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Abstract

This paper is devoted to the study of the deviation of the (random) average L2−error associated
to the least–squares regressor over a family of functions Fn (with controlled complexity) obtained
from n independent, but not necessarily identically distributed, samples of explanatory and response
variables, from the minimal (deterministic) average L2−error associated to this family of functions,
and to some of the corresponding consequences for the problem of consistency.

In the i.i.d. case, this specializes as classical questions on least–squares regression problems,
but more in general this setting permits a precise investigation in the direction of the study of
nonasymptotic errors for least–squares regression schemes in nonstationary settings, which we mo-
tivate providing background and examples.

More precisely, we prove first two nonasymptotic deviation inequalities that generalize and refine
corresponding known results in the i.i.d. case. We then explore the corresponding consequences for
nonasymptotic bounds of the error both in the weak and the strong senses. Finally, we exploit these
estimates to shed new light into questions of consistency for least–squares regression schemes in the
distribution–free, nonparametric setting.

As an application to the classical theory, we provide in particular a result that generalizes the link
between the problem of consistency and the Glivenko–Cantelli property, which applied to regression
in the i.i.d. setting over non–decreasing families (Fn)n of functions permits to create a scheme which
is strongly consistent in L2 under the sole (necessary) assumption of the existence of functions in
∪nFn which are arbitrarily close in L2 to the corresponding regressor.
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1 Introduction

In this section, we introduce in a general manner the problem of this paper. We also present a short
summary of the background literature in these topics, and we introduce the notation to be used along
the discussions that follow.

1.1 Description of the problem

We depart from a probability space (Ω,A,P) supporting a sequence of random variables (Xk, Yk)k∈N
taking values in Rd×R (and all the other random variables that will appear in our proofs). We assume
that each Yk is square-integrable and we denote by Φk : Rd 7→ R a regression function of Yk given Xk,
so that Φk is a (measurable) function square integrable with respect to the law of Xk which satisfies

Φk(Xk) = E [Yk | Xk] (1.1)

P−a.s.
Given an approximation space F of measurable functions from Rd to R, for any n ≥ 1, we define

the empirical regression function Φ̂n by

Φ̂n ∈ arg min
f∈F

1

n

n∑
k=1

|f(Xk)− Yk|2, (1.2)

which stands in a way as a mean approximation of the regression functions Φk for k = 1, . . . , n (Φ̂n

might not be unique). Indeed, if we consider (1.2) with an expectation, by setting

Φ?
n ∈ arg min

f∈F

1

n

n∑
k=1

E|f(Xk)− Yk|2, (1.3)
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then

Φ?
n ∈ arg min

f∈F

1

n

n∑
k=1

E|f(Xk)− Φk(Xk)|2,

which shows that Φ̂n will presumably approximate simultaneously all individual regression functions
Φk, k = 1, . . . , n.

While usually, in the literature, only the i.i.d. case for (Xk, Yk)k∈N is investigated (so that all Φk’s
are the same), here we focus on situations where the distributions may change with k, see Section 1.2 for
a relevant application. Our aim is to investigate the statistical fluctuations arising between steps (1.2)
and (1.3), this is tightly related to concentration-of-measure estimates uniformly on a class of functions.

This study about statistical fluctuations takes the form of how close are Φ?
n and Φ̂n in various norms:

for instance,

• Controlling the probability of large quadratic error P
(

1
n

∑n
k=1

∫
Rd |Φ̂n(x)− Φk(x)|2PXk(dx) > ε

)
where PXk(dx) denotes the probability measure associated to Xk;

• Controlling the mean integrated squared error: E
[

1
n

∑n
k=1

∫
Rd |Φ̂n(x)− Φk(x)|2PXk(dx)

]
.

1.2 An example motivating the non i.i.d. case

In the case of i.i.d. data (Xk, Yk)k∈N, this is the usual non-parametric regression problem with inde-
pendent and identically distributed sample points (see [GKKW02, HTF09]). In this work, our concerns
are related to the case where the i.i.d. assumption does not necessarily hold. Two applications serve to
motivate this investigation:

(i) The first one is that of independent Monte Carlo schemes where (Xk, Yk) is an approximation
of some (X,Y ) and a convergence at the limit holds as k → +∞; in that case we still have the
independence but the sequence is not stationary anymore.

(ii) The second example is when the sequence describes a Markovian evolution, see the applications
for nested risks computations as designed in [FGM17]. This part is developed in another work in
progress, which builds over the results presented here.

Let us present an example about (i) of independent but non identically distributed samples: consider
that a stochastic system is modelled by a Stochastic Differential Equation (SDE for short)

dZt = b(t, Zt)dt+ σ(t, Zt)dWt, Z0 = z0 deterministic

with some drift and diffusion coefficients that are smooth enough as to ensure existence and uniqueness
of the solution (typically Lipschitz continuous). For applications of SDE modelling, see [Oks00, KP10]
for instance. Say that, in order to analyse the system, our aim is to compute:

E [ϕ1(Z1)] , E [ϕ2(Z2)] , E [ϕ(Z2) | Z1] ,

for some functions ϕ1, ϕ2, ϕ depending on the context of the application . A standard numerical method
to compute the first two expectations is to use a Monte Carlo method which is made of three steps:

3



1. Discretize the time interval with a time-step ∆ = 1/K (with K ∈ N fixed) and define the Euler
scheme Z∆ by (see [KP10])

Z∆
0 = z0, Z∆

(i+1)∆ = Z∆
i∆ + b(i∆, Z∆

i∆)∆ + σ(i∆, Z∆
i∆)(W(i+1)∆ −Wi∆) for i ≥ 0;

2. sample many independent copies of Z∆, which we denote (Z∆,m : 1 ≤ m ≤M);

3. as a result, use the approximations

E [ϕ1(Z1)] ≈ 1

M

M∑
m=1

ϕ1(Z∆,m
1 ), E [ϕ2(Z2)] ≈ 1

M

M∑
m=1

ϕ2(Z∆,m
2 ). (1.4)

By tuning optimally ∆ → 0 and M → +∞, we can show that this method has an order of conver-
gence equal to 1/3 regarding the computational cost C, i.e. the error tolerance decreases (under mild
assumptions, see [DG95, Theorem 1, with p = q = 1] for details) as C1/3. Although simple to implement,
this method is not optimal.

A more efficient method is to use Multi-Level Monte Carlo (MLMC for short) methods. This
methodology was initiated by Heinrich [Hei01] and Giles [Gil08], and it has been strongly developed in
the last decade, see [Gil15] for a review. In its native form of [Gil08], the MLMC estimator writes

E [ϕ1(Z1)] ≈ 1

M0

M0∑
m=1

ϕ1(Z∆0,0,m
1 ) +

L∑
l=1

1

Ml

Ml∑
m=1

(
ϕ1(Z∆l,l,m

1 )− ϕ1(Z
∆l−1,l,m
1 )

)
, (1.5)

and similarly for estimating E [ϕ2(Z2)]. The simulations at a given level l ∈ {0, . . . , L}, i.e. (Z∆l,l,m :

1 ≤ m ≤Ml) are i.i.d. with same distribution as Z∆l , and the simulations across levels l = 0, . . . , L are
independent.

The heuristics behind this method is to provide a rough approximation with the simulations from
level l = 0 (by taking ∆0 not small), and then to provide corrections with smaller and smaller variances
(the difference ϕ1(Z∆l,l,m

1 ) − ϕ1(Z
∆l−1,l,m
1 ) reads like a control variate). Upon chosing appropriately

the numerical parameters Ml and ∆l to find the optimal trade-off between bias and variance, it can be
shown that the estimator (1.5) achieves a order of convergence of 1/2 (which is optimal when using a
Monte-Carlo method) under mild assumptions, see [Gil15] for details.

Now it remains to evaluate the conditional expectation function z 7→ E [ϕ(Z2) | Z1 = z].

• With the standard Monte-Carlo procedure (see (1.4)), we can perform a empirical regression using
the i.i.d. samples (Z∆,m

1 , Z∆,m
2 : 1 ≤ m ≤M): this is the usual i.i.d. setting for regression.

• With the MLMC scheme (see (1.5)), in order to recycle samples and to avoid wasting simulations,
we would like to use the non i.i.d samples (Z∆l,l,m

1 , Z∆l,l,m
2 : 1 ≤ m ≤ Ml, 1 ≤ l ≤ L). The

question that pops up is how does this impact the error estimates on the regression function.

The goal of this work is to develop some new tools, in particular able to quantify the regression error in
a non i.i.d. setting, like in this MLMC context. Further applications will be developed in subsequent
works.
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1.3 Background results in the literature

The study of uniform large deviations for empirical means and their consequences in the i.i.d. case is
arguably the central topic in the theory of the Empirical Process and therefore has a very rich history,
an account of which can be found in [vW96b, Notes to chapter 2] and the references therein.

The technical developments in this paper have their origin, in a considerable part, on the exposition
about distribution–free rates of convergence for least–squares regression schemes with i.i.d. samplings
presented in [GKKW02, Chapter 11], which uses also some results from the previous exposition on uni-
form law of large numbers in [GKKW02, Chapter 9]. The notes to these two chapters give a satisfactory
account of references describing the evolution of some of the techniques at the heart of our proofs.

Of special mention among them is the idea of symmetrization, which dates at least back to 1971
with the seminal work [VC71] by Vapnik and Chervonenkis on the uniform convergence of relative
frequencies of events to their probabilities, a work aimed to extend the classical Glivenko-Cantelli
Theorem [Gli33, Can33] to more general sets of indicator functions. According to [vW96b, p. 270], these
ideas appeared already in 1968 in the work [Kah68] by Kahane. The ideas by Vapnik and Chervonenkis
have grown up to constitute a statistical learning theory on its own, see [Vap00] for a systematic
introduction.

Consistency is of course a major issue in the research on any method of statistical inference. See
[GKKW02] for a collection of consistency results related to nonparametric least–squares regression
estimates in the i.i.d. case. For general results in this direction under the additional assumption of
independent errors, see [vW96a]. For a recent study on convergence rates see [HW17] and the references
therein.

The independent, not necessarily identically distributed (i.n.n.i.d for short) case, by contrast, has
not been explored on its own with nearly such intensity, presumably due, at the level of applications,
to the overwhelming importance that the i.i.d. case has for many of the practical problems that have
challenged the statisticians and, at the theoretical level, to the ambiguous meaning of the empirical
mean as an approximation of an integral in the case in which the sampling sequence is nonstationary.

Now, the seminal inequalities of Bernstein [Ber24] and Hoeffding [Hoe63], which are fundamental in
what follows and appear in many results on the Empirical Process, belong to the i.n.n.i.d. case. Note
also that all the large deviations and ergodic theoretic literature for nonstationary sequences intersects
the i.n.n.i.d. case (for instance: every independent sequence is also a Markov chain, for which the “i.d.”
hypothesis is equivalent to homogeneity). We stress out also the fact that, thanks to the existence of
“coupling” techniques (see [dG99] and [DDL+07] for expositions on these topics), the study of problems
under the i.n.n.i.d. hypothesis is of importance at the theoretical level beyond its own boundaries. This
later idea will be exploited in a continuation of this paper.

The i.n.n.i.d. case has nonetheless been considered in diverse scenarios in the theory of large devi-
ations and of the Empirical Process. [Ben62] is aimed to improve the bounds in Bernstein’s inequality.
[Wel81] develops a Glivenko-Cantelli theorem under the Prohorov and dual-bounded-Lipschitz metrics
for the i.n.n.i.d. case under the hypothesis of tightness for the average measures. [vZ78] extends and
refines some deviation inequalities between the empirical and the “true” distribution functions in the
i.i.d. case to the corresponding inequalities in the i.n.n.i.d. case with respect to the average of the
true distribution functions. Notice that all these results deal with concentration of measure inequalities
either for finite sets of functions or indicator functions parametrized by the real line, whereas our results
hold in a more general setting.
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In the asymptotic setting (our deviation results are nonasymptotic), we mention [Pol90, Theorem
10.6], which is a functional central limit theorem for empirical processes in the i.n.n.i.d. context, a
development continued by [Kos03] in the direction of multiplier central limit theorems. A motivation
by example of the relevance of this case is discussed also in [Kos03] .

As an instance of this topic in the realm of applied learning, see [MM12], where generalization
bounds in terms of the Rademacher complexity are derived for i.n.n.i.d. samplings.

We observe finally that in the learning and forecasting applications, nonstationarity (specially under
Markovian assumptions) is already an important topic of research and, as already pointed out, the
results developed in the i.n.n.i.d. case can be extended to more general nonstationary settings via
coupling techniques. We do not give an account here on the developments of these topics for dependent,
nonstationary designs because they escape the specific purpose of the present paper. For an exposition
in this direction, see [KM17] and the references therein.

Our contribution. The results presented in this paper are of two kinds: uniform concentration
inequalities for the empirical process and consistency theorems for least squares regression estimates,
both within the context of VC-subgraph families of functions1 in the i.n.n.i.d. case.

