
HAL Id: hal-01832212
https://hal.science/hal-01832212v1

Preprint submitted on 6 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stein’s method and Papangelou intensity for Poisson or
Cox process approximation

Laurent Decreusefond, Aurélien Vasseur

To cite this version:
Laurent Decreusefond, Aurélien Vasseur. Stein’s method and Papangelou intensity for Poisson or Cox
process approximation. 2018. �hal-01832212�

https://hal.science/hal-01832212v1
https://hal.archives-ouvertes.fr


STEIN’S METHOD AND PAPANGELOU INTENSITY FOR

POISSON OR COX PROCESS APPROXIMATION

LAURENT DECREUSEFOND AND AURÉLIEN VASSEUR

Abstract. In this paper, we apply the Stein’s method in the context of point

processes, namely when the target measure is the distribution of a finite Pois-
son point process. We show that the so-called Kantorovich-Rubinstein distance

between such a measure and another finite point process is bounded by the

L1-distance between their respective Papangelou intensities. Then, we deduce
some convergence rates for sequences of point processes approaching a Poisson

or a Cox point process.

1. Introduction

A fruitful way to get some approximations in probability theory is drawn from the
Stein’s method, introduced in 1972 by Stein [44] in order to give a convergence speed
for the Central Limit Theorem. The approach was soon extended to the Poisson
distribution by Chen [8]. There are too many articles about the development and
applications of this method for them to be cited. If we restrict our attention to
point processes, we must cite [3, 4, 5] about Poisson point process approximation.
In this series of articles, the distance between a generic point process and a Poisson
point process is stated in terms of the Palm measure of the tested process or in
terms of its compensator when processes on the half line are considered. After
the pioneering work [34], it became evident that the Malliavin calculus is one tool
of choice to systematize the Stein’s approach. In this respect, [15] explores the
link between the different notion of Malliavin gradients on the Poisson space and
the different notions of distance between distribution of point processes (see also
[39]). In [16], it is shown that some transformations of a Poisson point process
converge to a Poisson process on the real line using tools of the Poisson-Malliavin
calculus. Some other applications of this framework are given in [29, 40]. As we will
see below, the Stein’s method is based on a representation of the target measure
as the invariant and stationary measure of a configuration-valued Markov process.
The existence of such a process is absolutely not granted so there is a very few
results about convergence to processes which are not Poissonian. The paper [38]
by Schumacher and Stucki, which addresses the convergence towards a Gibbs point
process then appears as an exception.

In this article, we develop a variant of the Stein’s method in order to evaluate
the distance between the distribution of some point processes and that of a Poisson
point process. In what follows, we abuse slightly the vocabulary by identifying a
point process as a random variable and its distribution. Let ζM denote a Poisson
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process with finite intensity measure M on a space X. The first step of the Stein’s
method consists in characterizing the target object, here the distribution of ζM .
We must first construct a functional operator L which satisfies(

E[LF (Φ)] = 0, ∀F ∈ F
)
⇐⇒ Φ

dist
= ζM ,

where F is a rich enough class of test functions. For ζM , it is known that we can
take

(1) LF (φ) =

∫
X

(F (φ+ x)− F (φ))M(dx) +
∑
y∈φ

(F (φ \ y)− F (φ)).

The second step is to solve the so-called Stein’s equation, that is to find, for any

test function F : N̂X → R, a function HF : N̂X → R such that, for any φ ∈ N̂X,

LHF (φ) = E[F (ζM )]− F (φ).

We here use the so-called generator approach (see [36] for a survey and also [9,
41]). In the current situation, the Markov process with values in the space of

configurations N̂X, which has invariant and stationary measure ζM is called the
Glauber process. If (Pt)t≥0 is the associated semi-group, one can show that, for

any φ ∈ N̂X,

LHF (φ) =

∫ +∞

0

LPsF (φ)ds,

which leads to the so-called Stein-Dirichlet representation formula:

E[F (ζM )]− F (φ) =

∫ +∞

0

LPsF (φ)ds.

The Kantorovich-Rubinstein (or Wasserstein-1) distance between a point process
Φ and ζM is defined as

sup
F∈Lip1(N̂X)

E[F (ζM )]− E[F (ζM )].

Using (1), the next step is then to transform the rightmost term

E

∑
y∈Φ

(PsF (Φ \ y)− PsF (Φ))


into the expectation of an integral with respect to the measure M plus a remainder
term. To do so in the present article, our strategy is based on the use of the Papan-
gelou intensity instead of the Palm measure as in [4]. Although the link between
Papangelou intensity and Palm theory is strong, our choice offers the advantage
of dealing with a function rather than a probability measure. The calculations
are then easier. Intuitively, if c denotes the Papangelou intensity of a given point
process Φ (with respect to a given Radon measure `), the probability of finding a
particle in the location x given that there is a particle located at each point of the
configuration (or locally finite subset) φ is represented by the quantity c(x, φ). For
a Poisson point process ζM with intensity M(dx) = m(x)`(dx), the Papangelou
intensity is simply given by

c(x, φ) = m(x).

This corroborates the idea that a given particle of a Poisson point process does not
depend on the other particles of the configuration.
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Among the asymptotic behaviors we consider in this work, several of them con-
cern transformations of point processes. More specifically, a way to transform a
point process into a new point process with less interactions between its parti-
cles (in other words to reduce its level of repulsiveness or attractiveness) is to use
operations which insert some independence. We will in particular focus on two
transformations: independent superposition and independent thinning.

One important part of our contributions consists in new results about the Pa-
pangelou intensities, stating how it is transformed by reduction to a compact, in-
dependent superposition or independent thinning and rescaling.

The paper is organized as follows. In Section 2, the main elements from the point
process theory are presented more formally. In Section 3, we present in details the
development of the Stein’s method when the target measure is a finite Poisson
point process, state the so-called Stein-Dirichlet representation formula and obtain
an upper bound for the Kantorovich-Rubinstein distance associated to the total
variation distance between a finite Poisson point process and another finite point
process. We give in Section 4 the elements concerning Papangelou intensities which
will be necessary to state some convergence results in the next section, in particular
the definition of weak repulsiveness. From all these preliminary results, we deduce
in Section 5 some convergence rates when considering Kantorovich-Rubinstein dis-
tance between Poisson or Cox point processes and other point processes, which are
Poisson-like point processes in Subsection 5.1, repulsive point processes in Subsec-
tion 5.2 and thinned point processes in Subsection 5.3, where a convergence rate is
provided for the aforementioned theorem from Kallenberg [27]. Proofs are given in
Section 6.

2. Preliminaries

2.1. Notations. In this work, we use classical mathematical notations. In partic-
ular, N denotes the space of positive integers, N0 the space of non-negative integers,
R the space of real numbers and C the space of complex numbers.

We consider a locally compact metric space (X,∆X) endowed with its Borel σ-
algebra X and a (not necessarily diffuse) Radon measure ` on X. The family of
relatively compact Borel sets is denoted by X0. A distance ∆ on a space Y will be
denoted ∆|Y if necessary.

The set of bounded measurable functions from X to R+ with compact support is
denoted B+(X). If f is a function from X to C, then ‖f‖∞ denotes the supremum of
the set {|f(x)| : x ∈ X}. For p ∈ [1,+∞), Lp(X, `) denotes the space of functions
f : X → C such that |f |p is integrable with respect to `. The space of continuous
functions from X to R (respectively C) with compact support is denoted CK(X,R)
(respectively CK(X,C)). The integral of an integrable function f with respect to `
will be more simply written

∫
X f(x)dx when there is no ambiguity.

The space of measures on (X,X ) will be denoted M, MR is the space of Radon
measures on X and M1 the family of all probability measures on X. The space of
measures on M and the space of probability measures on M will be respectively
denoted by M′ and M′1. For any x ∈ X, δx denotes the Dirac measure at x. For any
A ∈ X , `(A) may also be denoted |A|. For any A ⊂ X, 1A denotes the indicator
function of the subset A of X. If ϕ ∈ M and m is a function on X integrable with
respect to ϕ, then 〈m,ϕ〉 denotes the integral of m with respect to ϕ, the measure
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ν with density m with respect to ϕ is denoted mϕ. In this case, m is denoted dν
dϕ

and the fact that ν is absolutely continuous with respect to ϕ is denoted ν � ϕ.
For any random element X of X, PX denotes the probability distribution of X.

If ∆ is a distance on M1 and X1, X2 two random elements of X with respective
distributions P1,P2, then we will also write ∆(X1, X2) instead of ∆(P1,P2).

A counting measure ξ on X is a measure on X such that, for any A ∈ X0,

ξ(A) ∈ N0.

A configuration (respectively finite configuration) on X is a locally finite (respec-
tively finite) counting measure on X.

The space of configurations on X is denoted NX and N̂X denotes the space of
finite configurations on X. We endow NX with NX defined as the smallest σ-algebra
on NX such that φ ∈ NX 7→ φ(A) is measurable for any A ∈ X0. The restriction of

NX to N̂X is denoted N̂X.
Note that, although a configuration is defined as a measure, it also may be

considered as a locally finite subset of points, and will then often be introduced
with set-theoretic notations.

For a function F : NX → R which is integrable with respect to ω, the integral∫
X F (x)ω(dx) will be often denoted

∑
x∈ω F (x). For any k ∈ N and x1, . . . , xk ∈ X,

{x1, . . . , xk} also denotes the configuration ω defined, for any A ∈ X , by

ω(A) = #
{
i ∈ {1, . . . , k}, xi ∈ A

}
where, for any finite set B, #B denotes the number of elements in B. By a slight
abuse of notation, we will also denote F (x1, . . . , xk) instead of F ({x1, . . . , xk}).

A function f : NX → R is said to be increasing (resp. decreasing) if, for any
φ1, φ2 ∈ NX,

(φ1 ⊂ φ2) =⇒ (f(φ1) ≤ f(φ2)) [resp. (φ1 ⊂ φ2) =⇒ (f(φ1) ≥ f(φ2))].

A subset A of NX is said to be increasing (resp. decreasing) if 1A is increasing
(resp. decreasing), that is, if for any φ1 ∈ A and φ2 ∈ NX,

(φ1 ⊂ φ2) =⇒ (φ2 ∈ A) [resp. (φ2 ⊂ φ1) =⇒ (φ2 ∈ A)].

2.2. Point processes. Point processes are formally seen as random locally finite
subsets of points and provide a powerful mathematical tool with some applications
in many areas, such as forestry [45], astronomy [1] or epidemiology [20], telecommu-
nications and precisely wireless networks [2], and more generally in each field where
the spatial distribution some particles needs to be analyzed in a mathematical way.

The following notions concern point process theory and come essentially from
[11].

A point process Φ on X is a random configuration on X. Its intensity measure
is the measure M on (X,X ) defined, for any A ∈ X , by

M(A) = E[Φ(A)].

To describe the distribution of a point process, several characterizations are avail-
able. Among them, the Laplace functional LΦ : B+(X) → R+ is given for any
f ∈ B+(X) by

LΦ(f) = E
[

exp
(
−
∫
X
f(x)Φ(dx)

)]
.



STEIN’S METHOD WITH PAPANGELOU INTENSITY 5

and offers the advantage to give easily some information on point processes built
by independent superposition or other independent transformations. It is mathe-
matically speaking the most efficient but is not the most intuitive. It may be useful
to characterize a point process by considering other functionals such as its Janossy
function and correlation function.

If x1, . . . , xn are n particles in X, the Janossy function j is defined in such
a way that j(x1, . . . , xn) intuitively represents the probability of finding exactly
n particles in the vicinity of x1, . . . , xn, while the correlation function ρ is such
that ρ(x1, . . . , xn) represents the probability of finding at least n particles in the
neighborhood of x1, . . . , xn, with possibly some other particles at other locations.

Formally, if Φ is almost surely finite, its Janossy function (with respect to `)

j : N̂X → R+ is then defined, if it exists, for any measurable function u : N̂X → R+

by

E[u(Φ)] =

+∞∑
k=0

1

k!

∫
Xk
u(x1, . . . , xk)j(x1, . . . , xk)`(dx1) . . . `(dxk)

and its correlation function (with respect to `) ρ : N̂X → R+ is defined, if it exists,

for any measurable function u : N̂X → R+ by

E
[ ∑
α∈N̂X
α⊂Φ

u(α)
]

=

+∞∑
k=0

1

k!

∫
Xk
u(x1, . . . , xk)ρ(x1, . . . , xk)`(dx1) . . . `(dxk).

Correlation function also provides a way to specify the repulsiveness or attrac-
tiveness of a point process, which will be considered as repulsive (respectively at-
tractive) as soon as, for any x, y,

(2) ρ(x, y) ≤ ρ(x)ρ(y) [resp. ρ(x, y) ≥ ρ(x)ρ(y)].

