣∣∣∣
2

 ∑
1≤i,j≤2

gij̄(0, x)vivj

 ∑
1≤i,j≤2

gij̄(0, x)wiwj



= sup
v,w∈S(0,1)2

∑
1≤i,j,k,l≤2

(
Rij̄kl̄(0, x)

f(x)4
+

(
gij̄gkl̄ + gil̄gkj̄

)
(0, x)

f(x)4

)
vivjwkwl(∑

1≤i,j≤2 gij̄(0, x)vivj

f(x)2

)(∑
1≤i,j≤2 gij̄(0, x)wiwj

f(x)2

) ,

−→
x→1−

0.

This gives formula (19). Since for every vectors v, w ∈ C2 \ {0} and every point z ∈ Tp we have

−2 ≤ −1−

∣∣∣∣∣∣
∑

1≤i,j≤2

gij̄(z)viwj

∣∣∣∣∣∣
2

 ∑
1≤i,j≤2

gij̄(z)vivj

 ∑
1≤i,j≤2

gij̄(z)wiwj

 ≤ −1,

we conclude exactly as in the end of the proof of Theorem 4.5.
�

5. Asymptotic behavior of the Kähler-Einstein metric in some convex domains

We briefly recall some results about the Kobayashi metric and domains satisying a squeezing property
which are needed in our proof of Theorem 2.
We denote by ∆ the plane unit disk. For a domain D ⊂ Cn, a point z ∈ D and a vector v ∈ Cn \ {0} the
Kobayashi pseudo-metric at point z and vector v is defined by :

KD (z, v) := inf

|ξ| , ∃f : ∆ 7→ D holomorphic satisfying f(0) = z and
∑

1≤i≤n

f ′i(z)ξi = v

 .
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We denote by
[
gK,D
ij̄

(z)
]

the matrix representative of the semi-definite metric obtained by polarizing the

pseudo-quadratic form v 7→ KD(z, v) in the canonical basis of Cn. An important fact is that if D is a convex

domain that does not contain a complex line, then actually
[
gK,D
ij̄

]
> 0 and the distance induced by the

metric
[
gK,D
ij̄

]
is complete on D.

The Hausdorff distance beteween two compact sets A,B ⊂ Cn is defined by:

dH (A,B) := max

{
sup
a∈A

inf
b∈B
|a− b| , sup

b∈B
inf
a∈A
|b− a|

}
.

The space of compact sets of Cn is complete for this distance. We say that a sequence of open convex domains
(Ων)ν∈N converges to an open convex domain Ω∞ in the locall Hausdorff topology if there exists a number

R0 ≥ 0 such that for every number R ≥ R0 the sequence
(

Ων ∩B(0, R)
)
ν∈N

converges to Ω∞ ∩B(0, R) for

the Hausdorff distance.
We will use the following fact in the proof of Theorem 2: let (Ων)ν∈N be a sequence of bounded convex sets
with smooth boundary. Assume that (Ων)ν∈N converges in the local Hausdorff topology of convex sets to a
convex domain Ω∞, and let K ⊂ Ω∞ be a compact set. Then there exists an integer νK ∈ N such that for

every integer ν ≥ νK one has K ⊂ Ων , and the sequence
([
gK,Ων
ij̄

])
ν≥νK

converges uniformly to
[
gK,Ω∞
ij̄

]
on K. In that case we say that

([
gK,Ων
ij̄

])
ν∈N

converges uniformly on compact sets of Ω∞ to
[
gK,Ω∞
ij̄

]
. See

Theorem 4.1 and Lemma 4.4 of [18] for more details about these results.

Let D ⊂ Cn be a domain and a ∈ ]0, 1]. We say that D satisfies the a-squeezing property if for every point
z ∈ Ω, there exists a holomorphic injective map f ∈ H (D,B (0, 1)) satisfying f(z) = 0 and B (0, a) ⊂ f (D).
We refer the reader to [4], [13] and [17] for the study of domains satisfying a squeezing property.

In the following, for a domain D ⊂ C2, we use the notation gE,D, respectively BisD to denote the Kähler-
Einstein potential of D solution of Equation (1) with boundary condition (2), respectively its holomorphic
bisectional curvatures.

We can now prove Theorem 2:

Proof of Theorem 2. We use a rescaling method to change the study of the boundary behavior of the holo-
morphic bisectional curvatures into the study of the interior convergence for the sequence of the ”rescaled”
Kähler-Einstein metrics.

Our hypothesis on the local expression of ∂D at q implies that there exists an affine map ψ ∈ Aut
(
C2
)

and

a neighborhood U of q such that ψ (q) = 0 and ψ (D ∩ U) =
{
Re(z1) +H (z2) +O

(
|z2|2p+1

+ |z1| |z|
)
< 0
}
∩

ψ (U), with either ∀z ∈ C, H(z) = |z|2p or ∀z ∈ C, H(z) = Re (z)
2p

. Since ψ maps D to ψ (D) biholomor-
phically, we have the following by the invariance property of the Kähler-Einstein metric:

∀z ∈ D, ∀v, w ∈ C2 \ {0}, BisDz (v, w) = Bis
ψ(D)
ψ(z) (∂ψz (v) , ∂ψz (w)) .