Our results, while valid for the case of i.n.n.i.d. sampling, improve also the current state of the art
(as far as the authors know) in the classical i.i.d. context. Summarized, our contributions follow the
following three directions:

1. Extension of VC-methods to more general independent cases. As the reader shall see, the proofs
of Theorems 2.1 and 2.2 proceed by generalizing the VC methods available for the i.i.d. case.
The results obtained open the way to new applications and, as a continuation of this paper will
show, have remarkable consequences for the theory in (dependent) cases for which the associated
samplings are nonstationary. The results obtained also permit to recover their i.i.d. counterparties
without any loss.

2. Refined estimates. Indeed, our conclusions refine dramatically the corresponding i.i.d. results
which inspired them. This is due to the fact that we are able to obtain “parametrized” deviation
inequalities (see the estimates (2.1), (2.2) and (2.5)) in a way that allows for a better optimization
of constants and which, even more, permits to study their consequences using diagonal arguments,
thus opening the exploration of a new realm of convergence results. These results permit also
a refined investigation of convergence rates and of nonasymptotic estimates. See for instance
Theorems 3.1 and 3.9.

3. Novel consistency results. As an instance of the gains obtained in asymptotics, we provide a series
of weak and strong consistency results for least–squares regression schemes, see Section 3.3. In
particular, we provide a least–squares regression scheme for the i.i.d. case (Theorem 3.13) which
is strongly consistent under hypotheses that generalize several schemes previously studied in a
case–by–case basis and which does not require the Glivenko-Cantelli property as an assumption.

An important message of our results is that, by considering average measures, the nonasymptotic
deviation bounds obtained in the i.i.d. case via symmetrization methods can be extended to the i.n.n.i.d.
case without additional assumptions. This idea, while not new (see for instance the results in [Wel81]

1but see remarks 3.3, 3.5 and 3.15.
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and [vZ78]), seems to have not been elaborated in the context of regression methods, and we hope that
it will serve as an inspiring point for the extension of many of the results within the learning theory
for i.i.d. samples to nonstationary settings. Besides of the interest that this idea might have of its
own, it will be evident in a continuation of this paper that it helps to fill some of the gaps in learning
theory for methods that rely on nonstationary (and possibly dependent) samplings (see [FGM17] for an
application in which the design points (Xk)k∈N come from MCMC methods).

1.4 Notation and organisation of the paper

Besides the notation already introduced in Section 1.1, we will use the following conventions

i) We frequently use the notation w1:n for a (finite) sequence w1, . . . , wn.

ii) If W is a random variable defined on (Ω,A,P) and B ⊂ R is a Borel set, {W ∈ B} denotes the
A−set given by {W ∈ B} := {ω ∈ Ω : W (ω) ∈ B}.

iii) For a sample Dn = ((Xk, Yk))
n
k=1 of the random variables in Section 1.1, denote by En and Ẽn

the conditional expectations with respect to X1:n (the “explanatory sample”) and Dn (the “full
experiment”)

EnW := E [W | X1, . . . Xn] , ẼnW := E [W | (X1, Y1), . . . , (Xn, Yn)] , (1.6)

for every P−integrableW . Conditional probabilities Pn and P̃n are defined similarly (use indicator
functions in (1.6)).

iv) F is a class of measurable functions from Rd to R, such that for any f ∈ F , f(Xk) is in L2
P, for

any k. We will use the VC-dimension associated to F , VF , defined as the Vapnik-Chervonenkis
dimension of the family of sets

{{(x, y) ∈ Rd × R : y ≤ f(x)} : f ∈ F}

as a measure of the complexity of F , see [GKKW02, Definition 9.6]. In simple cases, F has the
structure of a finite-dimensional vector space over R with finite dimension, and then the bound

VF ≤ dim(F) + 1

holds (see [GKKW02, p.152]).

v) We will use boldface characters to denote sequences of functions with the same domain and co–
domain. Typically g = (gk)k where each gk : Rd → R is a Borel measurable function.

vi) L1-Covering Numbers. Given a sample z1:n, and using the semi-norm

|g1 − g2|z1:n,1 :=
1

n

n∑
k=1

|g1,k(zk)− g2,k(zk)|

(where gj := (gj,k)k, j = 1, 2), consider a δ-covering g1, . . . ,gM of the family of sequences of
functions G = {g = (gk)k}: for any g ∈ G, there is a gi such that |g − gi|z1:n,1 ≤ δ. The minimal
of such M ’s is the L1-δ-covering number of G at z1:n, and is denoted N1(δ,G, z1:n).
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vii) We write TB : R 7→ R for the soft truncation operator at the level B ≥ 0:

TB(x) = max(min(B, x),−B).

viii) To simplify notation for averages and expectations, we introduce the operators An, Ãn, µn, µ̃n
averaging sequences of functions over the samples (the empirical measure) or over the exact distri-
butions:

Anf =
1

n

n∑
k=1

fk(Xk), µnf =
1

n

n∑
k=1

∫
Rd
fk(x)PXk(dx), (1.7)

Ãnf =
1

n

n∑
k=1

fk(Xk, Yk), µ̃nf =
1

n

n∑
k=1

∫
Rd
fk(x, y)PXk,Yk(dx, dy), (1.8)

where f = (fk)k is a sequence of (possibly random, depending on data) functions from Rd → R (or
Rd × R→ R). Here PXk(dx) and PXk,Yk(dx, dy) are the laws of Xk and (Xk, Yk) respectively.

In the case where the coordinates of f are all equal, we may simply write Anf , Ãnf , µnf , µ̃nf
without bold face.

Organisation of the paper. First, in Section 2, we derive general concentration-of-measure inequal-
ities for independent but non i.i.d. sequences. Then in Section 3, we apply them to regression estimates
and establish asymptotic consistency results.

2 Uniform concentration-of-measure inequalities

This section is devoted to the statement and proofs of the two main deviation inequalities of this paper
(Theorems 2.1 and 2.2). We start with a short motivation on the relationship between large deviations
and expectations of a probability distribution, which is also an introduction to some of the applications
to be developed in Section 3.

2.1 Nonasymptotic deviations (Theorems 2.1 and 2.2)

We start by a tight deviation bound, uniformly on the class of functions, which is interesting on its
own. This generalizes [GKKW02, Theorem 11.6], with tighter constants. See sections 1.4 and 1.1 for
notation.

Actually, having better constants in exponential inequalities help much to improve moment esti-
mates: for instance, if Z is a non-negative random variable satisfying the exponential tail inequality

P (Z > ε) ≤ a exp(−bnε), ∀ε > 0,

for some constants a ≥ 1, b > 0, then (see Lemma A.1) we deduce

E [Z] ≤ 1

bn

(
1 + log(a)

)
.

Therefore, improving the constant a has only an impact as a logarithm, thus it is minor; on the other
hand, deriving a larger b in the upper bound for P (Z > ε) significantly improves the final upper bound
on E [Z]. Our subsequent mathematical derivation is inspired by these kind of observations, in particular
in order to get "the smaller factor b".
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Theorem 2.1. Let B > 0 and let F be a collection of sequences f = (fk)k of functions Rd → [0, B]

whose finite dimensional projections are pointwise measurable2. Then for every (α, ε, c, γ, γ′) ∈ (0,∞)×
(0, 1)×[1,+∞)× (1,+∞)× (1,+∞), we have

P

(
∃f ∈ F : (1− ε) 1

n

n∑
k=1

fk(Xk)− (1 + ε)
1

n

n∑
k=1

∫
Rd
fk(x)PXk(dx) > αε

)

≤ 2γ

γ − 1
E
[
N1(

α

γ′
(c− 1)

(c− ε)
ε

2
,F , X1:n)

]
exp

(
− 2ε2

(2− (1 + 1
c )ε)

2
(1− 1

c
)2(1− 1

γ′
)
α

B
n

)
, (2.1)

and

P

(
∃f ∈ F : (1− ε) 1

n

n∑
k=1

∫
Rd
fk(x)PXk(dx)− (1 + ε)

1

n

n∑
k=1

fk(Xk) > αε

)

≤ 2γ

γ − 1
E
[
N1(

α

γ′
(c− 1)

(c+ cε)

ε

2
,F , X1:n)

]
× exp

(
− 2ε2

(2 + (1 + 1
c )ε)

2
(1− 1

c
)2(1− 1

γ′
)
α

B
n

)
, (2.2)

provided that

n≥ B2γ

4α(α+B)

(c
ε

)2
.

The previous controls can take other forms when combined with the regression problems. This is an
extension to the non i.i.d. case of [GKKW02, Theorem 11.4], with refined estimates, especially regarding
the factor in the exponential term which plays usually an important role in the subsequent estimates
(see later the discussion in Remark 3.2). Besides we correct an error in their proof (at line 6 from the
top of [GKKW02, p.213], one should read {g2

f , f ∈ F} instead of {gf , f ∈ F}), which changes slightly
the upper bound. In what follows, we use the character “y” to denote the projection Rd × R → R on
the second coordinate

y(x0, y0) = y0. (2.3)

Theorem 2.2. Assume that F is a pointwise measurable family of functions Rd → R, and that for
some B > 0

|Yk − f(Xk)|+ |Yk − Φk(Xk)| ≤ B, (2.4)

P−a.s. for all f ∈ F and all k ∈ {1, . . . , n}. Then for every (α, ε) ∈ (0,∞) × (0, 1) and every
(ρ, γ, γ′, c) ∈ (0, 1)× (1,∞)× (1,∞)× [1,∞) we have, for u = ±1

P

[
∃f ∈ F : u

( 1

n

n∑
k=1

∫
Rd×R

(
|f(x)− y|2 − |Φk(x)− y|2

)
PXk,Yk(dx,dy)

2I.e., such that for every n ≥ 1, there exists a subfamily (f
(n)
j )j of F (f (n)j = (f

(n)
j,k )k) such that for every f ∈ F , there

is a sequence (jl)l with the property that, for every 1 ≤ k ≤ n and every x ∈ Rd

lim
l
f
(n)
jl,k

(x) = fk(x).
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− 1

n

n∑
k=1

(
|f(Xk)− Yk|2 − |Φk(Xk)− Yk|2

))
>

ε
(
α+

1

n

n∑
k=1

∫
Rd×R

(
|f(x)− y|2 − |Φk(x)− y|2

)
PXk,Yk(dx,dy)

)]

≤
(

2
γ

γ − 1

)2

E
[
N1(

1

8B

(c− 1)

(c− ε)
1

γ′
αε,F , X1:n)

]
× exp

(
− 1

2B2

1

(1− 1
2(1 + 1

c )ε)
2
(1− 1

c
)2(1− 1

γ′
)ε2αn

)

+ 2
γ

γ − 1
E

[
N1(

1

4B

1

(1− 1
γ′ )ε(1− ε) + (1 + ε)

(1− 1

γ′
)αερ,F , X1:n)

]

× exp

(
− 1

2B2

(1− ε)
(1

3(1− 1
γ′ )ε(1− ε) + (1 + ε))2

(1− 1

γ′
)2(1− ρ)ε2αn

)
(2.5)

provided that

n≥ γ

4α(B2 + α)

B4

ε2
max{γ′2, c2}. (2.6)

Remark 2.3 (About the condition (2.4)). It is likely that choosing independently the data (Xk, Yk)

and the function space F does not ensure that (2.4) holds, since this condition bridges both. However,
this condition is quite flexible and allows in some cases to adjust F to (Xk, Yk). Let us exemplify this:
assume that for some constant B > 0 we know a function F : Rd → R (a “trend” for the data (Xk, Yk),
which might be unbounded) such that the properties

|Yk − F (Xk)| ≤
B

4
, sup

f∈F
|f(Xk)| ≤

B

4
. P− a.s.,

hold for all k ∈ N. Then the new set of functions F̃ = {f̃ = F + f : f ∈ F} satisfies (2.4): indeed the
conditional Jensen’s inequality gives that (for any k ∈ N)

|Φk(Xk)− F (Xk)| = |E [Yk − F (Xk) | Xk] | ≤
B

4
, P− a.s.,

and therefore we have that for all f̃ ∈ F̃

(|Yk − f̃(Xk)|+ |Yk − Φk(Xk)|)

≤ (2|Yk − F (Xk)|+ |f̃(Xk)− F (Xk)|+ |Φk(Xk)− F (Xk)|) ≤ B, P− a.s..

2.2 Proof of Theorem 2.1

2.2.1 Preliminaries

Our proof is inspired from [GKKW02, Chapters 9-10-11], but with significant differences firstly to
account for the non-stationarity of the sequence and secondly to obtain more refined estimates. Addi-
tionally we establish bilateral deviations, as a difference with [GKKW02, Chapters 9-10-11].

1. A first key ingredient in the analysis is to switch from the Original Sample ((Xk, Yk) : k ∈ N) to
a Ghost Sample ((X ′k, Y

′
k) : k ∈ N), which is an independent copy of the initial sample.

