
Weak Form of the Stokes-Dirac Structure and Geometric
Discretization of Port-Hamiltonian Systems

P. Kotyczka, B. Maschke, L. Lefèvre

May 18, 2017

Abstract
We present the mixed Galerkin discretization of distributed-parameter port-Hamiltonian systems.

Due to the inherent definition of (boundary) interconnection ports, this system representation is
particularly useful for the modeling of interconnected multi-physics systems and control. At the
prototypical example of a system of two conservation laws in arbitrary spatial dimension, we derive the
main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure, (ii)
its geometric approximation by a finite-dimensional Dirac structure using a mixed Galerkin approach
and power-preserving maps on the space of discrete power variables and (iii) the approximation
of the Hamiltonian to obtain finite-dimensional port-Hamiltonian state space models. The power-
preserving maps on the discrete bond space offer design degrees of freedom for the discretization,
which is illustrated at the example Whitney finite elements on a 2D simplicial triangulation. The
resulting schemes can be considered as trade-offs between centered approximations and upwinding.

Keywords: Open systems of conservation laws, port-Hamiltonian systems, mixed Galerkin meth-
ods, geometric discretization, structure-preserving discretization.

1 Introduction

The port-Hamiltonian (PH) approach for the modeling, interconnection and control of multi-physics
systems underwent an enormous evolution during the past two decades. In this article, we concentrate
on distributed-parameter PH systems as initially presented in [60], and refer the reader to the books [23],
[35] and [63] for a more general overview on theory and applications. The salient feature of PH systems is
their representation in terms of (i) a linear geometric structure – a Stokes-Dirac structure – that describes
the power flows inside the system and over its boundary and (ii) an energy functional (or more generally a
potential) from which the constitutive or closure relations are derived, and which determines the nature
of the systems. Hence, completely different systems – linear/nonlinear or hyperbolic/parabolic [67] –
can share the same interconnection structure. PH systems are by definition open systems, they interact
with their environment through boundary ports. The in- and outputs in the sense of systems’ theory
and control are defined via a duality product whose value equals the exchanged power at the port. The
appropriate definition of boundary port variables plays a crucial role in showing that a PH system is a
well-posed boundary control systems [39]. The reasonable definition of distributed power variables as in-
and outputs is discussed in [43].
The simulation and control by numerical methods, of complex (in the sense of their geometry, their nonlin-
earities, their extent, their couplings) distributed-parameter PH systems, requires a spatial discretization,
which shall retain the underlying geometric properties related to power continuity. According to the sepa-
ration of the interconnection structure from the constitutive equations, a geometric discretization consists
of two steps:

• Finite-dimensional approximation of the underlying Stokes-Dirac structure. The duality between
the power variables variables (their duality product has the interpretation of power) must be mapped
onto the finite-dimensional approximation. This requires a mixed approach with different approx-
imation spaces for each group of dual power variables (called flows and efforts). The subspace of
discrete power variables on which (the preserved) power-continuity holds, defines a Dirac structure
as a finite-dimensional counterpart of the Stokes-Dirac structure.
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• The discretization of the interconnection structure is followed by an appropriate discretization of
the Hamiltonian and the closure equations, again taking into account the different nature of the
approximation spaces.

A geometric discretization is, hence, a compatible discretization as defined in [9]: “Compatible discretiza-
tions transform partial differential equations to discrete algebraic problems that mimic fundamental prop-
erties of the continuum equations.” The open character of PH systems requires special attention to
the treatment of the boundary port variables, in particular the boundary inputs which are imposed as
boundary conditions.

The first approach for a geometric or structure-preserving discretization of PH systems [29], application
to a diffusive process in [7], is based on the idea of mixed finite elements. The Stokes-Dirac structure
is, however, discretized in strong form which produces restrictive compatibility conditions. In the 1D
pseudo-spectral method [42], the degeneracy of the discrete duality product is rectified by the definition
of reduced effort variables, see also the recent paper [64] for the application to plasma dynamics described
by a parabolic PDE. The reduction of the discrete effort space is generalized by the power-preserving
maps in the present paper. In [? ], the Stokes-Dirac structure is reformulated, changing the role of state
and co-state variable for one conservation law. The discrete power-variables are immediately connected
with a non-degenerate duality pairing, at the price of a metric-dependent interconnection structure. The
simplicial discretization of PH systems based on discrete exterior calculus has been introduced in [56],
see [38] for the extended definition of boundary inputs and a revised interpretation of the resulting state
space models. Recently, the very related discretization on staggered grids has been reported using finite
volumes [37] and finite differences [58].

