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On XPath with Reflexive-Transitive Axes
and Data Tests

DIEGO FIGUEIRA

CNRS, LaBRI, Université de Bordeaux

1. INTRODUCTION

The simplest way of abstracting an XML document is by seeing it as a tree over a
finite alphabet of tags or labels. However, this abstraction ignores all actual data
stored in the document attributes. This is why there has been an increasing interest
in data trees: trees that also carry data from an infinite domain. Here, we model
an XML document as an unranked ordered finite tree whose every node contains a
label, and a vector of data values, one for each attribute. Labels belong to some
finite alphabet, and data values to some infinite domain. We call these models
multi-attribute data trees (see Figure 1). We study logics on these models, that can
express data properties, namely equality of attributes’ data values.

Here, we show decidability of the satisfiability problem for XPath where naviga-
tion can be done going downwards, rightwards or leftwards in the XML document,
that is, where navigation is done using the reflexive-transitive XPath axes descend-
ant-or-self, following-sibling-or-self, and preceding-sibling-or-self.

Formalisms for trees with data values

Several formalisms have been studied lately in relation to static analysis on trees
with data values.

First-order logic. One such formalism is FO2(<h, succh, <v, succv,∼), first or-
der logic with two variables, and binary relations to navigate the tree: the de-
scendant <v, child succv, next sibling succh and following sibling <h (i.e., the
transitive closure of succh); and an equivalence relation ∼ to express that two
nodes of the trees have the same data value. Although the decidability status
for the satisfiability problem of this logic is unknown, it is known to be as hard
as the reachability problem for BVASS (Branching Vector Addition System with
States) [Bojańczyk et al. 2009]. If the signature has only the child and next sibling
relation—FO2(succh, succv,∼)—the logic is decidable in 3NExpTime as shown in
[Bojańczyk et al. 2009]. In [Tan 2012] a decidable automaton model that captures
(an extension of) this logic is introduced.

Automata. There have also been works on automata models for trees with data.
Tree automata with registers to store and compare data values were studied in
[Kaminski and Tan 2008] as an extension to a similar model on words [Kaminski and
Francez 1994; Neven et al. 2004]. A decidable alternating version of these automata
called ATRA was studied in [Jurdziński and Lazić 2011], and it was extended

This is an extended and revisited version of the paper [Figueira 2013].
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in [Figueira 2012a] to show decidability of the satisfiability problem for forward-
XPath. The work [Bojańczyk and Lasota 2010] introduces a simple yet powerful
automata model called Class Automata on data trees that can capture FO2(<h
, succh, <v, succv,∼), XPath, ATRA, and other models. Although its emptiness
problem is undecidable, classes of data trees for which it is decidable are studied in
[Bárány et al. 2012]. Other formalisms include tree automata with set and linear
constraints on cardinalities of sets of data values [David et al. 2012; Tan 2012].

XPath. Here we concentrate on XPath, which is incomparable in terms of expres-
siveness with all the previously mentioned formalisms (except for Class Automata).

XPath is arguably the most widely used XML query language. It is implemented
in XSLT and XQuery and it is used as a constituent part of several specification and
update languages. XPath is fundamentally a general purpose language for address-
ing, searching, and matching pieces of an XML document. It is an open standard
and constitutes a World Wide Web Consortium (W3C) Recommendation [Clark
and DeRose 1999].

Query containment and query equivalence are important static analysis problems,
which are useful to, for example, query optimization tasks. In logics closed under
boolean operators—as the one treated here—, these problems reduce to checking
for satisfiability : Is there a document on which a given query has a non-empty re-
sult? By answering this question we can decide at compile time whether the query
contains a contradiction and thus the computation of the query (or subquery) on
the document can be avoided. Or, by answering the query equivalence problem, one
can test if a query can be safely replaced by another one which is more optimized in
some sense (e.g., in the use of some resource). Moreover, the satisfiability problem
is crucial for applications on security [Fan et al. 2004], type checking transforma-
tions [Martens and Neven 2007], and consistency of XML specifications.

Core-XPath (term coined in [Gottlob et al. 2005]) is the fragment of XPath 1.0
that captures all the navigational behavior of XPath. It has been well studied and
its satisfiability problem is known to be decidable even in the presence of DTDs.
The extension of this language with the possibility to make equality and inequality
tests between attributes of elements in the XML document is named Core-Data-
XPath in [Bojańczyk et al. 2009].

In a nutshell, the important formulas of Core-Data-XPath (henceforth XPath) are
of the form

〈α@i = β@j〉,
where α, β are path expressions, that navigate the tree using axes: descendant,
child, ancestor, next-sibling, etc. and can make tests in intermediary nodes. Such
a formula is true at a node x of a multi-attribute data tree if there are two nodes
y, z in the tree that can be reached with the relations denoted by α, β respectively,
so that the ith attribute of y carries the same datum as the jth attribute of z.

Unfortunately, the satisfiability problem for XPath is undecidable [Geerts and
Fan 2005]. How can we regain decidability for satisfiability of XPath then? We can
restrict the models, or restrict the logic. The first possibility is to restrict the classes
of documents in which one is interested, which is the approach taken in [Bárány
et al. 2012]. Another, more studied, approach is to restrict the syntax, which is
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the one taken here. One way to regain decidability is to syntactically restrict the
amount of nodes that the XPath properties can talk about. In this vein, there have
been studies on fragments without negation or without transitive axes [Benedikt
et al. 2008; Geerts and Fan 2005]. These fragments enjoy a small model property
and are decidable. However, they cannot state global properties, involving all the
nodes in an XML document. Ideally, we seek fragments with the following desirable
features

—closed under boolean operators,

—having as much freedom as possible to navigate the tree in many directions: up,
down, left, right,

—having the possibility to reach any node of the tree, with transitive axes, like
descendant, following sibling (the transitive closure of the next sibling axis), etc.

However, decidability results are scarce, and most fragments with the characteristics
just described are undecidable. There are, however, some exceptions.

—The downward fragment of XPath, containing the child and descendant axes, is
decidable, ExpTime-complete [Figueira 2012b].

—The forward fragment of XPath, extending the downward fragment with the next
sibling and the following sibling axes, is decidable with non-primitive recursive
complexity [Figueira 2012a].

—The vertical fragment of XPath, extending the downward fragment with the
parent and ancestor axes, is decidable with non-primitive recursive complexity
[Figueira and Segoufin 2011].

—A last example is the present work: XPath with the reflexive transitive closure
of the child, next-sibling and previous-sibling relations is decidable.

All the non-primitive recursive (NPR) upper bounds of the forward and vertical
fragments are also matched with NPR lower bounds. That is, there is no primitive
recursive function that bounds the time or space needed by any algorithm that
computes the satisfiability for any of these two logics. Moreover, it is known that
any fragment of XPath containing a transitive rightward, leftward or upward axis
has a satisfiability problem which is either undecidable or decidable with a NPR
lower bound [Figueira and Segoufin 2009].1 Further, as soon as we have both
the rightward and leftward transitive axes, the satisfiability becomes undecidable
[Figueira and Segoufin 2009]. (Indeed, the downward fragment of XPath seemed to
be the only one with elementary complexity up to now.)

The aforementioned hardness results make use of non-reflexive transitive rela-
tions. Surprisingly, the reductions do not seem to work when the relations are
also reflexive. What is then the decidability status of the fragments of XPath with
reflexive-transitive relations? This was a question raised in [Figueira and Segoufin
2009].

A partial answer to this question was given in [Figueira 2011]. There, it was
shown that XPath restricted to data words is decidable in 2ExpSpace even when

1These are the axes that are called preceding-sibling, following-sibling and ancestor in the
XPath jargon.
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we have both a reflexive-transitive future and past relations. (One can think of
data words as XML documents of height 1, with only one attribute per node.) This
result may seem surprising taking into account that if one of these relations is non-
reflexive it is no longer decidable; and if we have only one non-reflexive transitive
relation it is decidable with non-primitive recursive complexity. In [Figueira 2011]
it was shown that the satisfiability problem is in 2ExpSpace, or ExpSpace if we
adopt a certain normal form of the formulas. This was a first part in our study of
the computational behavior of XPath with reflexive-transitive axes. The present
work corresponds to the second part, in which we study XPath on XML documents
(i.e., trees) instead of words.

Contribution

We show decidability of the satisfiability for XPath with data equality tests be-
tween attributes, where navigation can be done going downwards, rightwards or
leftwards in the XML document. The navigation can only be done by reflexive-
transitive relations. These correspond to the XPath axes: preceding-sibling-or-self,
following-sibling-or-self, and descendant-or-self axes.2 Here we denote these axes with
∗←, →∗ and ↓∗ respectively. As already mentioned, the fact that the relations are
reflexive-transitive (as opposed to just transitive) is an essential feature to achieve
decidability. Given the known complexity results on XPath, this fragment seems
to be in balance between navigation and complexity. This work then argues in
favor of studying XPath-like logics for trees with data with reflexive-transitive re-
lations, since they may behave computationally much better than the non-reflexive
counterpart, as evidenced here.

The extension of the prior work [Figueira 2011] on data words to work with trees
with a descendant axis is not trivial, requiring an altogether different formalism
and algorithm strategy. Whereas in [Figueira 2011] the main object of study is
a transition system—which comes naturally when working with words—this does
not adapt well to working with trees. Instead, here we work with an algebra op-
erating on abstractions of forests of multi-attribute data trees. Over this algebra,
we prove some monotonicity properties, which are necessarily more involved than
those used in [Figueira 2011] to account for the interplay between horizontal and
vertical navigation of the logic.

Our algorithm yields a 3ExpSpace upper bound for the satisfiability problem
of this XPath fragment. We also show that this can be lowered to 2ExpSpace
if we work with an expressive-equivalent normal form, called direct normal form.
Since XPath with just one reflexive-transitive relation is already ExpSpace-hard
(even when the formula is in direct normal form) by [Figueira 2011], a gap remains
between the ExpSpace lower bound and the 2ExpSpace upper bound.

2. PRELIMINARIES

Basic notation. Let N0
def
= {0, 1, 2, . . . }, N def

= {1, 2, 3, . . . }, and let [n]
def
=

{1, . . . , n} for any n ∈ N. We fix once and for all D to be any infinite domain

2Strictly speaking, these axes do not exist in XPath [Clark and DeRose 1999]. They
must be interpreted as the reflexive version of the preceding-sibling, following-sibling and
descendant axes respectively.
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of data values; for simplicity in our examples we will consider D = N0. In general
we use the symbols A, B for finite alphabets, and the symbols E and F for any
kind of alphabet. By E∗ we denote the set of finite sequences over E, by E+ the
set of finite sequences over E with at least one element. We write ‘ε’ for the empty
sequence and ‘·’ as the concatenation operator between sequences. By Ek (with
k ∈ N) we denote the k-tuples of elements of E, and for ā ∈ Ek we write ā(i) (with
1 ≤ i ≤ k) to denote the i-th component of ā. By |S| we denote the length of S (if
S is a finite sequence), or its cardinality (if S is a set). We use (ai)i∈{j,...,j+n} as
short form for ajaj+1 · · · aj+n.

Unranked finite trees with data. By Trees(E) we denote the set of finite ordered
and unranked trees over an alphabet E. We view each position in a tree as an
element of N∗. Formally, we define POS ⊆ 2N

∗
as the set of sets of finite tree

positions, such that: X ∈ POS iff (a) X ⊆ N∗, |X| < ∞; (b) X is prefix-closed;
and (c) if n·(i+ 1) ∈ X for i ∈ N, then n·i ∈ X. A tree is then a mapping from a

set of positions to labels of the alphabet Trees(E)
def
= {t : P → E | P ∈ POS}. The

root’s position is the empty string ε. The position of any other node in the tree is
the concatenation of the position of its parent and the node’s index in the ordered
list of siblings.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of t, which consists of the
set of positions of the tree. From now on, we informally refer by ‘node’ to a position
x together with the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that pos(t1) = pos(t2) = P ,

we define t1 ⊗ t2 : P → (E×F) as (t1 ⊗ t2)(x)
def
= (t1(x), t2(x)).

The set of multi-attribute data trees over a finite alphabet A of labels, k
different attributes, and an infinite domain D is defined as Trees(A×Dk). Note
that every tree t ∈ Trees(A×Dk) can be decomposed into two trees a ∈ Trees(A)
and d ∈ Trees(Dk) such that t = a ⊗ d. Figure 1 shows an example of a multi-
attribute data tree. The notation for the set of data values used in a data tree is
data(a⊗ d)

def
= {d(x)(i) | x ∈ pos(d), i ∈ [k]}. With an abuse of notation we write

data(X) to denote all the elements of D contained in X, for whatever object X
may be.

A forest is a sequence of trees, and the set of multi-attribute data forests
over A and k is (Trees(A×Dk))∗. We will normally use the t to denote multi-
attribute data trees and t̄ to denote forests of multi-attribute data trees. That is,
t̄ ∈ (Trees(A×Dk))∗. (Note that in particular t̄ can be an empty forest.) For any
(a, d̄) ∈ A×Dk, we write (a, d̄)t̄ for the multi-attribute data tree that results from
adding (a, d̄) as a root of t̄. We use t (resp. t̄) to denote trees (resp. forests) over a
finite alphabet.

XPath. Next we define transitive XPath, the fragment of XPath where all axes
are reflexive and transitive.

Transitive XPath is a two-sorted language, with path expressions (that we write
α, β, γ, δ) and node expressions (that we write ϕ,ψ, η). Path expressions denote
binary relations, resulting from composing the descendant, ancestor, preceding sib-
ling and following sibling relations (which are denoted respectively by ↓∗, ↑∗, ∗←,
→∗ respectively), and node expressions. Node expressions are boolean formulas
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Fig. 1. A multi-attribute data tree, where A = {a, b, c} and k = 2.

that test a property of a node. For example, they can test that the node has
a certain label, or that it has a descendant labeled a with the same data value
in attribute 1 as the attribute 2 of an ancestor labeled b, which is expressed by
〈↓∗[a]@1 = ↑∗[b]@2〉. As another example, we can select the nodes that have a
sibling labeled a to the left whose first attribute is the same as the second attribute
of some descendant of a right sibling by the formula φ = 〈∗←[a]@1 = →∗↓∗@2〉. A
formula of XPath(↓∗, ↑∗,→∗, ∗←,=) is either a node expression or a path expression
of the logic. Its syntax and semantics are defined in Figure 2. Given a tree t as
in Figure 1, we have [[φ]]t = {ε, 2, 3, 4, 5, 311}. We write XPath(↓∗, ↑∗,→∗, ∗←,=)
to denote this logic, and we write XPath(O,=) for some O ⊆ {↓∗, ↑∗,→∗, ∗←}, to
denote the logic containing only the axes in O.

We write t, x |= ϕ (resp. t, (x, y) |= α) for x ∈ pos(t) (resp. x, y ∈ pos(t)) as short
form for x ∈ [[ϕ]]t (resp. (x, y) ∈ [[α]]t). We write t |= ϕ as short form for ε ∈ [[ϕ]]t.

In the case of XPath(∗←, ↓∗,→∗,=), we also extend the evaluation to multi-
attribute data forests. Let (a, d̄) be an arbitrary fix element of A × Dk. Given a
forest t̄ and x, y ∈ pos((a, d̄)t̄), x, y 6= ε, we define the satisfaction relation |=, as
t̄, x |= ϕ (resp. t̄, (x, y) |= α) if (a, d̄)t̄, x |= ϕ (resp. (a, d̄)t̄, (x, y) |= α). (Note that
since XPath(∗←, ↓∗,→∗,=) has no ascending axes, whether t̄, x |= ϕ or not does
not depend on (a, d̄), we use it as a simple way of defining its semantics.)

The satisfiability problem for XPath(O,=) (henceforth SAT-XPath(O,=)) is
the problem of, given a formula ϕ of XPath(O,=), wether there exists a multi-
attribute data tree t such that t |= ϕ.

3. PROOF SKETCH

The main contribution of this paper is the following.

Theorem 3.1. SAT-XPath(∗←, ↓∗,→∗,=) is decidable in 3ExpSpace.

We reduce the problem of whether a formula ϕ of our logic XPath(∗←, ↓∗,→∗,=)
is satisfiable, to the problem of whether one can obtain an element with a certain
property by repeated applications of operations in some algebra, starting from a
basic set of elements. We call it the derivation problem. First we introduce the
algebra (Section 4), we then solve the derivation problem (Section 5) and finally
we show the reduction from the logic into the derivation problem (Section 6).
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α, β ::= o | [ϕ] | αβ o ∈ {ε, ↓∗, ↑∗,→∗, ∗←},
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α@i = β@j〉 | 〈α@i 6= β@j〉

a ∈ A, i, j ∈ [k].

[[↓∗]]t = {(x, x·i) | x·i ∈ pos(t)}∗

[[↑∗]]t = {(x·i, x) | x·i ∈ pos(t)}∗

[[→∗]]t = {(x·i, x·(i+ 1)) | x·i, x·(i+ 1) ∈ pos(t)}∗

[[∗←]]t = {(x·(i+ 1), x·i) | x·i, x·(i+ 1) ∈ pos(t)}∗

[[ε]]t = {(x, x) | x ∈ pos(t)}
[[αβ]]t = {(x, z) | there exists y such that (x, y) ∈ [[α]]t, (y, z) ∈ [[β]]t}
[[[ϕ]]]t = {(x, x) ∈| x ∈ pos(t), x ∈ [[ϕ]]t}

[[a]]t = {x ∈ pos(t) | a(x) = a}
[[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}
[[¬ϕ]]t = pos(t) \ [[ϕ]]t

[[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[ϕ ∨ ψ]]t = [[ϕ]]t ∪ [[ψ]]t

[[〈α@i=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t,d(y)(i) = d(z)(j)}
[[〈α@i 6=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t,d(y)(i) 6= d(z)(j)}

Fig. 2. The syntax of transitive XPath; and its semantics for a multi-attribute data
tree t = a⊗ d.
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1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e

We define abstractions of forests of multi-attribute trees.
These are called forest profiles. They are the main object

of this paper. One must think of a forest profile as the
description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via expressions of non-
ascending XPath. Some ways of reaching the data value may
lie inside the forest, and some outside the forest. Take for
instance the forest in the middle of Figure 2. For every forest
there we identify 4 nodes: the leftmost root, the rightmost
root, the node to the left of the leftmost root (if any), and the
node to the right of the rightmost root (if any). These are
the nodes identified by xi, xe, yi, ye in the figure. The profile
of this forest is represented by all the paths that can reach 4,
all that can reach 2, etc. Take as an example the data value
5. This data value can be reached by →∗[a]@1 from ye, or
by ∗←[b]↓∗[a]@1 from yi, ro by →∗[a]→∗[b]↓∗[a]@1 from xi,
etc. The idea is that we limit ourselves that whenever there
are paths departing from xi or yi they must be inside the
forest, whenever there are paths from xe or ye they must be
outside the forest.

Let A be a finite alphabet of letters, let Aroot ⊆ A be
the set of root letters, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpre-
tation assigning true to a, and false to every other b ∈ A,
satisfies ψ. Let k be a fixed natural number, it is the num-
ber of attributes at each node. We say that i ∈ [k] is an
attribute index. We define the set of patterns, as any fi-
nite, subword-closed, reversal-closed, subset of (B(A))∗, and
we denote it by P. We generally use the symbols α, β, γ ∈ P
to denote patterns. For every letter a ∈ A we define the fol-
lowing set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. We define the set of composed patterns
as

Π
def
= (P \ {ε})× P × [k],

the intended meaning is that the first component operates
on the sibligns, the second on a downward path, and the
third retrieves a data value from an attribute index.

A forest profile f is a tuple

f
def
= (χ

↓e, χ
↓i, χ
↓ i, χ

↓e, R)

where R ⊆ D, and we call it the set of rigid values of f,
and χ

↓e, χ
↓i, χ
↓ i, χ

↓e ⊆ D × Π, and we call them the set of
left/right exterior/interior descriptions respectively. We
use χ̄ to denote the quadruple (χ

↓e, χ
↓i, χ
↓ i, χ

↓e). For every
χ ∈ {χ↓e, χ↓i, χ↓ i, χ↓e}, we define

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) �= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f.
We say that a forest profile f = (χ̄, R) is valid if every

d so that χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some
(α, β, i) ∈ Π, is in R. We define F as the set of all valid
profiles.

The set of root patterns of a forest profile f, denoted by
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Fig. 3. A multi-attribute data forest, with its left and right forests.

We first introduce forest profiles in Section 4, which constitute the algebra do-
main. A forest profile is an abstraction of a multi-attribute data forest inside a
context, where the context consists of the two (possibly empty) forests that are to
the left and to the right. Figure 3 depicts one such possible forest, together with
the left and right context forests. Intuitively, the forest profile consists of all the
path expressions that can reach a data value d, for every d ∈ D. That is, assuming
D = {d1, d2, . . . }, the forest profile can be thought of an infinite vector whose i-th
component contains the set of all path expressions α so that there is some node y
reached through α from a root to y, sot that y carries the data value di. Note that
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there are two sources of infinity here: the dimension of the vector, and the sets
of path expressions. However, since we are working with finite trees, only finitely
many components will have a set different from ∅. On the other hand, we will limit
ourselves to path expressions from a finite set (i.e., basically the set of subexpres-
sions of the formula φ we want to satify). We assume these path expressions to have
a very simple navigation: they go first to the right and then down (a navigation to
which we will refer with the symbol ‘ ↓’), or first left and then down (‘ ↓ ’).

More concretely, a forest profile contains, for each data value d and each path
expression of interest, the information of whether d can be reached by the path
expression, and where it can be reached, either

—inside the main forest, starting from the leftmost root by going first right and
then down (the node x

↓i in Figure 3, where i stands for ‘internal’ to the abstracted
forest),

—inside the main forest but starting with the rightmost root by going first left and
then down (the node x

↓ i in Figure 3),

—in the left context forest by going first left and then down (starting from the node
x
↓e in Figure 3, where e stands for ‘external’ to the abstracted forest), or

—in the right context forest by going first right and then down (starting from the
node x

↓e in Figure 3).

In this setting, path expressions are called patterns and their navigation is greatly
simplified. As already mentioned, patterns can go first to the left, and then down, or
first to the right and then down (or only down, only left, only right). Furthermore,
node expressions contained in patterns are simple boolean combinations of tests for
labels (i.e., no nesting is of path expressions is allowed). They correspond to path
expressions3 like, for example, →∗[a]→∗[b]↓∗[c]↓∗[a ∨ b]@1, or ∗←[¬a]↓∗[a]@2.

A forest profile also keeps track of a set of important data values called the
rigid values. These are data values that play a determined function in the forest
containing the abstracted forest (i.e., in the concatenation of the left, main and
right forests). Intuitively, a data value is rigid in a forest if it can be pinpointed by
a path expression, in the sense that it is the only data value that can be reached
with some pattern expression α from a root of the forest. For example, if our finite
set of patterns is {→∗↓∗[c]@2, ↓∗[a]@2}, then in the example of Figure 3, we have
that 8, 5, 3 are rigid values since they are the only values reachable through ↓∗[a]@2

from the second, third and fourth roots respectively (counting from left to right);
we also have that 4 is a rigid value since it is the only data value reachable through
→∗↓∗[c]@2 from the fifth root. However, 7 is not a rigid value, because although it
can be reached through →∗↓∗[c]@2 from the first root, other data values (namely 3
and 4) can also be reached from that root with the same pattern. At this level of
detail, we just mention that some special care must be taken for these rigid data
values.

We equip the set of forest profiles with two operations, one that corresponds
to concatenating two of the forests being abstracted, and another operation that

3Note that, strictly speaking, these are not path expressions since they have a “@i” at the end.