10



2. A second key ingredient is to use concentration-of-measure inequalities for a fixed value n of the
sample size, on suitable functions gf that allow to bound the variance by the expectation up to a
constant. Namely, for a given f : Rd → R, set

gkf (x, y) := |f(x)− y|2 − |Φk(x)− y|2, (2.7)

where Φk is given by (1.1), and we denote by gf the sequence of functions

gf := (gkf )k. (2.8)

We extend notations (1.7) and (1.8) for averages over the ghost sample:

A′nf =
1

n

n∑
k=1

fk(X
′
k), Ã′nf =

1

n

n∑
k=1

fk(X
′
k, Y

′
k),

for sequences of real valued functions f = (fk)k.
Operations between sequences. To carry out the proofs below, we will use the “component-wise”

operations between sequences (of -possibly random- functions): given f1 = (f1,k)k and f2 = (f2,k)k,
f1 + f2 := (f1,k + f2,k)k and f1f2 = (f1,kf2,k)k. We also operate with sequences and constants via
af = a(fk)k := (afk)k and a+ f := (a+ fk)k.

It is important to point out that we will usually deal in the sequel with coverings that either depend
on families F given by constant sequences of functions (each f ∈ F is of the form f = (f, f, . . . )) or
on families GF of sequences of functions gf as in (2.8). This will keep our approximating families away
from overfitting problems.

2.2.2 Proof of Inequality (2.1)

We have to bound P
(⋃

f∈F
{

(1− ε)Anf − (1 + ε)µnf > αε
})

. We start with a lemma.

Lemma 2.4. For fixed η, ε > 0 and f = (fk)k with 0 ≤ fk(x) ≤ B for all k and x, we have, for u = ±1

P (u(Anf − µnf) > ε(η +Anf + µnf)) ≤ P (u(Anf − µnf) > ε(η + µnf)) ≤ B2

4nε2η(η +B)
.

Proof. Assume first that B = 1. Apply the Chebyshev inequality, together with independence between
Xk and Xl for k 6= l: by setting mk :=

∫
Rd fk(x)PXk(dx) and m = 1

n

∑n
k=1mk = µnf , this gives

P
[
u(Anf − µnf)

η + µnf
≥ ε
]
≤

n∑
k=1

∫
Rd f

2
k (x)PXk(dx)−

(∫
Rd fk(x)PXk(dx)

)2
n2ε2(η + µnf)2

≤ 1

nε2

1
n

∑n
k=1mk − 1

n

∑n
k=1m

2
k

(η + 1
n

∑n
k=1mk)2

(use the Jensen inequality for the average in k)

≤ 1

nε2

m−m2

(η +m)2
. (2.9)

The above upper bound is maximal at m = η
2η+1 and the maximum is 1

4nε2η(η+1)
.

This gives the upper bound in the case B = 1. The general case B > 0 follows from dividing all the
quantities inside the respective probabilities by B and applying the case B = 1.
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We now go back to the proof of inequality (2.1). Assume again that B = 1 to begin with, and let
(α, ε, c, γ, γ′) be as in the statement of the theorem.
� Symmetrization. Observe that for f ∈ F the set

{Anf − µnf > ε(α+Anf + µnf)} ∩ {A′nf − µnf ≤
ε

c
(α+A′nf + µnf)},

is included, by substracting the inequalities describing each of the sets in the intersection, in the set{
Anf −A′nf > ε

(
(1− 1

c
)α+Anf −

1

c
A′nf + (1− 1

c
)µnf

)}
=

{
(1− ε

2
(1 +

1

c
))(Anf −A′nf) >

ε

2
((1− 1

c
)(Anf +A′nf) + (1− 1

c
)2α) + (1− 1

c
)εµnf

}
⊂
{

(Anf −A′nf) > η(2α+Anf +A′nf)
}
, with 0 ≤ η :=

ε

(2− (1 + 1
c )ε)

(1− 1

c
), (2.10)

and where for the last inclusion we first used fk ≥ 0 for all k and then the restriction on c, ε to check
that 1− ε

2(1 + 1
c ) ≥ 1− ε > 0.

Now choose a random f∗ := f∗X1:n
∈ F with the property that, at (P−almost) every ω,

Anf
∗
X1:n(ω)

− µnf∗X1:n(ω)
> ε(α+Anf

∗
X1:n(ω)

+ µnf
∗
X1:n(ω)

)⇔

ω ∈
⋃
f∈F
{Anf − µnf > ε(α+Anf + µnf)}.

Notice that the A−measurability of the Ω−sets and functions in this equivalence follows from the
pointwise measurability hypothesis on F . Now, “following back” the arguments leading to (2.10) with
f∗ we get that if

E1 ∩ E2 := {Anf∗ − µnf∗ > ε(α+Anf
∗ + µnf

∗)} ∩ {A′nf∗ − µnf∗ ≤
ε

c
(α+A′nf

∗ + µnf
∗)},

then

P (E1 ∩ E2) ≤ P

(⋃
f∈F

{
Anf −A′nf > η(2α+Anf +A′nf)

})
.

Using the σ(X1:n)−measurability of 1E1 , Lemma 2.4 with u = +1, and taking

n≥ c2γ

4α(α+ 1)ε2
(2.11)

we arrive at

P (E1 ∩ E2) = E [1E1(1− Pn(Ω \ E2))] ≥
(

1− c2

4α(α+ 1)ε2n

)
P (E1) ≥ (1− 1

γ
)P (E1). (2.12)

This leads, by the definition of f∗, to conclude that for every γ > 1 and every n as in (2.11),

P (E1) = P

(⋃
f∈F

{
Anf − µnf > ε(α+Anf + µnf)

})

≤ γ

γ − 1
P

(⋃
f∈F

{
Anf −A′nf > η(2α+Anf +A′nf)

})
. (2.13)

12



� Introduction of Random Signs. To estimate the above probability we use the following observation:
if U = (U1, U2, . . . ) is a sequence of independent Rademacher random variables, independent of (Xk)k
and (X ′k)k, and f1, . . . , fL ∈ F are given (fj = (fj,k)k), then the joint distributions of

(Ukfj,k(Xk)− Ukfj,k(X ′k), fj,k(Xk) + fj,k(X
′
k))j,k

and
(fj,k(Xk)− fj,k(X ′k), fj,k(Xk) + fj,k(X

′
k))j,k

are the same for fixed values of U1, . . . , Un (they correspond to interchanging Xk and X ′k for some k).
Therefore we have that (remember the notation Uf := (Ukfk))

P

(⋃
f∈F
{AnUf −A′nUf > η(2α+Anf +A′nf)} | U1:n

)
= P

(⋃
f∈F
{Anf −A′nf > η(2α+Anf +A′nf)}

)
,

P−a.s. Owing to the random exchange of signs, we finally get

P

(⋃
f∈F
{Anf −A′nf > η(2α+Anf +A′nf)}

)

= P

(⋃
f∈F
{AnUf −A′nUf > η(2α+Anf +A′nf)}

)
≤ 2P

(⋃
f∈F
{AnUf > η(α+Anf)}

)
, (2.14)

where the last inequality follows from

{AnUf −A′nUf > η(2α+Anf +A′nf)} ⊂ {AnUf > η(α+Anf)} ∪ {A′nUf < −η(α+A′nf)}

and from the symmetry of (Uk)k. So far, in view of (2.13), we have proved that

P

(⋃
f∈F

{
Anf − µnf > ε(α+Anf + µnf)

})
≤ 2γ

γ − 1
P

(⋃
f∈F
{AnUf > η(α+Anf)}

)
, (2.15)

for every γ > 1 and every n as in (2.11).
� Introduction of Covering Numbers. Now we bound the probability of this union by covering F
with balls of radius δ > 0 and we estimate the deviation for each ball center by using Hoeffding’s
inequality. Given δ > 0 and ω ∈ Ω there exists N(ω) := N1(δ,F , X1:n(ω)) sequences of functions
fX1:n(ω),1, . . . , fX1:n(ω),N(ω) (we stress the dependence on (Xk(ω))nk=1) satisfying the following property:
for every f ∈ F and some j(f) ∈ {1, . . . , N(ω)}

1

n

n∑
k=1

|fk(Xk(ω))− fX1:n(ω),j(f),k(Xk(ω))| ≤ δ.

Without loss of generality (truncate if necessary), we can assume that each fX1:n,j,k takes values in [0, 1].
Triangular inequalities yield

AnUfX1:n,j(f) + δ ≥ AnUf , Anf ≥ AnfX1:n,j(f) − δ,
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which leads to the inclusion (available for any η > 0 and in particular for η given in (2.10))⋃
f∈F
{AnUf > η(α+Anf)} ⊂

⋃
j∈{1,...,N1(δ,F ,X1:n)}

{δ +AnUfX1:n,j > η(α− δ +AnfX1:n,j)}.

As a consequence, we obtain

Pn

(⋃
f∈F
{AnUf > η(α+Anf)}

)
≤ N1(δ,F , X1:n) max

j∈{1,...,N1(δ,F ,X1:n)}
Pn (δ +AnUfX1:n,j > η(α− δ +AnfX1:n,j)). (2.16)

� Bounding uniformly the tails via Hoeffding’s Inequality. We introduce now γ′ > 1 by setting

δ =
η

γ′(η + 1)
α. (2.17)

This choice of δ allows us to rewrite

Pn (δ +AnUfX1:n,j > η(α− δ +AnfX1:n,j)) = Pn
(
AnUfX1:n,j > η((1− 1

γ′
)α+AnfX1:n,j)

)
.

Assume that AnfX1:n,j 6= 0 (and thus > 0), otherwise the above probability is zero. Apply the Hoeffding
inequality [GKKW02, Lemma A.3] (restricted to the right tail) together with the inequality −fk ≤
Ukfk ≤ fk to get

Pn
(
AnUfX1:n,j > η((1− 1

γ′
)α+AnfX1:n,j)

)
≤ exp

(
−
η2((1− 1

γ′ )α+AnfX1:n,j)
2

2Anf2
X1:n,j

n

)

≤ exp

(
−
η2((1− 1

γ′ )α+AnfX1:n,j)
2

2AnfX1:n,j
n

)

≤ exp

(
−2η2n(1− 1

γ′
)α

)
,

where at the second inequality, we used that 0 ≤ fX1:n,j,k ≤ 1 for all k, and at the last inequality we
used the minimization (a+y)2

y ≥ 4a valid for (a, y) ∈ (0,∞)× (0,∞).
� Conclusion for B = 1. A recapitulation of the previous arguments together with (2.16) and (2.17)
gives rise to the following inequality: for every (α, η, γ′) ∈ (0,∞)× (0,∞)× [1,∞)

Pn

(⋃
f∈F
{AnUf > η(α+Anf)}

)
≤ N1(

α

γ′
η

η + 1
,F , X1:n)× exp

(
−2η2n(1− 1

γ′
)α

)
. (2.18)

Together with (2.15) we conclude, via the substitution η = ε
(2−(1+ 1

c
)ε)

(1− 1
c ) (see (2.10)), that the left

hand side of (2.1) is bounded by

2γ

γ − 1
E
[
N1(

α

γ′
(c− 1)

(c− ε)
ε

2
,F , X1:n)

]
exp

(
− 2ε2

(2− (1 + 1
c )ε)

2
(1− 1

c
)2n(1− 1

γ′
)α

)
.

provided that n satisfies (2.11). This gives the conclusion for the case B = 1.
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� The conclusion for arbitrary B > 0. It comes again from homogenization: if we consider

F
B

:= { 1

B
f : f ∈ F}, (2.19)

then the case B = 1 together with the equality

N1(δ,
F
B
,X1:n) = N1(δB,F , X1:n), (2.20)

imply (2.1) (divide by B inside the sets at the left hand side of (2.1)) .

2.2.3 Proof of Inequality (2.2)

The proof is basically identical to that of Inequality (2.1), thus we will only indicate the adjustments.
We deal only with B = 1, the case B > 0 follows as before. Define E ′1 and f∗∗X1:n

such that

E ′1 :=
⋃
f∈F
{µnf −Anf > ε(α+ µnf +Anf)} = {µnf∗∗X1:n

−Anf∗∗X1:n
> ε(α+ µnf

∗∗
X1:n

+Anf
∗∗
X1:n

)},

and set E ′2 := {µnf∗∗X1:n
−A′nf∗∗X1:n

≤ ε
c (α+A′nf

∗∗
X1:n

+µnf
∗∗
X1:n

)}. By choosing n large enough (as in (2.11))
we get (as for (2.12) by using this time Lemma 2.4 with u = −1)

P
(
E ′1
)
≤ γ

γ − 1
P
(
E ′1 ∩ E ′2

)
.

Moreover, simple computations as before yield

P

⋃
f∈F
{µnf −Anf > ε(α+ µnf +Anf)} ∩ {µnf −A′nf ≤

ε

c
(α+ µnf +A′nf)}


≤ P

⋃
f∈F
{(1 +

ε

2
(1 +

1

c
))(A′nf −Anf) >

ε

2
(1− 1

c
)(2α+A′nf +Anf) + ε(1− 1

c
)µnf}


≤ P

(⋃
f∈F

{
A′nf −Anf > η′(2α+Anf +A′nf)

})
,

where

η′ :=
ε
2(1− 1

c )

1 + ε
2(1 + 1

c )
. (2.21)

Gathering the arguments, we deduce again that the probability to bound is such that

P
(
E ′1
)
≤ γ

γ − 1
P

(⋃
f∈F

{
A′nf −Anf > η′(2α+Anf +A′nf)

})
.

