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Deviations for the Capacity of the Range of a Random

Walk

Amine Asselah ∗ Bruno Schapira†

Abstract

We obtain estimates for downward deviations for the centered capacity of the range of a
random walk on Zd, in dimension d ≥ 5. Our regime of deviations runs from large to moderate.
We describe path properties of the random walk under the measure conditioned on downward
deviations. The proof is based on a martingale decomposition of the capacity, and a delicate
analysis of the corrector term. We also obtain a Large Deviation Principle for upward deviations.
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1 Introduction

We consider a simple random walk {Sn, n ∈ N} on Zd starting from the origin. The range
of the walk between two times k ≤ n, is denoted as R[k, n] := {Sk, . . . , Sn} with the shortcut
Rn = R[0, n]. Its Newtonian capacity, denoted Cap (Rn), can be seen as the hitting probability of
Rn by an independent random walk starting far away and properly normalized by Green’s function,
denoted G. Equivalently, using reversibility, it can be expressed as the sum of escape probabilities
from Rn by an independent random walk starting along the range. In other words, Cap (Rn) is
random and has the following representations:

Cap (Rn) = lim
z→∞

P0,z(H̃Rn <∞ | S)

G(z)
=
∑
x∈Rn

P0,x

(
H̃+
Rn

=∞ | S
)
, (1.1)

where P0,z is the law of two independent walks S and S̃ starting at 0 and z respectively, and H̃Λ

(resp. H̃+
Λ ) stands for the hitting (resp. return) time of Λ by the walk S̃.

In view of (1.1), the study of the capacity of the range is intimately related to the question of
estimating probabilities of intersection of random walks. This chapter has grown quite large, with
several motivations from statistical mechanics keeping the interest alive (see Lawler’s celebrated
monograph [Law91]). Let us mention that Norbert Wiener introduced Newtonian capacity in
analysis, and later Ito and McKean showed how Wiener’s test could be used to decide whether a
set is visited infinitely often by a random walk or not. The last decade has witnessed revival interests
both after a link between uniform spanning trees and loop erased random walks was discovered
(see [LawSW18], [Hut18] for recent results) and after the introduction of random interlacements
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by Sznitman in [S10] which mimic a random walk confined in a region of volume comparable to its
time span.

The study of the capacity of the range of a random walk has a long history. Jain and Orey [JO69]
show that in any dimension d ≥ 3, there exists a constant γd ∈ [0,∞), such that almost surely

lim
n→∞

1

n
Cap(Rn) = γd, and γd > 0, if and only if d ≥ 5. (1.2)

The first order asymptotics is obtained in dimension 3 in [C17], where Cap(Rn) scales like
√
n.

Dimension 4 is the critical dimension, and a central limit theorem with a non-gaussian limit is
established in [ASS19b]. In dimension d ≥ 6, a standard central limit theorem is proved in [ASS18].

Here, we study the downward deviations for the capacity of the range in dimension d ≥ 5, in
the moderate and large deviations regimes. We also establish a large deviations principle in the
upward direction. Our analysis is related to the celebrated large deviation analysis of the volume
of the Wiener sausage by van den Berg, Bolthausen and den Hollander [BBH01]. The folding of
the Wiener sausage, under squeezing its volume, became a paradigm of folding, with localization
in a domain with holes of order one (the picture of a Swiss Cheese popularized in [BBH01]). The
variational formula for the rate function was shown to have minimizers of different nature in d = 3
and in d ≥ 5 suggesting dimension-dependent optimal scenarii to achieve the deviation. For the
discrete analogue of the Wiener sausage, we established in [AS17a] some path properties confirming
some observations of [BBH01]. Our present paper is a companion to [AS17a], and the localization
obtained by forcing a small Newtonian capacity of the range is of a different nature than the Swiss
Cheese picture.

Our first result concerns large and moderate deviations in dimension 5.

Theorem 1.1. Assume d = 5. There exist positive constants ε, κ and κ, such that for any
n16/17 log n ≤ ζ ≤ εn, and n large enough,

exp

(
−κ · (ζ

2

n
)1/3

)
≤ P (Cap (Rn)− E[Cap (Rn)] ≤ −ζ) ≤ exp

(
−κ · (ζ

2

n
)1/3

)
.

Remark 1.2. In d = 5, estimates of the variance and a central limit theorem are still missing for
the capacity of the range. We conjecture, based on the analogy between the capacity of the range
in d = 5 and its volume in d = 3, that the variance of Cap(Rn) should be of order n log n. Thus,
the moderate deviations should pass from a gaussian regime with a speed of order ζ2/(n log n), to a
large deviation regime with a speed of order (ζ2/n)1/3, at a value of ζ where both speeds are equal.
That is is for ζ of order

√
n(log n)3/4. Our techniques do not permit to reach this point. Indeed,

our proof relies on a delicate partition of sites of the range according to the occupation times of
their neighborhood. This introduces a space-scale defining the size of the neighborhood each site
probes. Even though this space-scale does not appear in our final statements, it is responsible for
imposing the limits of the deviations we can study.

Our estimate in dimension 6 and larger requires a notation. Let

χd :=
d2 − 3d+ 4

d2 − 2d
. (1.3)

Theorem 1.3. Assume d ≥ 6. There exist positive constants ε, κ and κ (only depending on the
dimension), such that for any nχd(log n)2 ≤ ζ ≤ εn, and for n large enough, one has for d ≥ 7,

exp
(
−κ · ζ1− 2

d−2

)
≤ P (Cap (Rn)− E[Cap (Rn)] ≤ −ζ) ≤ exp

(
−κ · ζ1− 2

d−2

)
,
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and for d = 6,

exp
(
−κ · ζ1/2

)
≤ P (Cap (Rn)− E[Cap (Rn)] ≤ −ζ) ≤ exp

(
− κ

log(n/ζ)
· ζ1/2

)
.

Remark 1.4. In dimension 6 and higher it has been proved [ASS18] that the variance of Cap(Rn)
is of order n, so the cost of deviations should jump from a gaussian regime with speed ζ2/n, to a
regime with speed of order ζ1−2/(d−2), with a transition occurring for ζ of order n(d−2)/d. As in
dimension 5 we do not reach this bound, as one has χd ≥ d−1

d in any dimension d ≥ 6.

Our next results provide path properties of the trajectory under the constraint of moderate devia-
tions. Let Qn be the law of the walk conditionally on the event {Cap(Rn)− E[Cap(Rn)] ≤ −ζn},
with (ζn)n≥1 some given sequence. For a subset Λ ⊆ Zd, we denote by `n(Λ) the time spent in Λ
up to time n. Recall also that for any finite Λ ⊆ Zd, it is known that Cap(Λ) is at least of order
|Λ|1−2/d, with equality when Λ is a ball. Thus a set Λ whose capacity is of order |Λ|1−2/d can be
considered as being close (in this sense) to a ball.

Theorem 1.5. Assume d = 5. There are positive constants α, c and C, such that for any sequence
(ζn)n≥1, satisfying n16/17(log n)2 ≤ ζn ≤ n, one has

lim
n→∞

Qn

(
∃Λ ⊆ Z5 : `n(Λ) ≥ αn, c (

n2

ζn
)5/3 ≤ |Λ| ≤ C (

n2

ζn
)5/3, Cap (Λ) ≤ C |Λ|1−

2
5

)
= 1.

In dimension d ≥ 7 the result reads as follows .

Theorem 1.6. Assume d ≥ 7. There are positive constants α, c and C, such that for any sequence
(ζn)n≥1, satisfying nχd(log n)4 ≤ ζn ≤ n,

lim
n→∞

Qn

(
∃Λ ⊆ Zd : `n(Λ) ≥ αζn, c ζ

d
d−2
n ≤ |Λ| ≤ C ζ

d
d−2
n , Cap (Λ) ≤ C|Λ|1−

2
d

)
= 1.

Remark 1.7. We have no path result in dimension six. Even at the level of heuristics, we do not
know which of the two scenarii wins: localization of the whole path as in d = 5, or localization of
a part of it as in d ≥ 7?

Let us now come to the upward deviations. Our decomposition (1.4) allows us to adapt a beautiful
argument of Hamana and Kesten, [HK], written for the volume of the range of a random walk.

Theorem 1.8. Assume d ≥ 5. The following limit exists for all x > 0:

ψd(x) := − lim
n→∞

1

n
logP

(
Cap (Rn) ≥ n · x

)
.

Furthermore, there exists a constant γ∗d > γd (defined in (1.2)), such that the function ψd is
continuous and convex on [0, γ∗d ], increasing on [γd, γ

∗
d ], and satisfies

ψd(x)


= 0 if x ≤ γd
∈ (0,∞) if x ∈ (γd, γ

∗
d ]

=∞ if x > γ∗d .

Remark 1.9. We also obtain rough upper bounds, in the regime of moderate deviations, see
Propositions 3.2 and 3.3.

In order to present some heuristic explanation of the scenarii adopted by the constrained walk, let
us present the main steps of our approach.
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Our approach to downward deviations. The cornerstone of our approach is a decomposition
formula obtained in [ASS19a]:

∀A,B finite sets of Zd, Cap (A ∪B) = Cap (A) + Cap (B)− χC(A,B), (1.4)

where χC(A,B) called the cross-term has a nice expression. In this work, the decomposition (1.4)
allows us to follow a simple approach devised in [AS17a] to study downward deviations for the
volume of the boundary of the range for a random walk in dimensions d ≥ 3. We partition the
time-period of length n into intervals of length T ≤ n, and write our functional of the range,
Cap (Rn), as a martingale part and a corrector on scale T :

Cap (Rn) = Martingale− Corrector.

The martingale is obtained as we chop the trajectory into strands of length T and use (1.4). The
corrector, is obtained by a Doob’s like decomposition, and is thus an averaged of cross-terms of
the form χC(RiT , R̃T ), with two independent copies R and R̃, that we integrate over R̃. When
we impose some downward deviations on an increasing functional, (such as the volume or the
capacity), we expect some type of folding of the walk. We then look for the appropriate time-scale
T for which the corrector produces entirely the deviation. For our discussion to be more concrete,
let us describe the corrector in more details. It is a sum along the walk’s positions, say Sk, of a
function probing the occupation density about Sk at time-scale T . Indeed, the latter scale enters
into the functional ϕT = 1

TGT ?G, which is the convolution of Green’s function with x 7→ 1
TGT (x),

the proportion of the number of visits of site x up to time T . The corrector then reads,

ξn(T ) =
n∑
k=0

∑
x∈Rk

ϕT (x− Sk) · Px
(
H̃+
Rk

=∞
)
. (1.5)

Our first step transfers the deviation of the centered capacity of the range into a deviation for the
corrector. In other words, we find T = T (ζ, n) such that on the event {Cap(Rn)− E[Cap(Rn)] ≤
−ζ}, one has with high probability that ξn(T ) must be of order ζ as well, at least for ζ and n large
enough. The study of the deviations of ξn(T ) is more intricate than in our previous study [AS17a],
but our general strategy provides a right entry to the problem.

We present now some heuristics to understand the scenarii the constrained walk adopts in different
dimensions.

Heuristics. We use the sign ≈ to express that two quantities are of the same order. As already
mentioned, the first step in this work is a simple decomposition for the capacity of a union of sets
in term of a cross-term

χC(A,B) ≈ 2
∑
x∈A

∑
y∈B

Px
(
H+
A =∞

)
·G(x− y) · Py

(
H+
B =∞

)
. (1.6)

See (2.9) and (2.12) for a precise expression. The key phenomenon responsible for producing a small
capacity for the range of a random walk is an increase of the cross-term on an appropriate scale.
In other words, the walk folds into a ball-like domain in order to increase some self-interaction
captured by the cross-term. Also, in general this cross-term does realize a positive fraction of the
deviation, as it turns out to be the case here. Now to be more concrete, let us divide the range
R[0, 2n] into two subsets R[0, n] and R[n, 2n]. Let us call, for simplicity R1

n = R[0, n] − Sn, and
R2
n = R[n, 2n] − Sn the two subranges translated by Sn so that they become independent. By

translation invariance of the capacity, we obtain

Cap (R[0, 2n]) = Cap
(
R1
n

)
+ Cap

(
R2
n

)
− χC(R1

n,R2
n).