Later on, in §6, we will call expressions of this simple form to be direct unnested.
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corresponds to adding a root to the forest, converting it into a tree. This algebra
is introduced in Section 4.2. In particular, the root operation is restricted to work
only with forest profiles that are from a certain set of consistent profiles. Consistent
profiles will play an important role in the reduction from the logic to the algebra.
The idea is that they are those profiles that are not in contradiction with the formula
ϕ to test for satisfiability, and therefore that could abstract subforests of a model
of ϕ.

A root profile, is a profile that comes from the application of the root operation
with a certain label of a certain alphabet Aroot of root labels. An empty profile is
the profile corresponding to the empty forest with an empty context. In Section 5
we define the derivation problem for forest profiles as the problem of whether there
is a way of obtaining a root profile from the empty profile by repeated applications
of the algebra operations.

We show that the derivation problem is decidable in 2ExpSpace in Section 5. We
first define a quasi-ordering on profiles in Section 5.2, this ordering will be of chief
importance in our decidability result. We show a series of monotonicity properties
that show that the set of derivable profiles is upward-closed. The purpose of the
quasi-ordering is to reduce the derivation problem on the infinite set of forest profiles
into a problem on a finite set of minimal profiles. The fact that the derivable profiles
is upward-closed is indeed a key ingredient for this reduction to work.

However, one problem we need to face is that the ordering has infinite antichains:
every two profiles with different set of rigid values are incomparable. We tackle this
in Section 5.4, where we show that we can bound the set of rigid values, obtaining
an equivalent derivation problem on profiles with a small set of rigid values. Once
we obtain this bound, the set of minimal profiles becomes finite, doubly exponential.
Next, in Section 5.5 we show that, thanks to the monotonicity properties enjoyed
by the algebra, we can work only with minimal elements. Finally, in Section 5.6
we give the concrete saturation-style algorithm that solves the derivation problem
using doubly exponential space.

In Section 6 we show that the satisfiability problem for XPath(∗←, ↓∗,→∗,=) can
be reduced to the derivation problem in ExpSpace. In Section 6.1 we show a normal
form, called direct unnested normal form, where direct unnested path expressions
correspond, precisely, to the pattern expressions used in the forest profiles (basically
all path expressions are of the form already described). We then show in Section 6.2
that one can reduce, in ExpSpace, the satisfiability problem for formulas in this
normal form into the derivation problem, and therefore we obtain a 3ExpSpace
decidability procedure for SAT-XPath(∗←, ↓∗,→∗,=), proving Theorem 3.1.

4. FOREST PROFILES

We define abstractions of forests of multi-attribute data trees. These are called
forest profiles. They are the main construct in our solution. One must think of
a forest profile as the description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via path expressions of XPath(∗←, ↓∗,→∗,=).
Some ways of reaching the data value may lie inside the forest being abstracted,
and some outside the forest. For every forest we identify 4 nodes: the leftmost
root, the rightmost root, the node to the left of the leftmost root (if any), and the



10 · Diego Figueira

node to the right of the rightmost root (if any). Take for instance the forest in the
middle of Figure 3. These are the nodes identified by x

↓i, x
↓ i, x
↓e, x

↓e respectively in
the figure. The profile of this forest is represented by all the paths that can reach
the data value 4 (i.e., so that there is a node reached through the path with data
value 4), all those that can reach 2, etc. Take as an example the data value 5; this
data value can be reached by

(path 1 ) →∗[a]@1 from x
↓e,

(path 2 ) ∗←[b]↓∗[a]@1 from x
↓ i,

(path 3 ) →∗[a]→∗[b]↓∗[c]@1 from x
↓i, etc.

Remember that expressions are evaluated in a forest and, for example, an expression
starting with →∗ denotes the possibility to move forward in the sequence of tree
roots of the forest. The idea is that we limit ourselves that whenever there are
paths departing from x

↓i or x
↓ i they must be internal to the forest (i.e., internal to

the gray forest in Figure 3), like the examples (path 2 ) and (path 3 ); and whenever
there are paths from x

↓e or x
↓e they must be external to the forest (i.e., either in

the forest depicted to the left or to the right of the gray forest in Figure 3), like the
example (path 1 ). Thus, in the notation we use, the i in x

↓i, x
↓ i stands for the fact

that the nodes are internal to the forest, and the e in x
↓e, x

↓e stands for the fact
that the nodes are external. Further, the ↓ notation of x

↓i, x
↓e stands for being

the reference nodes from which to consider paths going right and down, or right,
or down; whereas the ↓ notation of x

↓ i, x
↓e are the nodes from which we consider

the paths going left and down, or left, or down. This symbology will be used in the
sequel.

Let A be a finite alphabet of labels, let Aroot ⊆ A be the set of root labels
(containing the labels that the roots can have), and let D be an infinite domain of
data values. The set B(A) is the boolean closure of tests for labels from A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpretation assigning true to a,
and false to every other b ∈ A, satisfies ψ. Let k ∈ N be a fixed natural number,
corresponding to the number of attributes at each node. We say that i ∈ [k] is
an attribute index. Let P be a finite, subword-closed, subset of (B(A))∗. We
call P the set of patterns. We generally use the symbols α, β, γ, δ ∈ P to denote
patterns. For every label a ∈ A we define the following set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. For example, if P = {ε,¬b, b, c ∨ a, c, (¬b)·b, (¬b)·(c ∨ a)} then
σa = {ε,¬b, c ∨ a, (¬b)·(c ∨ a)}. The set of composed patterns is

Π
def
= (P \ {ε})× P × [k].

The intended meaning is that the first component operates on the siblings, the
second on a downward path, and the third retrieves a data value from an attribute
index. We will sometimes use the symbol ᾱ to represent elements from Π, or (α, β, i)
if we need to make explicit the components of the composed pattern. A composed
pattern (ψ1 · · ·ψk, ψ′1 · · ·ψ′t, i) abstracts the path expression

→∗[ψ1]→∗ · · ·→∗[ψk]↓∗[ψ′1]↓∗ · · · ↓∗[ψ′t]@i or ( ↓)
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∗←[ψ1]∗←· · · ∗←[ψk]↓∗[ψ′1]↓∗ · · · ↓∗[ψ′t]@i ( ↓ )

depending on the context. The idea is that through a composed pattern like, for
example, (a·(¬a)·b, (c ∨ a), 2) we can reach to the right (i.e., via the interpretation
( ↓)) the data value 3 from the node x

↓i in the forest of Figure 3. Also, note
that from a node x labeled a, we can reach x’s attribute i through any (α, β, i) ∈
σa × σa × [k] (independently of going left or right).

A forest profile f is a tuple

f = (χ
↓e, χ

↓i, χ
↓ i, χ

↓e, R)

where R ⊆ D, and we call it the set of rigid values of f, and χ
↓e, χ

↓i, χ
↓ i, χ

↓e ⊆ D×Π,
and we call them the set of left/right external/internal descriptions respectively.
Composed patterns in χ

↓e, χ
↓ i can be thought of as path expressions according to

( ↓ ), and composed patterns in χ
↓e, χ

↓i as path expressions according to ( ↓). In
the previous example (on page 10), one shall interpret (path 1 ) as the fact that
(5, a, ε, 1) ∈ χ

↓e, (path 2 ) as (5, b, a, 1) ∈ χ
↓ i and (path 3 ) as (5, a·b, c, 1) ∈ χ

↓i. We
use χ to denote a subset of D×Π; and we write χ̄ (resp. χ̄i) to denote the 4-tuple
(χ
↓e, χ

↓i, χ
↓ i, χ

↓e) (resp. (χ
↓e
i , χ
↓i
i , χ
↓ i
i, χ
↓e
i )). Likewise, we use f (resp. fi) to denote

(χ̄, R) (resp. (χ̄i, Ri)).
We define, for every χ, χ

↓e, χ
↓i, χ
↓ i, χ

↓e ⊆ D×Π, d ∈ D, α, β ∈ P and i ∈ [k],

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ},

χ(α, β, i)
def
= {d ∈ D | (d, α, β, i) ∈ χ}, and

(χ
↓e, χ

↓i, χ
↓ i, χ

↓e)(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) 6= (∅, ∅, ∅, ∅)}. We call data(f) \ R the

set of flexible values of f. We use the symbol π̄ to denote (π
↓e, π

↓i, π
↓ i, π

↓e) where
π
↓e, π

↓i, π
↓ i, π

↓e ⊆ Π. We further say that π̄ is the description of d ∈ D in f if
χ̄(d) = π̄.

4.1 Rigid and flexible values

In a forest satisfying some XPath formula, different data values have different roles.
We distinguish here two categories of data values: rigid and flexible. Rigid data
values are important for the satisfaction of the formula and special care is needed
to treat these, whereas flexible values are not crucial, and they can be sometimes
removed from the tree. Let us give some more precise intuition. We use the logic
XPath to make this intuition clear, but we will then state the definitions in terms
of forest profiles.

Given a multi-attribute data forest t̄ and i ∈ N where t̄, i |= ϕ, suppose there is a
data value d such that: there is some position 1 ≤ j ≤ |t̄| and some path expression
α inside ϕ of the form α =→∗ β@k or α = ∗←β@k so that d is the only data value
that can be reached through α from the j-th root of the forest. When there is such
a d we call it a rigid value for j, since the logic can identify it and pinpoint it from
the rest of the data values. If d is rigid for at least one position j ∈ {1, . . . , |t̄|}
we say that d is rigid for t̄. All the remaining data values d of t̄ (which are the
flexible values) have the property that for any path α and position j, if d is
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reachable from position j through α, then there is also some other flexible value d′

that is also reachabe from j through α. Therefore, the logic cannot tell these data
values apart. In particular, assuming t̄ is a forest satisfying ϕ and containing d as
a flexible value, consider t̄′ as the result of replacing, for some fresh data value d′,
every tree t′′ of t̄ with the forest t′′·(t′′[d 7→ d′]), where t′′[d 7→ d′] is the result of
replacing the data value d with d′ in t′′, and leaving all the structures and labels
as they were. Indeed, t̄′ will continue to satisfy ϕ; but this is not necessarily true
if d was a rigid value. The idea is that since the logic can only test whether there
are 0, 1 or more than one data values reachable by some path expression, whether
there are n > 1 data values reachable (as in t̄) or n + 1 makes no difference at
all. This is why t̄′ still satisfies ϕ. The same notions hold for our algebra on forest
profiles. The fact that if t̄ verifies a property of our logic then so does t̄′ is a key
property that we need to exploit; hence, we need to make explicit the set of rigid
values of any given profile. We formalize this by defining an ordering on profiles
corresponding to the operation just described, so that the forest profile abstracting
t̄′ is bigger than the profile abstracting t̄. We make explicit (in Lemma 5.5) the
aforementioned argument as a monotonicity property of the algebra.

We say that a forest profile f = (χ̄, R) is valid if R contains all d ∈ D so that
χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some (α, β, i) ∈ Π. Note that R may
contain more data values than those that are accessible only through one pattern.
Intuitively, this is because there could be other rigid values that are manifested as
such in the profiles corresponding to other positions of the data forest we will be
trying to build. We define F as the set of all valid profiles.

4.2 Algebra

We equip F with two operations. The idea is that these operations correspond to
the concatenation of two forests, and to the addition of a root to a forest (called
rooting), turning it into a tree.

Preliminaries. The set of root patterns of a forest profile f, denoted by [f]→, →[f] ⊆
P is defined as follows

[f]→ def
= {α | (d, α, β, i) ∈ χ

↓i for some d, β, i},
→[f]
def
= {α | (d, α, β, i) ∈ χ

↓ i for some d, β, i}.
The idea is that [f]→ has all the patterns that “go through f”, in the sense that
verify the labels of the roots of the forest abstracted by f. For example, if f ab-
stracts the forest of Figure 3 and if P = {a, b, a·a, a·b, b·b, b·a}, then [f]→ will contain
a, b, a·b, b·b, a·a, but it will certainly not have b·a.

Given P ⊆ P and χ ⊆ D× Π, we define the extension of χ by P , denoted by
P ·χ, as the set

P ·χ def
= χ ∪ {(d, α′ · α, β, i) ∈ D×Π | (d, α, β, i) ∈ χ, α′ ∈ P}

It is easy to see that the extension operation distributes over union.

Lemma 4.1 (distributivity of (·,∪)). For every P, P ′ ⊆ P and χ, χ′ ⊆ D×Π

(1 ) P ·(χ ∪ χ′) = P ·χ ∪ P ·χ′,
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(2 ) (P ∪ P ′)·χ = P ·χ ∪ P ′·χ.

We defer the proof of this lemma to the Appendix.

Fingerprints. We now define the fingerprint of a forest profile. It contains a
summary information, sufficient to decide whether the tree abstracted by the profile
satisfies a formula of XPath—as we show in Section 6.

Let A = { ◦↓ , ◦↓, ◦↓, ◦}. Given a profile f = (χ
↓e, χ

↓i, χ
↓ i, χ

↓e, R) ∈ F and z ∈ A,
we define the set f.χz as

—χ
↓ i ∪ →[f]·χ↓e if z = ◦↓ ,

—χ
↓i ∪ [f]→·χ↓e if z = ◦↓,

—{(d, α′, β, i) ∈ D×Π | ∃α.(d, α, β, i) ∈ χ
↓ i ∪ χ↓i} if z = ◦↓, or

—{(d, α, β, i) ∈ χ
↓i ∪ χ↓ i | β = ε} if z = ◦.

Note that f.χz(α, β, i) is independent of α when z = ◦↓, but it takes an element of
Π as argument for the sake of uniformity of notation. The idea here is that f.χ◦↓
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here α′ should be disregarded, the only part of the
path important is β, i); f.χ◦ contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.χ ◦↓ the data values that can be found going right and down from
the first root of the forest (i.e., the node x

↓i in Figure 3), which can be inside the
forest or in the right context forest; and f.χ ◦↓ the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

↓ i in Figure 3).
The fingerprint of a profile f, noted ξ(f), is an element of

F def
= (Π×A ∪ Π×A×Π×A)→ {0, 1, 1+, 2+},

where for ᾱ, ᾱ′ ∈ Π, z, z′ ∈ A, we define ξ(f)(ᾱ, z, ᾱ′, z′) as 0 or 1+ depending on
whether |f.χz(ᾱ) ∩ f.χz′(ᾱ

′)| = 0 or not; and we define ξ(f)(ᾱ, z) as 0, 1, or 2+
depending on |f.χz(ᾱ)| being 0, 1 or greater than 1 respectively. Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula 〈α = β〉 ∧ ¬〈α 6= β〉 (saying “there is exactly one
data value reachable simultaneously by α and β”) will be related with |f.χz(ᾱ) ∩
f.χz′(ᾱ

′)| = 1 for suitable ᾱ, ᾱ′, z, z′; and a formula 〈α 6= α〉 (saying “there are two
distinct data values reachable by α”) will be related with |f.χz(ᾱ)| ≥ 2 suitable ᾱ, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set Γ ⊆ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider Γ as a given arbitrary set of
fingerprints.

Concatenation. For every two f1, f2 ∈ F (recall, fi = (χ
↓e
i , χ
↓i
i , χ
↓ i
i, χ
↓e
i , Ri)) so that

(a) R1 = R2,
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.

xxx

x
# i
1 x

#e
1 x

#i
1 x

#e
1 x

# i
2 x

#e
2 x

#i
2 x

#e
2 x

# i
3 x
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3 x

#i
3 x

#e
3

xxx

Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
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#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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#i in Figure 3), which can be inside the
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The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},
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depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of
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data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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f1 f2 f3 = f1 + f2

xxx

Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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Fig. 4. Assuming we have two consecutive forests abstracted by f1, f2, the idea is that we obtain
f3 = f1 + f2 as the abstraction corresponding to the concatenation of these forests.

(b) χ
↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2 , and

(c) χ
↓e
2 = χ

↓ i
1 ∪ →[f1]·χ↓e1 ;

we define the concatenation of f1 and f2, denoted as f1 + f2 as f3, where

R3 = R1 = R2 (+1)

χ
↓e
3 = χ

↓e
2 (+2)

χ
↓e
3 = χ

↓e
1 (+3)

χ
↓i
3 = χ

↓i
1 ∪ [f1]→·χ↓i2 (+4)

χ
↓ i
3 = χ

↓i
2 ∪ →[f2]·χ↓ i1. (+5)

We say that f1 and f2 are compatible if they verify the conditions (a)–(c). The
idea is that the concatenation of two profiles f1 + f2 is the profile that abstract
the concatention of the forests that f1 and f2 abstract. Figure 4 illustrates this
intuition, using the notation for the nodes as we have done before with Figure 3.
We will show the following properties:

—the concatenation is associative, that is, (f1 + f2) + f3 = f1 + (f2 + f3),

—[f1 + f2]→·χ = [f1]→·([f2]→·χ),

—if f1 + f2 = f3 and f1, f2 ∈ F, then f3 ∈ F.

Lemma 4.2. If f1 + f2 = f3 and f1, f2 ∈ F, then f3 ∈ F.

Proof. If χ
↓e
3 (α, β, i) = {d}, then χ

↓e
1 (α, β, i) = {d}, and hence d ∈ R1 and

therefore d ∈ R3 = R1. A symmetrical argument applies for χ
↓e
3 and χ

↓e
2 .

Lemma 4.3. For every f1, f2 ∈ F and χ ⊆ D×Π

—[f1 + f2]→·χ = [f1]→·([f2]→·χ),

— →[f1 + f2]·χ = →[f2]·( →[f1]·χ).

Lemma 4.4 (+ associativity). For every f1, f2, f3 ∈ F,

(f1 + f2) + f3 = f1 + (f2 + f3).

The proofs of the two lemmas above can be found in the Appendix.
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
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i , �
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i , �
# i
i, �
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i , Ri)) so that

(a) R1 = R2,

(b) �
#e
1 = �

#i
2 [ [f2]!·�#e2 , and

(c) �
#e
2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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Concatenation. For every two f1, f2 2 F (recall, fi = (�
#e
i , �
#i
i , �
# i
i, �
#e
i , Ri)) so that

(a) R1 = R2,

(b) �
#e
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1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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= �
#i
23 [ [f23]!·�#e3 (by definition of f2 + f3)

= �
#i
23 [ [f23]!·�#e23. (by definition of f2 + f3)

Hence, we obtain that �
#e
1 = �

#i
23 [ [f23]!·�#e23, and thus condition (b) holds for

f1 + f23.
On the other hand, assuming that we can apply f1 + (f2 + f3) (i.e., that f2 and f3

are compatible, and that f1 and f23 are compatible) we can show that the conditions
to apply (f1 + f2) + f3 hold, in the same way as before, since all the definitions are
symmetrical, where �

#e
1 = �

#i
2 [ [f2]!·�#e2 and �

#e
2 = �

# i
1 [ ![f1]·�#e1 .

We now show that (f1 + f2) + f3 = f1 + (f2 + f3). Let f1(23) = f1 + (f2 + f3) and
f(12)3 = (f1 + f2) + f3.

We have that �
#e
1(23) = �

#e
23 = �

#e
3 = �

#e
(12)3 by item condition (+2) of +. In a

similar way, by condition (+3) we have that �
#e
1(23) = �

#e
(12)3. On the other hand,

we have

�
#i
1(23) = �

#i
1 [ [f1]!·�#i23 (by condition (+4))

= �
#i
1 [ [f1]!·(�#i2 [ [f2]!·�#i3) (by condition (+4))

= �
#i
1 [ [f1]!·�#i2 [ [f1]!·([f2]!·�#i3) (by (·,[) distributivity)

= �
#i
1 [ [f1]!·�#i2 [ [f12]!·�#i3 (by Lemma 4.3)

= �
#i
12 [ [f12]!·�#i3 (by condition (+4))

= �
#i
(12)3 (by condition (+4))

and by a similar reasoning using condition (+5) we obtain that �
# i
1(23) = �

# i
(12)3.

Hence, (f1 + f2) + f3 = f1 + (f2 + f3).

Rooting. Given a 2 A, and d̄ 2 Dk (remember that k is the number of attributes
per node of our multi-attribute data trees), we define (a, d̄)f1 ✓ F, where f2 2
(a, d̄)f1 if

(a) ⇠(f2) 2 �,

(b) �
#e
1 = �

#e
1 = ;,

(c) �
#i
2 = �

# i
2 = {(d, ↵, �·�, i) 2 D ⇥ ⇧ | 9↵0.(d, ↵0, �, i) 2 �

#i
1 [ �

# i
1, ↵, � 2 �a} [S

i2[k]({d̄(i)} ⇥ (�a \ {✏})⇥ �a ⇥ {i})

We say that f2 is a rooting of f1 with (a, d̄). The idea is that it corresponds to
the abstraction of the tree resulting from adding a common root to a forest, see
Figure xxx. f2 = (a, d̄)f1

Notice that since the root pattern of any pair of profiles f1, f2 2 (a, d̄)f3 is the
same, it is idempotent and absorbing ([f1]!·[f2]!·� = [f1]!·� = [f2]!·�, [f1]!·�#i1 = �

#i
1).

Lemma 4.5. For every f1, f2 2 (a, d̄)f3 and every � ✓ D⇥⇧,

[f1]!·[f2]!·� = [f1]!·� = [f2]!·� =

![f1]· ![f2]·� = ![f1]·� = ![f2]·�.

Proof. By condition (c) of rooting and definition of [ ]!, ![ ], we have that ![f1] =
[f1]! = ![f2] = [f2]! = �a. By definition of �a, it is immediate that �a·�a·� = �a·�.
Hence, the statement follows.
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—{(d, ↵0, �, i) 2 D⇥⇧ | 9↵.(d, ↵, �, i) 2 �
# i [ �#i} if z = �#, or

—{(d, ↵, �, i) 2 �
#i [ �# i | � = ✏} if z = �.

Note that f.�z(↵, �, i) is independent of ↵ when z = �#, but it takes an element of
⇧ as argument for the sake of uniformity of notation. The idea here is that f.��#
contains the data values and patterns inside the forest that f abstracts starting
from any root of the forest (here ↵0 should be disregarded, the only part of the
path important is �, i); f.�� contains the data values (with its descriptions) that
can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
= (⇧⇥A [ ⇧⇥A⇥⇧⇥A)! {0, 1, 1+, 2+},

where for ↵̄, ↵̄0 2 ⇧, z, z0 2 A, we define ⇠(f)(↵̄, z, ↵̄0, z0) as 0 or 1+ depending on
whether |f.�z(↵̄) \ f.�z0(↵̄0)| = 0 or not; and we define ⇠(f)(↵̄, z) as 0, 1, or 2+
depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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2 = �

# i
1 [ ![f1]·�#e1 ;

5explain why we have up to 1+ in one case and up to 2+ in the other
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#i in Figure 3), which can be inside the
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The fingerprint of a profile f, noted ⇠(f), is an element of

F def
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depending on |f.�z(↵̄)| being 0, 1 or greater than 1 respectively.5 Intuitively, the
fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
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f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.
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can be found at the root of the forest starting from any root (i.e., navigating
horizontally); f.� �# the data values that can be found going right and down from
the first root of the forest (i.e., the node x

#i in Figure 3), which can be inside the
forest or in the right context forest; and f.� �# the data values taht can be found
going left and down from the last root of the forest (i.e., the node x

# i in Figure 3).
The fingerprint of a profile f, noted ⇠(f), is an element of

F def
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fingerprint is related to what formulas of our logic are true at the forest that f
abstract. For example, a formula h↵ = �i ^ ¬h↵ 6= �i (saying “there is exactly one
data value reachable simultaneously by ↵ and �”) will be related with |f.�z(↵̄) \
f.�z0(↵̄0)| = 1 for suitable ↵̄, ↵̄0, z, z0; and a formula h↵ 6= ↵i (saying “there are two
distinct data values reachable by ↵”) will be related with |f.�z(↵̄)| � 2 suitable ↵̄, z.
The precise relations will become clear in Section 6.2, through a strong normal form
of the logic.