This is similar to (2.13).
From here, we follow exactly the same arguments used before to arrive to the inequality that corre-

sponds to the deduction of (2.18) obtaining this time, for η′ given by (2.21), that the left hand side of
(2.2) is bounded by

2γ

γ − 1
E
[
N1(

α

γ′
(c− 1)

(c+ cε)

ε

2
,F , X1:n)

]
× exp

(
− 2ε2

(2 + (1 + 1
c )ε)

2
(1− 1

c
)2n(1− 1

γ′
)α

)
.

This gives the desired conclusion.
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2.3 Proof of Theorem 2.2

We will use the notation Zk := (Xk, Yk) and Z ′k := (X ′k, Y
′
k). As before, we will start assuming that

B = 1.
� First Symmetrization. Fix u = ±1 and recall the notation (2.8). We have to bound

P

⋃
f∈F
{u(µ̃ngf − Ãngf ) ≥ ε(α+ µ̃ngf )}

.
To begin with, we will prove that for (γ, γ′, ε, α) ∈ (1,∞)× (1,∞)× (0, 1)× (0,∞),

P

⋃
f∈F
{u(µ̃ngf − Ãngf ) ≥ ε(α+ µ̃ngf )}


≤ γ

γ − 1
P

⋃
f∈F
{u(Ã′ngf − Ãngf ) ≥ (

γ′ − 1

γ′
)ε(α+ µ̃ngf )}

, (2.22)

provided that

n≥ γ

4α(α+ 1)

(
γ′

ε

)2

. (2.23)

Let us choose a random function fn := fn,Z1:n ∈ F in such a way that

u(µ̃ngfn − Ãngfn) ≥ ε(α+ µ̃ngfn)⇔ ω ∈
⋃
f∈F
{u(µ̃ngf − Ãngf ) ≥ ε(α+ µ̃ngf )}. (2.24)

Then, for γ′ > 1,

P

⋃
f∈F
{u(Ã′ngf − Ãngf ) ≥ (1− 1

γ′
)ε(α+ µ̃ngf )}


≥ P

(
{u(µ̃ngfn − Ãngfn) ≥ ε(α+ µ̃ngfn)} ∩ {u(µ̃ngfn − Ã′ngfn) ≤ ε

γ′
(α+ µ̃ngf )}

)
=: P (E1 ∩ E2) = E

[
1E1(1− P̃n(Ω \ E2))

]
, (2.25)

where E1 and E1 are defined in an obvious way as before. Now notice that, in virtue of (2.4) and the
assumption B = 1, we have

|gkf (Xk, Yk)| = |(f(Xk)− Φk(Xk))(f(Xk)− 2Yk + Φk(Xk))| ≤ |f(Xk)− Φk(Xk)|,

which leads to the (crucial) inequality

µ̃ng
2
f ≤ µn|f −Φ1:n|2 = µ̃n(|f − y|2 − |y −Φ1:n|2) = µ̃ngf . (2.26)

Now we estimate: proceeding as in (2.9) and using (2.26)

P̃n(Ω \ E2) = P̃n(u(µ̃ngfn − Ã′ngfn) >
ε

γ′
(α+ µ̃ngfn))

≤ γ′2

nε2

µ̃ng
2
fn
− (µ̃ngfn)2

(α+ µ̃ngfn)2
≤ γ′2

nε2

µ̃ngfn(1− µ̃ngfn)

(α+ µ̃ngfn)2
≤ γ′2

4nα(1 + α)ε2
, (2.27)
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where we used the same optimization argument as after (2.9).
Together, (2.25) and (2.27) lead to the following conclusion: if n satisfies (2.23), then

P

⋃
f∈F
{u(Ã′ngf − Ãngf ) ≥ (1− 1

γ′
)ε(α+ µ̃ngf )}

 (2.28)

≥ (1− 1

γ
)P
(
u(µ̃ngfn − Ãngfn) ≥ ε(α+ µ̃ngfn)

)
,

which implies at once (2.22) by the choice (2.24) of fn.
� Application of Theorem 2.1. In this step we will bound the probability at the left-hand side of (2.28)
using the decomposition that follows. First, we can assume by symmetry that u = 1 from now on (the
random variables in the probability at left hand side of (2.28) corresponding to u = ±1 are identically
distributed). Let now Ef , Ef,1 and E ′f,1 be the events

Ef := {Ã′ngf − Ãngf ≥ (1− 1

γ′
)ε(α+ µ̃ngf )},

Ef,1 := {Ãng2
f − µ̃ng2

f ≤ ε(α+ Ãng
2
f + µ̃ng

2
f )},

E ′f,1 := {Ã′ng2
f − µ̃ng2

f ≤ ε(α+ Ã′ng
2
f + µ̃ng

2
f )}. (2.29)

Then from
Ef ⊂ (Ef ∩ Ef,1 ∩ E ′f,1) ∪ (Ω \ Ef,1) ∪ (Ω \ E ′f,1),

we get, via the union bound and the symmetry of Ef,1, E ′f,1, that

P

⋃
f∈F
Ef

 ≤ P

⋃
f∈F
Ef ∩ Ef,1 ∩ E ′f,1

+ 2P

⋃
f∈F
{Ãng2

f − µ̃ng2
f > ε(α+ Ãng

2
f + µ̃ng

2
f )}


≤ P

⋃
f∈F
Ef ∩ Ef,1 ∩ E ′f,1

 (2.30)

+ 4
γ

γ − 1
E
[
N1(

α

γ′
(c− 1)

(c− ε)
ε

2
, {g2

f : f ∈ F}, Z1:n)

]
× exp

(
− 2ε2

(2− (1 + 1
c )ε)

2
(1− 1

c
)2(1− 1

γ′
)αn

)
.

where the last inequality holds in virtue of (2.1) provided, as specified there, that

n≥ γ

4α(α+ 1)

(c
ε

)2
(2.31)

because, by the assumption B = 1, we can assume that

sup
z∈Rd×R,,k∈N

(gkf )2(z) ≤ 1 (2.32)

for all k ∈ {1, . . . , n} (indeed notice that, for fixed k, such inequality holds for P−a.e. z with respect to
the law of (Xk, Yk) in virtue of (2.4) and the definition (2.7) of gkf ).

Thus (2.30) holds if n satisfies (2.23) and (2.31), i.e., if (2.6) holds (for B = 1 for now).
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� Second Symmetrization and Introduction of Random Signs. Our goal now is to have a bound similar
to the last summand in (2.30) for the probability

P

⋃
f∈F
Ef ∩ Ef,1 ∩ E ′f,1

.
To do so, we notice that, by (2.26)

Ef,1 ∩ E ′f,1 = {(1 + ε)µ̃ng
2
f ≥ (1− ε)Ãng2

f − εα} ∩ {(1 + ε)µ̃ng
2
f ≥ (1− ε)Ã′ng2

f − εα}

⊂ {(1 + ε)µ̃ngf ≥ (1− ε)Ãng2
f − εα} ∩ {(1 + ε)µ̃ngf ≥ (1− ε)Ã′ng2

f − εα}

and therefore,

Ef ∩ Ef,1 ∩ E ′f,1

= {(1 + ε)(Ã′ngf − Ãngf ) ≥ (1 + ε)(1− 1

γ′
)ε(α+ µ̃ngf )} ∩ Ef,1 ∩ E ′f,1

⊂ {(1 + ε)(Ã′ngf − Ãngf ) ≥ 1

2
(1− 1

γ′
)ε((1 + ε)α+ (1− ε)Ãng2

f − εα)

+
1

2
(1− 1

γ′
)ε((1 + ε)α+ (1− ε)Ã′ng2

f − εα)}

= {(1 + ε)(Ã′ngf − Ãngf ) ≥ 1

2
(1− 1

γ′
)ε(α+ (1− ε)Ãng2

f ) +
1

2
(1− 1

γ′
)ε(α+ (1− ε)Ã′ng2

f )}.(2.33)

This last event has the form

{Ãngf − Ã′ngf ≥ (c1 + c2Ãng
2
f ) + (c1 + c2Ã

′
ng

2
f )},

with

c0 =
1

2
(1− 1

γ′
)

1

(1 + ε)
ε, c1 = c0α, c2 = c0(1− ε), (2.34)

which by random exchange of signs (see for instance the arguments leading to (2.14)) allows us to
conclude that for any sequence U = (Uk)k of independent Rademacher random variables independent
from (Zk)k and (Z ′k)k,

P

⋃
f∈F
{ÃnUgf − Ã′nUgf ≥ (c1 + c2Ãng

2
f ) + (c1 + c2Ã

′
ng

2
f )}


= P

⋃
f∈F
{Ãngf − Ã′ngf ≥ (c1 + c2Ãng

2
f ) + (c1 + c2Ã

′
ng

2
f )}

.
This observation together with (2.33), the triangle inequality, the union bound, and symmetry (note
that (Z1:n, U1:n) and (Z ′1:n,−U1:n) have the same distribution), allows us to conclude that

P

⋃
f∈F

(Ef ∩ Ef,1 ∩ E ′f,1)

 ≤ 2P

⋃
f∈F
{ÃnUgf ≥ c1 + c2Ãng

2
f}

. (2.35)
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� Further Introduction of Covering Numbers. Following ideas already used we will estimate the probabil-
ity at the right hand side of (2.35) by first conditioning with respect to the data Z1:n and then introduc-
ing covering numbers in order to reduce the estimates to finitely many applications of a Hoeffding-type
inequality.

For z1, . . . , zn ∈ Rd × R given, consider an event of the form

⋃
f∈F
{ 1

n

n∑
k=1

Ukg
k
f (zk) ≥ c1 + c2

1

n

n∑
k=1

(gkf )2(zk)}, (2.36)

(like the one in (2.35) for fixed values Z1:n = z1:n). For any δ > 0, there existsN(z1:n) := N1(δ, {gf : f ∈ F}, z1:n)

sequences of functions {gz1:n,1, . . . ,gz1:n,N(z1:n)} (each g has the form g = (gk)k) with the property that
for every f ∈ F

1

n

n∑
k=1

|gkz1:n,jf (zk)− gkf (zk)| ≤ δ,

for some jf ∈ {1, . . . , N(z1:n)}. Without loss of generality (by (2.32)) we can assume that

sup
z∈Rd×R

|gkj (z)| ≤ 1

for (j, k) ∈ {1, . . . , N(z1:n)} × {1, . . . , n}. We get, via the triangle inequality and the inequality

|(gkz1:n,jf )2(zk)− (gkf )2(zk)| ≤ |gkz1:n,jf (zk) + gkf (zk)||gkz1:n,jf (zk)− gkf (zk)| ≤ 2|gkz1:n,jf (zk)− gkf (zk)|

that for every f ∈ F

δ +
1

n

n∑
k=1

Ukg
k
z1:n,jf

(zk) ≥
1

n

n∑
k=1

Ukg
k
f (zk),

1

n

n∑
k=1

(gkf )2(zk) ≥
1

n

n∑
k=1

(gkz1:n,jf )2(zk)− 2δ,

and therefore the probability of the set in (2.36) is bounded by

N1(δ, {gf : f ∈ F}, z1:n) max
j∈{1,...,N(z1:n)}

P

(
{δ +

1

n

n∑
k=1

Ukg
k
z1:n,j(zk) ≥ c1 − 2c2δ + c2

1

n

n∑
k=1

(gkz1:n,j)
2(zk)}

)
.

Recasting the values of c0, c1, c2 in (2.34) and choosing δ0 as

δ0 =
c0αρ

2c0(1− ε) + 1

(where ρ ∈ (0, 1) is fixed in the hypotheses) gives the bound

P̃n

⋃
f∈F

(Ef ∩ Ef,1 ∩ E ′f,1)

 ≤ 2N1(δ0, {gf : f ∈ F}, Z1:n) (2.37)

×max
j

P̃n
(
ÃnUgZ1:n,j≥c0(α− 2(1− ε)δ0 + (1− ε)Ãng2

Z1:n,j)− δ0

)
= 2N1(δ0, {gf : f ∈ F}, Z1:n) max

j
P̃n
(
ÃnUgZ1:n,j≥c0(α(1− ρ) + (1− ε)Ãng2

Z1:n,j)
)

where the max runs over j ∈ {1, . . . ,N1(δ0, {gf : f ∈ F}, Z1:n)}, provided that n satisfies (2.23) and
(2.31).
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� Application of Bernstein’s Inequality. Consider the (random) numbers inside the maximum in (2.37):

P̃n
(
ÃnUgZ1:n,j ≥ c0(α(1− ρ) + (1− ε)Ãng2

Z1:n,j)
)
, (2.38)

and denote by Ṽarn [ · ] the conditional variance given Z1:n. Then since

1

n

n∑
k=1

Ṽarn

[
Ukg

k
fj

(Zk)
]

= Ãng
2
Z1:n,j ,

the number in (2.38) has, for fixed Z1:n = z1:n, the form

P

(
1

n

n∑
k=1

Vk ≥ a1 + a2
1

n

n∑
k=1

EV 2
k

)
(2.39)

where V1, . . . , Vn are independent centered random variables with |Vk| ≤ 1 (k = 1, . . . , n) and a1 > 0,
a2 ≥ 0. The one-sided Bernstein’s inequality (see the proof of [GKKW02, Lemma A.2]) gives the
following bound for (2.39): if σ2

n := 1
n

∑n
k=1 EV 2

k , then

P

(
1

n

n∑
k=1

Vk ≥ a1 + a2σ
2
n

)
≤ exp

(
− n(a1 + a2σ

2
n)2

2σ2
n + 4

3(a1 + a2σ2
n)

)
= exp

(
−3na2

4

(a1a2 + σ2
n)2

a1
a2

+ ( 3
2a2

+ 1)σ2
n

)

≤ exp

(
−3na2

4
× 4× a1

a2
×

3
2a2

( 3
2a2

+ 1)2

)
= exp

(
−18

na1a2

(2a2 + 3)2

)
,

where in the third inequality we used the fact that

(a+ u)2

a+ bu
≥ 4a

b− 1

b2

holds for (a, b, u) ∈ (0,∞)× (0,∞)× (0,∞).