4



Now, assume that both walks stay inside a ball of radius R a time of order τ ≤ n, and are
unconstrained afterward. Thus, under the strategy we mentioned,

χC(R1
n,R2

n) ≈ G(R)× Cap
(
R1
τ

)
× Cap

(
R2
τ

)
+O

(
G(
√
n)n2

)
≈ G(R)

(
min(τ,Rd−2)

)2
+O

(
n

6−d
2
)
.

(1.7)

The term O
(
G(
√
n)n2

)
appears if τ is smaller than n, and accounts for the unconstrained con-

tribution to the cross-term. In obtaining (1.7), we have used that if R1
τ ,R2

τ are inside a ball of
radius R, their capacity is bounded by the capacity of the ball, which is of order Rd−2, as well as
by their volume bounded by τ . Thus, it is useless to consider τ larger than Rd−2, since then τ no
more affects the cross-term and increasing τ (or decreasing R below τ) only makes the cost of the
strategy larger. Now, to reach a deviation of order ζ, we have

1

Rd−2
τ2 ≈ ζ. (1.8)

Recall that the cost of being localized a time τ in a ball of radius R is of order exp(−τ/R2) (up
to a constant in the exponential). So we need to find a choice of (τ,R) which minimizes this cost
under the constraint (1.8). In other words one needs to maximize

√
ζ ·R(d−6)/2. This leads to two

regimes.

• When d = 5, R (and then τ) is as large as possible. So, τ = n and Rd−2 = n2/ζ by (1.8).
The strategy is time homogeneous for any ζ!

• When d ≥ 7, then τ is as small as possible, that is τ = Rd−2 = ζ. The strategy is time-
inhomogeneous.

When d = 6, the strategy remains unknown, but the cost should be of order exp(−
√
ζ).

Application to a polymer melt. The model of random interlacements, introduced by Sznitman
[S10], is roughly speaking the union of the ranges of trajectories obtained by a Poisson point process
on the space of doubly infinite trajectories, and is such that the probability of avoiding a set K
is exp(−u · Cap (K)), where u > 0 is a fixed parameter. With this in mind, let us consider the
following model of polymer among a polymer melt interacting by exclusion. We distinguish one
polymer, a simple random walk, interacting with a cloud of other random walk trajectories modeled
by random interlacements which we call for short the melt. The interaction is through exclusion:
the walk and the melt do not intersect. When integrating over the interlacements law, the measure
on the walk with the effective interaction has a density proportional to exp(−u · Cap (Rn)), with
respect to the law of a simple random walk.

As a corollary of our deviation estimates, one can address key issues on this polymer. Since this
follows in the same way as the study of the Gibbs measure tilted by the volume of the range was a
corollary of [AS17a], we repeat neither the statements, nor the proofs here. The simplest and most
notable difference is that the proper scaling of the temperature which provides a phase transition
is when it is of order n−2/(d−2) in dimension d ≥ 5. Moreover, our polymer measure in dimension d
behaves similarly as the polymer measure of [AS17a] in dimension d − 2. Theorem 1.8 of [AS17a]
is true here also after the drop in dimension is performed.
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Organization. Let us explain how the rest of the paper is organized while sketching the skeleton
of our approach. The key decomposition relation (1.4) is given for arbitrary sets in (2.9) and
for the range in (3.1). Section 3 makes the link between capacity and corrector. The cross term
(3.1) is written as a martingale and a corrector in Proposition 3.1 following a Doob decomposition.
Section 5 is the technical core of the paper. Section 5.3 transfers deviations of the capacity of the
range into deviations of the corrector. The corrector itself is studied in Section 5.4 (d = 5) and
in Section 5.5 (d ≥ 6). Propositions 5.8 and 5.13 imply respectively Theorems 1.1 and 1.3. The
path properties are addressed in Section 6. This latter section recall also the steps of the approach
of [AS17a] in order to obtain information on the capacity of the region where the walk localizes.
Apart from the highly interconnected steps leading to the path properties, the following sections
can be read independently. In Section 2, we recall basic facts on Green’s function, and on the
Newtonian capacity. In Section 4, we prove the lower bounds in Theorems 1.1 and 1.3. Finally, we
prove Theorem 1.8 concerning the upward deviations in Section 7.

2 Preliminaries

2.1 Further notation

For z ∈ Zd, we denote by Pz the law of the simple random walk starting from z, and let

G(z) := E

[ ∞∑
n=0

1{Sn = z}

]
,

be the Green’s function. It is known that there are positive constants c and C, such that in any
dimension d ≥ 3 (see [Law91]),

c

‖z‖d−2 + 1
≤ G(z) ≤ C

‖z‖d−2 + 1
, for all z ∈ Zd, (2.1)

with ‖ · ‖ the Euclidean norm. We also consider for T > 0, and z ∈ Zd,

GT (z) := E

[
T∑
n=0

1{Sn = z}

]
.

In particular for any z ∈ Zd, and T ≥ 1,

P(z ∈ RT ) ≤ GT (z). (2.2)

For A ⊂ Zd, we denote by |A| the cardinality of A, and by

HA := inf{n ≥ 0 : Sn ∈ A}, and H+
A := inf{n ≥ 1 : Sn ∈ A},

respectively the hitting time of A and the first return time to A.

We also need the following well known fact, see [Law91]. There exists a constant C > 0, such that
for any R > 0 and z ∈ Zd,

Pz
(

inf
k≥0
‖Sk‖ ≤ R

)
≤ C ·

(
R

‖z‖

)d−2

. (2.3)
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2.2 On the capacity

The capacity of a finite subset A ⊂ Zd, with d ≥ 3, is defined by

Cap(A) := lim
‖z‖→∞

1

G(z)
Pz(HA <∞). (2.4)

It is well known, see Proposition 2.2.1 of [Law91], that the capacity is monotone for inclusion:

Cap(A) ≤ Cap(B), for any A ⊂ B, (2.5)

and satisfies the sub-additivity relation

Cap(A ∪B) ≤ Cap(A) + Cap(B)− Cap(A ∩B), for all A,B ⊂ Zd. (2.6)

Another equivalent definition of the capacity is the following (see (2.12) of [Law91]).

Cap(A) =
∑
x∈A

Px(HA+ =∞). (2.7)

In particular it implies that
Cap(A) ≤ |A|, for all A ⊂ Zd. (2.8)

The starting point for our decomposition is the definition (2.4) of the capacity in terms of a hitting
time. It implies that for any two finite subsets A,B ⊂ Zd,

Cap (A ∪B) = Cap (A) + Cap (B)− χC(A,B), (2.9)

with

χC(A,B) := lim
z→∞

1

G(z)
Pz
(
{HA <∞} ∩ {HB <∞}

)
. (2.10)

Note that by (2.4) and the latter formula, one has

0 ≤ χC(A,B) ≤ min(Cap(A),Cap(B)). (2.11)

Now, we have shown in [ASS19b] that χC(A,B) = χ(A,B) + χ(B,A)− ε(A,B), with

χ(A,B) =
∑
x∈A

∑
y∈B

Px
(
H+
A∪B =∞

)
·G(x− y) · Py

(
H+
B =∞

)
, (2.12)

and,
0 ≤ ε(A,B) ≤ Cap (A ∩B) ≤ |A ∩B|,

where the last inequality follows from (2.8).

We will need some control on the speed of convergence in (1.2).

Lemma 2.1. Assume d ≥ 5. One has

|E[Cap(Rn)]− γdn| = O(ψd(n)), (2.13)

with

ψd(n) =


√
n if d = 5

log n if d = 6
1 if d ≥ 7.

(2.14)
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Proof. By Proposition 1.2 in [ASS18], one has the rough lower bound:

Cap(Rn+m) ≥ Cap(Rn) + Cap(R[n, n+m])− 2
n∑
k=0

n+m∑
`=n

G(Sk − S`),

for any integers n,m ≥ 1. Even though a better inequality is used in (2.9) below, this result together
with the subadditivity relation (2.6) are enough to conclude the proof, using Hammersley’s lemma
and Lemma 3.2 in [ASS18], which controls the moments of the error term in the lower bound. For
the details, we refer to the proof of (1.13) in [AS17b], which is entirely similar.

The next result provides some bound on the variance of the capacity of the range.

Lemma 2.2. There exists a constant C > 0, such that for any n ≥ 2,

var(Cap(Rn)) ≤ Cn(log n)2.

Proof. We use the same argument as Le Gall for the size of the range [LG86, Lemma 6.2]. Let us
recall it for the sake of completeness. Write ‖ · ‖2 for the square root of the variance, and for k ≥ 1,
set

ak := sup{‖Cap(Rn)‖2 : 2k < n ≤ 2k+1}.

Let k ≥ 2, and n ∈ (2k, 2k+1] be given. Set ` = bn/2c, and write

Cap(Rn) = Cap(R`) + Cap(R̃n−`)− χC(Rn, R̃n−`),

with R̃n−` = R[`, . . . , n]. By using the triangle inequality, we get

‖Cap(Rn)‖2 ≤
√

var(Cap(R`)) + var(Cap(R̃n−`)) + ‖χC(R`, R̃n−`)‖2,

using also independence between Cap(R`) and Cap(R̃n−`). Using next that χC(A,B) ≤ 2
∑

x∈A
∑

y∈B G(x, y),
by (2.12), and Lemma 3.2 in [ASS18], one obtains

‖χC(R`, R̃n−`)‖2 ≤ C
√
n,

for some constant C > 0. As a consequence,

ak ≤
√

2ak−1 + C2k/2,

from which the result follows by induction.

3 Martingale decomposition and Concentration

We give here a martingale decomposition of the capacity of the range, and deduce rough estimates
on upward deviations.
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3.1 Martingale Decomposition

The possibility of establishing the heuristic picture described in the introduction stems from writing
the capacity of a union of sets as a sum of capacities and a cross-term. The latter though typically
small is nonetheless responsible for the fluctuations. Iterating this decomposition leads to an
expression of the capacity of the range as a sum of i.i.d. terms plus a martingale part, minus
a corrector. The main result of this section, Proposition 3.1 below, gives an explicit expression
for this corrector in terms of a sum of convoluted Green’s functions taken along the trajectory
and weighted by escape probability terms. Thus, the strategy is similar to the one used to treat
downward deviations for the range (or its boundary) developed in [AS17a]. However the form of
the corrector is quite different and its treatment is the main original part in our present analysis.

A detailed analysis of this corrector is carried out in Sections 5.4 and 5.5. Before we can state
precisely the result, some preliminary steps are required.

For I ⊂ N, we write R(I) := {Sk, k ∈ I}, for the set of visited sites during times k ∈ I. Since for
any two intervals I, J ⊂ N, one has R(I ∪ J) = R(I) ∪R(J), (2.9) gives

Cap (R(I ∪ J)) = Cap (R(I)) + Cap (R(J))− χC
(
R(I),R(J)

)
. (3.1)

Next, given two sets A and B, their symmetric difference is defined as A∆B := (A∩Bc)∪ (B∩Ac).
Note in particular that for any I, J ⊂ N, one has R(I)∆R(J) ⊂ R(I∆J). Moreover, it follows
from (2.5), (2.6) and (2.8) that for any A,B ⊂ Zd,

|Cap(A)− Cap(B)| ≤ Cap(A∆B) ≤ |A∆B|.