Another typical functional both provides a way to characterize a point process
and an intuitive interpretation: introduced in 1974 by Papangelou [35], the Pa-
pangelou intensity c of a point process Φ relies on the so-called reduced Campbell
measure C, defined on the product space (X×NX,X ⊗NX) for any A ∈ X ⊗NX by

C(A) = E
[∑
x∈Φ

1A(x,Φ \ x)
]
.

If C � ` ⊗ PΦ, any Radon-Nikodym density c of C relative to ` ⊗ PΦ is then
called (a version of) the Papangelou intensity of Φ. More explicitly c is a Papangelou
intensity of Φ if, for any measurable function u : X×NX → R+,

E
[∑
x∈Φ

u(x,Φ \ x)
]

=

∫
X
E[c(x,Φ)u(x,Φ)]`(dx).

Hence c(x, φ) represents the probability of finding a particle in the vicinity of x
given that there is a particle located at each point of the configuration φ. In par-
ticular, this leads to consider the variations of this quantity when the configuration
φ increases: if ω ⊂ φ implies that

(3) c(x, φ) ≤ c(x, ω) [resp. c(x, φ) ≥ c(x, ω)]

then it rather exhibits repulsiveness (resp. attractiveness).



6 LAURENT DECREUSEFOND AND AURÉLIEN VASSEUR

The Papangelou intensity c of a finite point process on X may furthermore be
linked respectively to its Janossy function j and its correlation function ρ in the
following ways: for any x ∈ X,

(4) E[c(x,Φ)] = ρ(x)

and, if {j = 0} is an increasing set, then, for any x ∈ X and φ ∈ NX,

(5) c(x, φ) =
j(xφ)

j(φ)
1{j(φ)6=0}.

2.3. Poisson-based point processes. We recall here the definitions and some
basic properties of some Poisson-based point processes, in particular their Laplace
functionals, Janossy functions and correlation functions.

The most elementary point process is the binomial point process, depending on
a fixed parameter N ∈ N0 and a probability measure µ on X. Such a point process
has exactly N points drawn independently according to µ.

If M is a Radon measure on X, the Poisson point process (PPP) Φ with inten-
sity measure M is defined as the unique point process on X with intensity measure
M such that, for any disjoint relatively compact subsets Λ1,Λ2, the random vari-
ables Φ(Λ1) and Φ(Λ2) are independent. A Poisson point process on X with finite
intensity measure M may also be defined as a finite point process Φ on X such
that its total number of points N has a Poisson distribution with parameter M(X)
and, conditionally to N , Φ is a binomial point process on X with parameter N and

supported by M(·)
M(X) . Its Laplace functional is given for any f ∈ B+(X) by

LΦ(f) = exp
{
−
∫
X

(1− e−f(x))M(dx)
}
.

If M(dx) = m(x)dx, its correlation function ρ is given for any φ ∈ N̂X by

ρ(φ) =
∏
x∈φ

m(x);

and, if M(X) < +∞, its Janossy function j is given for any φ ∈ N̂X by

j(φ) = e−M(X)
∏
x∈φ

m(x).

A Poisson point process Φ verifies the Mecke formula: for any measurable func-
tion u : X×NX → R+,

E
[∑
x∈Φ

u(x,Φ \ x)
]

=

∫
X
E[u(x,Φ)]M(dx).

Conversely, if M is locally finite and Φ such that, for any x ∈ X, Φ({x}) ≤ 1
a.s., then Φ is a Poisson point process with intensity measure M .

The Poisson point process may be characterized as the only point process with
no interactions between its particles, that is, without repulsiveness or attractive-
ness. For this point process, each compact subset has a Poisson-distributed number
of particles and the respective numbers of particles in two disjoint compact sub-
sets are independent. It verifies the equality in (2) and (3) and may be in this
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sense considered as the ”zero” point process between repulsive and attractive point
processes.

Another crucial property of the space of Poisson point processes is its stability for
independent superposition and thinning: in other words, if Φ1, . . . ,Φn are n Poisson
point processes with respective intensity measures M1, . . . ,Mn and β1, . . . , βn ∈
[0, 1], then β1 ◦Φ1 + · · ·+βn ◦Φn is a Poisson point process with intensity measure
β1M1 + · · ·+ βnMn. In particular, a Poisson point process Φ verifies the following
invariance property: for any t ∈ [0, 1],

t ◦ Φ(1) + (1− t) ◦ Φ(2) D= Φ,

where Φ(1) and Φ(2) are independent copies of Φ.
Poisson point processes are also used as a basis for the definition of some other

categories of point processes, that will be called Poisson-like point processes.
Among them, a Cox point process [10] directed by a random measure M on X is

a point process Φ such that, conditionally to M , Φ is a Poisson point process with
intensity measure M ; it provides a useful tool to model attractive distribution of
particles.

A purely random point process (PRPP) [33] supported by a probability measure

µ on X and a sequence (pn)n∈N0
⊂ R+ such that

∑+∞
n=0 pn = 1 is a finite point

process Φ on X such that its number of points N in X verifies for any n ∈ N0

P(N = n) = pn;

and, conditionally to N , Φ is a binomial point process on X with parameter N and
supported by µ. In particular, a binomial point process is a purely random point
process with a deterministic number of points, and a finite Poisson point process is
a purely random point process whose number of points has a Poisson distribution.

Let consider now C ∈ NX, a Poisson point process Φ with intensity measure M
and a sequence (Φ(n))n∈N of independent copies of Φ. The point process ΦC defined
as

ΦC := Φ(n) if Φ(n) ∈ C and, ∀i ∈ {1, . . . , n− 1}, Φ(i) /∈ C
is called the conditional Poisson point process associated to Φ with intensity mea-
sure M and condition C.

In particular, the conditional Poisson point process ΦR := ΦCR associated to a
Poisson point process Φ on the metric space (X,∆X) with finite parameter measure
M and condition

CR := {φ ∈ N̂X : ∀x, y ∈ φ, x 6= y =⇒ ∆X(x, y) ≥ R} where R > 0

is a hardcore (conditional) Poisson point process [25] with parameter R.
The conditional Poisson point process ΦN := ΦCN associated to a Poisson point

process Φ on X with finite parameter measure M and condition

CN := {φ ∈ N̂X : φ(X) ≤ N} where N ∈ N0.

is called a bounded (conditional) Poisson point process with parameter N .
Gibbs point processes are repulsive point processes, especially in the sense given

by (3), and were introduced in the field of statistical physics [37]. The repulsiveness
of a Gibbs point process appears naturally in the expression of its total potential
energy U , defined as
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U(x1, . . . , xn) =

n∑
r=1

∑
1≤i1<···<ir≤n

Ψr(xi1 , . . . , xir ),

where Ψr : X → R+ is a measurable and symmetric function, called rth-order
interaction potential, which quantifies the degree of repulsion between r given par-
ticles.

In a formal way, a point process on X is said to be a Gibbs point process with
temperature parameter θ > 0 and total potential energy U if its Janossy function

j is given for any φ ∈ N̂X by

j(φ) = C(θ)e−θU(φ),

for some partition function C(θ) > 0.
In light of this classification, a Poisson point process Φ may be seen at once as a

Cox point process directed by a deterministic measure, a conditional Poisson point
process with condition C = NX; if Φ is finite, as a purely random point process
supported by a Poisson distribution, and as a Gibbs point process such that its
total potential energy U equals to its 1st-order interaction potential Ψ1.

2.4. α-determinantal/permanantal point processes. Another useful model
for the distribution of particles with some repulsion (called fermion particles in
the literature) appears with determinantal point processes, introduced by Macchi
in 1975 [32], and whose mathematical structure were studied in details by Soshnikov
[43], Shirai and Takahashi [42], then Hough et al. [26]. As mentioned above, the
repulsive behavior of the particles from such point processes may be intuitively in-
terpreted by observing the correlation function and the Papangelou intensity. The
correlation function ρ of a determinantal point process is defined as

(6) ρ(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n,

where K is the kernel of a bounded symmetric and Hilbert-Schmidt integral
operator on L2(X, `), also denoted K, i.e., for any x ∈ X,

Kf(x) =

∫
X
K(x, y)f(y)`(dy).

and we suppose that the map K is an Hilbert-Schmidt operator from L2(X, `)
into L2(X, `) which satisfies the following conditions:

• The spectrum of K is included in [0, 1).
• The map K is locally trace-class, i.e., for all compact Λ ⊂ X, the restriction
KΛ = PΛKPΛ of K to L2(Λ, `|Λ) is trace-class.

From this definition, as expected, we can show that (2) holds for determinantal
point processes. Moreover, Georgii and Yoo [21] provided an explicit expression for
the Papangelou intensity c of such a process (see Section 4) and showed in particular
that (3) also holds.

It was actually shown [42] that determinantal point processes (DPP for short)
may be included in a wider class of point processes, called α-determinantal and
permanantal point processes, where determinant is replaced by α-determinant and
where the coefficient α provides an indication on the repulsive or attractive nature
of the point process. More precisely, its particles exhibit repulsiveness as soon
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as α < 0 (in particular α = −1 corresponds to determinantal point process) and
attractiveness when α > 0. The attractive point processes of this last category
provide a model in statistical physics for the distribution of boson particles. The
case α = 0 leads to the Poisson point process, which consolidates the idea expressed
previously of being represented as a ”zero” point process. The reader may also
consult Decreusefond et al. [6, 13] for surveys and Lavancier et al. [30] for statistical
inference on determinantal point processes. It nevertheless can be worthwhile to cite
the following theorem which states the orthonormal decomposition of a sufficiently
regular integral operator.

Theorem 2.1. Let K : L2(X, `) → L2(X, `) be a symmetric and Hilbert-Schmidt
integral operator with kernel K(·, ·). Then, there exists a complete orthonormal
basis (hn)n∈N ⊂ L2(X, `) and a decreasing sequence (λn)n∈N converging to 0 such
that, for any x ∈ X,

Kf(x) =

+∞∑
n=1

λn〈f, hn〉hn(x),

or equivalently, for any x, y ∈ X,

K(x, y) =

+∞∑
n=1

λnhn(x)hn(y).

Since K is Hilbert-Schmidt,

+∞∑
n=1

λ2
n < +∞,

and, if K is trace-class, then

+∞∑
n=1

λn < +∞.

Moreover, if for any n ∈ N, 1 + αλn 6= 0, then the integral operator J = (I +
αK)−1K has a kernel J given for any x, y ∈ X by:

J(x, y) =

+∞∑
n=1

λn
1 + αλn

hn(x)hn(y).

Focus now on transformations on α-DPPs and fix an α-DPP Φ with kernel K.
The reduction of Φ to a compact subset Λ of X is also an α-DPP whose kernel is
given, for any x, y ∈ X, by:

(7) KΛ(x, y) = K(x, y)1Λ×Λ(x, y).

If β is a real number of [0, 1], then the β-thinning of Φ is also an α-DPP whose
kernel is given, for any x, y ∈ X, by:

(8) Kβ(x, y) = βK(x, y).

Supposing that X = Rd and that ε is a positive real number, the ε-rescaling of
Φ is also an α-DPP whose kernel is given, for any x, y ∈ Rd, by:
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(9) Kε(x, y) =
1

ε
K(ε−

1
dx, ε−

1
d y).

Another important result concerns independent superpositions: For any n ∈ N, a
(−1/n)-determinantal point process with kernel K is the independent superposition
of n determinantal point processes with kernel n−1K. Moreover, such a sequence of
point processes converges in law to a Poisson point process with intensity measure
K(x, x)`(dx). All these properties on transformations of α-DPP may easily be
verified by calculations on the Laplace transforms.

A key example of transformations of determinantal point processes is also given
by a parametric family of determinantal point processes on the complex space: the
class of β-Ginibre point processes, where the parameter β is a real number between
0 and 1.

The Ginibre point process (GPP) with intensity ρ = γ
π (with γ > 0) is a deter-

minantal point process on C whose kernel Kγ is given for any x, y ∈ C by:

Kγ(x, y) =
γ

π
e−

γ
2 (|x|2+|y|2)eγxy.

It was introduced in 1965 by Ginibre [22] and may be interpreted as a point pro-
cess with Gaussian repulsion between its particles. If β is a real number between 0
and 1, the β-Ginibre point process (β-GPP) with intensity ρ = γ

π is a determinantal
point process on C whose kernel Kγ,β is given for any x, y ∈ C by:

Kγ,β(x, y) =
γ

π
e−

γ
2β (|x|2+|y|2)e

γ
β xy.

A β-Ginibre point process may be built by combining two operations on a Ginibre
point process: a thinning with parameter β (one keeps each point independently
with probability β) then a rescaling with parameter

√
β, such that we keep the

same intensity. Hence, the parameter β provides an information concerning the
degree of repulsiveness of the point process: the smaller β is, the less repulsive the
β-Ginibre point process is. Note that such a point process is not defined for β > 1.