Take now, as in (2.38), a1 = c0α(1 − ρ) and a2 = c0(1 − ε) with c0 as in (2.34). We obtain the
P−a.s. upper bound

P̃n
(
ÃnUgZ1:n,j≥c0((1− ρ)α+ (1− ε)Ãng2

Z1:n,j)
)

≤ exp

(
−1

2

(1− ε)
(1

3(1− 1
γ′ )ε(1− ε) + (1 + ε))2

ε2(1− 1

γ′
)2(1− ρ)αn

)
. (2.40)

� A concentration inequality involving covering numbers. The analysis so far can be summarized as
follows: using (2.30), (2.37), and (2.40) we see that for any (γ, γ′, c, ρ) ∈ (1,∞)×(1,∞)×(1,∞)×(0, 1),
we have that

P

⋃
f∈F
Ef

 ≤ 4
γ

γ − 1
E
[
N1(

1

2

(c− 1)

(c− ε)
1

γ′
αε, {g2

f : f ∈ F}, Z1:n)

]

× exp

(
−1

2

1

(1− 1
2(1 + 1

c )ε)
2
(1− 1

c
)2(1− 1

γ′
)ε2αn

)

+ 2E

[
N1(

1

2

1

(1− 1
γ′ )ε(1− ε) + (1 + ε)

(1− 1

γ′
)αερ, {gf : f ∈ F}, Z1:n)

]
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× exp

(
−1

2

(1− ε)
(1

3(1− 1
γ′ )ε(1− ε) + (1 + ε))2

(1− 1

γ′
)2(1− ρ)ε2αn

)
, (2.41)

provided that n satisfies (2.23) and (2.31).
� Homogenization of Covering Families. In order to get a bound of the right hand side of (2.41) that
involves only covering numbers of the form N (δ,F , X1:n), we note that if h : Rd → R is any Borel
measurable function, then for any f ∈ F and any sequence z = (zk)k = ((xk, yk))k of elements of
Rd × R, the hypothesis

max{|f(xk)− yk|, |h(xk)− yk|, |yk − Φk(xk)|} ≤ 1

for all k gives:

|(gkh)2(zk)− (gkf )2(zk)| = |gkh(zk)− gkf (zk)||gkh(zk) + gkf (zk)| ≤ 2|gkh(zk)− gkf (zk)| =

2|(h(xk)− yk)2 − (Φk(xk)− yk)2 − (f(xk)− yk)2 + (Φk(xk)− yk)2| =

2|h(xk) + f(xk)− 2yk||f(xk)− h(xk)| ≤ 4|f(xk)− h(xk)|. (2.42)

Now, under the hypothesis
|f(xk)− yk|+ |Φk(xk)− yk| ≤ 1

for every k ∈ N and f ∈ F (which is true for P−a.e. realization of (Xk, Yk), according to (2.4) and the
assumption B = 1), every δ − L1cover h1, . . . , hr of F with respect to the empirical norm

1

n

n∑
k=1

δ{xk} (2.43)

can be assumed to satisfy
|hj(xk)− yk|+ |yk − Φk(xk)| ≤ 1. (2.44)

Indeed, according again to (2.4),

f(xk) ∈ [yk − 1 + |Φk(xk)− yk|, yk + 1− |Φk(xk)− yk|] =: [ak, bk]

for all f ∈ F , so that given a δ − L1 cover h1, . . . , hr of F with respect to (2.43) we can (if necessary)
redefine

ĥr(x) = hr(x)1(ak,bk)(hr(xk)) + ak1(−∞,ak](hr(xk)) + bk1[bk,∞)(hr(xk))

to obtain a δ − L1 cover ĥ1, . . . , ĥr of F (with respect to (2.43)) satisfying (2.44).
The inequalities in (2.42) imply therefore (case B = 1) that for every (zk)k = ((xk, yk))k in Rd × R

and every δ > 0

N1(δ, {g2
f : f ∈ F}, Z1:n) ≤ N1(

δ

2
, {gf : f ∈ F}, Z1:n) ≤ N1(

δ

4
,F , X1:n), (2.45)

P−a.s. The conclusion for the case B = 1 follows from (2.22), the definition (2.29) of Ef , (2.41) and
(2.45).

To finish the proof we consider the case in which B > 0 is arbitrary: we proceed as before by first
dividing the event inequality in the left-hand side of (2.5) by B2, applying the case B = 1 with α

replaced by α/B2, F by F/B, and using (2.20).
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3 Applications to least–squares nonparametric regression

We develop in this section some applications of the previous results to the estimation of nonasymptotic
errors for least–squares regression schemes, and we explore some of the consequences of these estimations
with respect to the problem of consistency, both in the weak and strong senses, for the method of least–
squares regression. See again sections 1.1 and 1.4 for general notation and conventions.

3.1 An L2
P-weak error estimate (Theorem 3.1)

A consequence of the estimates in the previous theorems is a control of the expected L2
P-deviation of

Regression Averages. This is a generalization of [GKKW02, Theorem 11.5] with significant improve-
ments.

Theorem 3.1. Assume that F is a pointwise measurable family of functions Rd → R with associated
Vapnik-Chervonenkis (VC) dimension VF < +∞ and assume that, for some B > 0, ||Yk||P,∞ ≤ B for
all k. Then for (c, λ) ∈ (1,∞)× (1,∞) satisfying the hypothesis

λ ≤ 3 +
√

1 + 8c

4
, n ≥ exp(

c2 − 71

4VF
), (3.1)

the estimate

E

[
1

n

n∑
k=1

∫
Rd
|TBΦ̂n(x)− Φk(x)|2PXk(dx)

]
≤ B2

n
θ0 (1 + θ1 + VF (θ2 + log(θ2)))

+ λ inf
f∈F

1

n

n∑
k=1

∫
Rd
|f(x)− Φk(x)|2PXk(dx) (3.2)

holds, where

θ0 =θ0(λ, c) := 32

(
1

3
(1− 1

c
)(1− 1

λ
) + (2λ− 1)

)2

(
c

c− 1
)3 λ

λ− 1
,

θ1 =θ1(c) := log(6(c+ 1)(2c+ 3)),

θ2 =θ2(c, n) := 1 + log 24 + log(1 +

√
1 +

c(c+ 1)

n
)− log(c− 1

c
) + log n.

The necessity for the truncation TBΦ̂n in (3.2) is discussed in details in Section 3.3.1. We point out
that the posibility of choosing λ close to 1 depending on n will play an important role in Section 3.3
when dealing with consistency results.

Remark 3.2. This estimate improves the one in [GKKW02, Theorem 11.5]. For the sake of illustration,
it is proved there that, in the i.i.d. case, and for B ≥ 1, one has a bound of the type

E
[∫

Rd
|TBΦ̂n(x)− E [Y |X = x] |2PX(dx)

]
≤ B4

n
(c1 + VF (c2 + c3 log n))

+ 2 inf
f∈F

∫
Rd
|f(x)− E [Y |X = x] |2PX(dx),

where c1 ≥ 24332, c2 ≥ 73689 and c3 ≥ 10272.
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The use of (λ, c) = (2,
√

71) leads, for us, to a similar bound with B4 replaced by B2 (a gain due
to the argument of homogeneization) and with c1, c2, and c3 replaced respectively by constants c′1, c′2,
and c′3 satisfying c′1 ≤ 7429, c′2 ≤ 5967 and c′3 ≤ 1852. We can improve further the estimation of this
deviation by plugging the greatest possible c according to (3.1), namely c(n) := (4VF log n+71)1/2, into
(3.2).

3.2 Proof of Theorem 3.1

We will use again the character “y” as in (2.3), and when necessary we implicitly interpret functions
f : Rd → R as functions Rd ×R→ R evaluating in the first coordinate. The rest of the notation is also
borrowed from the previous sections.

� “Large deviation-bias” estimate. Fix λ > 1, and consider the following identities

µn|TBΦ̂n −Φ1:n|2 = µ̃n|TBΦ̂n − y|2 − µ̃n|Φ1:n − y|2

= µ̃ngTBΦ̂n
− λÃngTBΦ̂n

+ λÃngTBΦ̂n
. (3.3)

Now, by definition of TBΦ̂n, the equation

ÃngTBΦ̂n
= Ãn|TBΦ̂n − y|2 − Ãn|Φ1:n − y|2 ≤ Ãn|Φ̂n − y|2 − Ãn|Φ1:n − y|2 ≤ Ãngf , (3.4)

holds for all f ∈ F . Thus by the definition of Φ1:n

E
[
ÃngTBΦ̂n

]
≤ inf

f∈F
µ̃ngf = inf

f∈F
µ̃n(|f − y|2 − |Φ1:n − y|2) = inf

f∈F
µn|f −Φ1:n|2. (3.5)

Together, (3.3) and (3.5) imply, by integration, the “large deviation-bias” bound

E

[
1

n

n∑
k=1

∫
Rd
|TBΦ̂n(x)− Φk(x)|2PXk(dx)

]
:= E

[
µn|TBΦ̂n −Φ1:n|2

]
≤ E

[
µ̃ngTBΦ̂n

− λÃngTBΦ̂n

]
+ λ inf

f∈F
µn|f −Φ1:n|2.

� Bounding the large deviation term. Now we bound the cumulative distribution function of µ̃ngTBΦ̂n
−

λÃngTBΦ̂n
. To do so we will assume first that B = 1/4. The goal of this choice is to use for simplicity

(2.4) and its conclusion (2.5) with B = 1.
We start by noticing that, if T1/4F := {T1/4f : f ∈ F} then{

µ̃ngT1/4Φ̂n
− λÃngT1/4Φ̂n

≥ t
}
⊂

⋃
f∈T1/4F

{
µ̃ngf − λÃngf ≥ t

}
(3.6)

=
⋃

f∈T1/4F

{
µ̃ngf − Ãngf ≥

(λ− 1)

λ
(

t

λ− 1
+ µ̃ngf )

}
.

We apply at this step the inequality (2.5) with the parameters

(B,α, ε, ρ, γ, γ′) = (1,
t

λ− 1
, 1− 1

λ
,
1

c
, 1 +

1

c
, c) (3.7)
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to get an estimate of the form

P
(
µ̃ngT1/4Φ̂n

− λÃngT1/4Φ̂n
≥ t
)
≤ G0(c)E

[
N1(G1(c, λ)t, T1/4F , X1:n)

]
exp(−bc,λnt)

=: ac,λ(t) exp(−bc,λnt) (3.8)

where

G0(c) := 2(c+ 1)(2c+ 3), G1(c, λ) :=
1

8

1

λ(c− 1) + 1
(1− 1

c
),

bc,λ :=
1

2

1

(1
3(1− 1

c ) + (2λ− 1) λ
λ−1)2

(1− 1

c
)3 λ

λ− 1
. (3.9)

The verification of (3.8) with (3.9) is given later (see page 26). By (2.6) and (3.7) this estimate is valid
for t > 0 provided that

n ≥ c(c+ 1)λ2

4t(λ− 1 + t)
⇔ t ≥

−(λ− 1) +
√

(λ− 1)2 + c(c+ 1)λ2/n

2
=: tn(c, λ). (3.10)

Since covering numbers are decreasing with respect to the radius of the covering, this gives rise to the
inequality

P
(
µ̃ngT1/4Φ̂n

− λÃngT1/4Φ̂n
≥ t
)
≤ a(tn) exp(−bnt), (3.11)

for t ≥ tn and where, for simplicity, we drop the parameters c, λ from the notation for a, b and tn.
Note now that the function a(tn) here depends on the distribution of X1:n. In order to bound it in

a distribution-free way, we start by noticing that

T1/4F + 1/4 := {f + 1/4, f ∈ T1/4F}

is a family of nonnegative functions bounded by 1/2 which admits the same covering numbers as T1/4F
with respect to the empirical measure associated to x1:n := {x1, . . . , xn} ⊂ Rd. Additionally we observe
that G1tn < 1/8. Indeed, since c > 1 we obtain, via the inequality

√
a2 + b2 ≤ |a|+ |b|, that

8G1tn =
1

2c

c− 1

(c− 1 + 1
λ)

(
−(1− 1

λ
) +

√
(1− 1

λ
)2 +

c(c+ 1)

n

)
≤ 1

2

√
(1 + 1

c )

n

≤
(

1

2n

)1/2

< 1. (3.12)