Let us fix a set � ✓ F , which we will call the set of consistent fingerprints
henceforward. The usefulness of this set will become apparent in the reduction
from XPath to the derivation problem of forest profiles in Section 6.2, but we can
anticipate that this set will represent all the profiles abstracting multi-attribute
data trees that do not contradict the formula we are trying to satisfy. For the
moment, however, the reader may simply consider � as a given arbitrary set of
fingerprints.

xxx

x
# i
1 x

#e
1 x

#i
1 x

#e
1 x

# i
2 x

#e
2 x

#i
2 x

#e
2 x

# i
3 x

#e
3 x

#i
3 x

#e
3

xxx
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= �
#i
23 [ [f23]!·�#e3 (by definition of f2 + f3)

= �
#i
23 [ [f23]!·�#e23. (by definition of f2 + f3)

Hence, we obtain that �
#e
1 = �

#i
23 [ [f23]!·�#e23, and thus condition (b) holds for

f1 + f23.
On the other hand, assuming that we can apply f1 + (f2 + f3) (i.e., that f2 and f3

are compatible, and that f1 and f23 are compatible) we can show that the conditions
to apply (f1 + f2) + f3 hold, in the same way as before, since all the definitions are
symmetrical, where �

#e
1 = �

#i
2 [ [f2]!·�#e2 and �

#e
2 = �

# i
1 [ ![f1]·�#e1 .

We now show that (f1 + f2) + f3 = f1 + (f2 + f3). Let f1(23) = f1 + (f2 + f3) and
f(12)3 = (f1 + f2) + f3.

We have that �
#e
1(23) = �

#e
23 = �

#e
3 = �

#e
(12)3 by item condition (+2) of +. In a

similar way, by condition (+3) we have that �
#e
1(23) = �

#e
(12)3. On the other hand,

we have

�
#i
1(23) = �

#i
1 [ [f1]!·�#i23 (by condition (+4))

= �
#i
1 [ [f1]!·(�#i2 [ [f2]!·�#i3) (by condition (+4))

= �
#i
1 [ [f1]!·�#i2 [ [f1]!·([f2]!·�#i3) (by (·,[) distributivity)

= �
#i
1 [ [f1]!·�#i2 [ [f12]!·�#i3 (by Lemma 4.3)

= �
#i
12 [ [f12]!·�#i3 (by condition (+4))

= �
#i
(12)3 (by condition (+4))

and by a similar reasoning using condition (+5) we obtain that �
# i
1(23) = �

# i
(12)3.

Hence, (f1 + f2) + f3 = f1 + (f2 + f3).

Rooting. Given a 2 A, and d̄ 2 Dk (remember that k is the number of attributes
per node of our multi-attribute data trees), we define (a, d̄)f1 ✓ F, where f2 2
(a, d̄)f1 if

(a) ⇠(f2) 2 �,

(b) �
#e
1 = �

#e
1 = ;,

(c) �
#i
2 = �

# i
2 = {(d, ↵, �·�, i) 2 D ⇥ ⇧ | 9↵0.(d, ↵0, �, i) 2 �

#i
1 [ �

# i
1, ↵, � 2 �a} [S

i2[k]({d̄(i)} ⇥ (�a \ {✏})⇥ �a ⇥ {i})

We say that f2 is a rooting of f1 with (a, d̄). The idea is that it corresponds to
the abstraction of the tree resulting from adding a common root to a forest, see
Figure xxx. f2 = (a, d̄)f1

Notice that since the root pattern of any pair of profiles f1, f2 2 (a, d̄)f3 is the
same, it is idempotent and absorbing ([f1]!·[f2]!·� = [f1]!·� = [f2]!·�, [f1]!·�#i1 = �

#i
1).

Lemma 4.5. For every f1, f2 2 (a, d̄)f3 and every � ✓ D⇥⇧,

[f1]!·[f2]!·� = [f1]!·� = [f2]!·� =

![f1]· ![f2]·� = ![f1]·� = ![f2]·�.

Proof. By condition (c) of rooting and definition of [ ]!, ![ ], we have that ![f1] =
[f1]! = ![f2] = [f2]! = �a. By definition of �a, it is immediate that �a·�a·� = �a·�.
Hence, the statement follows.
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Fig. 5. Idea of the rooting action.

Rooting. Given a ∈ A, f1 ∈ F, and d̄ ∈ Dk (remember that k is the number of
attributes per node of our multi-attribute data trees), we define (a, d̄)f1 ⊆ F, where
f2 ∈ (a, d̄)f1 if

(i) ξ(f2) ∈ Γ,

(ii) χ
↓e
1 = χ

↓e
1 = ∅,

(iii) χ
↓i
2 = χ

↓ i
2 = {(d, α, β·γ, i) ∈ D×Π | ∃α′.(d, α′, γ, i) ∈ χ

↓i
1 ∪ χ

↓ i
1, α, β ∈ σa} ∪⋃

i∈[k]({d̄(i)} × (σa \ {ε})× σa × {i})
We say that f2 is a rooting of f1 with (a, d̄). The idea is that it corresponds to
the abstraction of the tree resulting from adding a common root to a forest, see
Figure 5. The intuition behind (iii), is that all the data values d in the tree are to
be found either

—at some strict descendant of the root, by going first rightwards with some pattern
α of σa (i.e., consistent with the label of the root) and then downwards by some
pattern γ already present in χ

↓i
1, possibly prefixed by some pattern β of σa. The

idea is that α, β are readily verified at the root whereas γ actually reaches the
data value. Otherwise, d can be found

—at the root, by nagivating rightwards and downwards with elements of σa.

Observe that the root pattern of the produced profile f ∈ (a, d̄)f′ is unique in the
sense [f]→ = →[f] = σa since it abstracts a tree and there is only one root, labeled
a. As a consequence, the root pattern of any pair of profiles f1, f2 ∈ (a, d̄)f3 is
idempotent and absorbing: [f1]→·[f2]→·χ = [f1]→·χ = [f2]→·χ, [f1]→·χ↓i1 = χ

↓i
1.

Lemma 4.5. For every f1, f2 ∈ (a, d̄)f3 and every χ ⊆ D×Π,

[f1]→·[f2]→·χ = [f1]→·χ = [f2]→·χ =

→[f1]· →[f2]·χ = →[f1]·χ = →[f2]·χ.
Proof. By condition (iii) of rooting and definition of [ ]→, →[ ], we have that →[f1] =

[f1]→ = →[f2] = [f2]→ = σa. By definition of σa, it is immediate that σa·σa·χ = σa·χ.
Hence, the statement follows.

Lemma 4.6. For every f1 ∈ (a, d̄)f2,

χ
↓i
1 = [f1]→·χ↓i1 χ

↓ i
1 = [f1]→·χ↓ i1.



16 · Diego Figueira

Proof. By condition (iii) of rooting, [f1]→ = σa and since χ
↓i
1 = {(d, α, β·γ, i) |

∃α′.(d, α′, γ, i) ∈ χ
↓i
2∪ χ

↓ i
2, α, β ∈ σa}∪

⋃
i∈[k]({d(i)}×(σa\{ε})×σa×{i}) it follows

that σa·χ↓i1 = χ
↓i
1, obtaining that χ

↓i
1 = [f1]→·χ↓i1. Since χ

↓ i
1 = χ

↓i
1 by condition (iii),

we also obtain that χ
↓ i
1 = [f1]→·χ↓ i1.

4.3 The derivation problem

We define the empty profile as f∅
def
= (∅, ∅, ∅, ∅, ∅). Note that f∅ ∈ F. The

set of profiles that can be obtained from empty profiles by applying the rooting
and concatenation operations is called the set of derivable profiles, and noted
D. Notice that the definition of F and D depend on the given alphabets A,Aroot,
the set of patterns P, and the set of consistent fingerprints Γ, but we use F and D
instead of FA,Aroot,P,Γ and DA,Aroot,P,Γ for simplicity and economy of space. We say
that f is a derivable root profile if χ

↓e = χ
↓e = ∅ and f ∈ (a, d̄)f′ for some f′ ∈ D,

a ∈ Aroot and d̄ ∈ Dk. Let a derivation tree for f be a tree t whose every node is
labeled by a forest profile and an element from A× Dk, except the leaves that are
labeled only by the forest profile f∅ and

—the root is labeled with f,

—every internal node x of t labeled with a forest profile f′ and (a, d̄) is so that
f′ ∈ (a, d̄)(f1 + · · ·+ fn), where f1, . . . , fn are the labels of the children of x.

Similarly, a derivation forest t̄ for f is a forest of derivation trees t̄ = t1 · · · tn for
some profiles f1, . . . , fn so that f = f1 + · · · + fn. Therefore, a profile f is derivable
if, and only if, there is a derivation forest for f.

We can now state the derivation problem, that is, whether there exists a derivable
root profile, given A, Aroot, P and Γ.

Problem: The derivation problem
Input: A finite alphabet A, Aroot ⊆ A,

a set of patterns P,
a set of consistent fingerprints Γ ⊆ F .

Question: Is there a derivable root profile?

In the next section we show that this problem is decidable. Later, in Section 6,
we show that there is a reduction from the satisfiability problem for XPath(∗←, ↓∗,
→∗,=) to the derivation problem.

5. COMPUTING DERIVABLE PROFILES

In this section we solve the derivation problem, showing that it is decidable in 2Exp-
Space. To solve this problem we work with some quasi-ordering on forest profiles
(Section 5.2) that has some good monotonicity closure properties with our forest
profile algebra (Section 5.3). This allows us to reduce the problem to a restricted
derivation problem in which solutions can be found by only inspecting profiles with
a bounded number of rigid values (Section 5.4), that are minimal elements of the
ordering (Section 5.5). These are bounded and computable, allowing us to produce
an algorithm solving the problem (Section 5.6).
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5.1 Preliminaries

Given f1, f2 ∈ F we define that f1 and f2 are equivalent, and we denote it by
f1 ∼ f2, if there is some bijection g : D→ D so that f2 is the result of replacing d by
g(d) in f1; in this case we write g(f1) = f2. For a set C ⊆ F, we write f ∈∼ C if there
is f′ ∼ f so that f′ ∈ C. Given a forest profile f and two data values d ∈ data(f),
d′ 6∈ data(f), we define f[d 7→ d′] as the result of replacing d by d′ in f. Note that
f[d 7→ d′] ∼ f. Given two data values d, d′ we write f[d 7→ d, d′] to denote f′ where
R′ = R, χ̄′(d′) = χ̄(d) and χ̄′(e) = χ̄(e) for every e ∈ D \ {d′}. Note that if
d ∈ data(f) \R and d′ 6∈ data(f), we have that if f ∈ F then f[d 7→ d, d′] ∈ F.

Lemma 5.1. If d ∈ data(f)\R and d′ 6∈ data(f), we have that if f is a valid forest
profile, then f[d 7→ d, d′] is valid as well.

Proof. Since d′ 6∈ data(f), then f′ = f[d 7→ d, d′] is the result of adding some
fresh data value d′ 6∈ R with the same description as d′ to f.

Suppose, by means of contradiction, that f′ 6∈ F. Then, by definition of F, there
must be some d′′ 6∈ R so that {d′′} = χ

↓′e(ᾱ) or {d′′} = χ
↓′e(ᾱ), for some ᾱ ∈ Π. By

definition of f′, this means that d′′ 6= d and d′′ 6= d′, and hence that {d′′} = χ
↓e(ᾱ)

or {d′′} = χ
↓e(ᾱ), and thus f 6∈ F, which is a contradiction.

We say that a data value d ∈ D is an external data value of f if χ
↓e(d)∪ χ↓e(d) 6=

∅. If further χ
↓i(d) ∩ χ↓ i(d) = ∅, we say that d is a strictly external data value

of f. If d ∈ data(f) is not a strictly external data value, it is then an internal data
value, and if it is not an external data value, it is then a strictly internal data
value.

5.2 Ordering on profiles

We define a quasi-order � on forest profiles, that follows from our discussion of
Section 4 on the role of flexible and rigid data values. It is the order in which
we can make a profile bigger by adding a fresh data value to it, with the same
description as that of a flexible data value already contained in it.

Given f1, f2 ∈ F, we define f1 ; f2 if either f1 = f2, or there is a flexible data value
d of f1 so that f2 = f1[d 7→ d, d′] for some d′ 6∈ data(f1). We define the quasi-order
� as the reflexive-transitive closure of ; (i.e., f1 � f2 iff f1 ;∗ f2). We write f - f′

if f � f′′ for some f′′ ∼ f′. Note that �,- are recursive, reflexive and transitive, and
they are hence quasi-orders.

Lemma 5.2. � and - are quasi-orders over F.

Proof. We first show transitivity of �, reflexivity being obvious. If f � f′ � f′′,
suppose f′ = f[d1 7→ d1, d

′
1] · · · f[dn 7→ dn, d

′
n] and f′′ = f′[e1 7→ e1, e

′
1] · · · f[em 7→

en, e
′
m]. Therefore, f′′ = f[d1 7→ d1, d

′
1] · · · f[dn 7→ dn, d

′
n][e1 7→ e1, e

′
1] · · · f[em 7→

en, e
′
m] and hence f � f′′.

On the other hand, it is plain that ∼ preserves transitivity and reflexivity, and
that f � f.

Note that if f1 � f2 then →[f1] = →[f2] and [f1]→ = [f2]→. Note also that if f � f′ then
ξ(f) = ξ(f′).

Lemma 5.3. If f1 � f2 then →[f1] = →[f2] and [f1]→ = [f2]→.
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Fig. 6. Statement of Lemma 5.5.

Proof. This is immediate from the definition of →[ ], [ ]→, and �. Note that, since
f1 � f2 we have {(α, β, i) | ∃d ∈ D.(d, α, β, i) ∈ f1} = {(α, β, i) | ∃d ∈ D.(d, α, β, i) ∈
f2}. Hence, we obtain that α ∈ [f1]→ if and only if there is some (d, α, β, i) ∈ χ

↓i
1

if and only if there is some (d′, α, β, i) ∈ χ
↓i
2 if and only if α ∈ [f2]→. A similar

argument shows that →[f1] = →[f2].

Lemma 5.4. If f � f′ then ξ(f) = ξ(f′).

Proof. Suppose, without any loss of generality, that f′ = f[d 7→ d, d′], where
d ∈ data(f) \ R and d′ 6∈ data(f). Since d′ behaves just as d, we have that, for any
ᾱ, ᾱ′ ∈ Π, a, a′ ∈ { ◦↓ , ◦↓, ◦↓, ◦}, d′ ∈ f′.χa(ᾱ) ∩ χa′(ᾱ′) iff d ∈ f.χa(ᾱ) ∩ f.χa′(ᾱ

′).
Hence, f′.χa(ᾱ) ∩ f′.χa′(ᾱ′) 6= ∅ iff f.χa(ᾱ) ∩ f.χa′(ᾱ

′) 6= ∅.
Further, since d 6∈ R we have that if d ∈ χa(ᾱ) in f′ (or in f) then |χa(ᾱ)| >

1. Hence ξ(f)(ᾱ, a) = ξ(f′)(ᾱ, a) = 2+ whenever d ∈ f.χa(ᾱ). Further, since f′

preserves all the data values of f with their descriptions, ξ(f)(ᾱ, a) = ξ(f′)(ᾱ, a)
whenever d 6∈ f.χa(ᾱ) ∩ f.χa′(ᾱ

′).

We say that a set of forest profiles G ⊆ F is upward closed (resp. downward
closed) with respect to -, if for every f ∈ G and f′ % f (resp. f % f′), we have
f′ ∈ G. We write

↑G def
= {f ∈ F | f % f′ for some f′ ∈ G}

↓G def
= {f ∈ F | f′ % f for some f′ ∈ G}

for the upward and downward closure of G with respect to -. We say that G is
↑↓-closed, if it is both upward and downward closed, that is, G = ↑↓G.

5.3 Monotonicity properties

In order to devise an algorithm that tests the existence of a derivable root profile,
we will need some monotonicity lemmas evidencing the relationship between �
and the rooting and concatenation operations on profiles. The ultimate goal of
these lemmas is to restrict the derivation problem to profiles that are minimal with
respect to -.

The next Lemma 5.5 states that for any two profiles f1 � f2, f1 can be seen as
a concatenation of profiles that share the same descriptions of internal values as
f1, under certain restrictions, as it is shown next. This is a crucial property that
follows from our discussion in Section 4.1.

Lemma 5.5 (Figure 6). For every f1, f2, f3 ∈ F, (a, d̄) ∈ A × Dk so that f1 �
f2 ∈ (a, d̄)f3, there are n ∈ N, f′1, . . . , f

′
n ∈ F so that f′i ∈∼ (a, d̄)f3 for every i ∈ [n],
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f′0 :





R′0 = R2,

χ̄′0(e) = (χ
↓e
2 (e), χ

↓i
2(e), χ

↓ i
2(e), χ

↓i
2(e) ∪ [f2]→·χ↓e2 (e)) for every e ∈ data(f2),

χ̄′0(d′j) = (χ
↓e
2 (dj), ∅, ∅, χ

↓i
2(dj) ∪ [f2]→·χ↓e2 (dj)) for every j ∈ [t].

For every i ∈ {1, . . . , t} we define f′i as

f′i :





R′i = R2,

χ̄′i(e) = (χ
↓ i
2(e) ∪ →[f2]·χ↓e

2 (e), χ
↓i
2(e), χ

↓ i
2(e), χ

↓i
2(e) ∪ [f2]→·χ↓e2 (e))

for every e ∈ data(f2) \ {di},
χ̄′i(di) = (χ

↓ i
2(di) ∪ →[f2]·χ↓e

2 (di), ∅, ∅, χ
↓i
2(di) ∪ [f2]→·χ↓e2 (di)),

χ̄′i(d
′
i) = ( →[f2]·χ↓e

2 (di), χ
↓i
2(di), χ

↓ i
2(di), [f2]→·χ↓e2 (di)),

χ̄′i(d
′
j) = (χ

↓ i
2(dj) ∪ →[f2]·χ↓e

2 (dj), ∅, ∅, [f2]→·χ↓e2 (dj)) for every j < i,

χ̄′i(d
′
j) = ( →[f2]·χ↓e

2 (dj), ∅, ∅, χ
↓i
2(dj) ∪ [f2]→·χ↓e2 (dj)) for every j > i.

f′t+1 :





R′t+1 = R2,

χ̄′t+1(e) = (χ
↓ i
2(e) ∪ →[f2]·χ↓e

2 (e), χ
↓i
2(e), χ

↓ i
2(e), χ

↓e
2 (e)) for every e ∈ data(f2),

χ̄′t+1(d′j) = (χ
↓ i
2(dj) ∪ →[f2]·χ↓e

2 (dj), ∅, ∅, χ
↓e
2 (dj)) for every j ∈ [t].

Fig. 7. Definition of f′0, f′t+1 and f′i for all i ∈ [t].

and

f1 = f′1 + · · ·+ f′n.

Proof. Since f1 � f2, suppose

f1 = f2[d1 7→ d1, d
′
1] · · · [dt 7→ dt, d

′
t] (†)

where {d1, . . . , dt} ⊆ data(f2) \ R2; {d′1, . . . , d′t} ∩ data(f2) = ∅; and d′i 6= d′j for all
i 6= j. We define n = t+ 2.

The idea is that we will define f′0, f
′
1, . . . , f

′
t+1 so that f′i is, modulo some renam-

ing of data values, the same as f2 for all strictly internal values, and with the
same descriptions. However, f′i has more external data values than f2—namely
d′1, . . . , d

′
t—that have basically the same descriptions as d1, . . . , dt in f2. Although

technically we could make use of less profiles, we prefer to define t+1 different pro-
files, to preserve some symmetries in the definitions, and thus to simplify proofs.
We define f′0, . . . , f

′
t+1 in Figure 7.

We shall now show that for every f′i there is some f′′i so that f′i ∼ f′′i ∈ (a, d̄)f3.

Claim 5.5.1. For every i ∈ [n], f′i ∈∼ (a, d̄)f3.

Proof. First note that f′0, f
′
t+1 ∈ (a, d̄)f3, since all the internal descriptions of

the internal data values are preserved, and ξ(f′0) = ξ(f′t+1) = ξ(f2). The fact that
they all have the same fingerprints is because:

—For every a ∈ A, ᾱ ∈ Π, and every data value e ∈ data(f2), we have that
e ∈ χa(ᾱ) in f2 iff e ∈ χa(ᾱ) in f′0 iff e ∈ χa(ᾱ) in f′t+1. This is because,
since χ

↓′i
t+1(e) = χ

↓′i
0(e) = χ

↓ i
2(e), χ

↓′i
t+1(e) = χ

↓′i
0(e) = χ

↓i
2(e), χ

↓′e
0(e) = χ

↓e
2 (e),

χ
↓′e
t+1(e) = χ

↓e
2 (e), we have that: for all a ∈ {◦, ◦↓, ◦↓}, χa(e) in f′0 is equal to
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χa(e) in f2; and for all a ∈ {◦, ◦↓, ◦↓}, χa(e) in f′t+1 is equal to χa(e) in f2. And
further,
—if a = ◦↓,

f′0.χa(e) = χ
↓′i

0(e) ∪ [f′0]→·χ↓′e0(e)

= χ
↓i
2(e) ∪ [f2]→·(χ↓i2(e) ∪ [f2]→·χ↓e2 (e))

= χ
↓i
2(e) ∪ [f2]→·χ↓e2 (e) (by Lemmas 4.5 and 4.6)

= f2.χa(e)

—if a = ◦↓ ,
f′t+1.χa(e) = χ

↓′i
0(e) ∪ →[f′t+1]·χ↓′et+1(e)

= χ
↓ i
2(e) ∪ →[f2]·(χ↓ i2(e) ∪ →[f2]·χ↓e2 (e))

= χ
↓ i
2(e) ∪ →[f2]·χ↓e2 (e) (by Lemmas 4.5 and 4.6)

= f2.χa(e).

—The data values d′j do not change the fingerprint ξ(f2), because d′j is added to
all those χa(ᾱ) where dj ∈ f2.χa(ᾱ), and f2.χa(ᾱ) has already two data values
(otherwise dj would be rigid).
Therefore, for any a ∈ A, ᾱ ∈ Π, if some d′j ∈ f′0.χa(ᾱ), then |f2.χa(ᾱ)| ≥ 2, and
f2.χa(ᾱ) ⊆ f′0.χa(ᾱ) (thus, |f′0.χa(ᾱ)| ≥ 2). Otherwise, if d′j 6∈ f′0.χa(ᾱ) for every
j ∈ [t], then f′0.χa(ᾱ) = f2.χa(ᾱ).
Moreover, for any a, a′ ∈ A, ᾱ, ᾱ′ ∈ Π, if d′j is in some f′0.χa(ᾱ) ∩ f′0.χa′(ᾱ

′)
it means that dj ∈ f2.χa(ᾱ) ∩ f2.χa′(ᾱ

′). Hence, |f′0.χa(ᾱ) ∩ f′0.χa′(ᾱ
′)| ≥ 1 iff

|f2.χa(ᾱ) ∩ f2.χa′(ᾱ
′)| ≥ 1.

As a result the fingerprint of f2 and f′0 are equal, and hence ξ(f′0) = ξ(f2) ∈ Γ.
The same reasoning applies to f′t+1.

Thus, f′0, f
′
t+1 ∈∼ (a, d̄)f3.

We now show that for every i ∈ [t], there is f′′i so that f′i ∼ f′′i ∈ (a, d̄)f3. We
define f′′i as f′i[di 7→ d′i] for every i ∈ [t]. Observe that f′′i ∼ f′i for every i ∈ [t]. Since
every di is not rigid, f′i ∈ F and hence f′′i ∈ F. Further, note that f′′i and f2 share the
same set of internal data values, and that the internal descriptions of these internal
data values are the same in f′′i and f2. Also in this case we have that ξ(f′′i ) = ξ(f2)
for the same reason as before:

—For all e ∈ data(f2), a ∈ A and ᾱ ∈ Π we have that e ∈ χa(ᾱ) in f2 iff e ∈ χa(ᾱ)
in f′′i .