When β tends to 0, a β-Ginibre point process is close to a Poisson point process.
In this sense, a Poisson point process may be considered as a β-Ginibre point
process with β = 0. The simulation of β-Ginibre point processes is investigated
in [14]. Among results on this topic, see the article of Goldman about its Palm
measure and Voronoi tessellation [23], its link with random matrices [31] and some
applications to wireless networks [19, 24].

Figure 1. Realizations of a Ginibre point process, a (1/2)-
Ginibre point process and a Poisson point process.
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Some realizations of a Ginibre point process, a (1/2)-Ginibre point process and a
Poisson point process are given in Figure 1. One can observe that the repulsiveness
between the particles is indeed weaker and weaker as β decreases and almost null
as β tend to 0.

2.5. Convergence. The asymptotic evolution of a family of point processes can be
viewed through the prism of various topologies. The following definitions provides
classical notions of convergence on the space of point processes. A function h : L→
R is said to be 1-Lipschitz according to a distance ∆ on a subset L of M if for any
ν1, ν2 ∈ L,

|h(ν1)− h(ν2)| ≤ ∆(ν1, ν2),

and Lip1(L,∆) denotes the set of all these maps which are measurable. It may
also be useful to recall here that a sequence (Mn)n∈N ⊂ M converges vaguely to a
measure M ∈M if, for any positive function f ∈ CK(X,R),

lim
n→+∞

∫
X
f(x)Mn(dx) =

∫
X
f(x)M(dx),

and that the space M endowed with the vague convergence is a Polish space.
This enables to then define the most common type of convergence used on point
processes, which is convergence in law, that is, convergence for the Laplace func-
tionals. Formally, a sequence (Φn)n∈N of point processes on X converges in law to
a point process Φ on X if, for any bounded and continuous for the vague topology
function F : NX → R,

lim
n→+∞

E[F (Φn)] = E[F (Φ)].

Such a topology is metrizable and it is shown [27] that the distance ∆P , called
here Polish distance, between two measures ν1 and ν2 given by

∆P (ν1, ν2) =

+∞∑
k=1

1

2k
|〈fk, ν1〉 − 〈fk, ν2〉|

1 + |〈fk, ν1〉 − 〈fk, ν2〉|
,

where f = (fk)k∈N is a sequence of functions generating X and where for any
x ∈ R+,

Ψ(x) =
x

1 + x
,

defines a metric for this topology and then provides a way to precise some conver-
gence rates. For this last definition, we can assume without loss of generality that
the Polish distance on M′ is chosen such that f ⊂ CK(M) ∩ Lip1(∆TV ).

A central question in the field of optimal transport is to determine for which
coupling between two random elements X1 and X2 the value of a given cost function
∆ is minimal. If X1 and X2 are some point processes and the cost function ∆ is
a distance on the configuration space, the optimal transport cost ∆∗, also called
Kantorovich-Rubinstein distance, between the probability distributions P1 and P2

of X1 and X2 is defined as

(10) ∆∗(P1,P2) := inf
C∈Σ(P1,P2)

∫
NX×NX

∆(ω1, ω2)C(d(ω1, ω2))
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where Σ(P1,P2) denotes the set of probability measures on M × M with first
marginal P1 and second marginal P2. In this case, there is at least one coupling
C ∈ Σ(P1,P2) for which the infimum is attained [46]. Moreover, if P1 and P2 are
concentrated on NX, then there is at least one coupling C ∈ Σ(P1,P2) for which
the infimum is attained, and the Kantorovich duality theorem (see e.g. [46]) says
that this minimum equals

∆∗(P1,P2) = sup
∣∣∣ ∫
NX

F (ω)P1(dω)−
∫
NX

F (ω)P2(dω)
∣∣∣,

where the supremum is over all F ∈ Lip1(NX,∆) that are integrable with respect
to P1 and P2. This distance associated to the total variation distance provides a
strong topology on point processes since it is strictly finer than for the total vari-
ation distance [16], and it is shown by Decreusefond et al. that this Kantorovich-
Rubinstein distance between finite Poisson point processes is bounded by the total
variation distance between its intensity measures [15]. It is also included in the
larger class of so-called Wasserstein distances, where a Lp-distance appears in (10).
Wasserstein distances were investigated in [5, 12, 29] for Poisson point processes,
and more recently in [18] by Del Moral and Tugaut for Kalman-Bucy filters, and in
the field of persistent homology in [7] where Chazal et al. compare this distances
with so-called bottleneck, Hausdorff and Gromov-Hausdorff distances. Other ex-
amples of metrics on point processes are proposed in [40] and [39].

In this work, the cost function ∆ denotes alternatively the discrete distance ∆D

on M defined for any ν1, ν2 ∈M by

∆D(ν1, ν2) := 1{ν1 6=ν2}

or the total variation distance ∆TV on M defined for any ν1, ν2 ∈M by

∆TV (ν1, ν2) := sup
A∈X

ν1(A),ν2(A)<∞

|ν1(A)− ν2(A)|.

Note that, for any ν1, ν2 ∈M,

∆TV (ν1, ν2) =

∫
X

∣∣∣ dν1(x)

d(ν1 + ν2)
− dν2(x)

d(ν1 + ν2)

∣∣∣(ν1 + ν2)(dx)

and, in particular, if ν1, ν2 ∈ N̂X, then

∆TV (ν1, ν2) = |ν1 \ ν2|+ |ν2 \ ν1|.
The existing links between the previous topologies may be summarized as follows.

For any distance ∆ on the space of point processes on X, T (∆) denotes the topology
associated to the corresponding metric space. Then,

• ∆P |M′1 and ∆P
∗
|NX

both provide a metric for the convergence in law [27];

• T (∆P |M′1) = T (∆P
∗
|NX

) ( T (∆TV |M′1) ( T (∆TV
∗
|NX

) [16];

• ∆TV |M′1 = ∆D
∗
|NX
≤ ∆TV

∗
|NX

[17];

• ∆P |M′1 ≤ ∆TV
∗
|NX

.

3. Stein’s method for a finite Poisson process

This section aims to present Stein’s method applied to a finite Poisson point
process. We use the Stein’s principle and the construction given in [16], but our
proofs are sometimes different, highlighting the properties of the thinning operation
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and the invariance of the Poisson process distribution: for any Poisson point process
Φ and any t ∈ [0, 1],

t ◦ Φ(1) + (1− t) ◦ Φ(2) D= Φ,

where Φ(1) and Φ(2) are independent copies of Φ.
For any t ∈ R+, let Pt be an operator on the space of measurable and bounded

functions F : N̂X → R. We say that the family (Pt)t≥0 is a semi-group on N̂X if,
for any t, s ∈ R+,

Pt+s = Pt ◦ Ps,
and its infinitesimal generator L is defined for any measurable and bounded function

F : N̂X → R and any φ ∈ N̂X such that t 7→ PtF (φ) is differentiable in 0 by:

LF (φ) =
dPtF (φ)

dt

∣∣∣∣
t=0

.

We focus now on a Poisson point process ζM with finite intensity measure M ,

and associate to ζM its Glauber process (Gt)t≥0, defined for any t ∈ R+ and φ ∈ N̂X
by

Gt(φ) = e−t ◦ φ+ (1− e−t) ◦ ζM .
For any t ∈ R+, we consider the operator Pt is defined for any measurable and

bounded function F : N̂X → R and any φ ∈ N̂X by:

PtF (φ) = E[F (Gt(φ))] = E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)].

Its dynamics can be described as follows: imagine a homogeneous Poisson process
ζb on R+ with intensity M(X). The jump times of ζb determine the birth times of

the particles in ζ, placed in X according to the distribution M(·)
M(X) . The lifetime of

each particle is exponentially distributed with parameter 1.

Theorem 3.1. The family (Pt)t≥0 is a semi-group.

Note that, in the previous proof, we only use associativity of thinning and the
invariance property of a Poisson point process distribution. According to the Stein’s
approach, this Glauber process verifies as expected the following properties: on one
hand it is invariant for the Poisson point process ζ, on the other hand it is ergodic,
which is summarized in the following theorem.

Lemma 3.2. For any t ≥ 0,

Gt(ζ)
D
= ζ.

For any F ∈ Lip1(N̂X,∆TV ) and any φ ∈ N̂X,

lim
t→+∞

PtF (φ) = E[F (ζ)].

In order to analyze the variations of any given functional of a configuration or
a point process, we need to introduce the following operator. The gradient Dx

in direction x ∈ X is defined, for any measurable function F : NX → R and any
φ ∈ NX, by
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DxF (φ) = F (φ+ x)− F (φ).

Its association with the Poisson point process ζ and its semi-group presents some
relevant characteristics. One of its main advantages is the closability property
provided by the following theorem.

Theorem 3.3. If F,G : NX → R are two measurable and bounded functions such
that F (φ) = G(φ) Pζ(dφ)-a.s., then

DxF (φ) = DxG(φ) (M ⊗ Pζ)(dx, dφ)-a.s..

The gradient, thus defined, also appears in the expression of the infinitesimal
generator associated to the semi-group (Pt)t≥0, given in the next theorem.

Theorem 3.4. The infinitesimal generator L associated to (Pt)t≥0 is given for any

measurable and bounded function F : N̂X → R and any φ ∈ N̂X by

LF (φ) =

∫
X
DxF (φ)M(dx) +

∑
y∈φ

(F (φ \ y)− F (φ)).

Moreover, a point process Φ is a Poisson point process with intensity measure

M if and only if, for any measurable and bounded function F : N̂X → R,

E[LF (Φ)] = 0.

Another essential property of the gradient, still when it is coupled with the
semi-group (Pt)t≥0, is the following commutation relation.

Lemma 3.5. For any t ∈ R+, any x ∈ X, any measurable and bounded function

F : N̂X → R and any φ ∈ N̂X,

DxPtF (φ) = e−tPtDxF (φ).

This approach using a generator provides a solution to the Stein’s equation in the
following result, the so-called Stein-Dirichlet representation formula. This theorem
is only based on the definitions of semi-group and infinitesimal generator, together
with the ergodic property.

Theorem 3.6. For any F ∈ Lip1(N̂X,∆TV ) and any φ ∈ N̂X,

E[F (ζ)]− F (φ) =

∫ +∞

0

LPsF (φ)ds.

In [4], Barbour and Brown apply Stein’s method to Poisson point process. They
deduce an upper bound for the total variation distance between a finite Poisson
point process and another finite point process using Palm measure, given by the
following inequality: If Φ is a point process of intensity M ,

∆∗TV (Φ, ζM ) ≤
∫
X
E[‖Φ− Φx\x‖TV]M(dx)

where Φx is a point process constructed on the same probability as Φ, which has
the distribution of the Palm measure of Φ at x.

Our approach, which leads to the following fundamental theorem, focuses on
Papangelou intensity rather than Palm measure - a functional rather than a prob-
ability measure - in order to give an easier way to perform calculations.
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Theorem 3.7. If ζM is a Poisson point process on X with finite intensity measure
M(dx) = m(x)`(dx) and Φ is a second finite point process on X with Papangelou
intensity c, then

∆∗TV (Φ, ζM ) ≤
∫
X
E[|m(x)− c(x,Φ)|]`(dx).

The proof of this fundamental result synthesizes the main results which are
exposed previously: from the Stein-Dirichlet representation formula, it becomes
possible to apply successively the expression of the generator L and the definition
of the Papangelou intensity. The expected upperbound is then obtained using the
outstanding properties of the gradient.

4. Papangelou intensity and repulsiveness

Following Georgii and Yoo [21], we define repulsiveness according to the Papan-
gelou intensity: a point process Φ on X with a version c of its Papangelou intensity
is said to be repulsive (according to c) if, for any ω, φ ∈ NX such that ω ⊂ φ and
any x ∈ X,

(11) c(x, φ) ≤ c(x, ω).

Such a definition is in particular verified for Gibbs and determinantal point
processes, which belong to the main categories of point processes used in order to
model repulsiveness. The relevance of this definition also appears when considering
the intuitive approach of the Papangelou intensity: the probability of finding a
particle in the location x ∈ X given the configuration φ included in Φ is as weak
as the number of particles in φ is high. However, this definition may be considered
as quite restrictive and it seems to be sufficient to consider point processes with
larger assumptions: in our approach, a point process is defined as weakly repulsive
(according to its Papangelou intensity c) if, for any φ ∈ NX and any x ∈ X,

c(x, φ) ≤ c(x,∅).

This last definition presents several advantages: it includes repulsive point pro-
cesses, the required inequality is obtained with easier computations and a weakly
repulsive point process verifies some useful properties. In particular, the following
lemmas though very elementary are the key to the next results.

Lemma 4.1. If Φ is a finite and weakly repulsive point process on X with Papan-
gelou intensity c and void probability p0, then for any x ∈ X,

|c(x,∅)− ρ(x)| ≤ (1− p0)c(x,∅).