We apply at this step the estimates in [GKKW02, Lemma 9.2 and Theorem 9.4] and the fact that
VT1/4F+1/4 = VT1/4F ≤ VF to conclude that

N1(G1tn, T1/4F , x1:n) = N1(G1tn, T1/4F +
1

4
, x1:n) ≤ 3

(
e

G1tn
log(

3e

2G1tn
)

)VF
(note that these estimates hold also in the trivial case in which VT1/4F = 1, excluded by the statement
of [GKKW02, Theorem 9.4]). These inequalities bring us to the following (distribution-free) estimate
of the (distribution-dependent) coefficient a(tn) of the exponential function at the right-hand side of
(3.11):

a(tn) ≡ ac,λ(tn) := G0(c)E
[
N1(G1(c, λ)tn, T1/4F , X1:n

]
)
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≤ 3G0(c)

(
e

G1(c, λ)tn
log(

3e

2G1(c, λ)tn
)

)VF
:= G(tn, VF ). (3.13)

Appying Lemma A.1 to (3.11) combined with (3.13), we get that for tn as in (3.10) and for the
((λ, c)−dependent) objects in (3.9), the hypothesis

3G0

(
e

G1tn
log(

3

2

e

G1tn
)

)VF
≥ exp(bntn) (3.14)

implies that

E
[
µ̃ngT1/4Φ̂n

− λÃngT1/4Φ̂n

]
≤ 1

bn

(
1 + log

(
3G0(

e

G1tn
log(

3

2

e

G1tn
))VF

))
. (3.15)

� Verification of (3.14) under (3.1). Since the (bijective) function [0,∞)→ [0, a/2) defined by

x 7→
√
x2 + ax− x

is increasing it follows that

ntn =
λ− 1

2

(√
n2 + c(c+ 1)

λ2

(λ− 1)2
n− n

)
≤ c(c+ 1)

4

λ2

(λ− 1)
, (3.16)

and therefore, using the expression for b = bc,λ in (3.9),

bntn ≤
1

8

1

(1
3(1− 1

c )(1−
1
λ) + (2λ− 1))2

(1− 1

c
)2(c2 − 1)λ≤ c2 − 1

8λ
<
c2 − 1

8
(3.17)

(note that these bounds do not depend on n).
In order to guarantee (3.14) we note the following: first, the string of inequalities (3.12) gives the

bound

G1tn ≤ (27n)−1/2. (3.18)

Therefore a sufficient condition for (3.14) is, by (3.17) and (3.18), the following

log(3G0) + VF (1 +
1

2
(log(27) + log(n)) + log(1 + log(3) +

1

2
(log(25) + log(n))) ≥ c2 − 1

8
,

which, using 8[log(3G0) + VF (1 + 1
2 log(27) + log(1 + log(3) + 1

2 log(25)))] ≥ 8[log(60) + (1 + 1
2 log(27) +

log(1 + log(3) + 1
2 log(25)))] ≥ 70, clearly holds if

log n ≥ c2 − 71

4VF
.

� An upper bound for the right hand side of (3.15). Note now that from the first equality in (3.12) and
the fact that the function [0,∞)→ [0,

√
a] defined by

x 7→
√
x2 + a− x
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is decreasing it follows that

8G1tn ≥
1

2c
(1− 1

c
)

(
−1 +

√
1 +

c(c+ 1)

n

)
=

1

2c

(c2 − 1)

n

1

1 +

√
1 + c(c+1)

n

. (3.19)

This implies by an easy argument the bound

log(3G0

(
e

G1tn
log(

3

2

e

G1tn
)

)VF
) ≤ log(3G0) + VF (θ2 + log(θ2))

with

θ2 = θ2(n, c) := 1 + log 24 + log(1 +

√
1 +

c(c+ 1)

n
)− log(c− 1

c
) + log n.

All the elements of the proof are gathered for the case B = 1/4.

� The case of arbitrary B > 0. This follows from the following homogenization properties: for any
((xk, yk))

n
k=1, and defining F/4B as in (2.19)

•
∫
|f(x)− Φk(x)|2dPXk(x) = (4B)2

∫
|f(x)

4B −
Φk(x)

4B |
2dPXk(x),

• f∗ ∈ arg minf∈F
1
n

∑n
k=1 |f(xk)− yk|2 ⇔ f∗

4B ∈ arg minf∈ F
4B

1
n

∑n
k=1 |f(xk)− yk

4B |
2,

• V F
4B

= VF ,

from where one deduces the estimate for arbitrary B > 0 via the identity

µ̃n|TBΦ̂n −Φ1:n|2 − λ inf
f∈F

µ̃n|f −Φ1:n|2 = (4B)2(µ̃n|T1/4
Φ̂n

4B
− Φ1:n

4B
|2 − λ inf

f∈ F
4B

µ̃n|f −
Φ1:n

4B
|2)

and the case B = 1/4 already treated.

� Proof of the inequality (3.8) with the constants (3.9). Applying the inequality (2.5) to bound the
probability of the right-hand-side of (3.6) with the parameters (3.7) gives the bound

P
(
µ̃ngT1/4Φ̂n

− λÃngT1/4Φ̂n
≥ t
)
≤ (a(c))2E

[
N1(R1(c, λ)t, T1/4F , X1:n)

]
exp(−b1(c, λ)nt)

+ a(c)E
[
N1(R2(c, λ)t, T1/4F , X1:n)

]
exp(−b2(c, λ)nt)

where

a(c) := 2(c+ 1),

R1(c, λ) :=
1

8

1

λ(c− 1) + 1
(1− 1

c
), b1(c, λ) :=

1

2

1

( λ
λ−1 −

1
2(1 + 1

c ))
2
(1− 1

c
)3 1

λ− 1
,

R2(c, λ) :=
1

4

1

c(2λ− 1
λ)− (1− 1

λ)
(1− 1

c
), b2(c, λ) :=

1

2

1

(1
3(1− 1

c ) + (2λ− 1) λ
λ−1)2

(1− 1

c
)3 λ

λ− 1
.

Now, an elementary computation shows that, for (λ, c) ∈ (1,∞) × [1,∞), b1(c, λ) ≥ b2(c, λ), and that
the condition R1(c, λ) ≤ R2(c, λ) is equivalent to λ ≤ (3 +

√
1 + 8c)/4, which is part of condition (3.1).

Therefore we have (always for t ≥ tn) that

P
(
µ̃ngT1/4Φ̂n

− λÃngT1/4Φ̂n
≥ t
)
≤ a(c)(a(c) + 1)E

[
N1(R1(c, λ)t, T1/4F , X1:n)

]
exp(−b2(c, λ)nt).

Putting together these pieces, we verify (3.8) with (3.9) as described above.
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Remark 3.3 (Scope of our methods for the case of infinite complexity.). In the proof of Theorem 3.1,
we use a bound of the type (see Equation (3.13))

logN1(r,F , x1:n) ≤ CVF log r−1, (3.20)

provided that r is small. Notice that (3.20) implies a bound of the type

logN1(r,F , x1:n) ≤ CF r−α, (3.21)

for every α > 0 and n ∈ N.
The assumption (3.21) (for α ∈ (0, 2)), among others, is used in [HW17], which addresses the problem

of optimal rates for i.i.d. least–squares regression schemes with heavy–tailed distributions. Notice that
if we are under (3.21) but not under (3.20), then necessarily VF = ∞ (consider the point in the proof
of Theorem 3.1 in which (3.13) is invoked).

This leads to the natural question of whether we can give a rate for the case of infinite complexity
(3.21) with our methods. The answer is affirmative at least when α ∈ (0, 1): using (3.21) instead of
(3.13) in the previous proof one can verify that, for α ∈ (0, 1), we arrive at a function of the form
O(nα−1) in the place of the first term at the right–hand side of (3.2) (the “variance” term), with “O(·)”
constants depending on (F , B, c, λ) that admit an explicit expression. The details are left to the reader.3

3.3 Consistency

The estimate (3.2) and its proof have relevant consequences for the problem of consistency of least–
squares regression schemes, some of which we will describe in this section. In what follows, we often use
for the sake of simplicity the short notations given in (1.7).

To begin with the discussion notice the following: according to Theorem 3.1, if both F (VF < ∞)
and the response functions Yk are uniformly bounded by B, then the least squares regression estimate
is weakly consistent in the sense that

lim
n

(
E
[
µn|Φ̂n −Φ1:n|2

]
− inf
f∈F

µn|f −Φ1:n|2
)

= 0, (3.22)

which follows easily from the fact that, in this case, TBΦ̂n = Φ̂n ∈ F (F is a space of functions bounded
by B) by substracting inff∈F µn|f −Φ1:n|2(≤ 4B2) at both sides of (3.2) and letting n → ∞ because
λ > 1 is arbitrary. We will see later (see Corollary 3.12) that, in this context, (3.22) holds actually in
the strong sense, i.e. the equality

lim
n

(
µn|Φ̂n −Φ1:n|2 − inf

f∈F
µn|f −Φ1:n|2

)
= 0

holds with probability one.
3Note additionally that the rate obtained by intersecting the hypotheses in [HW17] with our hypotheses, and in

particular assuming that (3.21) holds for every α > 0, corresponds up to a logarithmic factor to the one obtained by
letting α→ 0 in the conclusion of [HW17, Theorem 4]. Since the rates in [HW17] are sharp in a general sense (under the
hypotheses in that paper), this may be evidence that our variance bound in Theorem 3.1 has a (almost) sharp asymptotic
rate for the setting considered here.

27



3.3.1 The Role of Truncation for Consistency and Stability

Note that (3.22) follows from an interpretation in the present case of an inequality of the type

E
[
µn|TBΦ̂n −Φ1:n|2

]
≤ δ(λ, n) + λ inf

f∈F
µn|f −Φ1:n|2 (3.23)

where δ : (1,∞)×N→ (0,∞) denotes a generic function with the property that δ(λ, n)→n 0 for every
fixed λ (sufficiently close to one). To discuss the role of the truncation operator in the inequality (3.23)
in the context of Theorem 3.1 notice first that, under the hypotheses of this theorem, and for any f ∈ F ,
the inequality

|TBf − Φk|2 ≤ |f − Φk|2

holds PXk−a.s. for every k, and this implies that (3.23) holds provided that either of the following type
of inequalities

E
[
µn|TBΦ̂n −Φ1:n|2

]
≤δ(λ, n) + λ inf

f∈F
µn|TBf −Φ1:n|2, (3.24)

E
[
µn|Φ̂n −Φ1:n|2

]
≤δ(λ, n) + λ inf

f∈F
µn|f −Φ1:n|2 (3.25)

hold. Notice also that, by the same argument leading to the proof of (3.22), the inequality (3.24)
[resp. (3.25)] can be interpreted as an inequality stating the weak consistency of TBΦ̂n[resp. Φ̂n] as an
estimator of TBarginff∈Fµn|TBf −Φ1:n|2 [resp. arginff∈Fµn|f −Φ1:n|2].

But neither of the inequalities (3.24) or (3.25) can be derived solely from the hypotheses of Theorem
3.1, as we now justify.

� Counterexample to (3.24): let (Xk, Yk) = (X,Y ) be a unit mass at (0, 1) for every k (((Xk, Yk))k is
i.i.d.), so that µn = µ := PX = δ0 (a Dirac mass at zero) for every n and Φk(0) = 1 for every k, and let
F := {f1, f2} with f1 ≡ 1/2 and f2 ≡ 2. In this case, it is clear that Φ̂n = f1 and that

inf
f∈F

µn|T1f −Φ1:n|2 = inf
f∈F
|T1f(0)− 1|2 = |T1f2(0)− 1|2 = 0,

and therefore, for this example

µn|T1Φ̂n −Φ1:n|2 − inf
f∈F

µn|T1f −Φ1:n|2 = µn|T1Φ̂n −Φ1:n|2 = 1/2 (3.26)

for every n, which makes impossible a bound of the type (3.24).

� Counterexample to (3.25) Let X and Y be independent with X uniformly distributed on [0, 1] and Y
Rademacher distributed (P (Y = 1) = P (Y = −1) = 1/2, notice that E [Y |X] = 0), let ((Xk, Yk))k be
i.i.d. (Xk, Yk) ∼ (X,Y ), and let F be the (finite-dimensional) vector space of piecewise linear functions
in a fixed finite partition by intervals of [0, 1]. Then again µn = µ := PX and, as stated in [GKKW02,
Problem 10.3],

E
[
µn|Φ̂n −Φ1:n|2

]
=∞ (3.27)

for every n, whereas
inf
f∈F

µn|f −Φ1:n|2 = 0, (3.28)
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because, for all k, Φk ≡ 0 ∈ F . Notice that (3.27) and (3.28) are an obstruction to (3.25).
The message from the previous examples is summarized in the following conclusions: first, accord-

ing to (3.26), the truncated least squares regressor TBΦ̂n is not (in general) a consistent estimator of
arg minf∈F µn|TBf−Φ1:n|2; second, according to (3.27), the non-truncated least–squares regression esti-
mator Φ̂n is not (in general) a (weakly-)consistent, nor an stable estimator of arg minf∈F µn|f −Φ1:n|2;
and third, the bound (2.5) in Theorem 2.2 is optimal in terms of the use of the truncation operator.