—The fresh data values d′j only add data values to sets χa(ᾱ) that already have at
least 2 data values. And d′j ∈ f′i.χa(ᾱ) ∩ f′i.χa′(ᾱ

′) iff dj ∈ f2.χa(ᾱ) ∩ f2.χa′(ᾱ
′).

This shows that ξ(f′i) = ξ(f2) ∈ Γ.
Thus, f′′i ∈ (a, d̄)f3 since f2 ∈ (a, d̄)f3.

We now check that f1 = f′0 + · · ·+ f′t+1.

Claim 5.5.2. f1 = f′0 + · · ·+ f′t+1.

Proof. For each data value d, we are going to show that conditions (b) and (c)
of concatenation hold, and that χ̄1(d) equals to the profile of d in f′1,+ · · ·+ f′n.
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• Let us take any data value d ∈ data(f2) \ {d1, . . . , dt}. We first check that
condition (b) holds for d, in other words, that for every i ∈ {0, . . . , t},

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = χ

↓e
i (d).

We have

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = χ

↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) (by Lemma 4.5)

= χ
↓i
2(d) ∪ [f2]→·χ↓ei+1(d) (by definition)

=

{
χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) if i = t, or

χ
↓i
2(d) ∪ [f2]→·(χ↓i2(d) ∪ [f2]→·χ↓e2 (d)) otherwise.

If i = t, we further have that χ
↓i
2(d)∪ [f2]→·χ↓e2 (d) = χ

↓e
i (d), verifying (b). Otherwise,

if i 6= t,

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = · · · =

= χ
↓i
2(d) ∪ [f2]→·(χ↓i2(d) ∪ [f2]→·χ↓e2 (d))

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·[f2]→·χ↓e2 (d)

(by (·,∪) distributivity)

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.5)

= [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (since χ
↓i
2(d) ⊆ [f2]→·χ↓i2(d))

= χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.6)

= χ
↓e
i (d). (by definition)

In any case, condition (b) holds between f′i and f′i+1 for the data value d. Note
that since all definitions are symmetrical, it also follows that condition (c) holds
for d.

We now check that, if we call f+ to f′1 + · · · + f′n, then χ̄+(d) = χ̄1(d). Here we
only deal with χ

↓e
+ and χ

↓i
+ because the cases for χ

↓e
+ and χ

↓ i
+ are symmetrical. By

definition of +, we have that

χ
↓e
+(d) = χ

↓e
2 (d) (by (+2))

= χ
↓e
1 (d), (by (†), since d ∈ data(f2))

χ
↓i
+(d) =

(
χ
↓i
2 ∪ [f2]→·χ↓i2 ∪ [f2]→·[f2]→·χ↓i2 ∪ · · · ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
n− 1 times

·χ↓i2
)
(d) (by (+4))

= ([f2]→·χ↓i2)(d) (by Lemma 4.5)

= χ
↓i
2(d) (by Lemma 4.6)

= χ
↓i
1(d). (by (†), since d ∈ data(f2))

• Suppose now that we have d = dj for some j ∈ [t]. We check that condition
(b) holds for d, in other words that for every i ∈ {0, . . . , t},

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = χ

↓e
i (d).
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We have

χ
↓i
i+1(d) ∪ [fi+1]→·χ↓ei+1(d) = χ

↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) (by Lemma 4.5)

If i = t,

χ
↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) = χ

↓i
2(d) ∪ [f2]→·χ↓e2 (d) (by definition)

= χ
↓e
i (d). (by definition)

If i 6= t and j = i+ 1,

χ
↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) = ∅ ∪ [f2]→·(χ↓i2 ∪ [f2]→·χ↓e2 )(d) (by definition)

= [f2]→·χ↓i2(d) ∪ [f2]→·[f2]→·χ↓e2 (d) (by (·,∪) distributivity)

= [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.5)

= χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.6)

= χ
↓e
i (d). (by definition)

If i 6= t and j 6= i+ 1,

χ
↓i
i+1(d) ∪ [f2]→·χ↓ei+1(d) = χ

↓i
2(d) ∪ [f2]→·(χ↓i2 ∪ [f2]→·χ↓e2 )(d) (by definition)

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·[f2]→·χ↓e2 (d)

(by (·,∪) distributivity)

= χ
↓i
2(d) ∪ [f2]→·χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.5)

= χ
↓i
2(d) ∪ χ↓i2(d) ∪ [f2]→·χ↓e2 (d) (by Lemma 4.6)

= χ
↓i
2(d) ∪ [f2]→·χ↓e2 (d)

= χ
↓e
i (d). (by definition)

Condition (c) follows by symmetry.
We check that χ

↓e
+(d) = χ

↓e
1 (d) and χ

↓i
+(d) = χ

↓i
1(d). By definition of +, we have

that

χ
↓e
+(d) = χ

↓e
2 (d) (by (+2))

= χ
↓e
1 (d), (by (†), since d ∈ data(f2))

χ
↓i
+(d) =

(
χ
↓i
2 ∪ [f2]→·∅ ∪ · · · ∪ [f2]→ · · · [f2]→︸ ︷︷ ︸

n− 2 times

·∅ ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
n− 1 times

·χ↓i2
)
(d) (by (+4))

= (χ
↓i
2 ∪ [f2]→·χ↓i2)(d) (by Lemma 4.5)

= ([f2]→·χ↓i2)(d) (since χ
↓i
2 ⊆ [f2]→·χ↓i2)

= χ
↓i
2(d) (by Lemma 4.6)

= χ
↓i
1(d). (by (†), since d ∈ data(f2))

• Finally, suppose d = d′j for some j ∈ [t]. We check that condition (b) holds for
d, in other words that for every i ∈ {0, . . . , t},

χ
↓i
i+1(d′j) ∪ [fi+1]→·χ↓ei+1(d′j) = χ

↓e
i (d′j).
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By definition, we have

χ
↓i
i+1(d′j) ∪ [fi+1]→·χ↓ei+1(d′j) = χ

↓i
i+1(d′j) ∪ [f2]→·χ↓ei+1(d′j) (by Lemma 4.5)

If i = t,

χ
↓i
i+1(d′j) ∪ [f2]→·χ↓ei+1(d′j) = ∅ ∪ [f2]→·χ↓e2 (dj) (by definition)

= χ
↓e
i (d′j). (by definition)

If i 6= t and j = i+ 1,

χ
↓i
i+1(d′j) ∪ [f2]→·χ↓ei+1(d′j) = χ

↓i
2(dj) ∪ [f2]→·[f2]→·χ↓e2 (dj) (by definition)

= χ
↓i
2(dj) ∪ [f2]→·χ↓e2 (dj) (by Lemma 4.5)

= χ
↓e
i (d′j). (by definition)

If i 6= t and j > i+ 1,

χ
↓i
i+1(d′j) ∪ [f2]→·χ↓ei+1(d′j) = ∅ ∪ [f2]→·(χ↓i2(dj) ∪ [f2]→·χ↓e2 (dj)) (by definition)

= [f2]→·χ↓i2(dj) ∪ [f2]→·[f2]→·χ↓e2 (dj)
(by (·,∪) distributivity)

= [f2]→·χ↓i2(dj) ∪ [f2]→·χ↓e2 (dj) (by Lemma 4.5)

= χ
↓i
2(dj) ∪ [f2]→·χ↓e2 (dj) (by Lemma 4.6)

= χ
↓e
i (d′j). (by definition)

If i 6= t and j < i+ 1,

χ
↓i
i+1(d′j) ∪ [f2]→·χ↓ei+1(d′j) = ∅ ∪ [f2]→·[f2]→·χ↓e2 (dj) (by definition)

= [f2]→·χ↓e2 (dj) (by Lemma 4.5)

= χ
↓e
i (d′j). (by definition)

Condition (c) follows by symmetry.
We check that χ

↓e
+(d′j) = χ

↓e
1 (d′j) and χ

↓i
+(d′j) = χ

↓i
1(d′j). By definition of +, we

have that

χ
↓e
+(d′j) = χ

↓e
2 (dj) (by (+2))

= χ
↓e
1 (d′j), (since χ̄1(d′j) = χ̄2(dj) by (†))

χ
↓i
+(d′j) =

(
∅ ∪ [f2]→·∅ ∪ · · · ∪ [f2]→ · · · [f2]→︸ ︷︷ ︸

j times

·∅ ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
j + 1 times

·χ↓i2 ∪

[f2]→ · · · [f2]→︸ ︷︷ ︸
j + 2 times

·∅ ∪ · · · ∪ [f2]→ · · · [f2]→︸ ︷︷ ︸
n− 1 times

·∅
)
(dj) (by (+4))

= ([f2]→·χ↓i2)(dj) (by Lemma 4.5)

= χ
↓i
2(dj) (by Lemma 4.6)

= χ
↓i
1(d′j). (since χ̄1(d′j) = χ̄2(dj) by (†))
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-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R

χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1 )

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1 )
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1 ),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1 )+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m

a
fo

llow
s.

L
et

F
b

b
e

th
e

set
o
f

a
ll

f∈
F

th
a
t

h
av

e
n
o

m
o
re

th
a
n

2|Π|
rig

id
va

lu
es.

L
et

D
b

b
e

th
e

set
o
f
d
eriva

b
le

p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th

ere
is

a
ro

o
t

d
eriva

b
le

p
ro

fi
le

in
D

if
a
n
d

o
n
ly

if
th

ere
is

a
ro

o
t
d
eriva

b
le

p
ro

fi
le

in
D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w

a
rd

clo
sed

.

R
e
m
a
r
k

5
.1

3
.

D
b

=
↑
D

b .

In
th

e
n
ex

t
sectio

n
w

e
sh

ow
th

a
t

D
b

is
eff

ectiv
e.

(a
,d̄

)

∈

�
(a

,d̄
)

∈

(a
,d̄

)

∈

�
�

�

(bounded)

f

f �1
+

···
+

f �m
f̂

f �

f ��

C ∈

f �C ∈

f �1
+

···
+

f �m

C ∈

f

Lem
m

a 5.11

by construction
by construction

F
ig

u
re

8
:

R
e
p
re

se
n
ta

tio
n

o
f

th
e

p
ro

fi
le

s
a
n
d

re
la

-
tio

n
s

u
se

d
in

th
e

p
ro

o
f
o
f
L
e
m

m
a

5
.1

5
.

5.3
T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈

(a
,d̄

)f
so

th
a
t

f1 �∈
↑
C

,
a
n
d

a
d
d

f1
to

C
.

If
th

ere
isn

’t
a
n
y,

g
o

to
n
ex

t
step

.

3
.

F
o
r
ev

ery
�

e
x
t -m

in
im

a
l
f∈

C
,
a
d
d

a
ll

b
o
u
n
d
ed

ex
ten

sio
n
s

to
C

.

4
.

If
th

ere
a
re

tw
o

f1 ,f2
∈

C
∼

th
a
t

a
re

b
o
u
n
d
ed

ex
ten

sio
n
s

o
f�

e
x
t -m

in
im

a
l
p
ro

fi
les

o
f

C
so

th
a
t

f1
+

f2
�∈
↑
C

,
th

en
a
d
d

f1
+

f2
to

C
.

R
ep

ea
t.

G
o

to
step

2
.

5
.

O
u
tp

u
t

C
.

N
o
te

th
a
t

step
2

ca
n

o
n
ly

b
e

rep
ea

ted
a
s

m
a
n
y

tim
es

a
s

th
ere

a
re

m
in

im
a
l
elem

en
ts

in
F

b ,
w

h
ich

is
ex

p
o
n
en

tia
l.

Id
em

w
ith

3
a
n
d

4
.

S
o

it
is

ea
sy

to
ch

eck
th

a
t

th
is

a
lg

o
rith

m
u
ses

ex
p
o
n
en

tia
l

sp
a
ce.

N
ow

w
e

p
rov

e
th

a
t

it
is

co
rrect,

a
s

a
co

n
seq

u
en

ce
o
f
th

e
lem

m
a
s

p
resen

ted
b
efo

re.

L
e
m
m
a

5
.1

4
.

T
h
e

a
lgo

rith
m

u
ses

a
t
m

o
st

expo
n
en

tia
l
spa

ce.

L
e
m
m
a

5
.1

5
.
↑
C

=
D

b .

P
r
o
o
f
.

[⊆
]
T

h
is

is
im

m
ed

ia
te,

sin
ce

b
y

co
n
stru

ctio
n

C
⊆

D
b

a
n
d

b
y

R
em

a
rk

5
.1

3
D

b
is

u
p
w

a
rd

clo
sed

.
[⊇

]
L
et

f∈
D

b .
T

h
en

,
th

ere
m

u
st

b
e

a
fo

rest
t̄
o
f
d
eriva

tio
n

trees
fo

r
p
ro

fi
les

f1 ,...,fn
∈

D
b
so

th
a
t
f
=

f1 +
···+

fn
,
w

h
ere

n
≥

1
.

W
e

p
ro

ceed
b
y

in
d
u
ctio

n
o
n

th
e

size
o
f
t̄.

•
If

t̄
h
a
s

o
n
ly

o
n
e

n
o
d
e,

th
en

it
is

triv
ia

l.
T

B
C

.
•

If
t̄

=
t

is
a

tree
w

ith
h
eig

h
t

n
>

0
.

S
u
p
p
o
se

th
a
t

th
e

ro
o
t

is
la

b
eled

w
ith

f
a
n
d

w
ith

so
m

e
(a

,d̄
)
∈

A
×

D
k
.

L
et

t̄ �
b
e

th
e

fo
rest

o
f
im

m
ed

ia
te

su
b
trees

o
f
t,

let
m

=
|t̄ �|.

F
o
r

ev
ery

1
≤

i≤
m

,
let

f �i
b
e

th
e

p
ro

fi
le

la
b
el

o
f
th

e
ro

o
t

o
f
t̄ �(i)

fo
r

ev
ery

i∈
[m

].
L
et

u
s

sh
ow

th
a
t

th
ere

is
so

m
e

f ��∈
C

so
th

a
t

f ���
f.

W
e

h
av

e
th

a
t

f �1
+

···
+

f �m
∈
↑
C

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis,
let

f ��
f �1

+
···

+
f �m

fo
r

f �∈∼
C

.
F
u
rth

er,
let

u
s

a
ssu

m
e

th
a
t

f �

is
�

-m
in

im
a
l
a
m

o
n
g

th
e

p
ro

fi
les

o
f
C

.
L
et

f �i
∈∼

C
so

th
a
t

f �i
�

fi .
If

m
=

1
it

is
triv

ia
l.

If
m

>
1
,
th

ere
m

u
st

b
e

so
m

e
f �2

�
f2

+
···

+
fm

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis.
•

If
t̄
=

t̄
1 ·t̄

2
w

ith
t̄
1 ,t̄

2 �=
ε...

X
X

X
X

X
F
ig

u
re

9
d
ep

icts
th

e
g
en

era
l
id

ea
o
f
th

e
a
rg

u
m

en
t.

D
×
Π

|∃
α
�.(d

,α
�,γ

,i)∈
χ ↓

i4 ∪
χ ↓

i4 ,α
,β
∈
σ

a }∪ �
i∈

[k
] ({

d
[i]}×

σ
a ×

σ
a ×

{
i}

)
a
s

d
esired

.
H

en
ce,

co
n
d
itio

n
(c)

h
o
ld

s,
a
n
d

w
e

h
av

e
th

a
t

f3 ∈
(a

,d̄
)f4 .

N
ow

w
e

a
p
p
ly

L
em

m
a

5
.6

,
o
b
ta

in
in

g
th

a
t

th
ere

is
n
∈

N
a
n
d

f �i ∈∼
(a

,d̄
)f4

fo
r

ev
ery

i∈
[n

]
so

th
a
t

f �1
+

···
+

f �n
=

f1 .
T

h
is

co
n
clu

d
es

th
e

p
ro

o
f.

5.2
B

ounding
the

rigid
values

In
th

is
sectio

n
w

e
sh

ow
th

a
t

w
e

ca
n

w
o
rk

w
ith

p
ro

fi
les

th
a
t

h
av

e
b
o
u
n
d
ed

ly
m

a
n
y

rig
id

va
lu

es.

L
e
m
m
a

5
.1

2
.

If
th

ere
is

a
d
eriva

ble
roo

t
p
ro

fi
le,

th
ere

is
o
n
e

su
ch

th
a
t

a
ll

th
e

p
ro

fi
les

in
its

d
eriva

tio
n

tree
h
a
ve

n
o

m
o
re

th
a
n

2|Π|
d
a
ta

va
lu

es.

P
r
o
o
f
.

S
u
p
p
o
se

w
e

h
av

e
f

=
f1

+
···

+
fn

.
L
et

u
s

fi
rst

sh
ow

th
a
t

fo
r

ev
ery

(α
,β

,i)
∈

Π
th

ere
ca

n
b
e

a
t

m
o
st

o
n
e

d
a
ta

va
lu

e
d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d

�
th

en
th

ere
w

o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R

χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1 )

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1 )
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1 ),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1 )+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m
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et

F
b

b
e
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f
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ll

f∈
F

th
a
t
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n
o
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o
re

th
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et

D
b

b
e
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o
f
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eriva

b
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p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th
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a
ro

o
t

d
eriva

b
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ro
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le
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D

if
a
n
d

o
n
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if
th

ere
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a
ro

o
t
d
eriva

b
le

p
ro

fi
le
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D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w
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rd
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sed

.
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D
b
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∈
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∈
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f
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+
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C ∈

f �C ∈
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+

···
+
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p
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th
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p
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d

re
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n
s
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p
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o
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.
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T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈
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,d̄

)f
so

th
a
t

f1 �∈
↑
C
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n
d

a
d
d
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to

C
.
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th

ere
isn

’t
a
n
y,
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o

to
n
ex

t
step

.

3
.

F
o
r
ev
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�

e
x
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f∈

C
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d
d

a
ll

b
o
u
n
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ed

ex
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n
s

to
C

.
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.
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th

ere
a
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tw
o

f1 ,f2
∈

C
∼

th
a
t
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b
o
u
n
d
ed

ex
ten
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n
s

o
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e
x
t -m
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a
l
p
ro

fi
les

o
f

C
so

th
a
t
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+

f2
�∈
↑
C

,
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en
a
d
d

f1
+

f2
to

C
.
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ep
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t.
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o

to
step

2
.
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.
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u
tp

u
t

C
.

N
o
te

th
a
t

step
2
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n
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n
ly

b
e

rep
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a
s

m
a
n
y
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s

th
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m
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a
l
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en
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w
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ex

p
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en
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l.
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d
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.

S
o

it
is
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ch
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th

a
t
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rith
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u
ses
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p
o
n
en
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l
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ce.
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ow
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e
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rov

e
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t
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is
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s
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u
en
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f
th
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p
resen
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b
efo
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T
h
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lgo

rith
m
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a
t
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en

tia
l
spa

ce.
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a
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↑
C

=
D
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f
.

[⊆
]
T

h
is

is
im

m
ed

ia
te,

sin
ce

b
y
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n
stru

ctio
n

C
⊆

D
b
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n
d

b
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3
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b
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L
et
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b .
T

h
en
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th

ere
m

u
st

b
e

a
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rest
t̄
o
f
d
eriva

tio
n

trees
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r
p
ro

fi
les

f1 ,...,fn
∈

D
b
so

th
a
t
f
=

f1 +
···+

fn
,
w

h
ere

n
≥

1
.

W
e

p
ro

ceed
b
y

in
d
u
ctio

n
o
n

th
e

size
o
f
t̄.

•
If

t̄
h
a
s

o
n
ly

o
n
e

n
o
d
e,

th
en

it
is

triv
ia

l.
T

B
C

.
•

If
t̄

=
t
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a

tree
w

ith
h
eig

h
t

n
>

0
.

S
u
p
p
o
se

th
a
t

th
e

ro
o
t

is
la

b
eled

w
ith

f
a
n
d

w
ith

so
m

e
(a

,d̄
)
∈

A
×

D
k
.

L
et

t̄ �
b
e

th
e
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o
f
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m
ed
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b
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o
f
t,
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=
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F
o
r

ev
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1
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b
e
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e

p
ro
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b
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o
f
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e
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o
t

o
f
t̄ �(i)
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r

ev
ery

i∈
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].
L
et

u
s

sh
ow

th
a
t

th
ere

is
so

m
e

f ��∈
C

so
th

a
t

f ���
f.

W
e

h
av

e
th

a
t

f �1
+

···
+

f �m
∈
↑
C

b
y
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d
u
ctiv

e
h
y
p
o
th

esis,
let
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f �1

+
···

+
f �m
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r

f �∈∼
C

.
F
u
rth

er,
let

u
s
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ssu

m
e

th
a
t

f �

is
�

-m
in

im
a
l
a
m

o
n
g

th
e

p
ro

fi
les

o
f
C

.
L
et

f �i
∈∼

C
so

th
a
t

f �i
�

fi .
If

m
=

1
it

is
triv

ia
l.

If
m
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1
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th

ere
m

u
st

b
e

so
m

e
f �2

�
f2

+
···

+
fm

b
y
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d
u
ctiv

e
h
y
p
o
th

esis.
•
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=
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1 ·t̄

2
w
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t̄
1 ,t̄
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ε...

X
X

X
X

X
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th
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en
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l
id
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o
f
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u
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|∃
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∈
σ
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d
[i]}×

σ
a ×

σ
a ×

{
i}

)
a
s

d
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.
H

en
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n
d
itio

n
(c)

h
o
ld

s,
a
n
d

w
e

h
av

e
th

a
t

f3 ∈
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,d̄
)f4 .

N
ow

w
e
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p
p
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em

m
a

5
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o
b
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in
in

g
th

a
t

th
ere

is
n
∈

N
a
n
d

f �i ∈∼
(a

,d̄
)f4

fo
r

ev
ery

i∈
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]
so

th
a
t

f �1
+

···
+

f �n
=

f1 .
T

h
is
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n
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d
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th
e

p
ro

o
f.
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e
sh

ow
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a
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w
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rk

w
ith

p
ro

fi
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th
a
t

h
av

e
b
o
u
n
d
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m
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n
y

rig
id

va
lu
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If
th

ere
is

a
d
eriva

ble
roo

t
p
ro

fi
le,

th
ere

is
o
n
e

su
ch

th
a
t

a
ll

th
e

p
ro

fi
les
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its

d
eriva

tio
n

tree
h
a
ve

n
o

m
o
re

th
a
n

2|Π|
d
a
ta

va
lu

es.

P
r
o
o
f
.

S
u
p
p
o
se

w
e

h
av

e
f

=
f1

+
···

+
fn

.
L
et

u
s

fi
rst

sh
ow

th
a
t

fo
r

ev
ery

(α
,β

,i)
∈

Π
th

ere
ca

n
b
e

a
t

m
o
st

o
n
e

d
a
ta

va
lu

e
d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d

�
th

en
th

ere
w

o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R

χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1 )

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1 )
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1 ),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1 )+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m

a
fo

llow
s.

L
et

F
b

b
e

th
e

set
o
f

a
ll

f∈
F

th
a
t

h
av

e
n
o

m
o
re

th
a
n

2|Π|
rig

id
va

lu
es.

L
et

D
b

b
e

th
e

set
o
f
d
eriva

b
le

p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th

ere
is

a
ro

o
t

d
eriva

b
le

p
ro

fi
le

in
D

if
a
n
d

o
n
ly

if
th

ere
is

a
ro

o
t
d
eriva

b
le

p
ro

fi
le

in
D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w

a
rd

clo
sed

.
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.
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D

b .

In
th

e
n
ex

t
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n
w

e
sh

ow
th

a
t

D
b

is
eff

ectiv
e.