Moreover the sequence
(
ψ
(
z(ν)

))
ν∈N converges non tangentially to ψ (q) = 0 because invertible affine maps

preserve cones. Thus up to replacing D with ψ (D) and U with ψ (U) we may assume that q = 0 and

D ∩ U =
{
Re(z1) +H (z2) +O

(
|z2|2p+1

+ |z1| |z|
)
< 0
}
∩ U .

In this setting the condition of non-tangential convergence of
(
z(ν)

)
ν∈N ∈ D

N means that

−Re
(
z

(ν)
1

)
|zν |


ν∈N

is bounded from below by a positive constant, thus up to taking a subsequence we may assume that
16



(
z(ν)

|z(ν)|

)
ν∈N

converges to a point z(∞) with Re
(
z

(∞)
1

)
< 0. Let

Λ(ν) : C2 −→ C2

z 7−→

 z1 − z(ν)
1

Re
(
−z(∞)

1

) ∣∣z(ν)
∣∣ , z2 − z(ν)

2(
Re
(
−z(∞)

1

) ∣∣z(ν)
∣∣) 1

2p

 ,

and set Ων := Λ(ν) (D). As the image of the set D by the affine map Λ(ν), the set Ων is a bounded
convex domain with boundary of class C∞. From results in [7], (Ων)ν∈N converges to the model Ω∞ :=

{Re(z1) +H (z2) < 1} in the local Hausdorff topology. Then according to [18] the sequence
([
gK,Ων
ij̄

])
ν∈N

converges uniformly to
[
gK,Ω∞
ij̄

]
on compact sets of Ω∞.

Also, observe that Λ(ν)
(
z(ν)

)
= 0, hence:

(20) ∀z ∈ D, ∀v, w ∈ C2 \ {0}, BisDz(ν)

((
∂Λ

(ν)

z(ν)

)−1

(v),
(
∂Λ

(ν)

z(ν)

)−1

(w)

)
= BisΩν

0 (v, w) ,

where the Kähler-Einstein potential gE,Ων on Ων is induced by the Kähler-Einstein potential gE,D. Assume
momentarily that for every compact K ⊂ Ω∞ the sequence

(
g(ν)

)
ν≥νK

converges to the Kähler-Einstein

potential gΩ∞ of Ω∞ in C4 (K). Then according to formula (14) and relation (20) we deduce:

sup
v,w∈C2\{0}

∣∣∣∣BisDz(ν)

((
∂Λ

(ν)

z(ν)

)−1

(v),
(
∂Λ

(ν)

z(ν)

)−1

(w)

)
−BisΩ∞

0 (v, w)

∣∣∣∣ −→ν→∞ 0,

so that we obtain Theorem 2 using relation (15), Theorem 1 and results in [2]. Thus it remains to prove that
for every compact K ⊂ Ω∞ the sequence

(
g(ν)

)
ν≥νK

converges to the Kähler-Einstein potential gΩ∞ of Ω∞

in C4 (K). In fact we prove that for every integer k ∈ N, the sequence
(
g(ν)

)
ν≥νK

converges to gΩ∞ in C4 (K).

Observe that by uniqueness of the Kähler-Einstein potential gE,Ω∞ and by the theorem of Arzelà-Ascoli it
is enough to prove that for every integer k ∈ N the sequence

(
g(ν)

)
ν≥νK

is bounded in Ck (K). Thus we

are interested in obtaining Ck (K) estimates of the family
(
g(ν)

)
ν≥νK

of solutions to equation (1). It relies

on obtaining estimates of Sobolev norms of the sequences
(
Log

∣∣∣gE,Ωνij̄

∣∣∣)
ν∈N

and
(
∆gE,Ων

)
ν∈N on bounded

subdomains of Ω∞, where ∆ denotes the Laplacian operator for the Euclidean metric on C2 (see the proof
of Lemma 3 in [17] for more details).
Since Ω is a bounded convex domain with boundary of class C∞, it follows from [13] that there exists a
number 0 < a such that D satisfies the a-squeezing property. Since Ων is biholomorphic to D, Ων also
satisfies the a-squeezing property. From Proposition 3 in [17] we deduce that there exist constants 0 < c ≤ C
such that for every integer ν ∈ N we have c

[
gK,Ων
ij̄

]
≤
[
gE,Ων

ıj̄

]
≤ C

[
gK,Ων
ij̄

]
on Ων . Moreover recall that the

sequence
([
gK,Ων
ij̄

])
ν∈N

converges uniformly on compact sets to
[
gK,Ω∞
ij̄

]
. Therefore we obtain the uniform

estimates by following line by line the proof of Lemma 3 in [17] (by replacing the balls B a
2
(x), Ba(x) with

bounded domains included in Ω∞). �
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