In the remaining of this section, we will derive some consistency results based on a more careful
interplay between the truncation bounds, the sample sizes, and the function–space complexities (VC-
dimensions) of the respective schemes.

3.3.2 The setting and the working hypotheses

The upcoming string of results will be given under the following setting, which we specify in advance
to make more efficient the statements and to facilitate comparisons.

S 1 (Truncated LSR for row-Independent and response-bounded triangular-arrays). For every m ∈ N,
let Dm := {(Xm,k, Ym,k)}nmk=1 (nm ≥ 3) be an independent random sequence in Rdm × [−Bm, Bm] with
associated regression functions

Φm,k(x) = E [Ym,k|Xm,k = x] , PXm,k − a.s.

Let Fm be a family of functions Rdm → R with VFm <∞, and let Φ̂(m)
nm be given by (1.2) with F replaced

by Fm and {(Xk, Yk)}nk=1 replaced by Dm.

We also introduce the following hypotheses:

H 1. Under (S1),

lim
m

(
VFmB

2
m log nm

nmδm
+ δm inf

f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

)
= 0 (3.29)

for some positive sequence (δm)m with δm →m 0.

and its stronger version

H 2. Under (S1),

VFmB
2
m log nm
nm

→m 0, lim sup
m

inf
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx) <∞.

Notice that the satisfaction of H1 implies that nm → +∞ as m → +∞, except on sub-sequences
where Bm → 0 and in this last case, the results become somehow trivial. Therefore, in most usual cases,
we implicitly have nm → +∞ as m→ +∞.

Remark 3.4. Note that, under the hypothesis

lim sup
m

inf
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx) <∞, (3.30)
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H1 and H2 are equivalent: they hold if and only if

VFmB
2
m log nm
nm

→m 0,

which can be seen by considering

δm :=

(
VFmB

2
m log nm
nm

)ρ
(3.31)

for any ρ ∈ (0, 1). In particular H2 implies H1.
Note also that (3.30) can be given for granted for basically any conceivable application to statistical

learning of the results that follow. We keep the separate hypothesis H1 and H2 because, as we shall see,
H2 permits some specifications that are not explicit under H1.

Remark 3.5 (Extensions to infinite complexity. See also Remark 3.3 ). When (3.21) holds for all m
with F replaced by Fm and α replaced by αm ∈ (0, 1), and assuming without loss of generality that
the corresponding CFm satisfies CFm ≥ 1, results similar to those that follow under H1 can be obtained
under the condition obtained replacing

VFmB
2
m log nm

nmδm
(3.32)

by

CFmB
2
m

n1−αm
m δm

(3.33)

in (3.29). The necessary modifications in the proofs and the statements will be easy to implement.

3.3.3 Weak Consistency (Theorem 3.6)

Our main result on weak consistency gives a condition on the relationship between the parameters
nm, VFm , and Bm in order to guarantee that, on average, the deviation obtained from the truncated
least squares regression function is, in the limit, smaller (or equal) than the deviation obtained by the
best approximation within the respective spaces. Its proof is an immediate consequence of the bound
in Theorem 3.1.

Theorem 3.6. Assume H1, then

lim sup
m

(
E

[
1

nm

nm∑
k=1

∫
Rdm
|TBmΦ̂(m)

nm (x)− Φm,k(x)|2PXm,k(dx)

]
−

inf
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

)
≤ 0. (3.34)

Proof. Choose λm = 1 + δm and let c ≥ 1 be such that the hypotheses (3.1) of Theorem 3.1 hold for
every m with the input (nm, Bm,Fm, c, λm)4. Then, according to (3.2),

E
[
µ(m)
nm |TBmΦ̂(m)

nm −Φm,1:nm |2
]
− inf
f∈Fm

µ(m)
nm |f −Φm,1:nm |2

4For instance, assume without loss of generality that δm ∈ [0, 1/2) for all m and take c =
√
71.
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≤ B2
m

nm
θ

(m)
0

(
1 + θ

(m)
1 + VFm(θ

(m)
2 + log(θ

(m)
2 ))

)
+ δm inf

f∈Fm
µ(m)
nm |f −Φm,1:nm |2, (3.35)

where we have set µ(m)
nm f := 1

nm

∑nm
k=1

∫
Rd fk(x)PXm,k(dx) as a natural extension of (1.7). The conver-

gence to zero of the right hand side of (3.35) as m→∞ is then straightforward from (3.29), the details
are left to the reader.

Remark 3.7. Let (X,Y ) be a point mass at (0, 1), let (Xk, Yk) = (X,Y ) for every k ((Xk, Yk)k∈N are
i.i.d.), and let F := {f} where f(0) = 2. Specializing to this case with Bm = 1 for all m we see that
the left hand side of (3.34) can be strictly negative: it is not possible to prove the equality reverse to
(3.34) under H1.

An elementary consequence of Theorem 3.6 is the following generalization of (3.22) in which the
sets of function hypotheses, the sample sizes, and the response bounds can increase following an explicit
control, which allows to consider scenarios of increasing complexity (including regression schemes over
asymptotically infinite–dimensional spaces).

Corollary 3.8. Assume H1. If for every m, Fm is a space of functions uniformly bounded by Bm, then

lim
m

(
E

[
1

nm

nm∑
k=1

∫
Rdm
|Φ̂(m)
nm (x)− Φm,k(x)|2PXm,k(dx)

]
−

inf
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

)
= 0. (3.36)

In particular, (3.36) holds if, under the setting S1,

VFmB
4
m log nm
nm

→m 0. (3.37)

Proof. Note first that the lim infm of the numbers inside the limm in (3.36) is nonnegative. The lim supm
is nonpositive according to Theorem 3.6 assuming that H1 holds, because, in this case,

TBmΦ̂(m)
nm = Φ̂(m)

nm . (3.38)

Thus, (3.36) is proved. Next, note that for every m,

0 ≤ inf
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

≤ sup
f∈Fm

1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx) ≤ 2B2

m, (3.39)

and that we can assume, without loss of generality, that lim infmBm > 0 (as over sequences mk with
Bmk →k 0 the conclusion is immediate from (3.39) and (3.38)). Now take

δm :=

(
VFm log nm

nm

)1/2

to verify H1 using (3.37) and (3.39).
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3.3.4 Strong Consistency (Theorem 3.9)

It is possible to profit from the analysis used in the proof of Theorem 3.1 to look for conditions which
are linked to the satisfaction of strong consistency for least-squares regression estimates. To illustrate
this claim, we depart from the following theorem.

Theorem 3.9. Assume S1, and consider the random variables

∆m := inf
f∈Fm

{
1

nm

nm∑
k=1

(|f(Xm,k)− Ym,k|2 − |Φm,k(Xm,k)− Ym,k|2)

}

− inf
f∈Fm

{
1

nm

nm∑
k=1

∫
Rdm

(|f(x)− y|2 − |Φm,k(x)− y|2)PXm,k,Ym,k(dx,dy)

}

= inf
f∈Fm

{
1

nm

nm∑
k=1

(|f(Xm,k)− Ym,k|2 − |Φm,k(Xm,k)− Ym,k|2)

}

− inf
f∈Fm

{
1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

}
. (3.40)

If (n
−αVFm
m )m is summable for some α > 0,5 then for every positive and bounded sequence (δm)m, there

exists a constant C(3.41) > 0 such that

sup
f∈Fm

1

nm

nm∑
k=1

∫
Rd

(|TBmΦ̂(m)
nm (x)− Φm,k(x)|2 − |f(x)− Φm,k(x)|2)PXm,k(dx) (3.41)

≤ C(3.41)

(
VFmB

2
m log nm

nmδm

)
+ δm inf

f∈Fm

{
1

nm

nm∑
k=1

∫
Rdm
|f(x)− Φm,k(x)|2PXm,k(dx)

}
+ (1 + δm)∆m,

except for finitely many m′s.
If, in particular, H1 holds and ∆m →m 0, P−a.s., then

lim sup
m

sup
f∈Fm

1

nm

nm∑
k=1

∫
Rd

(|TBmΦ̂(m)
nm (x)− Φm,k(x)|2 − |f(x)− Φm,k(x)|2)PXm,k(dx) ≤ 0,

P−a.s.

Proof. See Section 3.5.

Remark 3.10. Note that, if H2 holds, we can take δm as in (3.31).

The following is an immediate consequence of Theorem 3.9.

Corollary 3.11. Assume H1, assume that (n
−αVFm
m )m is summable for some α > 0, and assume that

the uniform strong law of large numbers

lim
m

sup
f∈Fm

1

nm

nm∑
k=1

(
|f(Xm,k)− Ym,k|2 − |Φm,k(Xm,k)− Ym,k|2

5For instance if nm ≥ mγ for some γ > 0 (take α = 1 + 1
γ
).
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−
∫
Rd

(|f(x)− y|2 − |Φm,k(x)− y|2)PXm,k,Ym,k(dx,dy)

)
= 0, (3.42)

holds P− a.s.. Then, with probability one,

lim sup
m

sup
f∈Fm

1

nm

nm∑
k=1

∫
Rd

(|TBmΦ̂(m)
nm (x)− Φm,k(x)|2 − |f(x)− Φm,k(x)|2)PXm,k(dx) ≤ 0. (3.43)

As an instance of Corollary 3.11, and as a way of illustrating the advantages of knowing not only
(3.34) but (3.41), we get the following strong–consistency version of (3.22).

Corollary 3.12. Let F be a family of functions Rd → [−B,B], assume that VF < ∞, let ((Xk, Yk))k
be any independent sequence in Rd × R with supk{||Yk||P,∞} ≤ B and define, for every m, Φ̂m by (1.2)
(with n = m). Then, with probability one

lim
m

sup
f∈F

1

m

m∑
k=1

∫
Rd

(|Φ̂m(x)− E [Yk|Xk = x] |2 − |f(x)− E [Yk|Xk = x] |2)PXk(dx) = 0. (3.44)

Proof. We apply Corollary 3.11 with nm = m, Fm = F , and Bm = B for all m. Note again that
TBΦ̂m = Φ̂m, that TBY = Y , and that the lim infm of the expressions inside the limm in (3.44) is
nonnegative because each of its terms is not negative.

The proof of (3.42) in these circumstances is omitted by reasons of space. It can be done by extending
the proof of [GKKW02, Theorem 9.1] to the independent, non identically distributed case with the same
techniques used to prove the inequalities in Theorems 2.1 and 2.2.

3.4 A non Glivenko-Cantelli Theorem for i.i.d. Samplings (Theorem 3.13)

In the classical context of i.i.d. sampling ((Xk, Yk))k∈N, (Xk, Yk) ∼ (X,Y ), and assuming that we are
under S1 with Fm = F , Bm = B, nm = m, and (Xm,k, Ym,k) := (Xk, Yk) for all (m, k), the property
(3.42) reads as

lim
m

sup
f∈F

1

m

m∑
k=1

(gf (Xk, Yk)− E [gf (X,Y )]) = 0, P− a.s.,

where gf (x, y) := |f(x)− y|2 − |Φ(x)− y|2 and Φ(x) = E [Y |X = x], a property known as the (strong)
Glivenko-Cantelli Property (GCP) for the family {gf : f ∈ F} and the measure P(X,Y ).

The satisfaction of the GCP is itself a topic of intensive research in Empirical Process Theory (see
[vW96b]), and the message of Corollary 3.11 is that the GCP is indeed sufficient, under the respective
hypotheses, to guarantee the strong consistency in the sense of (3.43) of a least-squares regression
scheme.

But there are situations in which we can still verify (3.43) without appealing to the GCP: note
indeed that what matters is the convergence P−a.s. to 0 as m → ∞ of the random variables ∆m in
(3.40). As we shall see in the proof of the following theorem, this idea can be used to produce a strongly
convergent least–squares regression scheme under quite general hypotheses in the i.i.d. case.

Theorem 3.13 (A strongly consistent least–squares regression scheme for the i.i.d. case.). Let (Xk, Yk) ∼
(X,Y ) (k ∈ N) be i.i.d. random variables in Rd × R with Y ∈ L2

P and associated regression function
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Φ(x) = E [Y |X = x]. Let (Fm)m be an increasing sequence of families of functions with VFm < ∞
for all m, let (Bm)m≥1 be a nondecreasing sequence with Bm →m ∞, assume that (nm)m is such that
(n
−αVFm
m )m is summable for some α > 0, assume that

VFmB
2
m log nm
nm

→m 0, (3.45)

and let Φ̂(m)
nm be given by (1.2) with F replaced by Fm and (Xk, Yk)

n
k=1 replaced by (Xk, TBmYk)

nm
k=1. Then,

with probability one,

lim sup
m

∫
Rd
|TBmΦ̂(m)

nm (x)− Φ(x)|2PX(dx) ≤ lim
m

inf
f∈Fm

∫
Rd
|f(x)− Φ(x)|2PX(dx). (3.46)

If, in particular, Φ is a limit point in L2
PX of F∞ :=

⋃
mFm, then the assumption (3.45) implies that

TBmΦ̂(m)
nm →m Φ in L2

PX , with probability one.

Proof. See Section 3.6.