Applying this inequality to ranges on some intervals I and J , we get

|Cap(R(I))− Cap(R(J))| ≤ |I∆J |. (3.2)

Now assume that some integer T is fixed, which is carefully chosen later. Then for j ≥ 0 and k ≥ 1,
write

Ij,k := [j + (k − 1)T, j + kT ], and Ĩj,k := Ij,1 ∪ · · · ∪ Ij,k.

It follows from (3.2) that almost surely

|Cap(Rn)− 1

T

T−1∑
j=0

Cap(R(Ĩj,[n/T ]))| ≤ T. (3.3)

In particular, taking expectation also gives

|E[Cap(Rn)]− 1

T

T−1∑
j=0

E[Cap(R(Ĩj,[n/T ]))]| ≤ T. (3.4)

On the other hand, applying (3.1) recursively we obtain for any j = 0, . . . , T − 1,

Cap(R(Ĩj,[n/T ])) =

[n/T ]∑
k=1

Cap(R(Ij,k))−
[n/T ]−1∑
k=1

χC
(
R(Ĩj,k),R(Ij,k+1)

)
. (3.5)

We use now (3.5) to obtain a relation between centered variables. Set

Σj,k :=
k∑
`=1

Cap(R(Ij,`))− E[Cap(R(Ij,`))],

9



and, if Fn is the σ−field generated by the increments of the walk up to time n,

Mj,k :=

k∑
`=1

χC
(
R(Ĩj,`),R(Ij,`+1)

)
− E

[
χC
(
R(Ĩj,`),R(Ij,`+1)

)
| Fj+`T

]
.

Note that for any j = 0, . . . , T − 1, the term Σj,k is a sum of k i.i.d. random variables, while
(Mj,k)k≥1 is a martingale. One can now state the main result of this Section.

Proposition 3.1. For any 1 ≤ T ≤ n, one has

Cap(Rn)− E[Cap(Rn)] ≥ 1

T

T−1∑
j=0

(Σj,[n/T ] −Mj,[n/T ])− 2ξn(T ) +O(T ),

with

ξn(T ) :=
n∑
k=0

∑
x∈Rk

Px
(
H+
Rk

=∞
)
· G ? GT (x− Sk)

T
. (3.6)

Proof. By (2.12), for any sets A and B,

χ(A,B) ≤ χ̃(A,B) :=
∑
x∈A

∑
y∈B

Px
(
H+
A =∞

)
·G(x− y) · Py

(
H+
B =∞

)
.

Note that χ̃ is symmetric in the sense that χ̃(A,B) = χ̃(B,A), for any A,B. Bounding the last
probability term by one, we get

χ(A,B) + χ(B,A) ≤ 2χ(A,B), with χ(A,B) :=
∑
x∈A

∑
y∈B

Px
(
H+
A =∞

)
·G(x− y).

Now for any j, k, the Markov property and translation invariance of the simple random walk give

E
[
χ
(
R(Ĩj,k),R(Ij,k+1)

)
| Fj+kT

]
=

∑
x∈R(Ĩj,k)

Px(H+

R(Ĩj,k)
=∞)

∑
y∈Zd

G(x− y) · P
(
y ∈ R(Ij,k+1) | Fj+kT

)
(2.2)

≤
∑

x∈R(Ĩj,k)

Px(H+

R(Ĩj,k)
=∞) ·G ? GT (x− Sj+kT ).

The proposition follows then from (3.3), (3.4), and (3.5).

3.2 Concentration Inequalities

We use here the results established in the previous section to deduce a rough estimate for the
moderate deviations of the capacity of the range in the upward direction. We start with the
case of dimension 5. For a random subset R ⊆ Zd, we use the short-hand notation Cap (R) =
Cap (R)− E[Cap (R)].

Proposition 3.2. Assume d = 5. There exist positive constants K and c, such that for any n ≥ 1,
and any b ≥ K · n2/3,

P
(
Cap (Rn) > b

)
≤ exp(−c · b

3

n2
).

10



Proof. The subadditivity relation (2.6), together with (3.2) and Lemma 2.1 lead to

Cap (Rn) ≤
[n/T ]∑
k=1

Cap (R[kT, (k + 1)T ]) +O
(
T +

n√
T

)
.

We apply this inequality with T = C(n/b)2, and C > 0 a constant such that the O(T + n√
T

) is

smaller than b/2 (note that this is possible if one chooses the constant K large enough, in the
hypothesis of the proposition). Then observe that the other part in the upper bound is a sum of
bn/T c terms, which are i.i.d. centered random variables bounded by T by (2.8), and whose variance
are O(T log2 T ), by Lemma 2.2. Therefore McDiarmid’s inequality (see for instance Theorem 3.4
in [CL]) gives,

P
(
Cap (Rn) > b

)
≤ exp

(
− b2

8(C0n log2 T + Tb/6)

)
, (3.7)

for some constant C0 > 0. By taking larger C > 0 if necessary, one can ensure that in the
denominator of the fraction above, the second term dominates the first one, and then the proposition
follows.

The cases of dimensions 6 and higher are treated similarly.

Proposition 3.3. Assume d ≥ 6. There exist constants K and c (depending on the dimension),
such that for any n ≥ 1, and any

b ≥ K ·
{ √

n log n, if d = 6√
n if d ≥ 7,

one has

P
(
Cap (Rn) > b

)
≤ exp

(
−c · b2

n log2 n

)
.

Proof. One can argue exactly as in the case of the dimension 5, taking this time T = C(n log n)/b
in dimension 6, and T = Cn/b in higher dimension.

4 Lower Bounds

4.1 Case of dimension 5

We prove here the lower bound in Theorem 1.1. In fact we show a result which holds under more
general hypotheses on ζ.

Proposition 4.1. Assume d = 5. There exist positive constants ε0, C0, and κ, such that for any
C0 n

5/7 ≤ ζ ≤ ε0 n, one has

P
(
Cap (Rn) ≤ −ζ

)
≥ exp(−κ · ζ2/3 n−1/3).

Proof. The proof of (2.12) in [ASS19b] reveals that for any finite A,B ⊂ Zd, one has also

Cap(A ∪B) ≤ Cap(A) + Cap(B)− χ0(A,B), (4.1)

11



with
χ0(A,B) :=

∑
x∈A\B

∑
y∈B

Px(H+
A∪B =∞)G(y − x)Py(H+

B =∞).

Now given n ≥ 1, set ` = b n10c, and m = n − `. We apply (4.1) with A = Rm and B = R[m,n].
Fix ε0 > 0 (later chosen small enough), and define

E :=
{

Cap (Rn) ≥ −ε0n
}
.

Using (4.1), Lemma 2.1, and Corollary 3.2, we deduce that for some constant c > 0,

P
(
−ε0n ≤ Cap (Rn) ≤ −ζ

)
≥ P(E, χ0(Rm,R[m,n]) ≥ 3ζ)− P(Cap (Rm) ≥ ζ)

− P(Cap (R[m,n]) ≥ ζ)

≥ P(E, χ0(Rm,R[m,n]) ≥ 3ζ)− 2 exp(−cζ3/n2).

(4.2)

Note that ζ ≥ C0 n
5/7, is equivalent to ζ3/n2 ≥ C7/3

0 ζ2/3/n1/3, therefore by taking C0 large enough,
one ensures that the last term is negligible. Now, let ρ > 0 be some small constant (to be fixed
later) and consider the event

F := {‖Sk‖ ≤ ρ · n2/3 ζ−1/3, for all k ≤ n}.

Note that by (2.1) and (2.7), on the event F ,

χ0(Rm,R[m,n]) ≥ cρ ·
ζ

n2
· Cap(R[m,n]) · (Cap(Rn)− Cap(R[m,n])) , (4.3)

for some constant cρ > 0, going to infinity as ρ goes to zero. Furthermore, by (2.6), one has

Cap(Rn) ≤ Cap(Rm) + Cap(R[m,n]),

and thus by Lemma 2.1 and Corollary 3.2, by taking ε0 small enough, we get for n large enough,

P
(

Cap(R[m,n]) ≤ γ5
`

2
, E

)
≤ P (Cap(Rm) ≥ γ5(m+ `/3))

≤ P
(

Cap (Rm) ≥ γ5
`

10

)
≤ e−c

′n,

for some constant c′ > 0, and with γ5 as in (1.2). Similarly one has for some possibly smaller
constant c′ > 0,

P
(

Cap(Rn)− Cap(R[m,n]) ≤ γ5
n

4
, E
)
≤ P

(
Cap (R[m,n]) ≥ γ5`

)
≤ e−c

′n.

Then (4.3) gives

P(χ0(Rm,R[m,n]) ≥ cργ
2
5

100
· ζ, E) ≥ P(χ0(Rm,R[m,n]) ≥ cργ

2
5

100
· ζ, E ∩ F )

≥ P(E ∩ F )− 2 exp(−c′n)

≥ P(F )− P(Ec)− 2 exp(−c′n).

Coming back to (4.2), and choosing ρ, such that cρ ≥ 300/γ2
5 , we deduce that

P
(
Cap (Rn) ≤ −ζ

)
= P

(
−ε0n ≤ Cap (Rn) ≤ −ζ

)
+ P(Ec)

≥ P(F )− 2 exp(−c′n)− 2 exp(−cC7/3
0 · ζ2/3n−1/3).

Moreover, it is well known that for any ρ > 0, there exists κ > 0, such that

P(F ) ≥ exp(−κ · ζ2/3n−1/3).

By combining the last two displays and taking C0 large enough, we get the desired result.
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4.2 Case of dimension d ≥ 6

In this case we prove the following result:

Proposition 4.2. Assume d ≥ 6. There exist positive constants ε0, C0, and κ (only depending on

the dimension), such that for any C0 (n log2 n)
d−2
d ≤ ζ ≤ ε0 n, one has

P
(
Cap (Rn) ≤ −ζ

)
≥ exp

(
−κ · ζ1− 2

d−2

)
.

Proof. Fix C > 0 (later chosen large enough), and let ` = bCζc. Using (2.6), Lemma 2.1, and
Corollary 3.2, we obtain, at least for n large enough, and c as in Corollary 3.3,

P
(
Cap (Rn) ≤ −ζ

)
≥ P

(
Cap (R`) ≤ −2ζ

)
− P

(
Cap (R[`, n]) ≥ ζ

)
≥ P

(
Cap (R`) ≤ −2ζ

)
− exp(−c · ζ2

n log2 n
).

Now using exactly the same argument as in the proof of Proposition 4.1 (and taking large enough
C), one can see that the first term on the right-hand side is of the right order (which is of the order
of the event F where the walk stays confined in a ball of radius ζ1/(d−2) during the whole time `),
and by choosing C0 large enough, we see that the second term is negligible, since by hypothesis,

ζ2/(n log2 n) ≥ Cd/(d−2)
0 · ζ1−2/(d−2). This concludes the proof of the proposition.

5 Upper Bounds

We prove here the upper bounds in Theorems 1.1 and 1.3. This is the main technical part of the
paper. The proof involves a delicate analysis of the corrector term ξn(T ), which we have to cut
into several pieces, corresponding to different scales and different densities.

Our main technical tools are elementary though. The first one, Lemma 5.1, bounds the sum of
the function ‖x‖4−d (resp. ‖x‖2−d) on the points of a finite set of Zd, weighted by the escape
probabilities of the set, in terms of its diameter squared (resp. the logarithm of its diameter). The
second one is an estimate on the function ϕT (x) entering the definition of ξn(T ), which depends on
whether ‖x‖ is smaller than

√
T or not. The last one bounds the sum of the function x 7→ ‖x−z‖2−d,

for an arbitrary fixed z, on any set whose density inside cubes of a certain partition of space is
controlled. The proof is a simple consequence of a rearrangement inequality.