Lemma 4.2. If Φ is a finite and weakly repulsive point process on X with Papan-
gelou intensity c, then for any x ∈ X,

E[|c(x,Φ)− ρ(x)|] ≤ 2
(

(c(x,∅)− ρ(x)
)
.

These two results are shown by directly using the previous definition of weak
repulsiveness and highlight the prominent role of the quantity c(x,∅) where x ∈ X,
which leads to consider the following property.
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Lemma 4.3. Let Φ be a finite point process on X with Papangelou intensity c.
Then,

P(|Φ| = 1) = P(|Φ| = 0)

∫
X
c(x,∅)dx.

We now show how to compute the Papangelou intensity for different transfor-
mations of point processes.

Theorem 4.4. Let Φ be a point process on X with Papangelou intensity c, Λ
a compact subset of X and Φ|Λ the reduction of Φ to Λ. Then, its Papangelou
intensity cΛ verifies for any x ∈ X

cΛ(x,Φ|Λ) = c(x,Φ)1{x∈Λ} a.s..

Theorem 4.5. Let Φ1, . . . ,Φn (n ∈ N) be independent point processes on X with
respective Papangelou intensities c1, . . . , cn and Φ their independent superposition.
Then, its Papangelou intensity c verifies for any x ∈ X

(12) c
(
x,

n∑
i=1

Φi

)
=

n∑
i=1

ci(x,Φi) a.s..

The right hand side in (12) is not truly the Papangelou intensity of
∑n
i=1 Φi

since it is not (
∑n
i=1 Φi)-measurable but this ersatz is sufficient for our purposes.

A direct consequence of this result is the weak repulsiveness of an independent
superposition of weakly repulsiveness point processes, as provided by the following
corollary.

Corollary 4.6. Let Φ1, . . . ,Φn (n ∈ N) be independent and weakly repulsive point
processes on X. Then their independent superposition is also weakly repulsive.

Theorem 4.7. Let Φ be a point process on X, let β be a function from X to [0, 1]
and β ◦ Φ the β-thinning of Φ. Then, its Papangelou intensity cβ verifies, for any
x ∈ X,

cβ(x, β ◦ Φ) = β(x)E[c(x,Φ) | β ◦ Φ] a.s..

Theorem 4.8. Let Φ be a point process on Rd with Papangelou intensity c, let ε be
a positive real number and Φ(ε) the ε-rescaling of Φ. Then, its Papangelou intensity

c(ε) is given for any x ∈ Rd and φ ∈ N̂Rd by

c(ε)(x, φ) =
1

ε
c(ε−

1
dx, ε−

1
dφ).

We now give an expression of the Papangelou intensity for classical point pro-
cesses. First of all, the Papangelou intensity of a Poisson point process has a very
simple expression, given in the next theorem.

Theorem 4.9. Let Φ be a Poisson point process with intensity measure M(dx) =

m(x)dx. Then, its Papangelou intensity c is given for any x ∈ X and φ ∈ N̂X by

c(x, φ) = m(x).

Note that this last result states in a formal way the independence property of a
Poisson point process: the probability of finding a particle in a given location does
not depend on the other particles of the configuration. It is a direct consequence of
the Mecke formula for a Poisson point process and is also mentioned in [21], but it is
also possible to prove it by using the expression of the Janossy functions and their
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link with Papangelou intensities, given by the formula (5). We use this approach in
the following theorems to get the expression of the Papangelou intensity for some
other Poisson-like point processes.

Theorem 4.10. Let Φ be a purely random point process on X supported by a
distribution (pn)n∈N0

such that pn 6= 0 for any n ∈ N0, and a probability measure
µ(dx) = q(x)`(dx). Then its Papangelou intensity c is given for any n ∈ N0 and
any x, x1, . . . , xn ∈ X by

c(x, {x1, . . . , xn}) = (n+ 1)
pn+1

pn
q(x).

Moreover, Φ is repulsive if and only if, for any n ∈ N0,

(n+ 1)p2
n+1 ≥ (n+ 2)pnpn+2

and weakly repulsive if and only if, for any n ∈ N0,

p0(n+ 1)pn+1 ≤ pnp1.

Theorem 4.11. Let Φ be a conditional Poisson point process with intensity measure
M(dx) = m(x)dx and conditional set C. Then its Papangelou intensity c is given
for any n ∈ N0 and any x, x1, . . . , xn ∈ X by

c(x, {x1, . . . , xn}) = m(x)1{x1,...,xn,x}∈C1{x1,...,xn}∈C .

Moreover, if C is decreasing, then Φ is repulsive.

In the same way, since we define a Gibbs point process according to its Janossy
function, its Papangelou intensity is also obtained immediately.

Theorem 4.12. Let Φ be a Gibbs point process with temperature parameter θ > 0
and total potential energy

U(x1, . . . , xn) =

n∑
r=1

∑
1≤i1<···<ir≤n

Ψr(xi1 , . . . , xir ),

where Ψr is the rth-order interaction potential. Then its Papangelou intensity c is

given for any x ∈ X and φ ∈ N̂X by

c(x, φ) = e−θ(U(xφ)−U(φ)).

Moreover, Φ is repulsive.

The following result provides an explicit expression for the Papangelou intensity
of an α-DPP.

Theorem 4.13. Let Φ be an α-DPP with kernel K and associated kernel J . Then
its Papangelou intensity c is given for any x ∈ X and φ ∈ N̂X by

c(x, φ) =
detαJ(xφ, xφ)

detαJ(φ, φ)
·

Moreover, if α = −1, then Φ is repulsive.

5. Applications

In this section, we apply the upper bound given in Theorem 3.7 to provide an
estimation of the distance between some classical point processes and a Poisson or
Cox point process. The residual computations essentially use the results of Section
4 on Papangelou intensities.
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5.1. Application to Poisson-like point processes. We focus in this subsection
on Poisson-like point processes. In a sense, the results presented here may be seen
as some generalizations of the two following results for respectively finite Poisson
and Cox point processes, which have already been shown in [15].

Theorem 5.1. Let ζ1, ζ2 be two Poisson point processes on X with respective in-
tensity measures M1 and M2. Then,

∆∗TV (ζ1, ζ2) ≤ ∆TV (M1,M2).

Theorem 5.2. Let Γ1,Γ2 be two Cox point processes on X directed by respective
almost surely finite random measures M1 and M2. Then,

∆∗TV (Γ1,Γ2) ≤ ∆∗TV (M1,M2).

The topology used in Theorem 5.2 may be too strong. In this case, it is relevant
to mention that a similar result can be obtained for ∆TV (= ∆∗D) instead of ∆∗TV .
Indeed, since trivially, for any Poisson point processes ζ1 and ζ2 with respective
intensity measures M1 and M2,

∆∗D(ζ1, ζ2) ≤ ∆D(M1,M2),

it follows, by adapting the proof of Theorem 5.2, that

∆TV (Γ1,Γ2) ≤ ∆∗D(M1,M2).

In the following theorem, the Poisson point process of Theorem 5.1 is replaced
by a purely random point process.

Theorem 5.3. Let M be a finite measure on X such that M(dx) = m(x)dx and

µ ∈ M1 such that µ(dx) = m(x)
M(X)dx. Let Φ be a purely random point process on

X supported by µ and the distribution (pn)n∈N0 such that pn 6= 0 for any n ∈ N0.
Then,

∆∗TV (Φ, ζM ) ≤
+∞∑
n=0

∣∣(n+ 1)pn+1 −M(X)pn
∣∣,

where ζM is the Poisson point process on X with intensity measure M .

Note that in the previous inequality, the right hand side is null as soon as Φ
is a purely random point process supported by µ and a Poisson distribution with
parameter M(X), that is, as expected, a Poisson point processes with intensity
measure M .

In the following theorem, we apply our upper bound to conditional Poisson point
processes.

Theorem 5.4. Let Φ be a Poisson point process with finite intensity measure
M(dx) = m(x)dx. Let ΦC be the conditional Poisson point process associated
to Φ with intensity measure M and condition C ∈ NX. Then,

∆∗TV (ΦC ,Φ) ≤
∫
X
m(x)P(ΦCx /∈ C)dx.

We may notice that the precision of the estimation is directly provided by the
weakness of the condition C. In particular, for C = NX, ΦC is a Poisson point
process with intensity measure M and the bound is null. This last result on condi-
tional Poisson point processes may also be observed in the more particular cases of
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hardcore and bounded Poisson point processes, which are respectively given in the
two following corollaries.

Corollary 5.5. Let Φ be a Poisson point process with finite intensity λ restricted
to a relatively compact subset Λ of X = Rd. Let ΦR be the hardcore Poisson point
process associated to Φ with parameter measure M and parameter R > 0. Then,

∆∗TV (ΦR,Φ) ≤ λ2|Λ|
pR

Vd(R)

where

pR = P(∀x, y ∈ Φ, x 6= y =⇒ ∆X(x, y) ≥ R)

and

Vd(R) =
π
d
2Rd

Γ(d2 )
.

Corollary 5.6. Let Φ be a Poisson point process with finite intensity measure
M(dx) = m(x)dx. Let ΦN be the bounded Poisson point process associated to Φ
with parameter measure M and parameter N ∈ N0. Then,

∆∗TV (ΦN ,Φ) ≤ e−M(X)

pN

(M(X))N+1

N !

where pN = P(Φ(X) ≤ N).

5.2. Application to weakly repulsive point processes. In this subsection, we
apply Theorem 3.7 to some transformations of weakly repulsive point processes.
The two main underlying intuitions are the following: first, basic operations on
point processes such that independent superposition or thinning weaken the inter-
actions between the particles therein and then, in a way, inject some independence
in the point process. It seems thus possible to build with these operations a se-
quence tending to a point process without interdependence between its particles,
that is, a Poisson point process. Second, it appears that point processes with re-
pulsion provide a more favorable ground for the construction of such a sequence: a
point process with some clusters might for instance have too strong and too numer-
ous interactions between the particles of a given cluster, and the transformations
described above are probably not sufficient to delete in a significant way the links of
dependence in this cluster, which leads us to restrict our analyze to weakly repulsive
point process.

In the following theorem, we consider a superposition of finite weakly repulsive
point processes.

Theorem 5.7. For any n ∈ N, let Φn the superposition of n independent, finite and
weakly repulsive point processes Φn,1, . . . ,Φn,n, with respective correlation functions
ρn,1, . . . , ρn,n and let ζM be a Poisson point process with intensity measure M(dx) =
m(x)`(dx). Then,

∆∗TV (Φn, ζM ) ≤ Rn + 2n
(

max
i∈{1,...,n}

∫
X
ρn,i(x)`(dx)

)2

,

where

Rn :=

∫
X

∣∣∣ n∑
i=1

ρn,i(x)−m(x)
∣∣∣`(dx).



20 LAURENT DECREUSEFOND AND AURÉLIEN VASSEUR

Remark 5.8. Under the assumptions and notations of Theorem 5.7, and supposing
moreover that there exists a real constant C such that for any n ∈ N,

max
i∈{1,...,n}

∫
X
ρn,i(x)`(dx) ≤ C

n
,

one has for any n ∈ N,

∆∗TV (Φn, ζM ) ≤ Rn +
2C2

n
.

Noting that a (−1/n)-determinantal point process may be written as a superposi-
tion of determinantal point processes, the following corollary is a direct consequence
of Theorem 5.7.

Corollary 5.9. Let n ∈ N, Φn be a finite (−1/n)-determinantal point process with
kernel K and ζ be a Poisson point process with intensity measure K(x, x)dx. Then,

∆∗TV (Φn, ζ) ≤ 2

n

(∫
X
K(x, x)dx

)2

.

In the next corollary, we present another consequence of Theorem 5.7, which
appears when drawing independent and identically distributed (i.i.d.) points on
the real half-axis.

Corollary 5.10. Let h be a probability density function on [0, 1] such that h(0+) :=
limx→0+ h(x) ∈ R, and Λ be a compact subset of R+. For any n ∈ N, assuming
that Xn,1, . . . , Xn,n are n i.i.d. random variables with probability density function
hn = 1

nh( 1
n ·), the point process Φn defined as Φn = {Xn,1, . . . , Xn,n} ∩ Λ verifies

the following inequality:

∆∗TV (Φn, ζ) ≤
∫

Λ

∣∣∣h( 1

n
x
)
− h(0+)

∣∣∣dx+
2

n

(∫
Λ

h
( 1

n
x
)

dx
)2

where ζ is the homogeneous Poisson point process with intensity h(0+) reduced
to Λ.

By combining an independent superposition with an independent thinning, it
becomes possible to enlarge the assumptions on the point processes of the superpo-
sition: in the following theorem, we replace the weak repulsiveness by a condition
on the variance of their Papangelou intensities.