(a
,d̄

)

∈

�
(a

,d̄
)

∈

(a
,d̄

)

∈

�
�

�

(bounded)

f

f �1
+

···
+

f �m
f̂

f �

f ��

C ∈

f �C ∈

f �1
+

···
+

f �m

C ∈

f
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R
e
p
re

se
n
ta

tio
n

o
f

th
e

p
ro

fi
le

s
a
n
d

re
la

-
tio

n
s

u
se

d
in

th
e

p
ro

o
f
o
f
L
e
m

m
a

5
.1

5
.

5.3
T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈

(a
,d̄

)f
so

th
a
t

f1 �∈
↑
C

,
a
n
d

a
d
d

f1
to

C
.

If
th

ere
isn

’t
a
n
y,

g
o

to
n
ex

t
step

.

3
.

F
o
r
ev

ery
�

e
x
t -m

in
im

a
l
f∈

C
,
a
d
d

a
ll

b
o
u
n
d
ed

ex
ten
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n
s

to
C
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.

If
th

ere
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tw
o

f1 ,f2
∈

C
∼
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a
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u
n
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ed
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ten
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n
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e
x
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so
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a
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.

R
ep
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G
o

to
step
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.
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O
u
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t
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.

N
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te

th
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t

step
2

ca
n
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n
ly

b
e
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ted
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s
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a
n
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tim
es
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m
in

im
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l
elem

en
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ich
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o
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en

tia
l.

Id
em

w
ith
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n
d

4
.

S
o

it
is

ea
sy

to
ch

eck
th

a
t

th
is

a
lg

o
rith

m
u
ses

ex
p
o
n
en

tia
l

sp
a
ce.

N
ow

w
e

p
rov

e
th
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t

it
is

co
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Fig. 8. Statement of Lemma 5.6.

Therefore, we have that condition (a) as well as conditions (b) and (c) hold true
for every data value, and that f′0 + · · · + f′t+1 and f1 coincide. Thus, the Claim
follows.

This concludes our proof.

As a corollary of the previous lemma, we obtain the following.

Lemma 5.6 (Figure 8). For every f, f1, . . . , ft, f3,1, . . . , f3,t ∈ F and (a1, d̄1), . . . , (at, d̄t) ∈
A×Dk so that f � f1 + · · ·+ ft and fi ∈ (ai, d̄i)f3,i for each i ∈ [t], there is a profile
f′i,j ∈ F for every i ∈ [t], j ∈ [ni] so that f′i,j ∈∼ (ai, d̄i)f3,i and

f = f′1,1 + · · ·+ f′1,n1
+ · · ·+ f′t,1 + · · ·+ f′t,nt .

Proof. This is a direct consequence of Lemma 5.5. Since f � f1 + · · ·+ ft, then

f = (f1 + · · ·+ ft)[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]

for some d1, . . . , dn, d
′
1, . . . , d

′
n ∈ D so that {d1, . . . , dn} ∩R = ∅ and {d′1, . . . , d′n} ∩

data(f1 + · · ·+ ft) = ∅. It follows that

f = (f1 + · · ·+ ft)[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]

= f1[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] + · · ·+ ft[d1 7→ d1, d

′
1] · · · [dn 7→ dn, d

′
n].

Note that fi[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] � fi ∈ (ai, d̄i)f3,i for every i ∈ [t]. We can

hence apply Lemma 5.5, and we obtain, for some ni ∈ N, f′i,1, . . . , f
′
i,ni
∈
∼ (ai, d̄i)f3,i

so that f′i,1 + · · ·+ f′i,ni = fi[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n]. Therefore,

f = f1[d1 7→ d1, d
′
1] · · · [dn 7→ dn, d

′
n] + · · ·+ ft[d1 7→ d1, d

′
1] · · · [dn 7→ dn, d

′
n]

= f′1,1 + · · ·+ f′1,n1
+ · · ·+ f′t,1 + · · ·+ f′t,nt ,

which concludes the proof.

The lemmas above imply that the set of derivable profiles is upward closed.

Lemma 5.7. D = ↑D.

Proof. This is a direct consequence of Lemma 5.6.

We finally state two other monotonicity properties that will be required to reduce
the derivation problem into a similar problem that works only with minimal profiles
in Section 5.5.

We say that a profile f′ is a bounded extension of a profile f if f � f′ and
|data(f′)| ≤ |data(f)|+ 3|Π|4. The following lemma tells us that for any G ⊆ F and
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Fig. 9. Statement of Lemma 5.8.

any profiles f1, f2 ∈ ↑G, there are bounded extensions f′′1 , f
′′
2 of profiles of G so that

f′′1 + f′′2 - f1 + f2, as in Figure 9.

Lemma 5.8 (Figure 9). For every f1, f2, f3, f
′
1, f
′
2 ∈ F, if f1+f2 = f3 and f′1 � f1,

f′2 � f2, then f′′1 + f′′2 � f3, for some f′′1 , f
′′
2 ∈ F so that f′′i is a bounded extension of

f′i, for all i ∈ {1, 2}.
Proof. For every description π̄ so that χ̄3(π̄) \ R3 6= ∅, let dπ̄ ∈ D be a data

value so that dπ̄ ∈ χ̄3(π̄) \R3. Let D be the set of all these data values. Note that
|D| ≤ |Π|4.

We define f′′i = (R3, χ̄
′′
i ), where

χ̄′′i (d) =

{
χ̄′i(d) if d 6∈ D
χ̄i(d) if d ∈ D.

Note that data(f′′i ) ≤ data(f′i) + |D| ≤ data(f′i) + |Π|4.

Claim 5.8.1. f′i � f′′i � fi for all i ∈ {1, 2}.
Proof. By definition of �, for every d ∈ D there is some d′ ∈ data(f′i) \ Ri

so that χ̄i(d) = χ̄′i(d
′). Therefore, f′′i = f′i[d

′
1 7→ d′1, d1] · · · [d′1 7→ d′n, dn] where

{d1, . . . , dn} = D \ data(f′i) and for every j ∈ [n], d′j 6∈ Ri, dj 6∈ data(f′i), and
χ̄′i(d

′
j) = χ̄i(dj). In other words, we have that f′i � f′′i � fi for all i ∈ {1, 2}.

Therefore, f′′i is a bounded extension of f′i for i ∈ {1, 2}.
Claim 5.8.2. f′′1 + f′′2 � f3.

Proof. First, we have that f′′1 , f
′′
2 ∈ F because otherwise f1 or f2 would not be in

F.
Since f′′i � fi, by Lemma 5.3 it follows that

→[f′′i ] = →[fi], [f′′i ]→ = [fi]→. (†)
This means that, since f′′i is the result of adding data values d with profile χ̄i(d), if
conditions (a), (b), (c) hold for f1 + f2 they must also hold for f′′1 + f′′2 . Therefore,
all the preconditions to apply f′′1 + f′′2 hold. Let f′′3 = f′′1 + f′′2 .

Note that all the profiles in question share the same set of rigid values, R′′3 =
R′′1 = R′′2 = R1 = R2 = R3 by definition of � and +. Every data value d ∈ data(f′′3)
is so that χ̄′′i (d) = χ̄i(d), and with (†) this means that χ̄3(d) = χ̄′′3(d), by definition
of f′′1 + f′′2 . For every other data value d ∈ data(f3)\data(f′′3), it must be that d 6∈ R3

and there must be some d̂ ∈ D so that χ̄3(d̂) = χ̄3(d) by definition of D. Then, if
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Fig. 10. Statement of Lemma 5.9.

data(f3) \ data(f′′3) = {d1, . . . , dn} we have that

f3 = f′′3 [d̂1 7→ d̂1, d1] · · · [d̂n 7→ d̂n, dn],

and hence, f′′3 � f3.

By Claims 5.8.1 and 5.8.2, and since data(f′′i ) ≤ data(f′i) + |Π|4, the lemma fol-
lows.

A similar lemma holds for the rooting operation.

Lemma 5.9 (Figure 10). For every f1, f2, f5 ∈ F, (a, d̄) ∈ A × Dk so that f1 ∈
(a, d̄)f2 and f2 � f5, there exist f3, f4 ∈ F so that f4 � f5, f3 ∈∼ (a, d̄)f4, |data(f4)| ≤
|data(f5)|+ |Π|4 + |R1|, and f3 � f1, f4 � f2.

Proof. We are given f1, f2, f5 and (a, d̄). We show that there must be some
f3 and f4 so that f1 � f3 ∈ (a, d̄)f4 with f4 � f5. Figure 10 contains a graphical
representation of the profiles we work with in the proof.

We first define f4. For every internal description π̄ so that π
↓i
1 ∪ π

↓ i
1 6= ∅ and

χ̄1(π̄) \ R1 6= ∅, let dπ̄ ∈ D be a data value of χ̄1(π̄) \ R1. Let D be the set of all
such data values. Note that |D| ≤ |Π|4.

f4 :





R4 = R5

for every d ∈ D ∪R1, χ̄4(d) = χ̄2(d)

for every d 6∈ D ∪R1, χ̄4(d) = χ̄5(d)

Note that |data(f4)| ≤ |data(f5)| + |Π|4 + |R1|. Since f5 � f2, we have that f5 �
f4 � f2.

Claim 5.9.1. f5 � f4 � f2.

Proof. • We first show that f5 � f4.
First notice that R5 = R2 since f5 � f2, and that R4 = R5 by definition of R4.

We then have that for every d ∈ R5 = R4, χ̄4(d) = χ̄2(d) = χ̄5(d).
We show that for every d ∈ data(f5), χ̄4(d) = χ̄5(d). If d ∈ data(f5) \ (D ∪ R1),

we have that χ̄4(d) = χ̄5(d). If on the other hand d ∈ D ∪ R1, we have χ̄4(d) =
χ̄2(d). Then d ∈ data(f2), and since f5 � f2 we have that either d 6∈ data(f5) or
χ̄2(d) = χ̄5(d). Hence, for every d ∈ data(f5), χ̄4(d) = χ̄5(d).

We finish the proof of f4 � f5 by showing that for every d ∈ data(f4) \ R4

there is some d′ ∈ data(f5) \ R4 so that χ̄4(d) = χ̄5(d′). If d 6∈ D ∪ R1, then
of course we can take d′ = d and χ̄4(d) = χ̄5(d′). If d ∈ D ∪ R1, we have that
χ̄4(d) = χ̄2(d) by definition. Since f5 � f2, there must be some d′ ∈ data(f5)\R5 so
that χ̄5(d′) = χ̄2(d) = χ̄5(d), and we are done. This finishes the proof that f5 � f4.
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• We now show that f4 � f2.
Again, notice that R4 = R2 = R5, and since for every d ∈ D, χ̄4(d) is either

χ̄2(d) or χ̄5(d), it follows that for every d ∈ R4 = R5, χ̄4(d) = χ̄2(d).
We show that for every d ∈ data(f4), χ̄4(d) = χ̄2(d). If d ∈ D ∪ R1, then

χ̄4(d) = χ̄2(d) by definition. If d ∈ R4, then χ̄4(d) = χ̄2(d) as shown before. If
d 6∈ D ∪ R1 ∪ R4, χ̄4(d) = χ̄5(d). Notice that χ̄5(d) 6= (∅, ∅, ∅, ∅), since otherwise
d 6∈ data(f4). Then, d ∈ data(f5) and since f5 � f2, χ̄5(d) = χ̄2(d) = χ̄4(d).

We finish the proof of f4 � f2 by showing that for every d ∈ data(f2) \ R2 there
is some d′ ∈ data(f4) \ R2 so that χ̄2(d) = χ̄4(d′). If d ∈ D ∪ R1, then we can just
simply take d′ = d and χ̄2(d) = χ̄4(d′). If d 6∈ D ∪ R1, then χ̄4(d) = χ̄5(d), notice
that χ̄5(d) 6= (∅, ∅, ∅, ∅) because otherwise d 6∈ data(f4) (since d 6∈ R4). Hence,
d ∈ data(f5) and since f5 � f2, we have that χ̄2(d) = χ̄5(d), hence χ̄2(d) = χ̄4(d).
We just showed that f4 � f2.

We define f3 as follows

f3 :





R3 = R1

for every d ∈ R1, χ̄3(d) = χ̄1(d)

for every d ∈ data(f4), χ̄3(d) = χ̄1(d)

for every d ∈ d̄, χ̄3(d) = χ̄1(d)

for every strictly external value d of f1, χ̄3(d) = χ̄1(d).

Claim 5.9.2. f3 � f1.

Proof. By definition we have that R1 = R3, and that χ̄3(d) = χ̄1(d) for all
d ∈ R1. Also by definition, for every d ∈ data(f3) we have χ̄3(d) = χ̄1(d).

We must show that for every d ∈ data(f1) \ (R1 ∪ data(f3)) there is some d′ ∈
data(f3) \ R1 so that χ̄1(d) = χ̄3(d′). Take any such d. Note that d must be
necessarily an internal data value, since f3 contains any strictly external data value
of f1. Hence, let π̄ = χ̄1(d), where π

↓i
1 ∪ π

↓ i
1 6= ∅. By definition of D, there must be

some dπ̄ ∈ D so that χ̄1(dπ̄) = π̄ and dπ̄ 6∈ R1. Since π̄ is internal and f1 ∈ (a, d̄)f2,
dπ̄ ∈ d̄∪data(f2). If dπ̄ ∈ d̄, we have, by definition of f3, that χ̄3(dπ̄) = χ̄1(dπ̄) = π̄ =
χ̄1(d). Hence, there is such d′ ∈ data(f3) \ R1 so that χ̄1(d) = χ̄3(d′). Otherwise,
suppose dπ̄ ∈ data(f2), which means, since π

↓i
1 ∪ π

↓ i
1 6= ∅, that χ̄2(dπ̄) 6= (∅, ∅, ∅, ∅).

By definition of f4, χ̄4(dπ̄) = χ̄2(dπ̄) 6= (∅, ∅, ∅, ∅), thus dπ̄ ∈ data(f4). Then, by
definition of f3 we have that χ̄3(dπ̄) = χ̄1(dπ̄) = π̄ = χ̄1(d). Hence, in this case we
also have that there is such d′ ∈ data(f3) \R1 so that χ̄1(d) = χ̄3(d′).

Claim 5.9.3. f3 ∈ (a, d̄)f4.

Proof. Since f4 � f2 and f1 ∈ (a, d̄)f2, we have that

—ξ(f4) ∈ Γ since ξ(f2) ∈ Γ, by Lemma 5.4, and

—χ
↓e
4 = χ

↓e
4 = ∅ since χ

↓e
2 = χ

↓e
2 = ∅.

Therefore, conditions (i) and (ii) hold for f4. We must show condition (iii), that
is, χ

↓i
3 = χ

↓ i
3 = {(d, α, βγ, i) ∈ D × Π | ∃α′.(d, α′, γ, i) ∈ χ

↓i
4 ∪ χ

↓ i
4, α, β ∈ σa} ∪⋃

i∈[k]({d̄(i)} × (σa \ {ε})× σa × {i})
Take any data value of d ∈ d̄ ∪ data(f4). We have that χ

↓i
3(d) = χ

↓i
1(d) by

definition. We also have that χ
↓ i
1(d) = χ

↓i
1(d) = {(α, βγ, i) ∈ Π | ∃α′.(d, α′, γ, i) ∈
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χ
↓i
2 ∪ χ

↓ i
2, α, β ∈ σa}∪

⋃
d=d̄(i),i∈[k]((σa \ {ε})×σa×{i}). Since f2 and f4 coincide in

d, we also have that the set above is equal to {(α, βγ, i) ∈ Π | ∃α′.(d, α′, γ, i) ∈ χ
↓i
4∪

χ
↓ i
4, α, β ∈ σa}∪

⋃
d=d̄(i),i∈[k]((σa \{ε})×σa×{i}). This, together with the fact that

all internal values of f3 are in data(f4) ∪ d̄, implies that χ
↓i
3 = χ

↓ i
3 = {(d, α, βγ, i) ∈

D×Π | ∃α′.(d, α′, γ, i) ∈ χ
↓i
4 ∪ χ

↓ i
4, α, β ∈ σa}∪

⋃
i∈[k]({d̄(i)}× (σa \ {ε})×σa×{i})

as desired. Hence, condition (iii) holds, and we have that f3 ∈ (a, d̄)f4.

This concludes the proof.

5.4 Bounding the rigid values

In this section we show that we can reduce the derivation problem into a similar
problem where all the profiles have boundedly many rigid values. This will be
combined with the result of the next sections, stating that the derivation problem
restricted to profiles with boundedly many rigid values is decidable in 2ExpSpace,
to solve the derivation problem.

Lemma 5.10. If there is a derivable root profile, then there is a derivation tree
for a root profile so that all the profiles in the forest have no more than 2|Π| rigid
values.

Proof. Suppose we have f = f1 + · · · + fn. Let us first show that for every
(α, β, i) ∈ Π there can be at most one data value d ∈ D so that there is some j ∈ [n]
with χ

↓e
j (α, β, i) = {d}. By means of contradiction, if there were two distinct data

values d, d′ then there would be two fj , fk with j 6= k so that χ
↓e
j (α, β, i) = {d} and

χ
↓e
k(α, β, i) = {d′}. Suppose without any loss of generality that j < k. Then, by

definition of +, we must have that—since d ∈ χ
↓e
j (α, β, i) and fj+· · ·+fk is defined—

d ∈ χ
↓e
k(α, β, i). This is in contradiction with the fact that χ

↓e
k(α, β, i) = {d′}. The

same happens by symmetry with χ
↓e.

Let us define

Rlχ̄1,...,χ̄n

def
= {d ∈ D | χ↓ej (α, β, i) = {d} for some (α, β, i) ∈ Π and j ∈ [n]},

Rrχ̄1,...,χ̄n

def
= {d ∈ D | χ↓ej (α, β, i) = {d} for some (α, β, i) ∈ Π and j ∈ [n]},

Rχ̄1,...,χ̄n
def
= Rlχ̄1,...,χ̄n ∪Rrχ̄1,...,χ̄n .

By the discussion before, it follows that |Rχ̄1,...,χ̄n | ≤ 2|Π|. Consider the profiles
f′, f′1, . . . , f

′
n to be as f, f1, . . . , fn but with Rχ̄1,...,χ̄n as the set of rigid values. By

construction of Rχ̄1,...,χ̄n we have that f′ = f′1 + · · · + f′n. In other words we have
the following.

Claim 5.10.1. For every (R, χ̄) = (R, χ̄1) + · · ·+ (R, χ̄n) we have that

(Rχ̄1,...,χ̄n , χ̄) = (Rχ̄1,...,χ̄n , χ̄1) + · · ·+ (Rχ̄1,...,χ̄n , χ̄n).

Using the above statement we can now prove the lemma. Let t be a derivation
tree for a root profile (R, f). Let t′ be the derivation tree that results from replacing
in t the profile labels (R, χ̄1), . . . , (R, χ̄n) of any maximal sequence of siblings with
the labels

(Rχ̄1,...,χ̄n , χ̄1), . . . , (Rχ̄1,...,χ̄n , χ̄n).
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By the claim above, t′ is a derivation tree for (Rχ̄, f). (Note that this is true because
in the rooting operation there is no restriction on which should be the set of rigid
values of the parent profile.) It is immediate that (R, f) is a root profile if and only
if (Rχ̄, f) is a root profile. Thus, the lemma follows.

Let Fb be the set of all f ∈ F that have no more than 2|Π| rigid values. Let Db

be the set of derivable profiles restricted to Fb.

Remark 5.11. By Lemma 5.10 and in light of the definition of bounded exten-
sion, it follows that Lemma 5.9, when applied to profiles of Fb, yields a profile f4
that is a bounded extension of f5.

By the Lemma just shown, we have the following

Lemma 5.12. There is a derivable root profile in D if and only if there is a
derivable root profile in Db.

We have then reduced the derivation problem into a simpler problem, the bounded
derivation problem: testing whether there is a derivable root profile in Db.

Remark 5.13. We have that Db is upward closed since D is upward closed.
That is, Db = ↑Db.

Note that Fb has boundedly many --minimal elements. In the next section we
show how to restrict the problem to a problem that uses only these --minimal
profiles. We will show how this yields a 2ExpSpace algorithm in Section 5.6.

5.5 Restricting to minimal elements

Thanks to the result from the previous section stating that Db is upward closed,
we can now show that we can work only with the minimal elements of Fb. The
main necessary property concerns all those profiles f′ ∈ Fb that are ‘--related’ to
a profile f′′ ∈ Db, in the sense that f′ % f - f′′ ∈ Db for some f. (Note that this set
of profiles is precisely ↑↓Db.) The property states that the forest profiles algebra
preserves the --relatedness.

Given G ⊆ Fb, let

R(a,d̄)
up (G)

def
= {f ∈ Fb | f ∈ (a, d̄)f′, f′ ∈ G} for (a, d̄) ∈ A× Dk,

Rup(G)
def
=

⋃

(a,d̄)∈A×Dk

R(a,d̄)
up (G),

R+(G)
def
= {f ∈ Fb | f = f1 + f2 where f1, f2 ∈ G},

R(G)
def
= Rup(G) ∪R+(G).

Lemma 5.14. R(↑↓Db) ⊆ ↓Db.

Lemma 5.14 is the consequence of the following properties.

Lemma 5.15 (Figure 11). For every f, f′, f′′, f′1 ∈ Fb and (a, d̄) ∈ A × Dk so
that f - f′′, f - f′ and f′1 ∈ (a, d̄)f′, there are f′′′, f′′1 ∈ Fb so that f′′ - f′′′, f′ - f′′′,
f′′1 ∈ (a, d̄)f′′′ and f′1 - f′′1 .
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Fig. 11. Statement of Lemma 5.15.

Proof. Without any loss of generality, let us assume that f � f′ and f � f′′

so that data(f′′) ∩ data(f′) = data(f′′) ∩ data(f′1) = data(f). We define f′′′ so that
R′′′ = R and

χ̄′′′(d) =

{
χ̄′(d) if d ∈ data(f′),

χ̄′′(d) else, if d ∈ data(f′′).

The following statement follows straight from this definition.

Claim 5.15.1. f′′ � f′′′, f′ � f′′′.

Proof. By definition of f � f′′ and f � f′ for every data value d ∈ data(f′) ∪
data(f′′) there is a data value f(d) ∈ data(f) so that χ̄(d) = χ̄′(d) = χ̄′′(d) and
d ∈ R iff f(d) ∈ R. Then,

—f′′′ = f′[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn] for {d1, . . . , dn} = data(f′′) \
data(f′), and

—f′′′ = f′′[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn] for {d1, . . . , dn} = data(f′) \
data(f′′).

Thus, f′′ � f′′′, f′ � f′′′.

Remember that by definition of f′ � f′′′, for every data value d ∈ data(f′′′) there
must be some data value f(d) ∈ data(f′) so that χ̄′′′(d) = χ̄′(d). We can further
assume that for every d ∈ data(f′′′), d ∈ R′1 iff f(d) ∈ R′1 (i.e., we can simply define
f(d) = d for all d ∈ R′1 ∩ data(f′′′)). We define f′′1 as R′′1 = R′1 and

χ̄′′1(d) =

{
χ̄′1(d) if d ∈ data(f′1)

χ̄′1(f(d)) else, if d ∈ data(f′′′).

Claim 5.15.2. f′′1 ∈ (a, d̄)f′′′.

Proof. For every data value of d ∈ data(f′1) we have that χ̄′′1(d) and χ̄′′′(d) are
equal to χ̄′1(d) and χ̄′(d), and it therefore verifies the conditions imposed by the
rooting operation. Further, any other data value of data(f′′1) (namely any data value
from data(f′′′) \ data(f′1)) behaves as some data value f(d) in f′1. That is χ̄′′1(d) and
χ̄′′′(d) are equal to χ̄′1(f(d)) and χ̄′(f(d)). It then follows that that the data value
must verify the conditions imposed by the rooting operation. Finally, by Lemma
5.4, ξ(f′1) ∈ Γ and f′1 - f′′1 , we have that ξ(f′′1) ∈ Γ. Hence, f′′1 ∈ (a, d̄)f′′′.
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Fig. 12. Statement of Lemma 5.17.