This section is organized as follows. In Section 5.1, we present and prove the technical tools that
we just mentioned. In Section 5.2, we state one key technical ingredient of the proof, Lemma 5.4
taken from our previous paper [AS17a]. It provides an estimate on the size of the walk positions
where the occupation times (of some neighborhood) exceeds a given threshold. Then, in Section
5.3, we show that downward deviations of the capacity of the range imply with high probability
upward deviations of the corrector ξn(T ), for a well chosen T . In Section 5.4, we conclude the
proof in the case d = 5, by cutting ξn(T ) into several pieces and analyzing each of them carefully.
The main difficulty here concerns the regions, which we call high density regions, where the typical
density of points in the range exceeds the typical one, called here ρ, see (5.9). In Section 5.5 we
perform a similar analysis in dimension 6 and higher. The analysis here is more intricate than in
d = 5, and the main difficulty is now with regions of low density.
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5.1 Basic estimates

For r > 0, and x ∈ Rd, the discrete cube with center x and side length r, is denoted

Q(x, r) := [x− r/2, x+ r/2)d ∩ Zd,

and for simplicity we write Q(r) := Q(0, r).

We start with two basic inequalities, which play an important role in our analysis.

Lemma 5.1. Assume that d ≥ 5. There exists a constant C1 > 0, such that for any r ≥ 1, and
any Λ ⊂ Q(r), ∑

x∈Λ

1

‖x‖d−4 + 1
· Px(H+

Λ =∞) ≤ C1 r
2. (5.1)

Furthermore, for any 1 ≤ r ≤ R and any Λ ⊂ Q(R) \Q(r),∑
x∈Λ

1

‖x‖d−2 + 1
· Px(H+

Λ =∞) ≤ C1 log(R/r). (5.2)

Proof. We only prove (5.1), as (5.2) is entirely similar. Without loss of generality, one can assume
r ≥ 2. For i ≥ 0, write

Λi := Λ ∩
(
Q(r2−i)\Q(r2−i−1)

)
,

and define L := blog rc. Then, for some positive constants C0 and C1,

∑
x∈Λ

1

‖x‖d−4 + 1
· Px(H+

Λ =∞) ≤
L∑
i=0

∑
x∈Λi

1

‖x‖d−4 + 1
· Px(H+

Λ =∞)

≤
L∑
i=0

(2i+1

r

)d−4
Cap (Λi) ≤

L∑
i=0

(2i+1

r

)d−4
Cap

(
Q(

r

2i
)
)

≤ C0

L∑
i=0

(2i+1

r

)d−4 ·
( r

2i
)d−2 ≤ C1 r

2.

The second basic inequality we need is the following.

Lemma 5.2. Assume d ≥ 5. There exists a constant C2 > 0, such that for any x ∈ Zd, and any
T ≥ 1,

ϕT (x) :=
G ? GT (x)

T
≤ C2 ·min

(
1

1 + ‖x‖d−2
,

1

T (1 + ‖x‖d−4)

)
.

Proof. First GT ≤ G, so that G?GT ≤ G?G, and an elementary computation gives that G?G(x) ≤
C2/(1 + ‖x‖d−4), for all x ∈ Zd, and some C2 > 0. This already proves one of the two desired
bounds.

For the other one write, by definition of GT ,

G ? GT (x) =
∑
y∈Zd

G(x− y)GT (y) =
T∑
k=1

E[G(x− Sk)]. (5.3)
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Let τ be the hitting time of the cube Q(x, 2) for the walk starting at 0, and note that one can
assume ‖x‖ ≥ 4. Since G is harmonic on Zd\{0}, we have for any k ≥ 0, E[G(x − Sk∧τ )] = G(x).
This entails

G(x) = E[1{τ≥k}G(x− Sk)] + E[1{τ<k}G(x− Sτ )] ≥ E[G(x− Sk)]− E[1{τ<k} G(x− Sk)].

Now, we use that G(x) is bounded by G(0), so that the previous inequality gives

E[G(x− Sk)] ≤ G(x) +G(0)P(τ <∞)
(2.3)

≤ (1 + CG(0)) ·G(x),

for some constant C > 0. Injecting this in (5.3) and using (2.1), proves the second inequality.

Our last estimates are gathered in the following lemma. For a (deterministic) function S : N→ Zd
(not necessarily to the nearest neighbor), and for any K ⊂ N, we define for any Λ ⊂ Zd,

`K(Λ) :=
∑
k∈K

1(S(k) ∈ Λ).

Lemma 5.3. Assume d ≥ 3. Let S : N → Zd, and K ⊂ N, be such that for some ρ ∈ (0, 1) and
r ≥ 1,

`K(Q(x, r)) ≤ ρ|Q(r)|, for all x ∈ rZd.
There exists a constant C3 > 0 (independent of ρ, r, S, and K), such that for any R ≥ 2r, and any
z ∈ Zd, ∑

k∈K

1(2r ≤ ‖S(k)− z‖ ≤ R)

‖S(k)− z‖d−2
≤ C3 ρR

2, (5.4)

and ∑
k∈K

1(‖S(k)− z‖ ≥ 2r)

‖S(k)− z‖d−2
≤ C3 ρ

1− 2
d |K|2/d. (5.5)

Proof. We start with the proof of (5.4). Consider a covering of the cube Q(z,R) by a partition
made of smaller cubes homeomorphic to Q(r), with centers in the set z+rZd. For each x ∈ z+rZd,
with x 6= z, the contribution of the points S(k) lying in Q(x, r) to the sum we need to bound, is
upper bounded (up to some constant) by ρrd · ‖x − z‖2−d. The result follows as we observe that∑

x∈z+rZd ‖z − x‖2−d1(r ≤ ‖z − x‖ ≤ R) ≤ CR2/rd, for some constant C > 0.

The second inequality (5.5) follows as well, once we observe that by rearranging the points (S(k))k∈K,
one can increase the second sum (at least up to a multiplicative constant) by assuming they are all

in Q(z, 2( |K|ρ )1/d), and still satisfy the hypothesis of the lemma.

5.2 The sets Kn and An

We recall now our main technical estimate for downward deviations, which we proved in [AS17a]
(it is the lemma 2.4 from this reference), and then derive some useful corollary.

For n ≥ 0, and Λ ⊂ Zd, define the time spent in Λ by the walk up to time n as

`n(Λ) :=
n∑
k=0

1(Sk ∈ Λ).

Then given ρ > 0, r ≥ 1, and n ≥ 1, we set

Kn(r, ρ) := {k ≤ n : `n(Q(Sk, r)) ≥ ρ|Q(r)|}. (5.6)
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Lemma 5.4 ([AS17a]). Assume that d ≥ 3. There exist positive constants C and κ, such that for
any n ≥ 2, ρ > 0, r ≥ 1, and L ≥ 1, satisfying(

1 +
L

ρrd

)2/d

· log n ≤ κ ρ rd−2, (5.7)

one has
P
(
|Kn(r, ρ)| ≥ L

)
≤ C exp

(
−κ ρ

2
d L1− 2

d

)
.

Note that the parameter ρ represents an occupation density. Under the event of moderate deviations
considered here (when the capacity of the range up to time n is reduced by an amount ζ from its
mean value), the walk folds its trajectory during a typical time τ in a region of space of typical
diameter R with

Rd−2 :=
τ2

ζ
, and τ :=

{
n if d = 5
ζ if d ≥ 6.

(5.8)

In the folding region, its occupation density is thus typically of order ρ := τ/Rd, also given in terms
of ζ and n by

ρ =

{
ζ5/3 n−7/3 if d = 5

ζ−
2

d−2 if d ≥ 6.
(5.9)

Set J := log2(nρ ). Then for r ≥ 1, α > 0, i ∈ Z with i ≤ J , and 1 ≤ ζ ≤ n, define

An(r, i, α) :=

J⋂
j=i

{
|Kn(r, 2jρ)| ≤ α τ

2
2j

d−2

}
.

As a consequence of Lemma 5.4 we get the following.

Corollary 5.5. Assume d ≥ 5. There exists positive constants C and κ (depending only on the
dimension), such that the following holds. For any α > 0, there exists K = K(α), such that for
any i ≥ 0, any n ≥ 2, and any ζ ≤ n and r ≥ 1 satisfying respectively

ζ ≥
{ √

n if d = 5
(log n)3 if d ≥ 6,

(5.10)

and

r ≥ K 2
i

d−2 · (log n) ·

{
(n11ζ−7)

1
15 if d = 5

ζ
4

d(d−2) if d ≥ 6,
(5.11)

one has

P
(
An(r,−i, α)c

)
≤ C (J + i) ·

 exp
(
−κα3/5 · ( ζ

2

n )1/3
)

if d = 5,

exp
(
−κα1− 2

d · ζ1− 2
d−2

)
if d ≥ 6.

Proof. First note that one can always assume that n is large enough, since small values of n can
be ruled out by taking C large enough. Now one has to verify that the hypothesis of Lemma 5.4 is
satisfied for each of the sets entering the definition of An. The worst case is actually when j = −i,
so one just needs to check that(

1 +
ατ2i

d
d−2

ρrd

)2/d

log n ≤ κ2−iρrd−2. (5.12)
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We consider two cases: either τ2i
d

d−2 ≤ ρrd holds, in which case (5.12) is implied by

rd−2 ≥ K(α)d−2 · 2i

ρ
· log n, (5.13)

or it holds instead τ2i
d

d−2 ≥ ρrd, and then (5.12) is weaker than

rd ≥ K(α)d · τ
2
d 2i

d
d−2

ρ1+ 2
d

· log n, (5.14)

for some well chosen constant K(α). Assume first that d = 5, in which case we recall that τ = n,
and we observe that (5.14) is exactly (5.11) (up to the power of the logarithm). Furthermore, when
ζ ≥
√
n, one can check that (5.14) is stronger than (5.13) (again up to the power of the logarithm),

so one can forget the latter condition.

Assume now that d ≥ 6. If r ≥ (2iζ)1/(d−2) (which is equivalent to τ2i
d

d−2 ≤ ρrd), and ζ ≥ (log n)3,
then (5.13) is automatically satisfied (at least provided n is large enough). If on the other hand
r ≤ (2iζ)1/(d−2), then one can simply observe that (5.14) is exactly (5.11) up to the power of the
logarithm, by definition of ρ, see (5.9).

Finally one can observe that the upper bound given by Lemma 5.4 for the probability of the events
entering the definition of An is independent of r and j, and thus the corollary follows by a union
bound.

5.3 Transferring the deviations to the corrector

We now set the value of T in the rest of the whole section as a function of R, τ in (5.8) and of some
small constants {βd, d ≥ 5} fixed just after Proposition 5.6 below.

T := 2 + bT0c, with T0 := βdR
2 · ζ

2

τn
=

{
β5 · ζ4/3n−2/3 if d = 5

βd · ζ
d

d−2

n if d ≥ 6.
(5.15)

This definition of T is motivated by the fact that it is the largest possible value that makes the
contribution of the martingale part negligible, as shown in Proposition 5.6.

Our concern is to show that downward moderate deviations of the capacity imply with high prob-
ability upward deviations of the corrector ξn(T ), which has been defined in (3.6), by roughly the
same amount. A precise statement is given in Proposition 5.6 below, which is actually slightly
stronger than what we really need, but we state the result in this form, since it might be interesting
in itself and for further analysis of downward deviations.

We will then later interpret the upward deviations of ξn(T ) in terms of the sets An which were
introduced in the previous subsection, see Propositions 5.8 and 5.13 below.