Theorem 5.11. Let Φ be a point process on a compact subset Λ of X with Papan-
gelou intensity c and intensity measure M(dx) = m(x)dx. Let ζ be a Poisson point
process with intensity measure M . For any n ∈ N, the point process Φn is defined
by:

Φn =

n∑
k=1

1

n
◦ Φ(k),

where Φ(1), . . . ,Φ(n) are n independent copies of Φ. If there exists an integrable
function K : Λ→ R+ such that, for any x ∈ Λ, V[c(x,Φ)] ≤ K(x), then

∆∗TV (Φn, ζ) ≤ 1√
n

∫
Λ

√
K(x)dx.
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In order to fully observe the ability of the independent thinning to weaken the
interactions between some particles of a point process, it is also interesting to com-
bine it with a rescaling, whose role is to compensate the loss of intensity caused by
the thinning operation. We apply this in the following theorem for finite stationary
determinantal point processes.

Theorem 5.12. Let K be the kernel of a stationary determinantal point process Φ
on Rd with intensity λ ∈ R, Λ be a compact subset of Rd, β ∈ (0, 1) and ζΛ,λ denotes
the homogeneous Poisson point process with intensity λ reduced to Λ. Let ΦΛ,β be
the point process on Rd obtained by combining a β-thinning with a β-rescaling on
the point process Φ that one reduces to Λ. Then,

∆∗TV (ΦΛ,β , ζΛ,λ) ≤ 2β

1− β
λ|Λ|.

The application to Gibbs point processes given in the following only focuses on
pairwise Gibbs point processes, that is such that, for any r ∈ N \ {1, 2}, Ψr ≡ 0.
The functional Ψ2, which is provided by the expression of the total potential energy,
provides the level of repulsion between the particles of this kind of point process.
In the next theorem, this level of repulsion appears explicitly in the the estimation
of its distance with an adapted Poisson point process.

Theorem 5.13. Let ε ∈ R+ and Φ be a Gibbs point process on X with temperature
parameter θ > 0, partition function C(θ) and total potential energy

U(x1, . . . , xk) =

k∑
i=1

Ψ1(xi) +

k−1∑
i=1

k∑
j=i+1

Ψ2(xi, xj),

such that

∫
X
e−θΨ1(x)dx < +∞, Ψ2 ≥ 0 and ‖Ψ2‖∞ ≤ ε.

Then,

∆∗TV (Φ, ζM ) ≤ (M(X))2θε,

where ζM is the Poisson point process on X with intensity measure M(dx) =
e−θΨ1(x)dx.

5.3. Extension of a Kallenberg’s theorem. The convergence of a sequence of
thinned point processes given in Theorem 5.12 of the previous subsection is estab-
lished for rescaled point processes, but this conclusion may actually be extended to
a wider framework. In the following theorem (Theorem 14.19 in [28]), Kallenberg
states the convergence in law of thinned point processes to a Cox process.

Theorem 5.14. Let (Φn)n∈N be a sequence of point processes on X and let (pn)n∈N
be a sequence of functions from X to [0, 1) such that (pn)n∈N tends to 0 uniformly.
Let M be a random measure on X and ΓM be a Cox point process directed by M .
Then,

pnΦn
law−−−−−→

n→+∞
M ⇐⇒ pn ◦ Φn

law−−−−−→
n→+∞

ΓM .

Since the Polish distance provides a metric for the convergence in law, it becomes
conceivable to get a convergence speed for this last result. First of all, we write
in the following lemma the Polish distance between two Cox point processes as an
adapted Polish distance between its directing random measures.
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Lemma 5.15. Let M1,M2 be random measures on X and ΓM1
,ΓM2

be Cox point
processes directed by M1,M2 respectively. Then,

∆P (ΓM1 ,ΓM2) = ∆P (M1,M2),

with ∆P denoting the Polish distance on M′1 associated to g = (gk)k∈N defined,
for any k ∈ N and any ϕ ∈ M, by gk(ϕ) = E[fk(ζϕ)], where ζϕ is a Poisson point
process on X with intensity measure ϕ.

In order to apply Theorem 3.7, we need now to determine a version of the
Papangelou intensity of a thinned configuration, which is given in the next lemma.

Lemma 5.16. Let ϕ ∈ NX and a measurable function p : X → [0, 1). Then, a
version c of the Papangelou intensity of p◦ϕ with respect to the measure p(x)ϕ(dx)
is provided for any x ∈ X and any η ∈ NX by

c(x, η) = 1{x∈ϕ\η}
1

1− p(x)
.

The previous elements lead to a key result: a thinned point process may be seen
as an approximation of a Cox process, which is formally stated in the following
lemma.

Lemma 5.17. Let Φ be a point process on X and p be a function from X to [0,1).
Let ΓpΦ be a Cox point process directed by pΦ. Then,

∆∗TV (Pp◦Φ,PΓpΦ
) ≤ 2E

[∑
x∈Φ

p2(x)
]
.

We can then deduce in the next theorem an estimation of the investigated dis-
tance.

Theorem 5.18. Let Φ be a point process on X and let p be a measurable function
from X to [0,1). Let M be a random measure on X and ΓM be a Cox point process
directed by M . Then,

∆P (p ◦ Φ,ΓM ) ≤ 2E
[∑
x∈Φ

p2(x)
]

+ ∆P (pΦ,M),

with ∆P denoting the Polish distance on M′1 associated to g = (gk)k∈N defined,
for any n ∈ N and any ϕ ∈ M, by gk(ϕ) = E[fk(ζϕ)], where ζϕ is a Poisson point
process on X with intensity measure ϕ.

Under the assumptions of Theorem 5.18, it is actually possible to show that

∆∗TV (p ◦ Φ,ΓM ) ≤ 2E
[∑
x∈Φ

p2(x)
]

+ ∆∗TV (pΦ,M).

However, the random measure pΦ has almost surely a discrete support, and this
implies that we cannot suppose that the quantity ∆∗TV (pΦ,M) is close to 0 in the
general case, in particular when M admits almost surely a density with respect to
the measure `. That is the reason why we choose to use the Polish distance instead
of a stronger distance for this last convergence result.
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6. Proofs

6.1. Proofs of Section 3.

Proof of Theorem 3.1. For any measurable and bounded function F : N̂X → R and

any φ ∈ N̂X, since thinning is associative,

Ps(PtF )(φ) =

∫
N̂X

∫
N̂X

F (e−(t+s)◦φ+e−s◦(1−e−t)◦ψ+(1−e−s)◦η)Pζ(dψ)Pζ(dη).

Furthermore, since

e−s(1− e−t) + (1− e−s) = 1− e−(t+s),

by the invariance property of the Poisson point process distribution, we deduce
that

e−s ◦ (1− e−t) ◦ ζ(1) + (1− e−s) ◦ ζ(2) D= (1− e−(t+s)) ◦ ζ,
where ζ(1) and ζ(2) are independent copies of ζ. Hence,

Ps(PtF )(φ) =

∫
N̂X

F (e−(t+s) ◦ φ+ (1− e−(t+s)) ◦ η)Pζ(dη)

and the proof is thus complete. �

Proof of Theorem 3.3. By the Mecke formula applied to ζ, for any measurable func-
tion u : X×NX → R+,∫
X
E[DxF (ζ)u(x, ζ)]M(dx) = E

[
F (ζ)

∑
x∈ζ

u(x, ζ \ x)
]
−
∫
X
E[F (ζ)u(x, ζ)]M(dx)

= E
[
F (ζ)

(∑
x∈ζ

u(x, ζ \ x)−
∫
X
u(x, ζ)M(dx)

)]
.

Hence, if F (φ) = 0 PΦ(dζ)-a.s., then DxF (φ) = 0 (M ⊗ Pζ)(dx, dφ)-a.s., as ex-
pected. �

Proof of Theorem 3.4. For any measurable and bounded function F : N̂X → R and

any φ ∈ N̂X,

dPtF (φ)

dt

∣∣∣∣
t=0

= lim
t→0

1

t
(PtF (φ)− P0F (φ))

= lim
t→0

1

t
(E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− F (φ)),

and, for any t > 0,

E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)] = p00(t)F (φ) +
∑
x∈φ

p
(x)
01 (t)F (φ \ x)

+p10(t)

∫
X
F (φ+ x)

M(dx)

M(X)
+R(t),

where for any x ∈ φ,

p00(t) = P(e−t ◦ φ = φ, (1− e−t) ◦ ζ = ∅)

= P(e−t ◦ φ = φ)P((1− e−t) ◦ ζ = ∅)

= e−t|φ|e−(1−e−t)M(X),
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where the computation of the second factor is deduced from the fact that (1 −
e−t) ◦ ζ is a Poisson point process with intensity measure (1− e−t)M ,

p
(x)
01 (t) = P(φ \ (e−t ◦ φ) = x, (1− e−t) ◦ ζ = ∅)

= P(φ \ (e−t ◦ φ) = x)P((1− e−t) ◦ ζ = ∅)

= (1− e−t)e−t(|φ|−1)e−(1−e−t)M(X),

p10(t) = P(e−t ◦ φ = φ, |(1− e−t) ◦ ζ| = 1)

= P(e−t ◦ φ = φ)P(|(1− e−t) ◦ ζ| = 1)

= e−t|φ|(1− e−t)M(X)e−(1−e−t)M(X),

R(t) = E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)1|φ\(e−t◦φ)|+|(1−e−t)◦ζ|≥2].

Then,

1

t

(
E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− F (φ)

)
=

=
1

t

(∑
x∈φ

p
(x)
01 (t)(F (φ \ x)− F (φ))

+ p10(t)

∫
X
F (φ+ x)− F (φ)

M(dx)

M(X)
− p∞(t)F (φ) +R(t)

)
=
∑
x∈φ

p
(x)
01 (t)

t
(F (φ \ x)− F (φ))

+
p10(t)

t

∫
X
F (φ+ x)− F (φ)

M(dx)

M(X)
− p∞(t)

t
F (φ) +

R(t)

t
,

where

p∞(t) = P(|φ \ (e−t ◦ φ)|+ |(1− e−t) ◦ ζ| ≥ 2)

= 1−
(
p00(t) +

∑
x∈φ

p
(x)
01 (t) + p10(t)

)
.

Since for any x ∈ φ,

lim
t→0

p
(x)
01 (t)

t
= 1, lim

t→0

p10(t)

t
= M(X) and lim

t→0

1− p00(t)

t
= |φ|+M(X),

we get that

lim
t→0

p∞(t)

t
= 0,

then by boundedness of F that

lim
t→0

R(t)

t
= 0,

hence the first result. The second result is a consequence of the Mecke formula
for a Poisson point process. �
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Proof of Lemma 3.5. For any t ∈ R+, any x ∈ X, any measurable and bounded

function F : N̂X → R and any φ ∈ N̂X, from the definitions of Dx and Pt,

DxPtF (φ) = PtF (φ+ x)− PtF (φ)

= E[F (e−t ◦ (φ+ x) + (1− e−t) ◦ ζ)− F (e−t ◦ φ+ (1− e−t) ◦ ζ)].

Hence, since thinning is distributive with respect to sum,

DxPtF (φ) = E[F (e−t ◦ φ+ e−t ◦ x+ (1− e−t) ◦ ζ)− F (e−t ◦ φ+ (1− e−t) ◦ ζ)],

and then, since P(e−t ◦ x = x) = 1− P(e−t ◦ x = ∅) = e−t, it follows that

DxPtF (φ) = e−tPtDxF (φ).

The proof is thus complete. �

Proof of Lemma 3.2. For any F ∈ Lip1(N̂X,∆TV ), t ∈ R+ and φ ∈ N̂X,∣∣PtF (φ)− E[F (ζ)]
∣∣ ≤ ∣∣PtF (φ)− PtF (∅)

∣∣+
∣∣PtF (∅)− E[F (ζ)]

∣∣
=
∣∣E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− E[F ((1− e−t) ◦ ζ)]

∣∣
+
∣∣E[F ((1− e−t) ◦ ζ)]− E[F (ζ)]

∣∣.
On one hand, since F ∈ Lip1(N̂X,∆TV ),∣∣E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− E[F ((1− e−t) ◦ ζ)]

∣∣ ≤ E[∆TV (e−t ◦ φ,∅)]

= E[|e−t ◦ φ|],

and, since |e−t ◦ φ| has a binomial distribution with parameters |φ| and e−t,∣∣E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− E[F ((1− e−t) ◦ ζ)]
∣∣ ≤ e−t|φ|.