By definition of f′′1 , it also follows that f′1 � f′′1 .

Claim 5.15.3. f′1 � f′′1 .

Proof. It is immediate from the definition that

f′′1 = f′1[f(d̂1) 7→ f(d̂1), d̂1, . . . , f(d̂s) 7→ f(d̂s), d̂s],

where {d̂1, . . . , d̂s} = data(f′′′) \ data(f′1). By definition of f , f(d̂1), . . . , f(d̂s) ∈
data(f′) \R′1, and hence f′1 � f′′1 .

This concludes the proof.

Lemma 5.16. Rup(↑↓Db) ⊆ ↓Db.

Proof. Let f′1 ∈ Rup(↑↓Db). This means that there is some f′′ ∈ Db and f so
that f - f′′, f - f′, and f′1 ∈ (a, d̄)f′ for some (a, d̄) ∈ A × Dk. We can then apply
Lemma 5.15, obtaining that there is some f′′′ and f′′1 so that f′′ - f′′′, f′ - f′′′,
f′1 - f′′1 , and f′′1 ∈ (a, d̄)f′′′. Since Db is upward-closed by Remark 5.13, f′′′ ∈ Db,
and therefore f′′1 ∈ Db as well since f′′1 ∈ (a, d̄)f′′′. Thus, as f′1 - f′′1 , we obtain
f′1 ∈ ↓Db.

Lemma 5.17 (Figure 12). For every i ∈ {1, 2} and fi, f
′
if
′′
i ∈ Fb so that fi - f′i,

fi - f′′i and f′1 + f′2 is defined, there are f′′′1 , f
′′′
2 ∈ Fb so that f′1 + f′2 - f′′′1 + f′′′2 and

f′′i - f′′′i , f′i - f′′′i for every i ∈ {1, 2}.
Proof. Without any loss of generality, assume that fi � f′i, fi � f′′i and data(f′′i )∩

data(f′i) = data(fi) for every i ∈ {1, 2}. Remember that by definition of fi � f′′i ,
for every data value d ∈ data(f′′i ) there must be some data value f(d) ∈ data(fi) so
that χ̄i(d) = χ̄′′i (d) = χ̄′i(d). We then define f′′′i for every i ∈ {1, 2} so that R′′′i = Ri
and

χ̄′′′i (d) =





χ̄′i(d) if d ∈ data(f′i),

χ̄′′i (d) else, if d ∈ data(f′′i ),

χ̄′i(f(d)) else, if d ∈ data(f′′3−i),

(∅, ∅, ∅, ∅) otherwise.

In the definition above, notice that for every d ∈ data(f′′3−i) we have that f(d) ∈
data(f3−i) and hence f(d) ∈ data(f′3−i) which, by definition of f′1 + f′2, means that
f(d) ∈ data(f′i).

The following claim follows straight from the definition just given.
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Claim 5.17.1. f′i � f′′′i , f′′i � f′′′i for all i ∈ {1, 2}.
Proof. Since fi � f′′i and fi � f′i, there is some f̂ so that for every d ∈ data(f′i),

f̂(d) ∈ data(fi) so that χ̄′′i (d) = χ̄i(f̂(d)) = χ̄′′i (f̂(d)) and d ∈ Ri iff f̂(d) ∈ Ri.
For every i ∈ {1, 2}, it is immediate from the definition of f′′′i that

f′′′i = f′i[f(d̂1) 7→ f(d̂1), d̂1] · · · [f(d̂n) 7→ f(d̂n), d̂n]

[f(d1) 7→ f(d1), d1] · · · [f(dm) 7→ f(dm), dm]

where {d1, . . . , dm} = data(f′′3−i) and {d̂1, . . . , d̂n} = data(f′′i ) \ data(f′i).

Since fi � f′′i and fi � f′i, there is some f̂ so that for every d ∈ data(f′i), f̂(d) ∈
data(fi) so that χ̄′i(d) = χ̄i(f̂(d)) = χ̄′i(f̂(d)) = χ̄′′i (f̂(d)) and d ∈ Ri iff f̂(d) ∈ Ri.
For every i ∈ {1, 2}, it is immediate from the definition of f′′′i that

f′′′i = f′′i [f̂(d̂1) 7→ f̂(d̂1), d1] · · · [f̂(d̂n) 7→ f̂(d̂n), dn]

[f(d1) 7→ f(d1), d1] · · · [f(dm) 7→ f(dm), dm]

where each di and d̂i is so that {d1, . . . , dm} = data(f′′3−i) and {d̂1, . . . , d̂n} =
data(f′i).

We are then left with the following easy claim.

Claim 5.17.2. f′1 + f′2 � f′′′1 + f′′′2 .

Proof. For every data value d ∈ data(f′1) ∪ data(f′2) it is easy to see that the
conditions of + apply for f′′′1 and f′′′2 since they have the same description for d. For
any other data value d ∈ data(f′′1)∪ data(f′′2) we have that f′′′1 and f′′′2 behave just as
f′1 and f′2 for the data value f(d). Therefore, the conditions of + hold, and f′′′1 + f′′′2
is well defined. Moreover, f′1 + f′2 � f′′′1 + f′′′2 since, by definition of f′′′1 , f

′′′
2 we have

f′′′1 + f′′′2 = (f′1 + f′2)[f(d1) 7→ f(d1), d1] · · · [f(dn) 7→ f(dn), dn]

for {d1, . . . , dn} = data(f′′′1 + f′′′2 ) \ data(f′1 + f′2).

This concludes the proof of the lemma.

Lemma 5.18. R+(↑↓Db) ⊆ ↓Db.

Proof. Let f′3 ∈ R+(↑↓Db). Then, there must be some f′1, f
′
2 ∈ Fb so that

f′1 + f′2 = f′3 so that there exist f1, f2, f
′′
1 , f
′′
2 where f′′i ∈ Db, fi - f′i, fi - f′′i for all

i ∈ {1, 2}. Therefore, by Lemma 5.17, there must be some f′′′1 , f
′′′
2 ∈ Fb so that

f′3 = f′1 + f′2 - f′′′1 + f′′′2 and f′′i - f′′′i , f′i - f′′′i for all i ∈ {1, 2}. Since f′′1 , f
′′
2 ∈ Db, and

since Db is upward-closed by Remark 5.13, we have that f′′′1 , f
′′′
2 ∈ Db and hence

f′′′1 + f′′′2 ∈ Db. Hence, since f′3 - f′′′1 + f′′′2 it follows that f′2 ∈ ↓Db.

Proof of Lemma 5.14. Immediate from Lemmas 5.16 and 5.18.

5.6 The algorithm

In this section we show how to compute, in 2ExpSpace, whether there exists a
derivable root profile in Db, solving thus the derivation problem.

For G ⊆ Fb, we define G∼
def
= {f | f ∼ f′ for some f′ ∈ G}. We define G/∼ as

the set containing one representative profile of G for each ∼-equivalence class. We
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define min(G) as the set of --minimal elements of G,

min(G)
def
= {f ∈ G | for all f′ ∈ G so that f′ - f

we have f ∼ f′}.
For any f ∈ F, we write |f|—the size of f—, as the size needed to write f. Note that
for all f ∈ min(Fb), |f| is at most exponential in |P|. For any G ⊆ F, we write |G|
to denote

∑
f∈G |f|.

Let us define C i for every i ∈ N0 as

C 0
def
= {f∅},

C i+1
def
= C i ∪ min

(
↓R(↑↓C i)

)
/∼.

Let k0 ∈ N0 be the first index so that C∼k0
= C∼k0+1.

Remark 5.19. For every i ∈ N0, Ci ⊆ min(Fb).

As a consequence of the property of the preceding section, we have that this
algorithm computes min(↓Db).

Lemma 5.20. C∼k0
= min(↓Db).

Thanks to the property R(↑↓Db) ⊆ ↓Db one can show that C ∼k0
= min(↓Db) and

that C i+1 can be computed from C i in 2ExpSpace in |C i| and |P|. It is possible
to test from the set min(↓Db) whether there is a root derivable profile in Db, hence
obtaining that the derivation problem is decidable.

Proof of Lemma 5.20. By Lemma 5.14 we know that R(↑↓Db) ⊆ ↓Db. There-
fore, since C 0 ⊆ min(↓Db), we have that for every i, C i ⊆ min(↓Db). We then need
to show that min(↓Db) ⊆ C∼k0

. Suppose, by means of contradiction, that there is
some f ∈ Fb so that f ∈ min(↓Db) but f 6∈ C∼k0

. Then, since {f∅} = C 0 ⊆ C k0
there

must be one such f so that f - f′ for some f′ ∈ Db where f′ = f1 + f2 for f1, f2 ∈ C∼k0
,

or f′ ∈ (a, d̄)f′′ for f′′ ∈ C∼k0
, (a, d̄) ∈ A× Dk.

—If f′ = f′1 + f′2 where f′1, f
′
2 ∈ C∼k0

, then f′ ∈ R+(↑↓C k0
), and hence we have that

f ∈ min(R+(↑↓C k0
)) ⊆ C∼k0+1 = C∼k0

, which is an absurd.

—If f′ ∈ (a, d̄)f′′ where f′′ ∈ C∼k0
, then f′ ∈ R(a,d̄)

up (↑↓C k0), and hence we have that

f ∈ min(R(a,d̄)
up ) ⊆ C∼k0+1 = C∼k0

, which is also an absurd.

Therefore, min(↓Db) ⊆ C∼k0
and thus C∼k0

= min(↓Db).

We further have that this computation is in 2ExpSpace. Since |min(Fb)/∼| is
doubly exponential in |P|, we have the following.

Lemma 5.21. k0 is bounded by a doubly exponential function on |P|.
Proof. Remember that Fb is the set of profiles that have less than 2|Π| rigid

values. Then,
(
2Π × 2Π × 2Π × 2Π

)2|Π|

represent all the possible profiles of the rigid values. We must also remember which
profiles have either 0, or 1 or more flexible values, and this information can be
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represented with an element of

22Π×2Π×2Π×2Π

.

Therefore, there are doubly exponentially many elements in min(Fb)/∼, and hence
k0 is bounded by a doubly exponential function in |Π|. Since |Π| is polynomial in
|P|, the statement follows.

Lemma 5.22. Given G ⊆ Fb and f ∈ Fb, testing f ∈ min(↓R(↑↓G)) is computable
in 2ExpSpace in |G| and |P|.

Proof. First we check that f ∈ min(↓Fb).
To check f ∈ min(↓R+(↑↓G)), we verify if f - f1 + f2 in 2ExpSpace, where f1, f2

is a pair of the (doubly exponentially many) bounded extensions of elements of
min(↓G). By Lemma 5.8, there are such f1, f2 if, and only if, f ∈ min(↓R+(↑↓G)).

Finally, to check f ∈ min(↓Rup(↑↓G)), we verify that f - f3 ∈ min((a, d̄)f4)
in 2ExpSpace, where f4 is a bounded extension of a profile of min(↓G). If the
condition holds of course f ∈ min(↓Rup(↑↓G)). On the other hand, by Lemma 5.9
cum Remark 5.11, if f ∈ (a, d̄)f2 with f2 % f5, then f % f3 ∈ min((a, d̄)f4) for some
bounded extension f4 of f5, and hence the condition holds.

By the lemma above, we immediately obtain the following.

Lemma 5.23. Ci+1 can be computed from Ci in 2ExpSpace in |Ci| and |P|.
Proof. For each f ∈ min(Fb)/∼ we can check, in 2ExpSpace, wether f ∈

min(↓R(↑↓C i)) thanks to Lemma 5.22. We can therefore compute min(↓R(↑↓C i))/∼
in 2ExpSpace, and thus we can also compute C i+1 in 2ExpSpace.

Proposition 5.24. The derivation problem is decidable in 2ExpSpace.

Proof. We can compute all

C 0, . . . ,C k0

in 2ExpSpace by Lemmas 5.23 and 5.21. Since C∼k0
= min(↓Db) by Lemma 5.20,

it follows that min(↓Db) is hence computable in 2ExpSpace.
In order to test if there is a derivable profile in Db we choose some f ∈ min({f ∈

Fb | ξ(f) ∈ Γ}) with no external values (i.e., so that χ
↓e = χ

↓e = ∅), f′ ∈ min(↓Db)
and (a, d̄) ∈ Aroot × Dk, and test, in 2ExpSpace (Lemma 5.22), whether f ∈
min(↓R(a,d̄)

up (↑↓{f′})).
Claim 5.24.1. The following statements are equivalent.

1. There is some f ∈ min({f ∈ F | ξ(f) ∈ Γ}) with no external values so that

—f ∈ min(↓R(a,d̄)
up (↑↓{f′})),

—(a, d̄) ∈ Aroot × Dk and
—f′ ∈ min(↓Db).

2. There is a derivable root profile in Db.

Proof. [1⇒2] Assume first that condition 1 holds. We change the names for
the profiles to make the explanation clear. Suppose that there is some f′1 ∈
min(↓R(a,d̄)

up (↑↓{f})) with no external data values, for some (a, d̄) ∈ Aroot × Dk,
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f′1 ∈ min({f ∈ Fb | ξ(f) ∈ Γ}), and f ∈ min(↓Db). This means that there must be
some f′′ ∈ Db so that f - f′′ and some f′ so that f - f′ and f′1 ∈ (a, d̄)f′. We can then
apply Lemma 5.15 obtaining that there is some f′′′ and f′′1 so that f′′ - f′′′, f′ - f′′′,
f′1 - f′′1 , and f′′1 ∈ (a, d̄)f′′′. Since Db is upward closed (Remark 5.13), f′′′ ∈ Db and
hence f′′1 ∈ Db. By definition of -, it follows that, since f′1 has no external data
values, f′′1 has no external data values either. Thus, there is a derivable root profile,
namely f′′1 .

[1⇐2] Suppose, on the other hand, that condition 2 holds. If there is a derivable
root profile in Db, then there are f, f′ ∈ Db and (a, d̄) ∈ Aroot × Dk so that χ

↓e =
χ
↓e = ∅ and f ∈ (a, d̄)f′. Let f′1 ∈ min(↓{f′})/∼, that is, f′1 is a minimal element

corresponding to f′. Also, let f1 ∈ min(↓{f})/∼, that is, f1 is a minimal element

corresponding to f. Of course, it follows that f1 ∈ min(↓R(a,d̄)
up (↑↓{f′1})). Note that

f1 ∈ min({f ∈ Fb | ξ(f) ∈ Γ}), and that f1 has no external values since f has no
external values. Hence condition 1 holds.

Since there is a derivable root profile in Db if and only if there is a derivable root
profile in D by Lemma 5.12, the proposition follows.

6. FROM XPATH TO FOREST PROFILES

In this section we reduce the satisfiability problem for XPath(∗←, ↓∗,→∗,=) into
the derivation problem for forest profiles.

In Section 6.1 we define a normal form for XPath(∗←, ↓∗,→∗,=), called direct
unnested normal form, and in Section 6.2 we show the reduction from the satisfia-
bility problem of direct unnested XPath(∗←, ↓∗,→∗,=) formulas into the derivation
problem for forest profiles.

6.1 Normal forms

We will assume a certain normal form of the formula ϕ ∈ XPath(∗←, ↓∗,→∗,=) to
test for satisfiability. This will simplify the reduction into the derivation problem
for forest profiles.

The normal form has two main properties. Firstly, it contains only path expres-
sions that are direct, in the sense that the navigation consists in going left and then
down, or going right and then down. And secondly, path expressions do not contain
data tests as node expressions, in other words the formula is unnested. Next, we
explain in detail these properties.

Preliminaries. Let α = a1 · · · an with n > 0 be a XPath(∗←, ↓∗,→∗,=) path
expression, where for every i, ai = [ψ] for some node expression ψ, or ai ∈
{ε, ∗←, ↓∗,→∗}. We say that α is in alternating path normal form if either
α = ε, or n is even and for all 1 ≤ i ≤ n
—if i is even, ai = [ψ] for some node expression ψ,

—if i is odd, ai ∈ {∗←, ↓∗,→∗}.
In other words, the path alternates between axes and tests for node expressions.
We say that a formula is in alternating path normal form if all its path expressions
are in alternating path normal form. Note that one can turn any formula ϕ ∈
XPath(∗←, ↓∗,→∗,=) into an equivalent formula ϕ′ in alternating path normal form
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in polynomial time, using the equivalences

〈[ψ]α@i � β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},
〈α@i � [ψ]β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},

α[ψ1][ψ2]β ≡ α[ψ1 ∧ ψ2]β, and,

if αβ 6= ε, αβ ≡ α[>]β and αεβ ≡ αβ.

(4)

For simplicity and without any loss of generality we can further assume that all
our formulas do not contain formulas of the type 〈α〉, since it is equivalent to
〈α@1 = α@1〉. We will henceforth assume that all the formulas we work with are
in this form.

We say that a path expression in alternating path normal form is a rightward
path expression, if it starts with →∗ and all the axes in it are →∗ (similarly
with leftward, downward and ∗←, ↓∗). Notice that, for example, a leftward
expression may contain node tests using rightward or downward axes. For example,
∗←[〈↓∗[a]〉]∗←[b] is a leftward expression while ∗←[a]↓∗[〈∗←[a]〉] is not.

Direct normal form. The object of the direct normal form is to avoid having
unnecessary mixed directions in path formulas, that use perhaps →∗ and ∗← in the
same expression, or that contain a ∗← (or →∗) axis after a ↓∗ axis. That is, we
avoid having formulas like

〈 →∗[a]∗←@1 = ↓∗[b]→∗@2 〉
in favor of equivalent formulas with a more direct navigation, like

〈 →∗[〈→∗[a]〉]@1 = ↓∗[〈∗←[b]〉]@2 〉 ∨ 〈 [〈→∗[a]〉]∗←@1 = ↓∗[〈∗←[b]〉]@2 〉. (‡)

In the formula above we factor the loops that may be in the navigation of the path
expression to obtain a simple navigation that goes in only one horizontal direction.

We say that a formula ϕ ∈ XPath(∗←, ↓∗,→∗,=) is in direct normal form, if
every path expression is ε, or of the form α·β, where α·β 6= ε (i.e., it is not the
empty string), α is leftward, rightward or empty, and β is downward or empty. Note
that, strictly speaking, the formula (‡) is not in direct normal form since its second
disjunct is not in alternating path normal form, but the equivalent alternating path
expression—using (4)—is in direct normal form.

Lemma 6.1 (Direct normal form). There exists an exponential time trans-
lation that for every node expression ϕ ∈ XPath(∗←, ↓∗,→∗,=) returns an equiva-
lent node expression ψ in direct normal form.

Proof. The idea is that every data test expression 〈α@i = β@j〉 is translated
into a big disjunction of expressions in direct normal form, where loops in the tree
navigation of α, β are factored as node expressions, as done in (‡).

For any finite alphabet B, we define tree order morphisms between forests
over a powerset alphabet 2B. Given two forests t̄, t̄′ over 2B, a tree order morphism
from t̄ to t̄′ is a function f from the nodes of t̄ to the nodes of t̄′ so that

—for every node x of t̄, the label of x in t̄ is a subset of the label of f(x) in t̄′, and

—for every two nodes x, y of t̄, if (x, y) is in the reflexive-transitive closure of the
next-sibling relation (resp. of the child relation) in t̄, then (f(x), f(y)) is also
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Figure 11: Example for the proof of Lemma 6.1.

α = ∗←[ψ6]→∗[ψ3]
∗←[ψ7]→∗[ψ1]↓∗[ψ4]

∗←[�]↓∗[ψ2]

µα
t̄,x,y = [ψ6 ∧ ψ7]→∗[ψ1 ∧ �→∗[ψ3]�]↓∗[� ∧ �→∗[ψ4]�]↓∗[ψ2]

where ψ1 = a ψ3 = c ψ5 = ¬a

ψ2 = �↓∗[a]� ψ4 = b ψ6 = ¬�∗←[a]�

form α·β, where α·β �= � (i.e., it is not the empty string),
α is leftward, rightward or empty, and β is downward or
empty.

Lemma 6.1 (Direct normal form). There exists an
exponential time translation that for every node expression
ϕ ∈ XPath(∗←, ↓∗,→∗, =) returns an equivalent node expres-
sion ψ in direct normal form.

Proof. The idea is that every data test expression �α@i =
β@j� is translated into a big disjunction of expressions in di-
rect normal form, where possible loops in the tree navigation
of α, β are factored away as node expressions.

We define a order homomorphisms between forests as
follows. Given two forests t̄, t̄�, a reflexive homomorphisms
between t̄ and t̄� is a function f from the nodes of t̄ into the
nodes of t̄� so that for every two nodes x, y of t̄, if (x, y) are
in the reflexive-transitive closure of the next-sibling relation
(resp. the child relation), then (f(x), f(y) are also in the
reflexive-transitive closure of the next-sibling relation (resp.
the child relation).

Consider a forest t̄ labeled with sets of node expressions
of XPath(∗←, ↓∗,→∗, =), and let x, y be two nodes of t̄, so
that x is a root. For such a forest and nodes, one can build
a direct path expression µα

t̄,x,y that tests if there is a path
between x and y satisfying the relative appearance of nodes
satisfying the labels as in the tree. For example, for the
forest t̄ of Figure 11-b and the nodes x, y depicted, the cor-
responding expression µα

t̄,x,y would be the one appearing in
Figure 11-c.

Let α be a path expresion, and let ne(α) be the set of all
node expressions of α.

WHAT IS WITNESS FOREST? Given a multi-attribute
data tree t so that t, (x, y) |= α, we call a witness forest

of α for t, (x, y) to a forest t̄ over the alphabet 2ne(α) and
nodes x, y, where t̄ are the nodes involved in the satisfaction
of α, and they are labeled with the node expressions that
they must verify. For example, given the multi-attribute
data tree of Figure 11-a, and α as defined in Figure 11-c, a
possible witness forest is depicted in Figure 11-b. Note that
all witness forests of α for t, (x, y) are bounded by p(|α|) for
some polynomial p( ).

xxx
We define a contraction of a forest over the alphabet 2ne(α)

as the transitive clausure of the following operation. Take
two successive nodes (horizontally or vertically) and replace
them by only one, whose tag is the union of the two nodes
being contracted.

xxx
Given a path expression α, consider α̂ as the path expres-

sion over the alphabet 2ne(α), where every node expressions
ψ is replaced by

�
S⊆ne(α),ψ∈S S, that is, it is treated as a

test for a letters from the alphabet. For every forest t̄ over
the alphabet 2ne(α) and nodes x, y so that t̄, (x, y) |= α̂, we
say that µα

t̄,x,y is a direct normal form linearization of α. It

follows that t, (x, y) |= µα
t̄,x�,y� if, and only if, either t̄, (x�, y�)

—or a contraction of t̄, (x�, y�)— is a witness forest of α for
t, (x, y). Note that if t̄�, x��, y�� is a contraction of t̄, x�, y�,
then: If t, (x, y) |= µα

t̄�,x��,y�� then t, (x, y) |= µα
t̄,x�,y� .

Therefore, the following follows.

Claim 6.1.1. If t, (x, y) |= α if, and only if, t, (x, y) |=
µα

t̄,x�,y� for some forest t̄, x�, y� over 2ne(α) of size less than
p(|α|).

FINISH THE PROOF HERE????

Proof. From left to right: If t, (x, y) |= α, then THE
witness forest of α for t, (x, y), call it t̄, x�, y�, is so that
t̄, x�, y� |= µ̂α

t̄,x�,y� , and therefore t, (x, y) |= µα
t̄,x�,y� .

From right to left: If there is some forest t̄, x�, y� so that
t, (x, y) |= µα

t̄,x�,y� , then t̄, x�, y� |= µ̂α
t̄,x�,y� . Further, since

t, (x, y) |= µα
t̄,x�,y� , we have that t̄, x�, y� is a possible wit-

ness forest of µα
t̄,x�,y� for t, (x, y). Then, it is also a possible

witness forest of α, and hence t, (x, y) |= α.