Proposition 5.6. Assume d ≥ 5. For any δ ∈ (0, 1), there exists βd > 0, such that

lim
n→∞

P
(
ξn(T ) > (1− δ)ζ | Cap(Rn)− E[Cap(Rn)] ≤ −ζ

)
= 1,

with T as in (5.15), and where the convergence holds uniformly in ζ satisfying the hypotheses of
Propositions 4.1 and 4.2 (respectively for d = 5 and d ≥ 6).
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Proof. Using (3.1), we get that for T as in (5.15),

P (Cap(Rn)− E[Cap(Rn)] ≤ −ζ) ≤ P

 1

T

T−1∑
j=0

(Σj,T −Mj,T ) ≤ −δζ

+ P (ξn(T ) ≥ (1− δ)ζ) ,

and it just remains to see that the first term on the right-hand side is negligible with respect to
the probability on the left-hand side.

For the sum of the terms Σj,T , we can apply McDiarmid’s inequality (see Theorem 6.1 in [CL]),
since each Σj,T is a sum of i.i.d. terms, which are almost surely bounded by T and whose variance
are O(T (log T )2), by Lemma 2.2. It shows that, for n large enough, and for some constant c > 0
(only depending on δ),

P

 1

T

T−1∑
j=0

Σj,T ≤ −(δ/2)ζ

 ≤ T exp

(
−c · ζ2

n(log T )2 + ζT

)
≤

{
exp(−2κ · ζ2/3n−1/3) if d = 5

exp(−2κ · ζ1− 2
d−2 ) if d ≥ 6,

with κ as in Propositions 4.1 and 4.2 respectively for d = 5 and d ≥ 6, and taking βd in (5.15)
small enough.

For the martingale part on the other hand, we do not have at our disposal a better bound than T 2

for the conditional variance of its increments. More precisely we only know that the increments are
bounded by T almost surely, as it follows from (2.11) and (2.8). Then Azuma’s inequality, shows
that for n large enough,

P

 1

T

T−1∑
j=0

Mj,T ≥ (δ/2)ζ

 ≤ T exp(−c · ζ
2

nT
) ≤

{
exp(−2κ · ζ2/3n−1/3) if d = 5

exp(−2κ · ζ1− 2
d−2 ) if d ≥ 6,

taking again βd small enough for the second inequality. We conclude the proof using the lower
bounds given in Propositions 4.1 and 4.2.

Remark 5.7. The fact that we do not have better estimates for the conditional variance of the
increments of the martingales Mj,T is responsible for our choice of T . Better estimates, such as
a O(T (log T )2), would allow to take a larger T , which in turn would lead to an extension of our
result to lower values of ζ (in fact one would reach, at least in high dimension, the optimal bound
ζ ≥ n1−2/d, up to a logarithmic factor).

We now fix in the rest of this section the values of (βd)d≥5 as those given by the previous proposition,
with say δ = 1/2. Without loss of generality one will also assume that βd ≤ 1.

We then have to relate the upward deviations of ξn(T ) in terms of the sets An, in order to apply
Corollary 5.5. Since the arguments are quite different in dimension 5 on one hand and in dimension
7 and higher on the other hand, we treat these two cases in two separate subsections. The case of
dimension 6 is in a sense critical, and could be treated in both subsections, but we chose to include
it in the latter.

5.4 The case of dimension five

We assume here that d = 5 and prove the upper bound in Theorem 1.1. We start with the following
result. Recall the definition (5.15) of T .
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Proposition 5.8. There exist i0 ≥ 0, and α0 > 0, such that for any 1 ≤ ζ ≤ n, one has

An(α0

√
T ,−i0, α0) ⊆ {ξn(T ) ≤ ζ}.

Proof of the upper bound in Theorem 1.1. Let i0 and α0 be as in Proposition 5.8, and let K =
K(α0) be the constant appearing in Corollary 5.5. A simple computation shows that the condition
(5.11), with r = α0

√
T and i = i0, is equivalent to ζ ≥ (K2i0/3(log n)/α0)15/17n16/17, which is

satisfied, at least for n large enough, under the hypotheses of the theorem. Thus the desired upper
bound follows from Corollary 5.5, and Propositions 5.6 and 5.8.

The rest of this section is devoted to the proof of Proposition 5.8. Given r ≥ 1, we write ξn(T ) as
the sum of two terms: ξn(T ) := ξr,− + ξr,+, where

ξr,− :=
n∑
k=0

∑
x∈Rk

1(‖x− Sk‖ ≤ r)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
,

and

ξr,+ :=
n∑
k=0

∑
x∈Rk

1(‖x− Sk‖ > r)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
.

Proposition 5.8 is then a consequence of the two following lemmas.

Lemma 5.9. There exists α1 > 0, such that for any α ∈ (0, α1), any 1 ≤ ζ ≤ n, and any
1 ≤ r ≤ α1

√
T , one has

An(r, 0, α) ⊆ {ξr,− ≤
1

2
ζ}.

Lemma 5.10. There exist i0 ≥ 0, and α2 > 0, such that for any α ∈ (0, α2), any 1 ≤ ζ ≤ n, and
any r ≥ 1, one has

An(r,−i0, α) ⊆ {ξr,+ ≤
1

2
ζ}.

Remark 5.11. It is interesting to notice that the proof of Lemma 5.10 is independent of the choice
of T . It is only in Lemma 5.9 that this choice is important, and determines the maximal value of
the parameter r that one can afford (namely

√
T , up to constant). In turn this is responsible for

the limitation of our result regarding the range of moderate deviations that we cover.

Proof of Proposition 5.8. It suffices to apply the two previous lemmas with any α < min(α1, α2),
and r = α

√
T , since An(r,−i0, α) ⊆ An(r, 0, α), for any r ≥ 1 and α > 0, by definition.

It remains to prove Lemmas 5.9 and 5.10.

Proof of Lemma 5.9. We further decompose ξr,− as a sum of three terms. Let s := min(r, cs
√
ζT/n),

with cs a small positive constant to be fixed later, and assume first that s ≥ 1. Then, write
ξr,− := ξs,− + ξhigh

s,r + ξlow
s,r , where

ξs,− :=
n∑
k=0

∑
x∈Rk

1(‖x− Sk‖ ≤ s)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
,

and for some j ≥ 0 to be fixed later,

ξhigh
s,r =

∑
k∈Kn(r,2jρ)

∑
x∈Rk

1(s < ‖x− Sk‖ ≤ r)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
,
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ξlow
s,r =

∑
k/∈Kn(r,2jρ)

∑
x∈Rk

1(s < ‖x− Sk‖ ≤ r)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
.

Using (5.1) and Lemma 5.2, we get

ξs,− ≤
C2

T
·
n∑
k=0

∑
x∈Rk∩Q(Sk,s)

1

1 + ‖x− Sk‖
· Px

(
H+
Rk∩Q(Sk,s)

=∞
)
≤ C1C2 (n+ 1)

s2

T
≤ ζ

6
, (5.16)

by taking the constant cs in the definition of s small enough for the last inequality (for instance
such that c2

s = 1/(12C1C2)).

We next estimate the term ξhigh
s,r . Note that for any α > 0 and j ≥ 0, one has

An(r, 0, α) ⊆ {|Kn(r, 2jρ)| ≤ 2−2j/3αn},

(observe in particular that for j > J , the set Kn(r, 2jρ) is empty). Therefore using (5.1) and
Lemma 5.2 we have on the event An(r, 0, α), for any j ≥ 0,

ξhigh
s,r ≤ C2

T

∑
k∈Kn(r,2jρ)

∑
x∈Rk∩Q(Sk,r)

1

1 + ‖x− Sk‖
· Px

(
H+
Rk∩Q(Sk,r)

=∞
)
≤ C1C2 ·

αr2n

22j/3T
.

We now choose for j the smallest positive integer such that 22j/3 ≥ n/ζ, and we obtain that on
An(r, 0, α), with α small enough, and r ≤

√
T ,

ξhigh
s,r ≤

1

6
ζ. (5.17)

Finally, we estimate ξlow
s,r . We assume that s < r, as otherwise this sum is zero by definition.

Bounding the probability terms by 1 and the cardinality of the set Kn(r, 2jρ)c by n+ 1, we obtain
using Lemma 5.2, that for some constant C > 0,

ξlow
s,r ≤

C2

T

∑
k/∈Kn(r,2jρ)

∑
x∈Rk∩Q(Sk,r)

1(‖x− Sk‖ ≥ s)
1 + ‖x− Sk‖

≤ C2

T

∑
k/∈Kn(r,2jρ)

|Rk ∩Q(Sk, r)|
1 + s

≤ C
n2jρ · r5

Ts
≤ C

n2/3

ζ1/3
· r5

T 3/2
.

Taking next r ≤ α
√
T , with α small enough, gives

ξlow
s,r ≤ Cα5 · n

2/3

ζ1/3
· T ≤ 1

6
ζ.

Combining this with (5.16), and (5.17) concludes the proof of the lemma, in the case s ≥ 1.

When s < 1, one can just write ξr,− as the sum of two terms ξlow
r,− and ξhigh

r,− defined respectively as

ξlow
s,r and ξhigh

s,r , except that we remove the condition {‖x− Sk‖ > s} in the indicator functions, and
the rest of the proof applies mutatis mutandis.

Proof of Lemma 5.10. It will be convenient here to write the expression of ξr,+ in a more symmetric
way. One has using Lemma 5.2,

ξr,+ ≤ C2 ·
n∑
k=0

n∑
k′=0

1(‖Sk − Sk′‖ ≥ r)
‖Sk − Sk′‖3

.
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Now given some i0 ≥ 0 (which will be fixed later), we get using symmetry that ξr,+ ≤ C2(2ξlow
r,+ +

ξhigh
r,+ ), where

ξlow
r,+ :=

n∑
k=0

∑
k′ /∈Kn(r,210−i0ρ)

1(‖Sk − Sk′‖ ≥ r)
‖Sk − Sk′‖3

,

and

ξhigh
r,+ :=

∑
k,k′∈Kn(r,210−i0ρ)

1(‖Sk − Sk′‖ ≥ r)
‖Sk − Sk′‖3

.

We first treat the term ξlow
r,+ . Fix k ≤ n, and set r′ := r/2. Consider a subdivision of space into

cubes with centers in r′Z5, and of side length r′. Note that if Sk′ ∈ Q(x, r′), for some x ∈ r′Z5 and
k′ /∈ Kn(r, 210−i0ρ), then Q(x, r′) ⊆ Q(Sk′ , r) and therefore

`n(Q(x, r′)) ≤ `n(Q(Sk′ , r)) ≤ 210−i0ρ|Q(r)|.

Thus one can apply (5.5), with K = Kn(r, 210−i0ρ)c, and this shows that for any k ≤ n,∑
k′ /∈Kn(r,210−i0ρ)

1(‖Sk − Sk′‖ ≥ r)
‖Sk − Sk′‖3

≤ C3 ·
26

23i0/5
ρ3/5n2/5.

Then recalling the definition (5.9) of ρ, this shows that by taking i0 large enough, one has

ξlow
r,+ ≤

ζ

4
. (5.18)

We deal now with the contribution of high densities. We start with dividing space into regions of
distinct densities. We fix the value of i0 as above, and we define for j ≥ −i0 + 10,

Cj := {x ∈ rZ5 : 1 ≤ `n(Q(x, 2r))

2jρ|Q(r)|
< 2}.