On the other hand,

E[F (ζ)] = E[F ((1− e−t) ◦ ζ + e−t ◦ ζ)],

then, since F ∈ Lip1(N̂X,∆TV ),∣∣E[F ((1− e−t) ◦ ζ)]− E[F (ζ)]
∣∣ ≤ E[∆TV (e−t ◦ ζ,∅)]

= E[|e−t ◦ ζ|],

and, since |e−t ◦ ζ| has a Poisson distribution with parameter e−tM(X),∣∣E[F (e−t ◦ φ+ (1− e−t) ◦ ζ)]− E[F ((1− e−t) ◦ ζ)]
∣∣ ≤ e−tM(X),

which concludes this proof. �

Proof of Theorem 3.6. For any F ∈ Lip1(N̂X,∆TV ) and any φ ∈ N̂X, from the
definition of L, ∫ +∞

0

LPsF (φ)ds =

∫ +∞

0

(dPt(PsF )

dt

)∣∣∣∣
t=0

(φ)ds.

Hence, since (Pt)t≥0 is a semi-group,∫ +∞

0

LPsF (φ)ds =

∫ +∞

0

(dPt+sF

dt

)∣∣∣∣
t=0

(φ)ds
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and it yields ∫ +∞

0

LPsF (φ)ds =

∫ +∞

0

dPsF

ds
(φ)ds

= lim
s→+∞

PsF (φ)− P0F (φ).

Then, by Lemma 3.2, ∫ +∞

0

LPsF (φ)ds = E[F (ζ)]− F (φ).

The proof is thus complete. �

Proof of Theorem 3.7. For any F ∈ Lip1(N̂X,∆TV ), by Theorem 3.6,

E[F (ζ)]− E[F (Φ)] = E
[ ∫ +∞

0

LPsF (Φ)ds
]
.

Then, from the expression of the generator L,

E[F (ζ)]−E[F (Φ)] =

∫ +∞

0

E
[ ∫

X
DxPsF (Φ)M(dx)

]
−E
[∑
y∈Φ

PsF (Φ)−PsF (Φ\y)
]
ds

and then, by the definition of the Papangelou intensity,

E[F (ζ)]− E[F (Φ)] =

∫ +∞

0

E
[ ∫

X
DxPsF (Φ)m(x)dx)

]
− E

[ ∫
X
c(x,Φ)DxPsF (Φ)dx

]
ds

=

∫ +∞

0

E
[ ∫

X
DxPsF (Φ)(m(x)− c(x,Φ))dx

]
ds.

Thus, by Lemma 3.5,

E[F (ζ)]− E[F (Φ)] =

∫ +∞

0

e−sE
[ ∫

X
PsDxF (Φ)(m(x)− c(x,Φ))dx

]
ds

and then, since F ∈ Lip1(N̂X,∆TV ) and ‖Ps‖ ≤ 1,∣∣E[F (ζ)]− E[F (Φ)]
∣∣ ≤ ∫ +∞

0

e−sE
[ ∫

X
|DxF (Φ)||m(x)− c(x,Φ)|dx

]
ds

≤
∫
X
E[|m(x)− c(x,Φ)|]dx.

The proof is thus complete. �

6.2. Proofs of Section 4.

Proof of Lemma 4.1. On one hand, by equation 4, for any x ∈ X, p0ρ(x) = p0E[c(x,Φ)],
then, since Φ is repulsive, p0ρ(x) ≤ p0c(x,∅). On the other hand, still by Theorem
4, for any x ∈ X,

ρ(x) = E[c(x,Φ)] ≥ p0c(x,∅)

and it follows from both last inequalities that

|p0c(x,∅)− p0ρ(x)| ≤ (1− p0)p0c(x,∅),

hence, the result. �
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Proof of Lemma 4.2. For any x ∈ X, by the triangle inequality,

E[|c(x,Φ)− ρ(x)|] ≤ E[|c(x,Φ)− c(x,∅)|] + E[|c(x,∅)− ρ(x)|].
Since Φ is weakly repulsive and since, in this case, ρ(x) = E[c(x,Φ)] ≤ c(x,∅), we
deduce that

E[|c(x,Φ)− ρ(x)|] ≤ E[c(x,∅)− c(x,Φ)] + c(x,∅)− ρ(x).

Hence, still since ρ(x) = E[c(x,Φ)],

E[|c(x,Φ)− ρ(x)|] ≤ 2(c(x,∅)− ρ(x)).

The proof is thus complete. �

Proof of Lemma 4.3. This equation is deduced by applying the formula which de-
fines the Papangelou intensity for u : X×NX → R+ given for any x ∈ X and φ ∈ NX
by

u(x, φ) = 1{φ=∅},

which concludes the proof. �

Proof of Theorem 4.4. For any measurable function u : N̂X → R+, by definition of
Φ|Λ,

E
[ ∑
x∈Φ|Λ

u(x,Φ|Λ \ x)
]

= E
[∑
x∈Φ

u(x, (Φ \ x) ∩ Λ)1x∈Λ

]
.

Then, by the definition of the Papangelou intensity,

E
[ ∑
x∈Φ|Λ

u(x,Φ|Λ \ x)
]

=

∫
X
E
[
c(x,Φ)u(x,Φ ∩ Λ)1x∈Λ

]
dx,

and the expected result is derived. �

Proof of Theorem 4.5. Denoting k[n] = k1 + · · · + kn, for any measurable function
u : X×NX → R+,

E
[ ∑
y∈Φ1+···+Φn

u
(
y,

n∑
i=1

Φi \ {y}
)]

=

n∑
i=1

E
[ ∑
y∈Φi

u
(
y,

n∑
i=1

Φi \ {y}
)]
.

Then, applying the definition of the Papangelou intensity for each Φi,

E
[ ∑
y∈Φ1+···+Φn

u
(
y,

n∑
i=1

Φi \ {y}
)]

=

n∑
i=1

E
[ ∫

E

u(y,

n∑
i=1

Φi)ci(y,Φi)dy
]
,

from which we deduce that

E
[ ∑
y∈Φ1+···+Φn

u
(
y,

n∑
i=1

Φi \ {y}
)]

= E
[ ∫

E

u
(
y,

n∑
i=1

Φi

) n∑
i=1

ci(y,Φi)dy
]
,

which yields the identity verified by the Papangelou intensities. �

Proof of Corollary 4.6. For any i ∈ {1, . . . , n}, let ci be a version of the Papangelou
intensity of Φi such that Φi is weakly repulsive according to ci. Then, by Theo-
rem 4.5, one can find a version c of the Papangelou intensity of the superposition
verifying, for any x ∈ X:

c(x,∅) =

n∑
i=1

ci(x,∅) ≥
n∑
i=1

ci(x,Φi) = c(x,

n∑
i=1

Φi) a.s.,
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from which we conclude the proof. �

Proof of Theorem 4.7. For any measurable function u : X×NX → R+, one has:

E
[ ∑
x∈β◦Φ

u(x, β ◦ Φ \ x)
]

= E
[∑
x∈Φ

u(x, β ◦ Φ \ x)1x∈β◦Φ

]
= E

[∑
x∈Φ

∑
τ⊂Φ

u(x, τ \ x)1x∈τ1τ=β◦Φ

]
,

then, conditioning with respect to Φ,

E
[ ∑
x∈β◦Φ

u(x, β ◦ Φ \ x)
]

= E
[
E
[∑
x∈Φ

∑
τ⊂Φ

u(x, τ \ x)1x∈τ1τ=β◦Φ | Φ
]]

= E
[∑
x∈Φ

∑
τ⊂Φ

P(τ = β ◦ Φ | Φ)u(x, τ \ x)1x∈τ

]
.

Since, for any τ ⊂ φ, P(τ = β ◦ φ) =
(∏

x∈τ β(x)
)(∏

x∈φ\τ
(
1− β(x)

))
, one gets:

E
[ ∑
x∈β◦Φ

u(x, β ◦ Φ \ x)
]

= E
[∑
x∈Φ

∑
τ⊂Φ

(∏
y∈τ

β(y)
)( ∏

y∈Φ\τ

(
1− β(y)

))
u(x, τ \ x)1x∈τ

]
= E

[∑
x∈Φ

∑
τ⊂Φ\x

β(x)
(∏
y∈τ

β(y)
)( ∏

y∈(Φ\x)\τ

(
1− β(y)

))
u(x, τ)

]
.

Then, from the definition of the Papangelou intensity,

E
[ ∑
x∈β◦Φ

u(x, β ◦ Φ \ x)
]

=

=

∫
X
E
[
c(x,Φ)

∑
τ⊂Φ

β(x)
(∏
y∈τ

β(y)
)( ∏

y∈Φ\τ

(
1− β(y)

))
u(x, τ)

]
dx.

The previous arguments yield

E
[ ∑
x∈β◦Φ

u(x, β ◦ Φ \ x)
]

=

∫
X
E
[
β(x)c(x,Φ)

∑
τ⊂Φ

P(β ◦ Φ = τ | Φ)u(x, τ)
]
dx

=

∫
X
E
[
β(x)c(x,Φ)

∑
τ⊂Φ

1β◦Φ=τu(x, τ)
]
dx

=

∫
X
E[β(x)c(x,Φ)u(x, β ◦ Φ)]dx,

hence, the result. �

Proof of Theorem 4.8. By formula 5,

c(ε)(x, φ) =
j(ε)(xφ)

j(ε)(φ)
1j(ε)(φ)6=0,

where j(ε) is the Janossy function of Φ(ε), and then the expected result is deduced,
still by formula (5). �

Proof of Theorem 4.10. The Janossy function j of a purely random point process
is given for any n ∈ N0 and any x1, . . . , xn ∈ X by

j(x1, . . . , xn) = pnn!q(x1) . . . q(xn)
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and then we deduce the expression of the Papangelou intensity from formula (5),
which provides the link between Janossy function and Papangelou intensity. In
particular, this implies that Φ is repulsive if and only if, for any n ∈ N0 and any
x ∈ X,

(n+ 2)
pn+2

pn+1
q(x) ≤ (n+ 1)

pn+1

pn
q(x),

which is equivalent to the expected assertion, and that Φ is weakly repulsive if
and only if, for any n ∈ N0 and any x ∈ X,

(n+ 1)
pn+1

pn
q(x) ≤ p1

p0
q(x),

hence, the result. �

Proof of Theorem 4.11. A version of the Papangelou intensity is deduced from the
Janossy function by formula (5) and the Janossy function j of a finite conditional

Poisson point process is given for any φ ∈ N̂X by

(13) j(φ) =
e−M(X)

pC

∏
x∈φ

m(x)1C(φ),

where pC = P(Φ ∈ C) and Φ is the Poisson point process associated to ΦC ,
which provides the expected expression. As a consequence, Φ is repulsive if and
only if, for any x, x1, . . . , xn, xn+1 ∈ X,

m(x)1{x1,...,xn+1,x}∈C1{x1,...,xn+1}∈C ≤ m(x)1{x1,...,xn,x}∈C1{x1,...,xn}∈C .

Hence, if C is decreasing, then this last hypothesis is verified, and Φ is repulsive. �

Proof of Theorem 4.12. The expression of the Papangelou intensity is deduced from
the definition of a Gibbs point process and from formula (5). In order to show that
Φ is repulsive, one can observe that, for any x, x1, . . . , xn, xn+1 ∈ X,(

U(x1, . . . , xn, xn+1, x)−U(x1, . . . , xn, xn+1)
)
−
(
U(x1, . . . , xn, x)−U(x1, . . . , xn)

)
=

=
(
Ψ1(x) +

n+2∑
r=1

∑
1≤i1<···<ir−1≤n+1

Ψr(xi1 , . . . , xir−1 , x)
)

−
(
Ψ1(x) +

n+1∑
r=1

∑
1≤i1<···<ir−1≤n

Ψr(xi1 , . . . , xir−1 , x)
)

= Ψn+2(x1, . . . , xn+1, x) +

n+1∑
r=2

∑
1≤i1<···<ir−2≤n

Ψr(xi1 , . . . , xir−2 , xn+1, x)

≥ 0.

The proof is thus complete. �

6.3. Proofs of Section 5.

Proof of Theorem 5.1. For any i ∈ {1, 2}, the Papangelou intensity of ζi with re-
spect to M1 + M2 is given by dMi

d(M1+M2) . The result is deduced by combining

Theorem 3.7 and equation (2.5). �
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Proof of Theorem 5.2. Using the notations of the definition of Kantorovich-Rubinstein,

∆∗TV (Γ1,Γ2) = inf
C∈Σ(PΓ1 ,PΓ2 )

∫
NX×NX

∆TV (ω1, ω2)C(d(ω1, ω2))

≤ inf
C∈Σ(PM1

,PM2
)

∫
M×M

∆∗TV (ζϕ1
, ζϕ2

)C(d(ϕ1, ϕ2)).

By Theorem 5.1, it follows as expected that

∆∗TV (Γ1,Γ2) ≤ inf
C∈Σ(PM1

,PM2
)

∫
M×M

∆TV (ϕ1, ϕ2)C(d(ϕ1, ϕ2)),

from which we conclude the proof. �

Proof of Theorem 5.3. The point process Φ has a Papangelou intensity c given for
any x, x1, . . . , xn ∈ X by:

c(x, {x1, . . . , xn}) =
n+ 1

M(X)

pn+1

pn
m(x).