Remark 3.14. If Y is essentially bounded (||Y ||P,∞ <∞) one can take Bm := ||Y ||P,∞ in the trunca-
tions for every m and the conclusion (3.46) holds true if

VFm log nm
nm

→m 0.

As a way of illustrating the (many) possible applications of Theorem 3.13 consider its following
immediate conclusion: if X is compactly supported in Rd (||X||P,∞ < ∞) and Fm is the space of
polynomials of degree at most m in each coordinate variable, then for any random variable Y for
which Φ(x) := E [Y |X = x] admits a continuous version, and for any i.i.d. sequence ((Xk, Yk))k∈N,
(Xk, Yk) ∼ (X,Y ), the truncated random polynomial p̂m := TBmΦ̂(m)

nm with TBmΦ̂(m)
nm as in Theorem

3.13 converges to Φ in L2
PX as m → ∞ if (3.45) holds and (n

−αVFm
m )m is summable for some α > 0.

In particular, using the bound VFm ≤ (m + 1)d + 1 we can take, for any δ, δ′ > 0 and any c ≥ 0,
Bm = (c+logm)δ (form ≥ 3) and nm = dmd(logm)1+δ′+2δe. Replacing Fm by the space of polynomials
generated by the monomials in the d coordinates of degree at most m, the same is true with nm replaced
by d

(
m+d
m

)
(logm)1+δ′+2δe.

3.5 Proof of Theorem 3.9

We will use in this case the notation

A(m)
nm (dx) :=

1

nm

nm∑
k=1

δXm,k(dx), µ(m)
nm (dx) :=

1

nm

nm∑
k=1

PXm,k(dx),

[and similarly for Ã(m)
nm , µ̃(m)

nm ] for the empirical and the average measures associated to (Xm,k)
nm
k=1 [to

(Xm,k, Ym,k)
nm
k=1]. The notation used in the previous proof is extended in a likewise manner. Let

λm = 1 + δm. Then proceeding as in (3.3) and (3.4) we get

µ(m)
nm |TBmΦ̂(m)

nm −Φm,1:nm |2 − inf
f∈Fm

µ(m)
nm |f −Φm,1:nm |2

= µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

+ λmÃ
(m)
nmg

(m)

TBm Φ̂
(m)
nm

− inf
f∈Fm

µ(m)
nm |f −Φm,1:nm |2
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≤ µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

+ λm( inf
f∈Fm

Ã(m)
nmg

(m)
f − inf

f∈Fm
µ(m)
nm |f −Φm,1:nm |2)

+ δm inf
f∈Fm

µ(m)
nm |f −Φm,1:nm |2.

The proof of (3.41) will be complete once we prove that, always under (3.29),

µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

≤ εm,

for an appropriate εm and except for finitely many m’s. We will do this via the Borel-Cantelli lemma.
From now on, we will make use for fixedm of the estimates in the proof of Theorem 3.1 for the inputs

(nm, Bm,Fm, λm), where c =
√

71 (so that (3.1) holds for every λ = λm
6). We will proceed letting

some constants which do not depend on m (assuming if needed that m is big enough) unspecified in the
analysis that follow, in all cases a specification whenever needed would be easy.

For λ = λm and the corresponding input (nm,Fm, λm), let G0, G
(m)
1 , and b(m) be given by (3.9),

and let t(m)
nm be given by (3.10) with λ = λm and n = nm. Notice that, in virtue of (3.16),

t(m)
nm ≤

c(c+ 1)

4

λ2
m

δmnm
.

Let εm be given, for some γ ≥ 1 to be specified later, by

εm := 4γc(c+ 1)λ2
m

(
VFmB

2
m log nm

δmnm

)
≥ 4c(c+ 1)λ2

m

B2
m

δmnm
≥ 16B2

mt
(m)
nm . (3.47)

Then by an elementary extension of (3.11) and (3.13) (which are derived for the explicit bound B = 1/4)
the estimate

P
(
µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

≥ εm
)

≤ 3G0

(
e

G
(m)
1 t(m)

nm

log
3e

2G
(m)
1 t(m)

nm

)VFm
exp

(
−b(m)nm

εm
16B2

m

)
(3.48)

holds. We deduce further from this that for some positive constants a1, a2, a3, the above probability is
bounded by

≤ a1exp

(
a2VFm(1− log(G

(m)
1 t(m)

nm ))− a3
b(m)εmnm

B2
m

)
. (3.49)

We use now the nonasymptotic estimates7 (see (3.9), (3.18) and (3.19))

b(m)εmnm
B2
m

∼ εmnmδm
B2
m

, − log(G
(m)
1 t(m)

nm ) ∼ log nm

to deduce from (3.49) that for some positive constants a4, a5, a6,

P
(
µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

≥ εm
)
≤a1 exp

(
a4VFm log nm − a5

εmnmδm
B2
m

)
6For the case in which (δm)m is bounded by an arbitrary constant, use the fact that VFm lognm →m ∞ to prove that

any c > 0 works for all but finitely many m′s.
7For functions f, g with the same domain, f ∼ g is a shortcut for the existence of constants 0 < a < b with the property

that, for every x, af(x) ≤ g(x) ≤ bf(x).
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≤a1 exp

(
−a5VFm(

εm
αm
− a6) log nm

)
=a1 exp

(
−a5VFm(4c(c+ 1)γλ2

m − a6) log nm
)

where

αm :=
VFmB

2
m log nm

δmnm
.

By taking γ > 0 big enough so that

a5(4c(c+ 1)γ − a6) ≥ α,

the conclusion follows from the Borel–Cantelli lemma and the summability of (n
−αVFm
m ) with C(3.41) :=

4c(c+ 1)γ supm{λ2
m}.

Remark 3.15 (Complement to Remarks 3.3 and 3.5). When (3.21) holds for all m with F replaced
by Fm and α replaced by αm ∈ (0, 1), and assuming without loss of generality that the corresponding
CFm satisfies CFm ≥ 1 (compare with Remark 3.5), the proof of Theorem 3.9 can be modified to show
that (3.41) holds replacing the term indicated in (3.32) by that in (3.33) provided that, for some ρ > 0,
(exp(−ρnαmm ))m is a summable sequence. To see this (further details are left to the reader) use, instead
of εm in (3.47),

ε′m := 4γc(c+ 1)CFmλ
2
m

B2
m

n1−α
m δm

,

and replace the estimate (3.48) by the corresponding estimate

P
(
µ̃(m)
nmg

(m)

TBm Φ̂
(m)
nm

− λmÃ(m)
nmg

(m)

TBm Φ̂
(m)
nm

≥ ε′m
)
≤ 3G0 exp

(
CFm(G

(m)
1 t(m)

nm )−αm − b(m)nm
ε′m

16B2
m

)
.

The respective consequences for strong consistency can be deduced in an easy manner.

3.6 Proof of Theorem 3.13

First notice that, since (Fm)m is increasing, the sequence

(εm)m :=

(
inf
f∈Fm

∫
Rd
|f(x)− Φ(x)|2PX(dx)

)
m

(3.50)

is non-increasing, and note that we can assume that this sequence is ultimately finite, i.e., that
∫
Rd |f(x)−

Φ(x)|2PX(dx) <∞ for some f ∈ F∞ := ∪mFm, as otherwise (3.46) is trivially true.
Let Φ(L) be specified, for every L ≥ 0, by

Φ(L)(x) := E [TLY |X = x] .

To clarify some explanations later, we also introduce the PX -square integrable functions Φabs and Φlar(L)

(L > 0) characterized PX−a.s. by the equations

Φabs(x) = E [|Y ||X = x] , Φlar(L)(x) := E
[
|Y |1|Y |>L|X = x

]
,
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and we observe that, by Jensen’s inequality and the definition of TL, for PX−a.e. x

max{sup
m
|Φ(Bm)(x)|, |Φ(x)|} ≤ Φabs(x),

|Φ(x)− Φ(L)(x)| ≤ E [|Y − TLY ||X = x] ≤ Φlar(L)(x),

and that if L1 ≤ L2, then Φlar(L2) ≤ Φlar(L1), PX−a.s. Likewise notice that∫
Rd
|Φ(x)− Φ(Bm)(x)|2PX(dx) = E

[
|E [Y |X]− E [TBmY |X] |2

]
≤ E

[
|Y − TBmY |2

]
, (3.51)

and since Bm →m ∞, we deduce from (3.51) that Φ(Bm) →m Φ in L2
PX . In particular, it follows easily

that (3.46) is equivalent to the assertion

lim sup
m

(∫
Rd
|TBmΦ̂(m)

nm (x)− Φ(Bm)(x)|2PX(dx)− inf
f∈Fm

∫
Rd
|f(x)− Φ(Bm)(x)|2PX(dx)

)
≤ 0, P− a.s.

We apply Theorem 3.9 with Ym,k = TBmYk. Note that, with the notation in that theorem,

Φm,k = Φ(Bm),

PX−a.s. for every m and every 1 ≤ k ≤ nm, and that we are here under the hypothesis H2. Specializing
the notation from the previous proof in an obvious way (in particular µ := PX = µm for all m) notice
that, if ∆m is the random variable in Theorem 3.9 then, again by the convergence of Φ(Bm) →m Φ in
L2
PX ,

lim sup
m

∆m := lim sup
m

(
inf
f∈Fm

Ã(m)
nmg

(m)
f − inf

f∈Fm
µ|f − Φ(Bm)|2

)
= lim sup

m

(
inf
f∈Fm

Ã(m)
nmg

(m)
f − inf

f∈Fm
µ|f − Φ|2

)
.

It suffices therefore by (3.41) to see that, under the given hypotheses,

lim sup
m

( inf
f∈Fm

Ã(m)
nmg

(m)
f − inf

f∈Fm
µ|f − Φ|2) ≤ 0, P− a.s. (3.52)

Proof of (3.52). Let ε∞ = limm εm (see (3.50)) and, for any δ > 0 given, let Mδ ∈ N and fδ ∈ FMδ
be

such that for every m ≥Mδ

εm ≤ µ|fδ − Φ|2 < ε∞ + δ ≤ εm + δ <∞,

note in particular that fδ ∈ L2
PX . Now, since

inf
f∈Fm

Ã(m)
nmg

(m)
f − inf

f∈Fm
µ|f − Φ|2 ≤Ã(m)

nm (|fδ − TBmy|2 − |Φ(Bm) − TBmy|2)− µ|fδ − Φ|2 + δ

for m ≥Mδ, it suffices therefore to prove that

lim sup
m
Ã(m)
nm (|fδ − TBmy|2 − |Φ(Bm) − TBmy|2) ≤ µ|fδ − Φ|2,
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P−a.s. Note now that by the Law of Large Numbers

Ã(m)
nm (|fδ − y|2 − |Φ− y|2)→m µ̃ (|fδ − y|2 − |Φ− y|2) = µ|fδ − Φ|2,

P−a.s., and therefore it suffices to prove that, P−a.s.,

lim sup
m

(Ã(m)
nm (|fδ − TBmy|2 − |Φ(Bm) − TBmy|2)− Ã(m)

nm (|fδ − y|2 − |Φ− y|2)) ≤ 0. (3.53)

To do so, take L ≥ 0 and consider m large enough to have m ≥Mδ and Bm ≥ L, then

Ã(m)
nm (|fδ − TBmy|2 − |Φ(Bm) − TBmy|2)− Ã(m)

nm (|fδ − y|2 − |Φ− y|2)

≤ Ã(m)
nm (|TBmy − y|(2|fδ|+ 2|y|) + (|TBmy − y|+ |Φ(Bm) − Φ|)(|Φ(Bm)|+ |Φ|+ 2|y|))

≤ Ã(m)
nm

(
|TLy − y|(|2fδ|+ |2y|) + (|TLy − y|+ Φlar(L))(2Φabs + 2|y|)

)
,

and therefore, by the Law of Large Numbers, Hölder’s inequality, and Jensen’s inequality, there exists
a constant C not depending of L such that

lim sup
m
Ã(m)
nm (|fδ − TBmy|2 − |Φ(Bm) − TBmy|2)− Ã(m)

nm (|fδ − y|2 − |Φ− y|2)

≤ C((E
[
|TLY − Y |2

]
)1/2 + (E

[
(Φlar(L)(X))2

]
)1/2) ≤2C(E

[
|Y |21|Y |>L

]
)1/2,

P−a.s. From here, (3.53) follows by letting L→∞.

A Expectation estimate from exponential tail-bound

Our aim is to estimate E [Z], when Z is a scalar r.v., from an exponential tail inequality on the distri-
bution of Z.

Lemma A.1. Let Z be an integrable real random variable such that for some constants (a, b, t0) ∈
(0,∞)× (0,∞)× [0,∞) the estimate

P (Z ≥ t) ≤ a exp(−bt)

holds for every t ≥ t0. Then

E [Z] ≤ (t0 +
a

b
exp(−bt0))1[a<exp(bt0)] +

1

b
(1 + log a)1[a≥exp(bt0)].

Proof. For every t ≥ t0

E [Z] ≤ E [Z1Z≥0] =

∫ ∞
0

P
(
Z ≥ t′

)
dt′ ≤ t+ a

∫ ∞
t

exp(−bt′) dt′ = t+
a

b
exp(−bt).

The conclusion follows from this via an elementary minimization argument.
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