Note that Cj is empty for j > J , by definition of J . We divide each box Q(x, 2r), with x ∈ Cj ,
into 210 disjoint sub-boxes of side-length r′ = r/2. The pigeonhole principle tells us that one of
them, say Qx, is visited at least 2j−10ρ|Q(r)| times. Furthermore, since Qx is a cube of side-length
r′, one has Qx ⊆ Q(Sk, r), for any k ≤ n, such that Sk ∈ Qx, so that for any such k, it holds
k ∈ Kn(r, 2j−10ρ). Using also that Qx belongs to exactly 25 boxes Q(x′, 2r), with x′ ∈ rZ5, it
follows that

|Cj | · 2j−15ρ · |Q(r)| ≤ |Kn(r, 2j−10ρ)|. (5.19)

Therefore, on the event An(r,−i0, α), one has for any −i0 + 10 ≤ j ≤ J ,

|Cj | ≤
225αn

25j/3ρ|Q(r)|
. (5.20)

On the other hand, for any j ≥ −i0 + 10, applying again the pigeonhole principle gives that for any
k ∈ Kn(r, 2jρ), one has Sk ∈ Q(x, 2r), for some x ∈ Cj′ , with j′ ≥ j. Therefore, for some constant
C > 0,

ξhigh
r,+ ≤ C ·

∑
−i0+10≤i≤J
−i0+10≤j≤i

∑
x∈Ci
y∈Cj

`n(Q(x, 2r))`n(Q(y, 2r))
1(‖x− y‖ ≥ r)
‖x− y‖3

≤ C ·
∑

−i0+10≤i≤J
−i0+10≤j≤i

2i+j+2(ρ|Q(r)|)2
∑
x∈Ci

y∈Cj\{x}

1

‖x− y‖3
.

(5.21)

21



We now use spherical rearrangement to obtain that there is a constant C ′, such that for any j ≤ i,
and any x ∈ Ci, ∑

y∈Cj\{x}

1

‖x− y‖3
≤ C ′ · |Cj |

2/5

|Q(r)|3/5
.

Thus, for any −i0 + 10 ≤ j ≤ i, on the event An(r,−i0, α), using (5.20),∑
x∈Ci

∑
y∈Cj\{x}

1

‖x− y‖3
≤ C ′

|Q(r)|2
2−

5
3
i− 2

3
j

(
αn

ρ

)1+ 2
5

, (5.22)

for some possibly different constant C ′ > 0. Thus, using (5.21) and (5.22), we obtain onAn(r,−i0, α),

ξhigh
r,+ ≤ C ′′ (αn)7/5 · ρ3/5

∑
−i0+10≤i≤J
−i0+10≤j≤i

2−
2
3
i+ 1

3
j ≤ C ′′ (αn)7/5 · ρ3/52i0/3,

for some constant C ′′ > 0. By taking α small enough in the last inequality, namely such that
C ′′ 2i0/3α7/5 ≤ 1/4, this shows that ξhigh

r,+ ≤ ζ/4. Together with (5.18), this completes the proof.

Remark 5.12. Note that the last series written while keeping the dimension as a parameter would
read after summing over j, ∑

−i0+10≤i≤J
2i(d−6)/(d−2).

In dimension 6, this sum is of order log(n/ζ), which explains the logarithmic correction that we
have in this case in Theorem 1.3. The same problem appears with the proof in the next section
confirming that d = 6 is indeed critical.

5.5 Dimension six and larger

We prove here the upper bound in Theorem 1.3. As in dimension 5, we will see that it follows from
Corollary 5.5, Proposition 5.6, and the following counterpart of Proposition 5.8 when d ≥ 6. Before
we state it, recall (see the heuristic part of the introduction), that now the walk typically folds its
trajectory a time ζ in a region of typical diameter R, whose value is

R = R(ζ) := ζ
1

d−2 . (5.23)

Recall also that T = βd(ζ/n)R2. In particular, since we assumed βd ≤ 1, one has T ≤ R2, when
ζ ≤ n.

Proposition 5.13. Assume d ≥ 6. There exist positive constants α0, c1, and c2 (only depending
on the dimension), such that for any 1 ≤ ζ ≤ n, one has when d ≥ 7,

An(α0r,−i1, α0) ∩ An(R,−i2, α0) ⊆ {ξn(T ) ≤ ζ},

with T and R as defined in (5.15) and (5.23) respectively,

r := (ζ/n)
d−4
2d

√
T , (5.24)

and i1 and i2 the smallest integers satisfying respectively

2i1 ≥ c1 ·
n

ζ
, and 2i2 ≥ c2 · (

n

ζ
)
d+2
d−2 .

When d = 6, it holds (with the same notation),

An(α0r,−i1, α0) ∩ An(R,−i2,
α0

log(2n/ζ)
) ⊆ {ξn(T ) ≤ ζ}.
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Proof of the upper bound in Theorem 1.3. As in dimension 5, one just need to verify that the hy-
potheses of Corollary 5.5 are satisfied for the parameters given in Proposition 5.13. In other words
one needs, with the notation of Proposition 5.13,

r ≥ K · 2
i1

d−2 log n · ζ
4

d(d−2) , (5.25)

and
R ≥ K · 2

i2
d−2 log n · ζ

4
d(d−2) , (5.26)

with K = K(α0), the constant from Corollary 5.5. Condition (5.25) is satisfied when

ζ ≥ Knχd log n, with χd =
d2 − 3d+ 4

d2 − 2d
,

and a possibly larger constant K. Note that d−1
d < χd < 1, for any d ≥ 1.

On the other hand, Condition (5.26) is satisfied when

ζ
1

d−2
+ d+2

(d−2)2
− 4

d(d−2) ≥ Kn
d+2

(d−2)2 log n,

(with a possibly larger K), which is itself weaker than requiring (at least for n large enough),

ζ ≥ nχ′d(log n)d, with χ′d :=
d(d+ 2)

2(d2 − 2d+ 4)
.

We note that χ′d ≤
d−2
d , for d ≥ 9, and that when d = 6, 7, 8, one also has χ′d < χd, so that (5.26) is

weaker (at least for n large enough) than (5.25) in any dimension d ≥ 6. This concludes the proof
of Theorem 1.3.

The rest of this subsection is devoted to the proof of Proposition 5.13.

Given any 1 ≤ r ≤ R, we write now ξn(T ) as the sum of three terms ξn(T ) := ξr,− + ξr,R + ξR,+,
with ξr,− as defined in dimension 5,

ξr,R :=
n∑
k=0

∑
x∈Rk

1(r < ‖x− Sk‖ ≤ R)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
,

and

ξR,+ :=
n∑
k=0

∑
x∈Rk

1(‖x− Sk‖ > R)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
.

Then Proposition 5.13 is a consequence of the following lemmas.

Lemma 5.14. There exists α1 > 0, such that for any α ∈ (0, α1), any 1 ≤ ζ ≤ n, and any 1 ≤
r ≤ α1r,

An(r, 0, α) ⊆ {ξr,− ≤
1

3
ζ}.

Lemma 5.15. There exists α2 > 0, and c1 > 0, such that for any α ∈ (0, α2), any 1 ≤ ζ ≤ n, and
any 1 ≤ r ≤ R, one has

An(r,−i1, α) ⊆ {ξr,R ≤
1

3
ζ},

with i1 = bc1 + log2(n/ζ)c.
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Lemma 5.16. There exists α3 > 0, and c2 > 0, such that for any α ∈ (0, α3), and any 1 ≤ ζ ≤ n,
one has

{ξR,+ ≤
1

3
ζ} ⊇

{
An(R,−i2, α

log(2n/ζ)) if d = 6

An(R,−i2, α) if d ≥ 7,

with i2 := bc2 + d+2
d−2 · log2(n/ζ)c.

Remark 5.17. Similarly as in dimension 5, the proofs of Lemmas 5.15 and 5.16 are independent
of the value of T , which only matters for the proof of Lemma 5.14 and the determination of r.

Proof of Proposition 5.13. One just has to notice that r ≤ R, for any ζ ≤ n, so that one can apply
Lemmas 5.14 and 5.15 with some α0 < min(α1, α2, α3), and r = α0r.

We prove now the three lemmas in the next subsections.

5.5.1 Proof of Lemma 5.14

This part is entirely similar to the case of dimension 5, so we only briefly indicate the necessary
changes. Define s = min(r, cs

√
ζT/n), with cs a small constant to be defined in a moment. Assume

first that s ≥ 1, and then split ξr,− into three parts: ξr,− = ξs,−+ξhigh
s,r +ξlow

s,r , with the same notation
as in the proof of Lemma 5.9, and with the integer j entering their definitions that we take here to
be 0.

Observe that (5.1) and Lemma 5.2 give

ξs,− ≤
C1C2

T
(n+ 1)s2 ≤ ζ

9
, (5.27)

choosing the constant cs small enough for the last inequality.

Next, using the same argument as in dimension 5, we get that for some constant C > 0, for any
r ≤ αr

ξlow
s,r ≤ C

nρrd

Tsd−4
≤ C ζ · (r

r
)d ≤ ζ

9
, (5.28)

taking α small enough for the last inequality.

Finally, notice that r ≤
√
T , so that on the event An(r, 0, α), we have for some constant C ′ > 0,

and any r ≤ r,

ξhigh
s,r ≤ C ′ · αζr

2

T
≤ ζ

9
, (5.29)

taking again α small enough at the end. Then the lemma follows from (5.27), (5.28) and (5.29).

In the case when s is smaller than one, we just write ξr,− as the sum of two terms ξlow
r,− and ξhigh

r,− ,

defined respectively as ξlow
s,r and ξhigh

s,r , except that we remove the indicator functions of the events
{‖Sk − x‖ > s} in their definitions. The rest of the proof remains unchanged.
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5.5.2 Proof of Lemma 5.15

We start by writing ξr,R = ξlow,∗
r,R + ξhigh

r,R , with

ξlow,∗
r,R :=

∑
k/∈Kn(r,ρ)

∑
x∈Rk

1(r ≤ ‖Sk − x‖ ≤ R)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
,

and
ξhigh
r,R :=

∑
k∈Kn(r,ρ)

∑
x∈Rk

1(r ≤ ‖Sk − x‖ ≤ R)ϕT (x− Sk) · Px
(
H+
Rk

=∞
)
.

Consider first the term ξlow,∗
r,R . Bounding the sum over x by a sum over indices k′ ∈ {0, . . . , n}, and

cutting it again into two pieces, one obtains ξlow,∗
r,R ≤ C2(ξlow

r,R + ξmix
r,R ), with

ξlow
r,R :=

∑
k,k′ /∈Kn(r,ρ)

1(r ≤ ‖Sk − Sk′‖ ≤ R)

‖Sk − Sk′‖d−2
,

and

ξmix
r,R :=

∑
k′∈Kn(r,ρ)

∑
k/∈Kn(r,ρ)

1(r ≤ ‖Sk − Sk′‖ ≤ R)

‖Sk − Sk′‖d−2
.

Now, exactly as for the proof of (5.18) one has using the first inequality in Lemma 5.3, that on the
event An(r, 0, α), for some constant C > 0,

ξmix
r,R ≤ C|Kn(r, ρ)| ρR2 ≤ ζ

9C2
, (5.30)

taking α small enough for the last inequality. We next consider the term ξlow
r,R . Define i1 as the

smallest integer, such that 2i1 ≥ c1n/ζ, with c1 a large constant to be fixed later. First, a similar
argument as above gives that

2
∑

k/∈Kn(r,ρ)

∑
k′ /∈Kn(r,2−i1+2dρ)

1(r ≤ ‖Sk − Sk′‖ ≤ R)

‖Sk − Sk′‖d−2
≤ Cn ρ

2i1
R2 ≤ ζ

18C2
, (5.31)

choosing c1 large enough in the last inequality.