Then, by Theorem 3.7,

∆∗TV (Φ, ζM ) ≤
∫
X

+∞∑
n=0

pn

∣∣∣ n+ 1

M(X)

pn+1

pn
m(x)−m(x)

∣∣∣dx,
and then

∆∗TV (Φ, ζM ) ≤
+∞∑
n=0

∣∣(n+ 1)pn+1 −M(X)pn
∣∣.

The proof is thus complete. �

Proof of Theorem 5.4. By Theorem 3.7 and from the expression of the Papangelou
intensity of ΦC (Theorem 4.11),

∆∗TV (ΦC ,Φ) ≤
∫
X
E[|m(x)−m(x)1C(ΦCx)1C(ΦC)|]dx

=

∫
X
m(x)P(ΦCx /∈ C)dx,

since ΦC ∈ C almost surely. �

Proof of Corollary 5.5. By Theorem 5.4,

∆∗TV (ΦR,Φ) ≤ λ
∫
X
P(ΦRx /∈ CR)dx,

then, by formula (13),

∆∗TV (ΦR,Φ) ≤ e−λ|Λ| λ
pR

×
+∞∑
k=0

λk

k!

∫
Λk+1

1CcR({x1, . . . , xk, x})1CR({x1, . . . , xk})dx1 . . . dxkdx,
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and then, since 1CR ≤ 1 and 1CcR = 1− 1CR ,

∆∗TV (ΦR,Φ) ≤ e−λ|Λ| λ
pR

×
+∞∑
k=0

λk

k!

∫
Λk+1

(1− 1CR({x1, . . . , xk, x}))dx1 . . . dxkdx.

Moreover, since 1CR({x1, . . . , xk, x}) ≥
k∏
i=1

1∆X(xi,x)≥R, one has

∆∗TV (ΦR,Φ) ≤ e−λ|Λ| λ
pR

+∞∑
k=0

λk

k!

∫
Λk+1

(1−
k∏
i=1

1∆X(xi,x)≥R)dx1 . . . dxkdx

= e−λ|Λ|
λ

pR

+∞∑
k=0

λk

k!

∫
Λk
|Λ| −

(∫
Λ

k∏
i=1

1∆X(xi,x)≥Rdx
)

dx1 . . . dxk,

and then, since Vd(R) is the volume of a ball of Rd with radius R,

∆∗TV (ΦR,Φ) ≤ e−λ|Λ|
λ

pR

+∞∑
k=0

λk

k!

∫
Λk
|Λ| − (|Λ| − kVd(R))dx1 . . . dxk

=
λ2|Λ|
pR

Vd(R).

The proof is thus complete. �

Proof of Corollary 5.6. By Theorem 5.4,

∆∗TV (ΦN ,Φ) ≤
∫
X
P(ΦNx /∈ CN )m(x)dx,

then, since by formula (13), for any x ∈ X,

P(ΦNx /∈ CN )

=
e−M(X)

pN

+∞∑
k=0

1

k!

∫
Xk+1

1CcN ({x1, . . . , xk, x})1CN ({x1, . . . , xk})⊗kj=1 M(dxj),

it yields

∆∗TV (ΦN ,Φ) ≤ e−M(X)

pN

1

N !

∫
XN+1

m(x1) . . .m(xN )m(x)dx1 . . . dxNdx

=
e−M(X)

pN

1

N !
(M(X))N+1.

The proof is thus complete. �

Proof of Theorem 5.7. For any k ∈ N0, we use the notation pn,i,k := P(|Φn,i| = k).
By Theorem 3.7,

∆∗TV (Φn, ζM ) ≤
∫
X
E[|cn(x,Φn)−m(x)|]dx.

Then, by Theorem 4.5, ∆∗TV (Φn, ζM ) ≤ Rn +

n∑
i=1

An,i, where
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An,i =

∫
X
E[|cn,i(x,Φn,i)− ρn,i(x)|]`(dx)

=
∑
k≥0

∫
X
E[|cn,i(x,Φn,i)− ρn,i(x)|1{|Φn,i|=k}]`(dx)

= Bn,i + Cn,i

with

Bn,i = pn,i,0

∫
X
|cn,i(x,∅)− ρn,i(x)|`(dx),

Cn,i =
∑
k≥1

∫
X
E[|cn,i(x,Φn,i)− ρn,i(x)|1{|Φn,i|=k}]`(dx).

By Lemma 4.3,

pn,i,0

∫
X
cn,i(x,∅)`(dx) = pn,i,1 ≤ (1− pn,i,0)

and by Lemma 4.1 we get

Bn,i ≤ (1− pn,i,0)2.

Since cn,i(x,Φn,i) ≤ cn,i(x,∅) and ρn,i(x) ≤ cn,i(x,∅), we also have

Cn,i ≤
∑
k≥1

pn,i,k

∫
X
cn,i(x,∅)`(dx) = (1− pn,i,0)

∫
X
cn,i(x,∅)`(dx) ≤ (1− pn,i,0)2,

and then we get

An,i ≤ 2(1− pn,i,0)2 ≤ 2
(∫

X
ρn,i(x)`(dx)

)2

where the second equation is derived from the Markov inequality. Hence,

∆∗TV (Φn, ζM ) ≤ Rn + 2n
(

max
i∈{1,...,n}

∫
X
ρn,i(x)`(dx)

)2

,

from which we conclude the proof. �

Proof of Corollary 5.9. Since the (−1/n)-determinantal point process Φn with ker-
nel K is the independent superposition of n determinantal point processes with
kernel 1

nK, it follows By Remark 5.8 that, for any n ∈ N,

∆∗TV (Φn, ζM ) ≤ Rn +
2C2

n
,

where

Rn =

∫
X

∣∣∣ n∑
i=1

1

n
K(x, x)−K(x, x)

∣∣∣`(dx) = 0

and

C =

∫
X
K(x, x)dx,

from which we can conclude. �

Proof of Corollary 5.10. The result is obtained by applying Theorem 5.7 to (Φn,i)1≤i≤n
such that for each n ∈ N and i ∈ {1, . . . , n}, Φn,i = {Xn,i} ∩ Λ. �
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Proof of Theorem 5.11. By Theorem 3.7, one has for any n ∈ N,

∆∗TV (Φn, ζ) ≤
∫

Λ

E
[∣∣cn(x,Φn)−m(x)

∣∣]dx,
where cn is the Papangelou intensity of Φn. Combining Theorem 4.5 for the

Papangelou intensity of an independent superposition and Theorem 4.7 for the
Papangelou intensity of a thinning, it follows that

∆∗TV (Φn, ζ) ≤
∫

Λ

E
[∣∣∣ n∑
k=1

1

n
E
[
c(x,Φ(k))

∣∣ 1

n
◦ Φ(k)

]
−m(x)

∣∣∣]dx.
Hence, by Jensen’s inequality,

∆∗TV (Φn, ζ) ≤
∫

Λ

√√√√V
[ 1

n

n∑
k=1

E
[
c(x,Φ(k))

∣∣ 1

n
◦ Φ(k)

]]
dx,

and, by some variance properties,

∆∗TV (Φn, ζ) ≤ 1√
n

∫
Λ

√
V[E[c(x,Φ) | 1

n
◦ Φ]]dx

≤ 1√
n

∫
Λ

√
V[c(x,Φ)]dx.

By hypothesis, for any x ∈ Λ, V[c(x,Φ)] ≤ K(x) and one deduces the expected
result. �

Proof of Theorem 5.12. The family of determinantal point processes is stable with
respect to several transformations: the reduction to a compact set, the thinning and
the rescaling. Their corresponding kernels are respectively provided by formulas (7),
(8) and (9). Combining these expressions, it follows that ΦΛ,β is the determinantal
point process with kernel KΛ,β defined by

KΛ,β : (x, y) ∈ X× X 7→ K
( x

β
1
d

,
y

β
1
d

)
1Λ×Λ(x, y).

By Theorem 2.1, there exists a complete orthonormal basis (hj , j ∈ N) of L2(X, `;C)
and a sequence (λj , j ∈ N) ⊂ [0, 1]N such that for any x, y ∈ X,

K(x, y) =

+∞∑
j=1

λjhj(x)hj(y).

Then, for any x, y ∈ X,

KΛ,β(x, y) = K
( x

β
1
d

,
y

β
1
d

)
1Λ×Λ(x, y)

=

+∞∑
j=1

λjhj

( x

β
1
d

)
1Λ(x)hj

( y

β
1
d

)
1Λ(y)

=

+∞∑
j=1

λΛ,β,jhΛ,β,j(x)hΛ,β,j(y),

where, for any j ∈ N and any x ∈ X,

Z2
Λ,β,j =

∫
β−

1
d Λ

|hj(y)|2dy,



34 LAURENT DECREUSEFOND AND AURÉLIEN VASSEUR

hΛ,β,j(x) =
1√
β
Z−1

Λ,β,jhj

( x

β
1
d

)
1Λ(x),

λΛ,β,j = λjβZ
2
Λ,β,j .

By Theorem 2.1, since, for any j ∈ N, λΛ,β,j < 1, one can associate to KΛ,β the
kernel JΛ,β such that for any x, y ∈ Rd,

JΛ,β(x, y) =

+∞∑
j=1

λΛ,β,j

1− λΛ,β,j
hΛ,β,j(x)hΛ,β,j(y),

and, by Theorem 4.13, for any x ∈ Rd,

JΛ,β(x, x) = cΛ,β(x,∅).

In particular, still by Theorem 4.13, ΦΛ,β is a weakly repulsive point process, then,
by Lemma 4.2, for any x ∈ Λ and φ ∈ NΛ,

E[|cΛ,β(x, φ)− λ|] ≤ 2(cΛ,β(x,∅)− λ).

Then, by Theorem 3.7,

∆∗TV (ΦΛ,β , ζΛ,λ) ≤ 2

∫
Λ

(
cΛ,β(x,∅)− λ

)
dx.

By previous identities, one has∫
Λ

cΛ,β(x,∅)dx =

+∞∑
j=1

λΛ,β,j

1− λΛ,β,j
.

Then, noting that∫
Λ

λdx =

∫
Λ

K
( x

β
1
d

,
x

β
1
d

)
dx =

∫
Λ

KΛ,β(x, x)dx

=

∫
Λ

+∞∑
j=1

λΛ,β,jh
2
Λ,β,j(x)dx =

+∞∑
j=1

λΛ,β,j ,

one obtains

∆∗TV (ΦΛ,β , ζΛ,λ) ≤ 2

+∞∑
j=1

λΛ,β,j

1− λΛ,β,j
− λΛ,β,j = 2

+∞∑
j=1

λ2
Λ,β,j

1− λΛ,β,j
,

and, using for any j ∈ N the expression of λΛ,β,j ,

∆∗TV (ΦΛ,β , ζΛ,λ) ≤ 2

+∞∑
j=1

λ2
jβ

2Z4
Λ,β,j

1− λjβZ2
Λ,β,j

.

Since λj ≤ 1 and Z2
Λ,β,j ≤ 1, it follows that

∆∗TV (ΦΛ,β , ζΛ,λ) ≤ 2
β2

1− β

+∞∑
j=1

λjZ
2
Λ,β,j ,
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and the computation of the right hand side provides:

2
β2

1− β

+∞∑
j=1

λjZ
2
Λ,β,j = 2

β2

1− β

∫
β−

1
d Λ

+∞∑
j=1

λj |hj(x)|2dx

= 2
β2

1− β

∫
β−

1
d Λ

λdx

= 2
β

1− β
λ|Λ|,

which concludes the proof. �

Proof of Theorem 5.13. By Theorem 4.12, the point process Φ has a Papangelou
intensity c given for any x, x1, . . . , xk ∈ X by:

c(x, {x1, . . . , xk}) = e−θ(Ψ1(x)+
∑k
i=1 Ψ2(x,xi)).

Then,

|c(x, {x1, . . . , xk})− e−θΨ1(x)| = e−θΨ1(x)|e−θ
∑k
i=1 Ψ2(x,xi) − 1|

≤ e−θΨ1(x)(1− e−θkε),

and, since for any x ≥ 0, 1− e−x ≤ x, one gets

1− E[e−θ|Φ|ε] ≤ E[θ|Φ|ε] = θεE[|Φ|].
Moreover, by Theorem 4,

E[|Φ|] =

∫
X
E[c(x,Φ)]dx =

∫
X
E[e−θ(Ψ1(x)+

∑
y∈Φ Ψ2(x,y))]dx,

and, since Ψ2 ≥ 0, it follows that

E[|Φ|] ≤
∫
X
e−θΨ1(x)dx = M(X).

As a consequence, by Theorem 3.7,

∆∗TV (Φ, ζM ) ≤
∫
X
E[|c(x,Φ)− e−θΨ1(x)|]dx

= (M(X))2θε.