Claim 6.1.2. For every multi-attribute data tree t, we
have that t, (x, y) |= α if, and only if, t, (x, y) |= µα

t̄,x,y for
some direct normal form linearization µα

t̄,x,y of α.xxx

Proof. [⇒] Given a multi-attribute data tree t so that
t, (x, y) |= α, if we consider t̄ as the forest that results when
we restrict t to only the nodes that witness α, replacing the
label of every node by the node expression that witnesses,
we then have that t, (x, y) |= µα

t̄,x,y.
[⇐] Since µα

t̄,x,y is a direct normal form linearization of
α, we have that t̄, (x, y) |= α̂. This means that the relative
order of the nodes of t̄ are compatible with the navigation
of α. If further t, (x, y) |= µα

t̄,x,y,
WHAT IS WITNESS?
WHAT IS APPEARANCE OF WITNESS?
t, (x, y) |= α if, and only if, t̄, (x�, y�) |= α̂ for some witness

forest t̄, x�, y� of t, (x, y) |= α.
USE FIGURE, IMPROVE

There are exponentially many trees, and thus there are expo-
nentially many direct normal form linearizations of a given
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Fig. 13. Example for the proof of Lemma 6.1.

in the reflexive-transitive closure of the next-sibling relation (resp. of the child
relation) in t̄′.

We say that t̄′, (x′, y′) is a contraction of t̄, (x, y) if there is a tree order morphism
f from t̄ to t̄′ so that f(x) = x′ and f(y) = y′. We also say that t̄, (x, y) is an ex-
pansion of t̄′, (x′, y′). Notice that the function need not be surjective, and hence
the fact that one forest is a contraction of another does not have any implication
on the sizes of the forests: a forest may have less or more nodes than its contrac-
tion. For example, both the tree of Figure 13-b and the forest of Figure 13-d are
contractions of the forest of Figure 13-c.
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Let α be a path expression, and let ne(α) be the set of all node expressions of α.
Consider t̂α the tree over the alphabet 2ne(α), where every node is labeled by those
ψ ∈ ne(α) that are true at the node. For example, for the multi-attribute data tree
t defined in Figure 13-a and α as defined in Figure 13-e, the tree t̂α is the one of
Figure 13-b.

Let t̄ be any forest over 2ne(α), and let x, y be two nodes of t̄, so that x is a
root. For such a forest and nodes, one can build a direct path expression µαt̄,x,y
that tests if there is a path between x and y satisfying the order of nodes satisfying
the labels as in the tree. For example, for the forest t̄ of Figure 13-c and the nodes
x, y depicted, the corresponding expression µ̂αt̄,x,y would be the one appearing in
Figure 13-e.

Claim 6.1.1. A direct path expression µαt̄,x,y can be built from t̄ in polynomial

time, such that for every multi-attribute data tree t we have that t, (x′, y′) |= µαt̄,x,y
if and only if t̂α, (x′, y′) is a contraction of t̄, (x, y).

Proof. Given a forest t̄ and nodes x, y so that x is a root, one can build µαt̄,x,y
iteratively. We first build a path expression that starts in x and and ends in y and
checks all the labels of 2ne(α) between x and y in the unique path between x and y
that corresponds to a direct navigation. For example if t̄, x, y are as in Figure 14-a,
we build a path as in Figure 14-b that tests all the node expressions of the nodes in
the path. In this example the path has three nodes, so the expression would be of
the form [`1]→∗[`2]↓∗[`3] where `i ⊆ ne(α) is the label of the node i in the figure.
We then build a more complex path expression nesting expressions that test the
existence of paths as depicted in Figure 14-c. In our example, it would correspond
to

[`1 ∧ 〈∗←[`4]↓∗[`5]〉︸ ︷︷ ︸
nesting

]→∗[`2]↓∗[`3 ∧ 〈∗←[`6]〉︸ ︷︷ ︸
nesting

∧ 〈↓∗[`7]〉︸ ︷︷ ︸
nesting

].

We iterate until we have covered the whole tree t̄, at each iteration, we add tests for
paths that are at a deeper nesting degree in the resulting direct path expression.
For example, the paths of Figure 14-c are at depth 1, the paths of Figure 14-d at
depth 2, and the path of Figure 14-e at depth 3. The resulting expression µαt̄,x,y in
our example would then be
[
`1 ∧ 〈∗←[`4]↓∗[`5 ∧ 〈→∗[`8]〉︸ ︷︷ ︸

nesting 2

]〉

︸ ︷︷ ︸
nesting 1

]
→∗

[
`2
]
↓∗

[
`3 ∧ 〈∗←[`6]〉︸ ︷︷ ︸

nesting 1

∧ 〈↓∗[`7 ∧ 〈→∗[`9]↓∗[`10 ∧ 〈→∗[`11]→∗[`12]〉︸ ︷︷ ︸
nesting 3

]〉

︸ ︷︷ ︸
nesting 2

]〉

︸ ︷︷ ︸
nesting 1

]
.

Note that if we apply this construction to the forest of Figure 13-c and the path α
of Figure 13-e, we obtain the expression µαt̄,x,y of Figure 13-e.

Given a multi-attribute data tree t so that t, (x, y) |= α, we call a witness forest
of α for t, (x, y) to a forest t̄ over the alphabet 2ne(α) together with some nodes



On XPath with Reflexive-Transitive Axes and Data Tests · 39

x

y

a

x

y

b c

d e f

1 2

3

4

5 6

7

8

9

10 11 12

Fig. 14. Idea of construction of µ̂α
t̄,x,y
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x, y, so that t̄ contains only the nodes involved in the satisfaction of α, and they
are labeled with the node expressions that they must verify. For example, given
the multi-attribute data tree t of Figure 13-a, and α as defined in Figure 13-e, a
possible witness forest of α for t, (x, y) is depicted in Figure 13-c. Of course, there
may be several witness forests of α for a given t, (x, y). Let ||α|| be the size of α,
computed as the number of axes in α, irrespective of the size of node expressions.
For example the path expression α defined in Figure 13-e is so that ||α|| = 7.
Notice that the number of nodes of any witness forest of α for t, (x, y) is bounded
by p(||α||) for some polynomial p( ).

Given a path expression α, let α̂ be the path expression over the alphabet 2ne(α),
where every node expressions ψ is replaced by

∨
S⊆ne(α),ψ∈S S, that is, it is treated

as a disjunction of tests for labels from the alphabet. Notice that any witness forest
t̄, (x′, y′) of α for t, (x, y) is an expansion of t̂α, (x, y), and we have t̄, (x′, y′) |= α̂.
We then have the following.

Claim 6.1.2. t, (x, y) |= α if, and only if, t̄, (x′, y′) |= α̂, for some expansion
t̄, (x′, y′) of t̂α, (x, y).

For every contraction t̄, (x, y) of t̄′, (x′, y′), if t̄′, (x′, y′) |= α̂ then t̄′, (x′, y′) |= α̂.
This observation, together with the previous claim and the fact that every witness
forest t̄, (x′, y′) of α for t, (x, y) is bounded by p(||α||) yields the following.

Claim 6.1.3. There is an expansion t̄, (x′, y′) of t̂α, (x, y) of size at most p(||α||)
so that t̄, (x′, y′) |= α̂ if, and only if, t, (x, y) |= α.

For every forest t̄ over 2ne(α) of size ≤ p(||α||) and nodes x, y so that t̄, (x, y) |=
α̂, we say that µαt̄,x,y is a direct normal form linearization of α. It follows that

t, (x, y) |= µαt̄,x′,y′ if, and only if, a contraction of t̄, (x′, y′) is a witness forest of α

for t, (x, y). Thus, the following claim follows.

Claim 6.1.4. t, (x, y) |= α if, and only if, t, (x, y) |= µαt̄,x′,y′ for some direct
normal form linearization µαt̄,x′,y′ of α.
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Proof. If t, (x, y) |= α, then by Claim 6.1.3 there is a forest t̄, (x′, y′) over
2ne(α) (the witness forest) of size ≤ p(||α||) so that t̄, (x′, y′) |= α̂. Hence, µαt̄,x′,y′ is

a direct normal form linearization of α. Since t̄, (x′, y′) is an expansion of t̂α, (x, y)
and t̄, (x′, y′) |= α̂, then t, (x, y) |= µαt̄,x′,y′ .

Suppose now that t, (x, y) |= µαt̄,x′,y′ for some t̄, (x′, y′) over 2ne(α) of size ≤
p(||α||) so that t̄, (x′, y′) |= α̂. Then, t̄, (x′, y′) must be an expansion of t̂α, (x, y) by
Claim 6.1.1. Since t̄, (x′, y′) |= α̂, we then have that t, (x, y) |= α by Claim 6.1.3.

Note that there are exponentially many trees in ||α|| over ne(α) of size ≤ p(||α||).
Hence, all the direct normal form linearizations of a given path expression α are
computable in exponential time ||α||. Hence, given ϕ ∈ XPath(∗←, ↓∗,→∗,=),
consider ϕ′ as the result of replacing every appearance of 〈α@i = β@j〉 (resp.

6=) by a disjunction of 〈µαt̄,x,y@i = µβt̄′,x′,y′@j〉 (resp. 6=) for every direct normal

form linearization µαt̄,x,y of α and µβt̄′,x′,y′ of β. Since these are all the possible
linearizations, the translated formula is satisfied in the same multi-attribute data
trees and nodes as the original formula. Further, ϕ′ is in direct normal form. Since
every replacement is exponential in ||α||, and since ||α|| does not depend on the
size of sub-node expressions, it follows that |ϕ′| in time exponential in |ϕ|. Thus,
the lemma follows.

Unnested normal form. The second normal form consists in having formulas
without nesting of data tests. That is, we avoid treating formulas like, for example

〈 ↓∗[〈 ∗←[a]@1 =→∗[b]@1 〉︸ ︷︷ ︸
nested data test

]@1 = →∗[c]@2 〉 .

If a formula is such that all its path expressions α contain only (boolean combi-
nations of) tests for labels we call it a non-recursive formula.

We say that ϕ is in unnested normal form if ϕ = ϕ1∧ϕ2 where ϕ1 ∈ B(A) and ϕ2

is a conjunction of tests of the form “if a node has some of the labels {a1, . . . , an}
then it satisfies ψ” for some non-recursive formula ψ and labels a1, . . . , an ∈ A.
Formally, ϕ2 contains a conjunction of tests of the form

¬〈 ↓∗[τ ∧ ¬ψ] 〉
for τ a disjunction of labels and ψ a non-recursive formula. Given ϕ = ϕ1 ∧ ϕ2

in unnested normal form, we write γϕ(a) for a ∈ A to denote the function where
γϕ(a) is the conjunction of all the formulas ψ such that ϕ2 contains ¬〈→∗[τ ∧¬ψ]〉
as a subformula, for some disjunctive formula τ containing the label a.

Then, we obtain the following.

Lemma 6.2 (Unnested normal form). There exists an exponential time
translation that for every formula η ∈ XPath(∗←, ↓∗,→∗,=) returns a formula ϕ
in unnested normal form such that η is satisfiable iff ϕ is satisfiable. Further, the
translation of a formula in direct normal form is in direct normal form.

Proof. Given a formula η we define the alphabet Aϕ of the translation ϕ as all
the locally consistent sets of subformulas of η. That is, the sets S such that for
every subformula ψ of η: (1) if ψ = ¬ψ′ then {ψ′,¬ψ′} 6⊆ S; (2) if ψ = ψ′∧ψ′′ then
ψ ∈ S iff {ψ′, ψ′′} ⊆ S; and (3) if ψ = ψ′ ∨ ψ′′ then ψ ∈ S iff ψ′ ∈ S or ψ′′ ∈ S.
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Given a formula ψ, tr(ψ) denotes the result of replacing

—every instance of a path expression o1[ψ1]o2 · · · on[ψn] in ψ (where o1, . . . , on ∈
{∗←, ↓∗,→∗}) which does not appear nested inside another path expression, with
the expression

o1[ζψ1
]o2 · · · on[ζψn ],

and

—every test for label a which does not appear inside a path expression by ζa,

where ζψ
def
=
∨
S∈Aϕ,ψ∈S S.

To build the formula ϕ = ϕ1 ∧ ϕ2 in normal form, we define ϕ1 = ζη, and we
build ϕ2 as a conjunction of formulas

¬〈↓∗[ζψ ∧ ¬tr(ψ)]〉
for all subformulas ψ of η. It is easy to see that this translation preserves satisfia-
bility.

Corollary 6.3. About the translation of Lemma 6.2:

1. The set of path subformulas resulting from the translation has cardinality poly-
nomial in η.

2. Every path subformula resulting from the translation can be written using poly-
nomial space.

Proof. The blowup in the exponential translation comes only from the formulas
ζψ. In fact, ϕ can be symbolically written in polynomial space just as we did, using
a symbol ζψ instead of a big exponential disjunction. Remark that testing whether
a label S ∈ Aϕ satisfies ζψ reduces to testing ψ ∈ S.

6.2 Reduction to the derivation problem

In this section we show how we can reduce the satisfiability problem of direct
unnested XPath(∗←, ↓∗,→∗,=) formulas into the derivation problem for forest pro-
files.

Let us fix φ = φ1 ∧ φ2 in direct unnested normal form, where A as the finite
alphabet, k as the number of attributes, D as any infinite domain, and Aroot is the
set of all a ∈ A that make φ1 true.

Given a pattern α = ψ1 · · ·ψk ∈ P, and an axis o ∈ {∗←, ↓∗,→∗}, we can convert
α into a path expression as follows:

Po(ε)
def
= ε if k = 0,

Po(ψ1 · · ·ψk)
def
= o[ψ1] o · · · o[ψk] if k > 0.

Note that Po is injective.
Let us define Pφ as the set of patterns consisting of

—the constant > and the empty string ε,

—ψ, for every ψ ∈ B(A) that is a subformula of φ,

—every α ∈ (B(A))∗ so that P→∗(α), P∗←(α), or P↓∗(α) is a substring of φ.
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It follows that Pφ is finite and subword-closed.
For any direct non-recursive formula ψ that is a boolean combination of subfor-

mulas of φ and forest profile f, we define f ` ψ as follows. If ψ ∈ A, then f ` ψ if
and only if there is some d ∈ D and i ∈ [k] so that (ψ, ε, i) ∈ χ

↓i(d). For all the
boolean cases ` is homomorphic. Suppose now that ψ = 〈α·β@i 6= γ·δ@j〉 where
α is leftward, ε or empty, γ is rightward, ε or empty, and β, δ are downward or
empty. We define f ` ψ if there are some d, d′ ∈ D so that d 6= d′ and

—if α = ε or α = ε, (>,P−1
↓∗ (β), i) ∈ χ

↓ i(d),

—if α 6= ε, α 6= ε, (P−1
∗←(α),P−1

↓∗ (β), i) ∈ ( →[f]·χ↓e ∪ χ↓ i)(d),

—if γ = ε or γ = ε, (>,P−1
↓∗ (δ), j) ∈ χ

↓i(d′),

—if γ 6= ε, γ 6= ε, (P−1
→∗(γ),P−1

↓∗ (δ), j) ∈ ([f]→·χ↓e ∪ χ↓i)(d′).
Note that if α = ε then β = ε (resp. with γ and δ). If both α and γ are rightwards
or leftwards it is defined in an analogous way. The case for = is also analogous,
where d = d′. The idea is that f ` ψ makes only sense when the derivation forest
for f is a tree, and the multi-attribute data tree t associated to the derivation tree
is so that t |= ψ.

For example, testing ψ is the same as testing if there is some pattern (ψ, , ) in
χ
↓ i or χ

↓i. In a similar way, checking a formula like

〈→∗[a]↓∗[b]@1 = ↓∗[c]@2〉
reduces to checking if there is a data value d ∈ D that can be reached with (>, c, 2)
in the main forest (i.e., in χ

↓ i or χ
↓i), and either

—d can be reached by (a, b, 1) in the main forest, that is, (a, b, 1) ∈ χ
↓i (or equiva-

lently χ
↓ i), or

—d can be reached in the right forest by (a, b, 1), where a could be tested in the
main forest (i.e., a ∈ [f]→), that is, (a, b, 1) ∈ [f]→·χ↓e.

Note that checking f ` ψ takes polynomial time in the size of f and ψ. Also, whether
f ` ∧a∈A(a⇒ γϕ(a)) holds or not depends only on ξ(f).

Lemma 6.4. Given a direct non-recursive formula ψ that is a boolean combina-
tion of subformulas of φ, and two forest profiles f, f′ ∈ F so that ξ(f) = ξ(f′) then
f ` ψ if, and only if, f′ ` ψ.

Proof. If ψ ∈ B(A), then it is immediate that f ` ψ iff ξ(f)((ψ, ε, i), ◦) 6= 0 for
some i ∈ [k].

Suppose now that ψ = 〈α·β@i 6= γ·δ@j〉 where α is leftward, ε or empty and γ
is rightward, ε or empty, and β, δ are downward or empty. We show that whether
f ` ψ depends only on ξ(f). We show one of the possible cases in the definition of
`, while the remaining ones are analogous or simpler. Suppose, for example, that
α 6= ε, α 6= ε, γ = ε. We then have that f ` ψ iff

—there is at least one data value reachable with αβ@i, that is, ξ(f)(ᾱ, ◦↓ ) 6= 0,
with ᾱ = (P−1

∗←(α),P−1
↓∗ (β), i), and

—there is at least one data value reachable with γδ@j , that is, ξ(f)(β̄, ◦↓) 6= 0, with
β̄ = (>,P−1

↓∗ (δ), j) and either
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—there are two data values reachable with αβ@i, that is, ξ(f)(ᾱ, ◦↓ ) = 2+, or
—there are two data values reachable with γδ@j , that is, ξ(f)(β̄, ◦↓) = 2+, or
—there is one data value reachable with αβ@i and only one data value reachable

with γδ@j , but they are different, that is, ξ(f)(ᾱ, ◦↓ ) = 1, ξ(f)(β̄, ◦↓) = 1, and
ξ(f)(ᾱ, ◦↓ , β̄, ◦↓) = 0.

These are indeed the necessary and sufficient conditions for the existence of two
data values d 6= d′ so that d ∈ χa(ᾱ) and d′ ∈ χa′(β̄), where a = ◦↓, a′ = ◦↓. Hence,
these are the necessary and sufficient conditions to verify f ` ψ.

The remaining cases are analogous or easier.

We can then write ξ |= ψ for ξ ∈ F instead of f |= ψ for any f so that ξ(f) = ξ. We
define the set of consistent profiles Γφ as all ξ ∈ F so that ξ ` ∧a∈A(a ⇒ γϕ(a)).
The following lemma follows straight from the above definition of `.

Lemma 6.5. f ` ∧a∈A(a⇒ γϕ(a)) iff ξ(f) ∈ Γφ.

Proof. This is a direct consequence of Lemma 6.4 and the definition of Γφ.

Abstractions. Given multi-attribute data forests t̄l, t̄, t̄r, we define

abs(t̄l, t̄, t̄r)

as the forest profile that abstracts the forest t̄ in the context of the forests t̄l to the
left and t̄r to the right. We have already discussed the idea of this abstraction in
Section 4. For example, for the forest of Figure 3, assuming P = {>, b·c, b, c, ε}, we
would obtain an abstraction where

χ
↓e = {(5, b, b, 1), (5, b, ε, 1), (3, b, ε, 2), (2, b, c, 1), . . . }.

We have that abs is basically an algebra morphism between multi-attribute data
forests with rooting and concatenation and forest profiles with profile rooting and
profile concatenation. Further, the profile abs(ε, t, ε) is a derivable root profile
whenever t |= φ; and every derivable root profile is the abstraction of some tree t
so that t |= φ.

We now define formally abs(t̄l, t̄, t̄r) for any forests t̄l, t̄, t̄r. Let tl = al⊗dl,
t = a⊗d, tr = ar⊗dr be the multi-attributes data trees (a, d̄)t̄l, (a, d̄)t̄, and (a, d̄)t̄r
respectively, for some fixed arbitrary (a, d̄). We then define abs(t̄l, t̄, t̄r) = χ̄ where

χ
↓i = {(d(y)(i), α, β, i) | (1, y) ∈ [[P→∗(α)·P↓∗(β)]]t,

for (α, β, i) ∈ Π and y ∈ pos(t)}
χ
↓ i = {(d(y)(i), α, β, i) | (n, y) ∈ [[P∗←(α)·P↓∗(β)]]t,

for n = |t̄|, (α, β, i) ∈ Π and y ∈ pos(t)}
χ
↓e = {(dr(y)(i), α, β, i) | (1, y) ∈ [[P→∗(α)·P↓∗(β)]]tr ,

for (α, β, i) ∈ Π and y ∈ pos(tr)}
χ
↓e = {(dl(y)(i), α, β, i) | (n, y) ∈ [[P∗←(α)·P↓∗(β)]]tl ,

for n = |t̄l|, (α, β, i) ∈ Π and y ∈ pos(tl)}.

For any R ⊆ D we define absR(t̄l, t̄, t̄r)
def
= (abs(t̄l, t̄, t̄r), R).

Remark 6.6. Note that abs∅(ε, ε, ε) = f∅.
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We show that abs is basically an algebra morphism between multi-attribute data
forests with rooting and concatenation and forest profiles with profile rooting and
profile concatenation. This is necessary to show our reduction from SAT-XPath(∗←,
↓∗,→∗,=) into the derivation problem for forest profiles.

Lemma 6.7. Given R ⊆ D, and multi-attribute data forests t̄, t̄l, t̄r, t̄1, t̄2,

1. provided that absR(t̄l, t̄1, t̄2·t̄r), absR(t̄l·t̄1, t̄2, t̄r), absR(t̄l, t̄1·t̄2, t̄r) ∈ F,

absR(t̄l, t̄1, t̄2·t̄r) + absR(t̄l·t̄1, t̄2, t̄r)=absR(t̄l, t̄1·t̄2, t̄r).

2. Given (a, d̄) ∈ A×Dk, R′ ⊆ D so that absR′(ε, t̄, ε) ∈ F, absR(t̄l, (a, d̄)t̄, t̄r) ∈ F,
and ξ(absR(t̄l, (a, d̄)t̄, t̄r)) ∈ Γφ, we have

absR(t̄l, (a, d̄)t̄, t̄r) ∈ (a, d̄) absR′(ε, t̄, ε).

Proof.
1. Condition (a) is obvious because we have the same set R of rigid values in all

profiles. Conditions (b) and (c) follow straight from the semantics of XPath and
the definition of abs. By definition of abs, the set χ

↓e
1 where f1 = absR(t̄l·t̄1, t̄2, t̄r)

is composed by all the paths that can reach data values in t̄2·t̄r, which is precisely
χ
↓i
2 ∪ [f]→·χ↓e2 where f2 = absR(t̄l·t̄1, t̄2, t̄r). In the same way, χ

↓e
2 is composed by

all the paths that can reach data values in t̄l·t̄1, which is precisely χ
↓ i
1 ∪ →[f1]·χ↓e1 .

Finally, conditions (+2)–(+5) follow from the definition of abs.

2. Since ξ(absR(t̄l, (a, d̄)t̄, t̄r)) ∈ Γφ, we only need to show that absR(t̄l, (a, d̄)t̄, t̄r)
is so that the rooting conditions (ii) and (iii) hold. Condition (ii) is immediate since
by definition of abs we have that absR′(ε, t̄, ε) has empty external descriptions. Con-
dition (iii) holds by definition of abs and the semantics of XPath.

For any derivation forest t̄ (as defined in Section 4.3) we associate a multi-
attribute data forest t̄t which is the result of removing all leaf nodes from t and
projecting the tree onto A× Dk.