Then define for −i1 + 2d ≤ j < 0,

Cj := {x ∈ rZd : 1 ≤ `n(Q(x, 2r))

2jρ|Q(r)|
< 2},

and for commodity reason call C0 the set

C0 := {x ∈ rZd : `n(Q(x, 2r)) ≥ ρ|Q(r)|}.

For x ∈ C0, divide the cube Q(x, 2r) into 22d sub-boxes of side r′ = r/2, and note that for each of
them, the number of times k which are not in the set Kn(r, ρ), but such that Sk belongs to this
sub-box, cannot exceed ρ|Q(r)|. Therefore for any x ∈ C0,

|{k /∈ Kn(r, ρ) : Sk ∈ Q(x, 2r)}| ≤ 22dρ|Q(r)|.

As a consequence,

ξ
low
r,R :=

∑
k,k′∈Kn(r,2−i1+2dρ)\Kn(r,ρ)

1(r ≤ ‖Sk − Sk′‖ ≤ R)

‖Sk − Sk′‖d−2
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≤ C
∑

−i1+2d≤j≤0
j≤i≤0

∑
x∈Ci
y∈Cj

(`n(Q(x, 2r)) ∧ 22dρ|Q(r)|) · (`n(Q(y, 2r)) ∧ 22dρ|Q(r)|)1(r ≤ ‖x− y‖ ≤ R)

‖x− y‖d−2

≤ C ·
∑

−i1+2d≤j≤0
j≤i≤0

2i+j(ρ|Q(r)|)2
∑
x∈Ci
y∈Cj

1(r ≤ ‖x− y‖ ≤ R)

‖x− y‖d−2
. (5.32)

Then, by the same argument as in the proof of Lemma 5.10, we get that on the event An(r,−i1, α),
for −i1 + 2d ≤ j ≤ 0, one has

|Cj | ≤
2d|Kn(r, 2j−2dρ)|

2j−2dρ |Q(r)|
≤ 2dαζ

2(j−2d)(1+ 2
d−2

)ρ|Q(r)|
,

Furthermore, it holds for some constant C > 0,∑
x∈Ci

∑
y∈Cj

1(r ≤ ‖x− y‖ ≤ R)

‖x− y‖d−2
≤ C|Ci|

R2

|Q(r)|
≤ C αζR2

ρ|Q(r)|2
2−i

d
d−2 .

Injecting this in (5.32) and taking α small enough gives

ξ
low
r,R ≤ C αζ ρR2

∑
−i1+2d≤j≤0

2j
∑

i:j≤i≤0

2−i
2

d−2 ≤ C αζ ≤ ζ

18C2
. (5.33)

By combining (5.31) and (5.33), we deduce that on the event An(r,−i1, α), one has

ξlow
r,R ≤

ζ

9C2
. (5.34)

It remains to bound the term ξhigh
r,R . For i ≥ 0, set

Ki := Kn(r, 2iρ) \ Kn(r, 2i+1ρ).

The second part (5.2) in Lemma 5.1 shows that on the event An(r, 0, α) (a fortiori on An(r,−i1, α)),
one has for some constant C > 0,

∑
i≥0

∑
k∈Ki

∑
x∈Rk

1(R
2i
≤ ‖Sk − x‖ ≤ R)

‖Sk − x‖d−2
· Px

(
H+
Rk

=∞
)
≤ C

∑
i≥0

|Ki|i ≤
ζ

18C2
, (5.35)

at least for α small enough. One the other hand Lemma 5.3 shows that on An(r, 0, α),

∑
i≥0

∑
k∈Ki

∑
x∈Rk

1(r ≤ ‖Sk − x‖ ≤ R/2i)
‖Sk − x‖d−2

≤ ξmix
r,R +

∑
i≥0

∑
k′∈Kn(r,ρ)

∑
k∈Ki

1(r ≤ ‖Sk − Sk′‖ ≤ R/2i)
‖Sk − Sk′‖d−2

≤ ξmix
r,R + Cαζ

∑
i≥0

2i+1ρ(R/2i)2 ≤ ζ

18C2
, (5.36)

for α small enough, using also (5.30). The result follows by combining (5.30), (5.34), (5.35), and
(5.36).
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5.5.3 Proof of Lemma 5.16

Fix c2 a large constant to be adjusted below, and define i2 as the smallest integer, such that

2i2 ≥ c2 ·
(
n

ζ

) d+2
d−2

.

Then using Lemma 5.2, we see that ξR,+ ≤ ξvery low
R,+ + ξlow

R,+, with

ξvery low
R,+ := 2C2

n∑
k=0

∑
k′ /∈Kn(R,2−i2+2dρ)

1(‖Sk − Sk′‖ ≥ R)

‖Sk − Sk′‖d−2
,

and

ξlow
R,+ := C2

∑
k,k′∈Kn(R,2−i2+2dρ)

1(‖Sk − Sk′‖ ≥ R)

‖Sk − Sk′‖d−2
.

We first treat the term ξvery low
R,+ . By using Lemma 5.3, exactly as it was used in the proof of Lemma

5.10, we get ∑
k/∈Kn(R,2−i2+2dρ)

1(‖Sk − z‖ ≥ R)

‖z − Sk‖d−2
≤ C3 n

2
d (2−i2+2dρ)1− 2

d .

Therefore by taking c2 large enough in the definition of i2, we get

ξvery low
R,+ ≤ 2C2C3 · (n+ 1)1+ 2

d (2−i2+2dρ)1− 2
d ≤ ζ

6
. (5.37)

We next treat the term ξlow
R,+. Consider j0, the smallest integer such that 2j0 > 22(d−2). We claim

that for any α ≤ 1, on the event An(R, 0, α), the set Kn(R, 2j0ρ) is empty. Indeed if this was not
the case, then there would exist somewhere a cube of side length R visited more than 2j0−dρRd

times (using the rough bound |Q(R)| ≥ (R/2)d). Note that by definition ρRd = ζ. So by the
pigeonhole principle, this would mean that a cube of side length R/2 would be visited more than
2j0−2dζ times, which in turn would imply |Kn(R, 2j0ρ)| ≥ 2j0−2dζ > αζ2−2j0/(d−2), contradicting
the fact that we are on An(R, 0, α).

We now perform a subdivision of the space, similar to the one from the proofs of Lemma 5.10 and
5.15. For j ≥ −i2 + 2d, we define

Cj := {x ∈ R · Zd : 1 ≤ `n(Q(x, 2R))

2jρ|Q(R)|
< 2}.

By a similar argument as in the proofs of the aforementioned lemmas, we get that on the event
An(R,−i2, α), for j ≤ j0 + 2d,

|Cj | ≤
2d|Kn(R, 2j−2dρ)|

2j−2dρ |Q(R)|
≤ 2dαζ

2(j−2d)(1+ 2
d−2

)ρ|Q(R)|
, (5.38)

and Cj is empty for j > j0 + 2d. Thus for some constant C > 0 (which may change from line to
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line), on the event An(R,−i2, α),

ξlow
R,+ ≤ C ·

∑
−i2+2d≤j≤j0+2d

j≤i≤j0+2d

∑
x∈Ci
y∈Cj

`n(Q(x, 2R))`n(Q(y, 2R))
1(‖x− y‖ ≥ R)

‖x− y‖d−2

≤ C ·
∑

−i2+2d≤j≤j0+2d
j≤i≤j0+2d

2i+j(ρ|Q(R)|)2 ·
∑
x∈Ci
y∈Cj

1(‖x− y‖ ≥ R)

‖x− y‖d−2

≤ C · ρ1− 2
d (αζ)1+ 2

d

∑
−i2+2d≤j≤j0+2d

j≤i≤j0+2d

2j
d−4
d−2
− 2

d−2
i

≤ C · α1+ 2
d ζ ·

∑
−i2+2d≤j≤j0+2d

j≤i≤j0+2d

2j
d−4
d−2
− 2

d−2
i,

using the same argument (based on spherical rearrangement) as in Lemma 5.10 for the third
inequality. When d > 6, the last series is convergent, and we obtain ξlow

R,+ ≤ ζ/6, by taking α small

enough. When d = 6, on the other hand, by taking α of the form α = α′ · (log(n/ζ))−
d

d+2 , with α′

small enough, we obtain as well

ξlow
R,+ ≤ Cα1+ 2

d ζ · i2 ≤
ζ

6
,

for some possibly different constant C > 0, and using that i2 is of order log2(n/ζ). Together with
(5.37), this concludes the proof.

6 Path Properties

In this section we prove Theorems 1.5 and 1.6. We need to show that the walk spends a time of
order τ in a region of typical density of order ρ under the constraint. First observe that for any
r ≥ 1, i0 ≥ 0 and α0 > 0, one has

i0⋃
i=−i0

{|Kn(r, 2iρ̄)| > α0τ

22i/(d−2)
} ⊆ {|Kn(r, 2−i0ρ)| > ατ}, (6.1)

with α = 2−2i0/(d−2)α0, and this means that a time ατ is spent in a region of density larger than
2−i0ρ. Thus, we need to show that under the event {ξn(T ) > ζn}, the left-hand side of (6.1) most
likely holds, for i0 and α0 independent of ζn and n. Indeed this would prove that for some r ≥ 1,
i0 ≥ 0 and α > 0,

lim
n→∞

P
(
|Kn(r, 2−i0ρ)| > ατ

∣∣ Cap (Rn)− E[Cap (Rn)] < −ζn
)

= 1, (6.2)

and would settle the first step in establishing the path properties. The two other steps follow very
closely the arguments of [AS17a]. Let us review them before establishing the first step. For r ≥ 1,
ρ > 0, and m ≥ 1, define

Gn(r, ρ,m) = {∃C ∈ (Zd)m : ‖x− y‖ ≥ 4r, ∀x 6= y ∈ C and `n(Q(x, r)) ≥ ρ|Q(r)|, ∀x ∈ C}.
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Thus, Gn(r, ρ,m) is the event that there are at least m (random) disjoint cubes of side-length r,
each one visited at least ρ|Q(r)| times. Now Equation (2.24) in Lemma 2.4 of [AS17a], and (6.2)
give the existence of some constant κ > 0, such that with m∗ = bκ τ/(ρrd)c,

lim
n→∞

P
(
Gn(r, 2−i0ρ,m∗)

∣∣ Cap (Rn)− E[Cap (Rn)] < −ζn
)

= 1.

This readily implies that for V := ∪x∈CQ(x, r), with C one set realizing the event Gn(r, 2−i0ρ,m∗),
and some positive constants α, c and C (all independent of n and ζn), one has

lim
n→∞

P
(
∃V ⊆ Zd : `n(V) ≥ ατ, c ≤ |V|

Rd
≤ C

∣∣ Cap (Rn)− E[Cap (Rn)] < −ζn
)

= 1.

The last step in proving Theorem 1.5 concerns showing that the capacity of the random set V is
of order |V|1−2/d. One of the key inequality in [AS17a] is its Proposition 1.7 which penalizes the
event of visiting a set V (made of disjoint balls) with capacity much larger than |V|1−2/d. We thus
conclude Theorem 1.5 by invoking this latter proposition.

We are now back in establishing the first step mentioned earlier. We first need to strengthen
Propositions 5.8 and 5.13 into the following.

Proposition 6.1. Assume d = 5. For any β > 0, there exist an integer i0 ≥ 0, and α0 > 0, such
that for any 1 ≤ ζ ≤ n, and n large enough,

i0⋂
i=−i0

{|Kn(r̃, 2iρ)| ≤ α0
n

22i/3
} ∩ An(r̃, i0, β) ⊆ {ξn(T ) ≤ ζ}, (6.3)

where T is as in (5.15), and r̃ =
√
T

log(n+1) .

The important point here is that the parameters i0, and α0 are independent of ζ and n.