The proof is thus complete. �

Proof of Lemma 5.15. This equation is directly deduced from the definition of the
Polish distance ∆P . �

Proof of Lemma 5.16. We want to find a measurable function c : X × NX → R+

verifying, for any measurable function u : X×NX → R+,

E
[ ∑
x∈p◦ϕ

u(x, (p ◦ ϕ) \ x)
]

=

∫
X
E[c(x, p ◦ ϕ)u(x, p ◦ ϕ)]p(x)ϕ(dx).

On one hand, let us compute the left hand side:

E
[ ∑
x∈p◦ϕ

u(x, (p ◦ ϕ) \ x)
]

= E
[∑
η⊂ϕ

1{η=p◦ϕ}
∑
x∈η

u(x, η \ x)
]

=
∑
η⊂ϕ

P(η = p ◦ ϕ)
∑
x∈η

u(x, η \ x).
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Then, since for any η ⊂ ϕ,

P(η = p ◦ ϕ) =
(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
)
,

it follows that

E
[ ∑
x∈p◦ϕ

u(x, (p ◦ ϕ) \ x)
]

=
∑
η⊂ϕ

(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
)∑
x∈η

u(x, η \ x).

Hence,

E
[ ∑
x∈p◦ϕ

u(x, (p ◦ ϕ) \ x)
]

=

=
∑
x∈ϕ

∑
η⊂ϕ
x∈η

(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
)
u(x, η \ x)

=
∑
x∈ϕ

∑
η⊂ϕ\{x}

(∏
t∈η

p(t)
)
p(x)

( ∏
s∈ϕ\η

(1− p(s))
) 1

1− p(x)
u(x, η),

and finally

E
[ ∑
x∈p◦ϕ

u(x, (p ◦ ϕ) \ x)
]

=
∑
x∈ϕ

∑
η⊂ϕ

1{x/∈η}

(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
) p(x)

1− p(x)
u(x, η).

On the other hand, for a given measurable function c : X×NX → R+,∫
X
E[c(x, p ◦ ϕ)u(x, p ◦ ϕ)]p(x)ϕ(dx) =

=

∫
X
E
[∑
η⊂ϕ

1{η=p◦ϕ}c(x, η)u(x, η)
]
p(x)ϕ(dx)

=

∫
X

∑
η⊂ϕ

P(η = p ◦ ϕ)c(x, η)u(x, η)p(x)ϕ(dx)

=
∑
x∈ϕ

p(x)
∑
η⊂ϕ

(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
)
c(x, η)u(x, η),

where the last equality is obtained by the expression of P(η = p ◦ ϕ) as above.
This implies that∫

X
E[c(x, p ◦ ϕ)u(x, p ◦ ϕ)]p(x)ϕ(dx) =

=
∑
x∈ϕ

∑
η⊂ϕ

(∏
t∈η

p(t)
)( ∏

s∈ϕ\η

(1− p(s))
)
p(x)c(x, η)u(x, η),

and the result is got by identification. �
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Proof of Lemma 5.17. For any ϕ ∈ NX, let ζpϕ be a Poisson point process with
intensity measure pϕ. By Theorem 3.7,

∆∗TV (Pp◦ϕ,Pζpϕ) ≤
∫
X
E[|c(x, p ◦ ϕ)− 1|]p(x)ϕ(dx),

where c is a version of the Papangelou intensity of p ◦ ϕ with respect to pϕ. An
expression of c is given by Lemma 5.16, and it follows that

∆∗TV (Pp◦ϕ,Pζpϕ) ≤
∫
X
E
[∣∣∣1{x∈ϕ\p◦ϕ} 1

1− p(x)
− 1
∣∣∣]p(x)ϕ(dx).

Hence, the computation of the right hand side in the last inequality aims to obtain
that

∆∗TV (Pp◦ϕ,Pζpϕ) ≤
∫
X

(
E
[
1{x∈p◦ϕ}

∣∣∣1{x∈ϕ\p◦ϕ} 1

1− p(x)
− 1
∣∣∣]

+E
[
1{x/∈p◦ϕ}

∣∣∣1{x∈ϕ\p◦ϕ} 1

1− p(x)
− 1
∣∣∣])p(x)ϕ(dx)

=

∫
X

(
p(x) + (1− p(x))

( 1

1− p(x)
− 1
))
p(x)ϕ(dx)

= 2
∑
x∈ϕ

p2(x),

and we can deduce that

∆∗TV (Pp◦Φ,PΓpΦ) ≤ 2E
[∑
x∈Φ

p2(x)
]
.

The conclusion follows. �

Proof of Theorem 5.18. By the triangle inequality,

∆P (ΓM , p ◦ Φ) ≤ ∆P (ΓM ,ΓpΦ) + ∆P (ΓpΦ, p ◦ Φ).

One one hand, by Lemma 5.15,

∆P (ΓM ,ΓpΦ) = ∆P (M,pΦ).

On the other hand, since (fk)k∈N ⊂ Lip1(∆TV ),

∆P (ΓpΦ, p ◦ Φ) ≤ ∆∗TV (ΓpΦ, p ◦ Φ),

and then, by Lemma 5.17,

∆P (ΓpΦ, p ◦ Φ) ≤ 2E
[∑
x∈Φ

p2(x)
]
,

which concludes the proof. �
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[6] Isabelle Camilier and Laurent Deucresefond. Quasi-invariance and integration by parts for

determinantal and permanental processes. Journal of Functional Analysis, 259(1):268–300,

July 2010.
[7] Frdric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo,

and Larry Wasserman. Subsampling Methods for Persistent Homology. Proceedings of the

32nd International Conference on Machine Learning, 37:2143–2151, 2015.
[8] Louis Hsiao-Yun Chen. Poisson approximation for dependent trials. The Annals of Probabil-

ity, 3(3):534–545, 1975.

[9] Laure Coutin and Laurent Decreusefond. Stein’s method for Brownian approximations. Com-
munications on Stochastic Analysis, 7(3):349–372, 2013.

[10] David Roxbee Cox and Valerie Isham. Point processes, volume 12 of Chapman & Hall/CRC

Monographs on Statistics & Applied Probability. CRC Press, 1980.
[11] Daryl J. Daley and David Vere-Jones. An Introduction to the Theory of Point Processes:

Volume I: Elementary Theory and Methods. Springer, New York, 2nd edition, 2003.
[12] Laurent Decreusefond. Wasserstein distance on configuration space. Potential Analysis,

28(3):283–300, May 2008.

[13] Laurent Decreusefond, Ian Flint, Nicolas Privault, and Giovanni Luca Torrisi. Determinantal
Point Processes. In Stochastic Analysis for Poisson Point Processes, volume 7 of Bocconi &

Springer Series, pages 311–342. Peccati G., Reitzner M., springer, cham edition, 2016.

[14] Laurent Decreusefond, Ian Flint, and Anas Vergne. A note on the simulation of the Ginibre
point process. Journal of Applied Probability, 52(4):1003–1012, 2015.

[15] Laurent Decreusefond, Alderic Joulin, and Nicolas Savy. Upper bounds on Rubinstein dis-

tances on configuration spaces and applications. Communication on Stochastic Analysis and
Applications, 3(4):377–399, 2010.

[16] Laurent Decreusefond, Matthias Schulte, and Christoph Thle. Functional Poisson approxi-

mation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic
geometry. The Annals of Probability, 44(3):2147–2197, 2016.

[17] Laurent Decreusefond, Aurlien Vasseur, and Sergei Zuyev. Asymptotics of discrete stable
point processes. Conference SPA 2017, Moscou, 2017.

[18] Pierre Del Moral and Julian Tugaut. On the stability and the uniform propagation of chaos

properties of Ensemble Kalman-Bucy filters. The Annals of Applied Probability, to appear,
2017.

[19] Na Deng, Wuyang Zhou, and Martin Haengii. The Ginibre Point Process as a Model for Wire-

less Networks with Repulsion. IEEE Transactions on Wireless Communications, 14(1):107 –
121, January 2014.

[20] Anthony C. Gatrell, Trevor C. Bailey, Peter J. Diggle, and Barry S. Rowlingson. Spatial

Point Pattern Analysis and Its Application in Geographical Epidemiology. Transactions of
the Institute of British Geographers, 21(1):256–274, 1996.

[21] Hans-Otto Georgii and Hyun Jae Yoo. Conditional intensity and gibbsianness of determinan-

tal point processes. Journal of Statistical Physics, 118(1-2):55–84, January 2005.
[22] Jean Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices. Journal of

Mathematical Physics, 6:440–449, 1965.
[23] Andr Goldman. The Palm measure and the Voronoi tessellation for the Ginibre process. The

Annals of Applied Probability, 20(1):90–128, January 2010.

[24] Jean-Sbastien Gomez, Aurlien Vasseur, Anas Vergne, Laurent Decreusefond, Philippe Mar-
tins, and Wei Chen. A Case Study on Regularity in Cellular Network Deployment. IEEE

Wireless Communications Letters, 4(4):421–424, August 2015.
[25] Martin Haenggi. Stochastic Geometry for Wireless Networks. Cambridge University Press,

New York, 2012.

[26] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Balint Virag. Determinantal Pro-

cesses and Independence. Probability Surveys, 3:206–229, May 2006.
[27] Olav Kallenberg. Random Measures. Akademie-Verlag, New York, 3 edition, 1983.

[28] Olav Kallenberg. Foundations of moder probability. Probability and its applications. Springer,
1997.

[29] Gnter Last, Giovanni Peccati, and Matthias Schulte. Normal approximation on Poisson

spaces: Mehlers formula, second order Poincar inequalities and stabilization. Probability The-

ory and Related Fields, 165(3-4):667–723, August 2016.



STEIN’S METHOD WITH PAPANGELOU INTENSITY 39

[30] Frdric Lavancier, Jesper Mller, and Ege Rubak. Determinantal point process models and

statistical inference : Extended version. Journal of the Royal Statistical Society, series B,

77(4):853–877, 2015.
[31] Dang-Zheng Liu and Yanhui Wang. Universality for Products of Random Matrices I: Ginibre

and Truncated Unitary Cases. International Mathematics Research Notices, 2016(11):3473–

3524, January 2016.
[32] Odile Macchi. The coincidence approach to stochastic point processes. Advances in Applied

Probability, 7(1):83–122, 1975.

[33] Klaus Matthes, Johannes Kerstan, and Joseph Mecke. Infinitely Divisible Point Processes.
John Wiley & Sons, Chichester-New York-Brisbane-Toronto, 1978. 10.1002/bimj.4710210410.

[34] Ivan Nourdin and Giovanni Peccati. Normal approximations with Malliavin Calculus: From

Stein’s method to universality. Cambridge University Press, June 2012.
[35] Fredos Papangelou. The conditional intensity of general point processes and an application

to line processes. Z. Wahrscheinlichkeitstheorie und Verwandte Gebiete, 28(3):207–226, Sep-
tember 1974.

[36] Gesine Reinert. Three general approaches to Stein’s method. An introduction to Stein’s

method, 4:183–221, April 2005.
[37] David Ruelle. Statistical mechanics: Rigorous results. W. A. Benjamin, Amsterdam, 1969.

[38] Dominic Schuhmacher and Kaspar Stucki. Gibbs point process approximation: totoal varia-

tion bounds using Stein’s method. The Annals of Probability, 42(5):1911–1951, 2014.
[39] Dominic Schuhmacher and Aihua Xia. A new metric between distributions of point processes.

Advances in Applied Probability, 40(3):651–672, 2008.

[40] Matthias Schulte and Christoph Thle. Distances Between Poisson k-Flats. Methodology and
Computing in Applied Probability, 16(2):311–329, June 2014.

[41] Hsin-Hung Shih. On Stein’s method for infinite-dimensional Gaussian approximation in ab-

stract Wiener spaces. Journal of Functional Analysis, 261(5):1236–1283, September 2011.
[42] Tomoyuki Shirai and Yoichiro Takahashi. Random point fields associated with certain Fred-

holm determinants I: fermion, Poisson and boson point processes. Journal of Functional
Analysis, 205(2):414–463, December 2003.

[43] Alexander Soshnikov. Determinantal random point fields. Russian Mathematical Surveys,

55(5):923–975, 2000.
[44] Charles Stein. A bound for the error in the normal approximation to the distribution of a

sum of dependent random variables. Proceedings of the Sixth Berkeley Symposium on Math-

ematical Statistics and Probability, 2:583–602, 1972.
[45] Dietrich Stoyan and Antti Penttinen. Recent Applications of Point Process Methods in

Forestry Statistics. Statistical Science, 15(1):61–78, 2000.

[46] Cdric Villani. Optimal Transport: Old and New, volume 338 of Springer. Springer Science &
Business Media, 2008.

LTCI, Telecom ParisTech, Université Paris-Saclay, 75013, Paris, France
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