Lemma 6.8. For every boolean combination ψ of non-recursive subformulas of
φ, we have that absR(t̄l, t, t̄r) ` ψ if, and only if, t̄l·t·t̄r, i0 |= ψ, for i0 = |t̄l| + 1
and R = data(t̄l·t·t̄r).

Proof. Let f = absR(t̄l, t, t̄r).
• Suppose first that ψ = b with b ∈ A. Since b ∈ Pφ, we have that f ` b iff

(b, ε, i) ∈ χ
↓i(d) for some d, i iff (1, y) ∈ [[→∗[b]@i]](a,d̄)t for some y by definition of

abs iff (1, 1) ∈ [[→∗[b]@i]](a,d̄)t iff t |= b iff t̄l·t·t̄r, i0 |= b, since b ∈ A.
• If ψ = ψ1 ∧ ψ2 or ψ = ¬ψ′, we proceed by induction.
• Now suppose ψ = 〈α·β@i = γ·δ@j〉, where α is leftward or empty, γ is rightward

or empty, and β, δ are downward or empty. Let t′ = a′ ⊗ d′ = (a, d̄)(t̄l·t·t̄r).
[⇒] If f ` ψ there must be some data value d ∈ D that witnesses this fact, as

required by the definition of `. Suppose first that α 6= ε, α 6= ε. Hence, there must
be some d ∈ D so that (P−1

∗←(α),P−1
↓∗ (β), i) ∈ ( →[f]·χ↓e ∪ χ↓ i)(d).

1. If (P−1
∗←(α),P−1

↓∗ (β), i) ∈ χ
↓ i(d), by definition of abs we have that χ

↓ i is the set

of all (d(y)(k), α1, α2, k) so that (1, y) ∈ [[P→∗(α1)P↓∗(α2)@k]](a,d̄)t. It then
follows that there must be some y′ so that (i0, y

′) ∈ [[α·β@i]](a,d̄)(t̄l·t·t̄r) with
d′(y′)(i) = d.
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2. If on the other hand (P−1
∗←(α),P−1

↓∗ (β), i) ∈ →[f]·χ↓e(d), either (P−1
∗←(α),P−1

↓∗ (β), i) ∈
χ
↓e(d), or there must be some α′1, α

′
2 so that α′1 ∈ →[f] and (α′2,P

−1
↓∗ (β), i) ∈ χ

↓e(d)

and α′1·α′2 = P−1
∗←(α). Suppose that the latter occurs (the former being only eas-

ier). Since by definition of abs we have that χ
↓e is the set of all (dl(y)(k), α1, β1, k)

so that (n, y) ∈ [[P∗←(α1)P↓∗(β1)@k]](a,d̄)t̄l for n = |t̄l| = i0 − 1 there is some
y′ so that (i0 − 1, y′) ∈ [[α2·β]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d and α2 = P∗←(α′2).
Also, since α′1 ∈ →[f], we have (i0, i0 − 1) ∈ [[α1]](a,d̄)(t̄l·t·t̄r) where α1 = P∗←(α′1).
Then, there is some y′ so that (i0, y

′) ∈ [[α·β]](a,d̄)(t̄l·t·t̄r) with d′(y′)(i) = d.

The case where α = ε, or α = ε, γ = ε is only easier (it is basically as in the item
1). In any case we obtain that there is some y′ so that (i0, y

′) ∈ [[α·β]](a,d̄)(t̄l·t·t̄r)

with d′(y′)(i) = d.
By similar arguments, we have that there must be some z′ ∈ pos((a, d̄)(t̄l·t·t̄r)),

z′ 6= ε with (i0, z
′) ∈ [[α·β]](a,d̄)(t̄l·t·t̄r) and d′(z′)(j) = d. Hence, t̄l·t·t̄r, i0 |=

〈α·β@i = γ·δ@j〉.
[⇐] Suppose that t̄l·t·t̄r, i0 |= 〈α·β@i = γ·δ@j〉. In other words, there are

y, z ∈ pos(t′), y 6= ε, z 6= ε, so that (i0, y) ∈ [[α·β]]t′ , (i0, z) ∈ [[γ·δ]]t′ , and d =
d′(z)(i) = d′(y)(j) for some d ∈ D. Let α′ = > if α = ε or α = ε and α′ = P−1

∗←(α)
otherwise.

1. If y is inside the subtree t of t′, then (α′,P−1
↓∗ (β), i) ∈ χ

↓ i(d), by definition of abs.

2. If y is inside the subforest t̄l of t′, then we have that either (α′,P−1
↓∗ (β), j) ∈

χ
↓e(d), or there must be some α1, α2 so that α1·α2 = α, α′1 ∈ →[f] and (α′2,P

−1
↓∗ (β), j) ∈

χ
↓e(d), where α′1 = P−1

∗←(α1), α′2 = P−1
∗←(α2). If the latter case holds (the former

being only easier), we have that (α′1·α′2,P−1
↓∗ (β), j) ∈ ( →[f]·χ↓e)(d), which implies

that (α′,P−1
↓∗ (β), j) ∈ ( →[f]·χ↓e)(d).

By similar arguments, we obtain some (γ′,P−1
↓∗ (δ), j) ∈ (χ

↓i ∪ [f]→·χ↓e)(d), where

γ′ = > if γ = ε or γ = ε and γ′ = P−1
→∗(γ) otherwise. Hence, f ` 〈α·β@i = γ·δ@j〉.

• The cases of 〈α·β@i = γ·δ@j〉 where both α and γ are rightwards or leftwards
is similar. The same applies to the inequality formulas 〈α·β@i 6= γ·δ@j〉.

The next lemma basically shows that every derivable root profile is the abstrac-
tion of some tree satisfying φ.

Lemma 6.9. Let froot ∈ D be a root profile, and let t be its derivation tree. Let
t̄ be a maximal subforest of t, where t̄ is the multi-attribute data forest associated
with t̄, and f1, . . . , fn are the profile labels of the roots of t̄. Let R be the rigid set
for f1, . . . , fn. Then,

—absR(ε, t̄, ε) = f1 + · · ·+ fn, and

—t̄, i |= φ2 for every 1 ≤ i ≤ |t̄|.
Proof. We will make use of the following easy fact.

Claim 6.9.1. Given f1, . . . , fn ∈ F, so that f+ = f1+· · ·+fn where χ
↓e
+ = χ

↓e
+ = ∅,

then the sets {χ↓ii , χ
↓ i
i | i ∈ [n]} determine the sets {χ↓ei , χ

↓e
i | i ∈ [n]}.

Proof. This is by conditions (b) and (c) of profile concatenation:
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—χ
↓ i
i and χ

↓e
i determine χ

↓e
i+1. Hence, {χ↓ei | i ∈ [n]} are determined by χ

↓e
1 and

{χ↓ ii | i ∈ [n]}.
—χ

↓i
i+1 and χ

↓e
i+1 determine χ

↓e
i . Hence, {χ↓ei | i ∈ [n]} are determined by χ

↓e
n and

{χ↓ii | i ∈ [n]}.
Once we fix χ

↓e
n = χ

↓e
1 = ∅, then {χ↓ii , χ

↓ i
i | i ∈ [n]} determine {χ↓ei , χ

↓e
i | i ∈ [n]}.

We now prove the main statement by generalized induction on the height of t̄.
Suppose that t̄ has height m ≥ 1. Then there must be forests t̄1, . . . , t̄n so that

t̄ = (a1d̄1)t̄1 · · · (an, d̄n)t̄n

and each t̄i has height less than m. Let

f̂i = absR
(

((aj , d̄j)t̄j)j<i, (ai, di)t̄i, ((aj , d̄j)t̄j)j>i
)

for every i. We then have the following.

Claim 6.9.2. For every i ∈ [n], fi = f̂i.

Proof. For every t̄i 6= ε, we have that f′1 + · · ·+ f′l = absRi(ε, t̄i, ε) by inductive
hypothesis, where f′1, . . . , f

′
l are the profile labels of the children of the root of the

ith tree of t̄. Then, since fi ∈ (ai, d̄i)(f
′
1 + · · ·+ f′l) by definition of derivation tree,

we have that fi ∈ (ai, d̄i)absRi(ε, t̄i, ε). If t̄i = ε, then, since abs∅(ε, ε, ε) = f∅ and
fi ∈ (ai, d̄i)f∅, we also have that fi ∈ (ai, d̄i)absRi(ε, t̄i, ε). Hence, for all i ∈ [n],
fi ∈ (ai, d̄i)absRi(ε, t̄i, ε).

Now, since

—all the internal descriptions of any forest profile inside (ai, d̄i)abs∅(ε, t̄i, ε) is com-

pletely determined by (ai, d̄i) and abs∅(ε, t̄i, ε), and hence fi and f̂i have the same
internal descriptions,

—the external descriptions of f1 + · · ·+ fn are ∅,
—absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f̂1+· · ·+f̂n by Lemma 6.7-1, and the external

descriptions of f̂1 + · · ·+ f̂n are ∅
we can apply Claim 6.9.1, concluding that fi = f̂i for every i.

Therefore, since absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f̂1 + · · ·+ f̂n by Lemma 6.7-1,
we have that

absR(ε, (a1, d̄1)t̄1 · · · (an, d̄n)t̄n, ε) = f1 + · · ·+ fn.

On the other hand, since ξ(f1), . . . , ξ(fn) ∈ Γφ by condition (i) of rooting, we

have f̂i = fi `
∧
a∈Aφ(a⇒ γφ(a)) for every i. Hence, by Lemma 6.8,

(a1, d̄1)t̄1 · · · (an, d̄n)t̄n, i |=
∧

a∈A
(a⇒ γϕ(a))

for every i. Also, by inductive hypothesis, for all t̄i 6= ε we have that t̄i, j |= φ2 for
all 1 ≤ j ≤ |t̄i|. Then, by definition of φ2, it follows that

(a1, d̄1)t̄1 · · · (an, d̄n)t̄n, i |= φ2

for every i.
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We now show that if φ is satisfiable, then there must be a derivable root profile.

Lemma 6.10. Let tφ be a tree so that tφ |= φ. For every maximal subforest
t̄l·t̄·t̄r of tφ so that t̄ 6= ε, there is a derivable forest profile f ∈ D so that f =
absR(t̄l, t̄, t̄r), where R = data(t̄l·t̄·t̄r). Further, if t̄ is a tree, f is so that f ∈
(a, d̄)f′, with f′ ∈ D.

Proof. We proceed by induction on the size of t̄, defined as its number of nodes.
Suppose first that t̄ consists in one tree with just one node (a, d̄). We show that
absR(t̄l, (a, d̄), t̄r) ∈ (a, d̄)f∅.

Since t̄l·(a, d̄)·t̄r, j |= φ2, for j = |t̄l|+ 1, we have that absR(t̄l, t, t̄r) ` γφ(a) by
Lemma 6.8. In other words, we have ξ(absR(t̄l, t, t̄r)) ∈ Γφ. Then, by Lemma 6.7-2
we have absR(t̄l, (a, d̄), t̄r) ∈ (a, d̄)abs∅(ε, ε, ε). Since f∅ = abs∅(ε, ε, ε) (Remark 6.6),
we have that (a, d̄)abs∅(ε, ε, ε) = (a, d̄)f∅. Therefore, absR(t̄l, t̄, t̄r) ∈ D.

Suppose now that t̄ consists in one tree (a, d̄)t̄′ where t̄′ 6= ε. By inductive hy-
pothesis there is some f′ ∈ D so that f′ = absR′(ε, t̄

′, ε) for some R′. By Lemma 6.8
since t̄l·(a, d̄)t̄′·t̄r, j |= φ2 for j = |t̄l|+1, we have that ξ(absR(t̄l, (a, d̄)t̄′, t̄r)) ∈ Γφ.
We then have that

absR(t̄l, (a, d̄)t̄′, t̄r) ∈ (a, d̄)f′ = (a, d̄)absR′(ε, t̄
′, ε)

again by Lemma 6.7-2. Therefore, absR(t̄l, t̄, t̄r) ∈ D.
Suppose now that t̄ consists in more than one tree, let t̄1 and t̄2 be non-empty

forests so that t̄ = t̄1·t̄2. By applying twice the inductive hypothesis there must
be f1, f2 ∈ D so that f1 = absR(t̄l, t̄1, t̄2·t̄r) and f2 = absR(t̄l·t̄1, t̄2, t̄r). As
absR(t̄l, t̄1·t̄2, t̄r) = absR(t̄l, t̄1, t̄2·t̄r)+absR(t̄l·t̄1, t̄2, t̄r) by Lemma 6.7-1, it follows
that absR(t̄l, t̄1·t̄2, t̄r) = f1 + f2 ∈ D since f1, f2 ∈ D.

As a corollary from these properties, we have the following.

Corollary 6.11. There is a derivable root forest profile if, and only if, φ is
satisfiable.

Proof. [⇒] Let f be a derivable root forest profile. Then, there must be a
derivation tree t for f = (R, χ̄). Let t be the multi-attribute data tree associated to
t. By Lemma 6.9, we have that absR(ε, t, ε) = f and that t |= φ2. Since f is a root
profile, the root of t must have a label (a, d̄) with a ∈ Aroot, and hence t |= φ1 as
well. Therefore, φ is satisfiable.

[⇐] Let t be so that t |= φ. Then by Lemma 6.10 we have f = absdata(t)(ε, t, ε) ∈
D. Further, since t is a tree, we have that in fact f = (a, d̄)f′ for some f′ ∈ D.
Further, since t |= φ1, a ∈ Aroot. Hence, f is a derivable root profile.

By the above Corollary 6.11 and Proposition 5.24, we can check in 2ExpSpace
if there is a derivable root profile. This is 2ExpSpace in the size of Pφ. Although
bringing a formula ϕ into direct unnested normal form may result in a doubly
exponential formula, by Corollary 6.3 it can be stored in exponential space, and
Pφ is then singly exponential. Hence, the procedure is 3ExpSpace in the original
formula ϕ. Thus, the decision procedure is in 3ExpSpace and Theorem 3.1 follows.

Note that if the input formula is in direct normal form then we save one expo-
nential in the reduction and we hence obtain a 2ExpSpace decision procedure.
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Theorem 6.12. The satisfiability problem for formulas of XPath(∗←, ↓∗,→∗,=)
in direct normal form is decidable in 2ExpSpace.

7. DISCUSSION

We have shown that XPath with downward, rightward and leftward reflexive-
transitive axes is decidable. To show this, we devised an algebra with good mono-
tonicity properties. This seems to be the right kind of approach to work with
transitive relations, and it generalizes and simplifies, in some aspects, the work of
[Figueira 2011].

Upward axes. One natural question that stems from the result presented here is
whether it can be extended to work with an upward axis as well. However, we claim
(without a proof) that already SAT-XPath(↑∗,→∗,=) has a non-primitive recursive
lower bound. Indeed, this can be proved by reusing the results on lower bounds
of [Figueira and Segoufin 2009]. The cited work shows that XPath with one non-
reflexive transitive axis is enough to prove non-primitive recursiveness provided that
the axis is functional (i.e., the transitive closure of an axis like →, ←, ↑ but unlike
↓). Here, however, we feature reflexive-transitive axes instead of only transitive.
Therefore, in principle we cannot use this result. However, one can somehow code
↑+ with →∗[a]↑∗[¬a] for some label a.

By the previous claim, although it could be that full transitive XPath is decid-
able, it would have a non-primitive recursive lower bound. We can then answer
negatively to the conjecture proposed in [Figueira 2011, Conjecture 2], stating that
XPath(∗←, ↓∗, ↑∗,→∗,=) be decidable in elementary time.

Satisfiability in the presence of a DTD. In the presence of DTD’s, the satisfiabil-
ity problem for XPath(↓∗,=) or XPath(→∗,=) has already a non-primitive recur-
sive lower bound; and XPath(∗←,→∗,=) has an undecidable satisfiability problem.
This is a consequence of the lower bounds shown in [Figueira and Segoufin 2009].
More precisely, consider the language L ⊆ (A × D)∗ of all data words where no
two consecutive positions have the same label (i.e., it does not contain (a, d)(a, d′)
as a substring for any a ∈ A, d, d′ ∈ D). From [Figueira and Segoufin 2009] it
follows that SAT-XPath(→∗,=) restricted to L is non-primitive recursive, and that
SAT-XPath(→∗, ∗←,=) restricted to L is undecidable.

Future work

—The present work can be seen as a step forward in answering [Figueira 2011,
Conjecture 1], suggesting that the extension of XPath(∗←, ↓∗,→∗,=) with the
child axis is decidable with elementary complexity. Our approach may perhaps
be extended to handle the child relation.

—We suspect that XPath(∗←, ↓∗,→∗,=) is in fact hard for 2ExpSpace, even when
the formulas are in direct normal form, and hence that SAT-direct-XPath(∗←,
↓∗,→∗,=) is 2ExpSpace-complete.

—We would also like to investigate further the approach taken in this paper to
attempt to generalize it to work with the class of reflexive-transitive closures of
regular languages.
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A. MISSING PROOFS

Proof of Lemma 4.1. We have that

P ·(χ ∪ χ′)
= χ ∪ χ′ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ ∪ χ′, α′ ∈ P} (by definition of ‘·’)
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P}∪
χ′ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ′, α′ ∈ P}

= P ·χ ∪ P ·χ′. (by definition of ‘·’)
which proves the first statement.

On the other hand,

(P ∪ P ′)·χ
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P ∪ P ′}
= χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P} ∪
χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ P ′}

= P ·χ ∪ P ′·χ
which proves the second statement.

Proof of Lemma 4.4. Let f12 = f1 + f2, f23 = f2 + f3.
We first show that if (f1 + f2) + f3 can be applied, then f1 + (f2 + f3) can also

be applied. In other words, we prove that if f1, f2 are compatible, and f12, f3 as
well; then both f2, f3 and f1, f23 are compatible. We first show that f2 and f3
are compatible. Condition (a) is immediate, since R2 = R3. Now we show that
conditions (b) and (c) hold for f2 + f3. Since χ

↓e
2 = χ

↓e
12 and since the conditions

between f12 + f3 hold, we have that χ
↓e
2 = χ

↓i
3 ∪ [f3]→·χ↓e3 and hence that condition

(b) holds for f2 + f3.
To show that condition (c) holds, note that

χ
↓e
3 = χ

↓ i
12 ∪ →[f12]·χ↓e12 (by condition (c) of f12 + f3)

= χ
↓ i
2 ∪ →[f2]·χ↓ i1 ∪ →[f12]·χ↓e1 (by definition of f1 + f2)

= χ
↓ i
2 ∪ →[f2]·χ↓ i1 ∪ →[f2]·( →[f1]·χ↓e1 ) (by Lemma 4.3)

= χ
↓ i
2 ∪ →[f2]·(χ↓ i1 ∪ →[f1]·χ↓e1 ) (by (·,∪) distributivity)

= χ
↓ i
2 ∪ →[f2]·χ↓e2 . (by condition (c) of f1 + f2)

Hence, we obtain that χ
↓e
3 = χ

↓ i
2 ∪ →[f2]·χ↓e2 , and thus condition (c) holds for f2 + f3.

Now we show that f1 and f23 are compatible. Condition (a) is immediate, since
R1 = R23 = R2 = R3. Since χ

↓e
2 = χ

↓e
23 and since f1 and f2 are compatible, we have

that χ
↓e
23 = χ

↓ i
1 ∪ →[f1]·χ↓e1 and hence that condition (c) holds for f1 + f23. To show

that condition (b) holds, note that

χ
↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2 (by condition (b) of f1 + f2)

= χ
↓i
2 ∪ [f2]→·(χ↓i3 ∪ [f3]→·χ↓e3 ) (by condition (b) of f2 + f3)

= χ
↓i
2 ∪ [f2]→·χ↓i3 ∪ [f2]→·([f3]→·χ↓e3 ) (by (·,∪) distributivity)

= χ
↓i
2 ∪ [f2]→·χ↓i3 ∪ [f23]→·χ↓e3 (by Lemma 4.3)
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= χ
↓i
23 ∪ [f23]→·χ↓e3 (by definition of f2 + f3)

= χ
↓i
23 ∪ [f23]→·χ↓e23. (by definition of f2 + f3)

Hence, we obtain that χ
↓e
1 = χ

↓i
23 ∪ [f23]→·χ↓e23, and thus condition (b) holds for

f1 + f23.
On the other hand, assuming that we can apply f1 + (f2 + f3) (i.e., that f2 and f3

are compatible, and that f1 and f23 are compatible) we can show that the conditions
to apply (f1 + f2) + f3 hold, in the same way as before, since all the definitions are
symmetrical, where χ

↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2 and χ

↓e
2 = χ

↓ i
1 ∪ →[f1]·χ↓e1 .

We now show that (f1 + f2) + f3 = f1 + (f2 + f3). Let f1(23) = f1 + (f2 + f3) and
f(12)3 = (f1 + f2) + f3.

We have that χ
↓e
1(23) = χ

↓e
23 = χ

↓e
3 = χ

↓e
(12)3 by item condition (+2) of +. In a

similar way, by condition (+3) we have that χ
↓e
1(23) = χ

↓e
(12)3. On the other hand,

we have

χ
↓i
1(23) = χ

↓i
1 ∪ [f1]→·χ↓i23 (by condition (+4))

= χ
↓i
1 ∪ [f1]→·(χ↓i2 ∪ [f2]→·χ↓i3) (by condition (+4))

= χ
↓i
1 ∪ [f1]→·χ↓i2 ∪ [f1]→·([f2]→·χ↓i3) (by (·,∪) distributivity)

= χ
↓i
1 ∪ [f1]→·χ↓i2 ∪ [f12]→·χ↓i3 (by Lemma 4.3)

= χ
↓i
12 ∪ [f12]→·χ↓i3 (by condition (+4))

= χ
↓i
(12)3 (by condition (+4))

and by a similar reasoning using condition (+5) we obtain that χ
↓ i
1(23) = χ

↓ i
(12)3.

Hence, (f1 + f2) + f3 = f1 + (f2 + f3).

Proof of Lemma 4.3. Let f+ = f1 + f2.

[f1 + f2]→·χ
= {α | (d, α, β, i) ∈ χ

↓i
+}·χ (by definition of [ ]→)

= {α | (d, α, β, i) ∈ χ
↓i
1 ∪ [f1]→·χ↓i2}·χ (by definition of f1 + f2)

=
(
{α | (d, α, β, i) ∈ χ

↓i
1} ∪ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}

)
·χ

=
(
[f1]→ ∪ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}

)
·χ

= [f1]→·χ ∪ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}·χ (by (·,∪) distributivity)

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ {α | (d, α, β, i) ∈ [f1]→·χ↓i2}}
= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,

α′ ∈ {α | (d, α, β, i) ∈ {α | (d, α, β, i) ∈ χ
↓i
1}·χ

↓i
2}}

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α·α′ | (d, α, β, i) ∈ χ

↓i
1∧

((d′, α′, β′, i′) ∈ χ
↓i
2 ∨ α′ = ε)}}

= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ,
α′ ∈ {α·α′ | α ∈ [f1]→, α′ ∈ [f2]→ ∪ {ε}}}

= [f1]→·χ ∪ {(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→, α′′ ∈ [f2]→ ∪ {ε}}
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= [f1]→·χ ∪ {(d, α′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→} ∪
{(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→, α′′ ∈ [f2]→}

= [f1]→·χ ∪ [f1]→·χ ∪ {(d, α′·α′′·α, β, i) | (d, α, β, i) ∈ χ, α′ ∈ [f1]→, α′′ ∈ [f2]→}
= [f1]→·χ ∪ [f1]→·{(d, α′′·α, β, i) | (d, α, β, i) ∈ χ, α′′ ∈ [f2]→}
= [f1]→·χ ∪ [f1]→·([f2]→·χ)

= [f1]→·([f2]→·χ)

An identical reasoning can be used to prove that →[f1 + f2]·χ = →[f2]·( →[f1]·χ).