Our result in dimension d ≥ 7 is more intricate, since we have to deal with two scales r̃ and R.
However, its pattern is similar. We recall that r is defined in (5.24), T and R are defined in (5.15)
and (5.23) respectively, and i1 and i2 are as in Proposition 5.13. We then define also r̃ := r

log(n+1) .

Proposition 6.2. Assume d ≥ 7. For any β > 0, there exist i0 ≥ 0, and α0 > 0, such that for any
1 ≤ ζ ≤ n, and n large enough

i0⋂
i=−i0

{|Kn(r̃, 2iρ)|∨|Kn(R, 2iρ)| ≤ α0ζ

22i/(d−2)
}∩An(r̃,−i1, β)∩An(R,−i2, β) ⊆ {ξn(T ) ≤ ζ}. (6.4)

The proofs of the two latter propositions are close to the proofs from Sections 5.4 and 5.5, and we
explain the differences in the case of d = 5. We omit the details in d ≥ 7.

Recall that in Section 5.4, we wrote ξn(T ) as a sum of ξr̃,− and ξr̃,+. On one hand a careful look at
the proof of Lemma 5.9 reveals that for any fixed β > 0, and any i0 ≥ 0, An(r̃, i0, β) ⊆ {ξr̃,− ≤ 1

2ζ},
provided n is large enough. Thus, we only need to find i0 and α0 (independent of ζ and n), such
that

i0⋂
i=−i0

{|Kn(r̃, 2iρ)| ≤ α0
n

22i/3
} ∩ An(r̃, i0, β) ⊆ {ξr̃,+ ≤

1

2
ζ}.
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In the proof of Lemma 5.10, ξr̃,+ was further written as ξlow
r̃,+ + ξhigh

r̃,+ , and some i0 was introduced

in order to make ξlow
r̃,+ ≤ ζ/4 (see (5.18)). This part can be used here as well. Then, we replace the

bound on |Cj | in (5.19) by the following: for j ≥ −i0

|Cj+10| · 2j−5ρ · |Q(r̃)| ≤ |Kn(r̃, 2jρ)| ≤ 2−
2
3
jn
(
α01(|j| ≤ i0) + β1(j > i0)

)
.

When estimating ξhigh
r̃,+ as in (5.21), we divide the converging series into a finite number of small

indices weighted by α0, and a converging series starting with index i0, and weighted by β (large).
By choosing a larger i0 if necessary one can make the sum of the last series small, and then take α0

small enough so that the finite sum (of about i0 terms) is in turn small. This makes ξhigh
r̃,+ ≤ ζ/4.

Thus, (6.3) holds.

The interest of these propositions is that by taking β large enough, one can make the probability
of the complement of the event An(r̃, i0, β) negligible, thanks to Corollary 5.5:

lim
n→∞

P
(
An(r̃, i0, β)c

∣∣ Cap (Rn)− E[Cap (Rn)] < −ζn
)

= 0. (6.5)

It then follows from (6.1), Propositions 5.6 and 6.1, and from (6.5), that for some i0 ≥ 0, and
α0 > 0, the limit (6.2) holds. In dimension seven and larger, the same arguments are needed. We
omit to repeat them.

7 Upward Deviations

We prove here Theorem 1.8. Thanks to our decomposition (2.9), we can adapt the approach of
Hamana and Kesten [HK], who proved a similar result for the size of the range.

The approach of Hamana and Kesten is based on first proving an approximate subadditivity relation
for the probability of upward deviations, that is the existence of some constants χ ∈ (0, 1), c > 0,
and C > 0, such that for any m,n ≥ 1 integers, and y, z positive reals,

P
(
|Rm+n| ≥ y + z − Ca(m,n)

)
≥ c χa(m,n) P

(
|Rn| ≥ y

)
P
(
|Rm| ≥ z

)
, (7.1)

with
a(m,n) := (n ·m)

1
d+1 .

The second step, which is general and only based on (7.1) and the fact that (when d ≥ 2) one has

limm,n→∞
a(m,n)
n∨m = 0, shows that the following limit exists,

ψ(x) := − lim
n→∞

1

n
logP

(
|Rn| ≥ x · n

)
, for all x > 0,

and that ψ is continuous and convex on [0, 1]. Here we prove an analogous result as (7.1), and use
their general argument to conclude.

Proof of Theorem 1.8. We first prove an analogous result as (7.1), but with a(m,n) replaced by
the function:

ã(m,n) = (n ·m)
1

d−1 .

In other words we establish the following inequality. There exists χ ∈ (0, 1), and C > 0, such that
for any m,n integers and y, z positive reals,

P (Cap (Rm+n) ≥ y + z − C ã(m,n)) ≥ 1

2
χã(m,n)P (Cap (Rn) ≥ y)P (Cap (Rm) ≥ z) . (7.2)
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The first step is to obtain the analogue of the following simple deterministic bound used in [HK]:
if Rn and R̃m are two independent copies of the range, there is a positive constant C, such that
for any r ≥ 1

1

|Q(r)|
∑

z∈Q(r)

|(z +Rn) ∩ R̃m| ≤ C
n ·m
rd

.

The corresponding bound in our context reads as follows:

1

|Q(r)|
∑

z∈Q(r)

∑
x∈Rn

∑
y∈R̃m

G(x− y + z) ≤ C n ·m
rd−2

, (7.3)

and is a direct consequence of (2.1) and the fact that for any x ∈ Zd, and for some constant C > 0,∑
z∈Q(r)

1

1 + ‖z − x‖d−2
≤ C r2.

Now to lighten notation, we simply write a = ã(m,n) = b(mn)
1

d−1 c. Using that the capacity is
translation-invariant, we deduce

Cap (Rm+n+a)
(2.5)

≥ Cap (Rn ∪R[n+ a, n+m+ a])

(2.9)
= Cap

(
Rn
)

+ Cap
(
R̃m
)
− χC(Rn, R̃m + S′a),

(7.4)

with Rn := Rn − Sn, S′a := Sn+a − Sn, and R̃m := R[n + a, n + m + a] − Sn+a. The Markov
property implies that Rn and R̃m are independent, and distributed as Rn and Rm respectively.
Furthermore,

χC(Rn, R̃m + S′a)
(2.12)

≤
∑
x∈Rn

∑
y∈R̃m

G(x− y − S′a). (7.5)

Now, one idea of Hamana and Kesten [HK] is to bound the law of S′a by a uniform law on the cube
Q(a/d). Indeed for any x ∈ Q(a/d), for which P(Sa = x) 6= 0, one has

P(S′a = x) ≥ 1

(2d)a
, (7.6)

since there is at least one path of length a going from 0 to x. Write Q(a/d) for the set of sites
x ∈ Q(a/d), for which P(Sa = x) 6= 0. Then for any x ∈ Q(a/d), and any α > 0,

P
(

Cap(Rm+n+a) ≥ z + y − α

2

) (7.4)

≥ P(S′a = x)·P
(

Cap(Rn) ≥ z,Cap(R̃m) ≥ y, χC(Rn, R̃m + x) ≤ α

2

)
.

Integrating with respect to the uniform measure on Q(a/d), we get

P
(
Cap(Rm+n+a) ≥ z + y − α

2

) (7.6)

≥ 1

(2d)a

× 1

|Q(a/d)|

∑
x∈Q(a/d)

P
(

Cap(Rn) ≥ z,Cap(R̃m) ≥ y, χC(Rn, R̃m + x) ≤ α

2

)
.

(7.7)
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We need now to estimate the mean of χC(Rn, R̃m + ·) with respect to the uniform measure.
According to (7.3), there is a positive constant C, such that

1

|Q(a/d)|

∑
x∈Q(a/d)

χC(Rn, R̃m + x) ≤ Cm · n
ad−2

≤ Ca, (7.8)

where the last inequality follows from the definition of a. Then by Chebychev’s inequality, we
obtain

1

|Q(a/d)|

∑
x∈Q(a/d)

1(χC(Rn, R̃m + x) ≤ 2Ca) ≥ 1

2
. (7.9)

As a consequence,

P
(
Cap(Rm+n) ≥ z + y − a− 4Ca

) (2.6),(2.8)

≥ P
(
Cap(Rm+n+a) ≥ z + y − 4Ca

)
(7.7)

≥ 1

(2d)a
· E
[
1(Cap(Rn) ≥ z) · 1(Cap(R̃m) ≥ y)× 1

|Q(a/d)|

∑
x∈Q(a/d)

1(χC(Rn, R̃m + x) ≤ 2Ca)
]

(7.9)

≥ 1

2(2d)a
· P
(
Cap (Rn) ≥ z

)
P
(
Cap (Rm) ≥ y

)
,

proving (7.2), with χ = 1/(2d).

It then follows from the general arguments of Hamana and Kesten, see Lemma 3 in [HK], that the
following limit exists for all x > 0:

ψd(x) := − lim
n→∞

1

n
logP (Cap(Rn) ≥ nx) .

We now prove that the range for which ψd(x) is finite is not empty. Define for n ≥ 0,

cn := max
γ:{0,...,n}→Zd

Cap({γ(0), . . . , γ(n)}), (7.10)

where the max is taken over all nearest neighbor paths of length n + 1. By (2.6), it follows that
cn+m ≤ cn + cm, for all n,m ≥ 0, so that by Fekete’s lemma, the limit limn→∞ cn/n exists. Call
γ∗d this limit. Note that ψd(x) is finite on [γd, γ

∗
d ], since the probability that the simple random

walk follows the path realizing the maximum in (7.10) is larger than or equal to 1/(2d)n+1, so that
ψd(x) ≤ log(2d), for all x ≤ γ∗d . Conversely, by definition of cn, one has ψd(x) =∞ for all x > γ∗d .
Furthermore, it follows from Lemma 3 and Proposition 4 in [HK], that ψd is continuous, and convex
on (0, γ∗d ]. Now Proposition 3.2 and Lemma 2.1 show that when d = 5, ψd(x) ≥ c(x− γ5)3, for all
x ≥ γd. Likewise, (3.7) with b = (x − γd)n and T = C/(x − γd)2, for some large enough constant
C > 0, show that ψd(x) ≥ c(x− γd)3, for γd ≤ x ≤ 1 when d ≥ 6. Using convexity, this also shows
that ψd is increasing on [γd, γ

∗
d ]. In addition one has ψd(x) = 0 for all x < γd, by definition of γd as

the limit of the (normalized) expected capacity, and using that by (2.8), Cap(Rn) ≤ n.

Finally we show that γ∗d > γd.

Consider Dn the set of no double backtrack at even times paths of length n+ 1 that we introduced
in [AS17b]. By definition, this is simply the set of paths γ : {0, . . . , n} → Zd, such that for any even
k ≤ n, one has γ(k+ 2) 6= γ(k). The only important property we need is that from a no-backtrack
walk S̃, and a sum of independent geometric variables {ξi, i ∈ N}, with parameter 1/(2d)2, we can
build a simple random walk S such that

R[0, n+ 2
∑
i≤n/2

ξi] = R̃n.
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Thus, for any α > 0, we have by (2.6) and (2.8),

Cap(R̃n) ≥ Cap(R(1+α)n)− 1

∑
i≤n/2

ξi <
αn

2

 · (1 + α)(n+ 1).

By taking the maximum over Dn on the left hand side, and then the expectation on the right hand
side, we obtain

cn ≥ max
π∈Dn

Cap(π) ≥ E[Cap(R(1+α)n)]− (1 + α)(n+ 1) · P

∑
i≤n/2

ξi <
αn

2

 . (7.11)

Now take α < 1/(2d)2, and use Chebyshev’s inequality, to see that the last term of (7.11) is O(1).
Together with Lemma 2.1 it implies that

cn ≥ γd(1 + α)n−O(
√
n),

which indeed proves that γd < γ∗d .
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