The weak or variational formulation as the basis for Galerkin numerical approximations, including the
different varieties of the finite element method (see [47], to cite only one textbook), has been only rarely
used for modeling and discretization of PH systems: In [? ], one of the two conservation laws is written
in weak form. [2] presents the PH model of the reactive 1D Navier-Stokes equations in weak form. In
[17], a piezo patch on a flexible beam, with a discontinuous spatial distribution, is included in the PH
model and its structure preserving discretization via the weak form.

In this article, we present the geometric discretization of distributed-parameter PH systems based on the
weak or variational formulation of the underlying Stokes-Dirac structure. Doing so, some limitations and
restrictions of current approaches for PH systems can be overcome.

• The formulation is valid for systems on spatial domains with arbitrary dimension.

• PH systems with non-canonical system operators (containing e.g. higher order derivatives) can be
discretized, as well as systems with dissipation and/or diffusion.

• In terms of finite elements, approximation spaces with higher polynomial degree can be used.

• Due to the weak imposition of boundary conditions, the boundary inputs appear directly in the
weak form of the Stokes-Dirac structure.

• The power-preserving maps for the discrete power variables offer design degrees of freedom for the
resulting PH approximate models. These design parameters can be used to adapt the discretization
to the physical nature of the system (e.g. accounting for the ratio between convection and diffusion)
and to improve the approximation quality.

We consider as the prototypical example of distributed-parameter PH systems, an open system of two
conservation laws in canonical form, as presented in [60]. We use the language of differential forms, see
e.g. [26], which highlights the geometric nature of each variable and allows for a unifying representation
independent of the dimension of the spatial domain.

An important reason for expressing the spatial discretization of PH systems based on the weak form
is to make the link with modern geometric discretization methods. Bossavit’s work in computational
electromagnetism, [11], [12] (based on Whitney elements [66]) and Tonti’s cell method [57] keep track
of the geometric nature of the system variables which allows for a direct interpretation of the discrete
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variables in terms of integral system quantities. This integral point of view is also adopted in discrete
exterior calculus [22]. Finite element exterior calculus [5] gives a theoretical frame to describe functional
spaces of differential forms and their compatible approximations, which includes the construction of
higher order approximation bases that generalize the famous Whitney forms [66], see also [49]. We
refer also to the recent article [33] which proposes conforming polynomial approximation bases, in which
the conservation laws are exactly satisfied, and which gives an excellent introduction to the geometric
discretization. Impressing examples for the use of geometric discretization methods can be found in
weather prediction [19] or the simulation of large-scale fluid flows [20], where the conservation of potential
vorticity plays an important role. Another important aspect of using the weak form as basis for structure-
preserving discretization is to make the link with well-known numerical methods and to pave the way for
a simulation of PH systems with existing numerical tools like FreeFEM++ [31] or GetDP [28].

The paper is structured as follows. In Section 2 we review the definition of distributed-parameter port-
Hamiltonian systems. We focus in particular on systems of two conservation laws and the underlying
Stokes-Dirac structure. We introduce the Stokes-Dirac structure with boundary ports of different causal-
ity as it will be used in the rest of the paper. In Section 3 we define the weak form of this Stokes-Dirac
structure and present its mixed Galerkin approximation. This approximation features, due to the differ-
ent geometric nature of the power variables and their approximation spaces, a degenerate power pairing.
In Section 4, new discrete power variables (or bond variables), with a non-degenerate duality pairing
are defined via power-preserving maps. The mixed Galerkin approximation, expressed in the new space
of discrete bond variables, defines a finite-dimensional Dirac structure, which admits different repre-
sentations. The input-output representation, together with the finite-dimensional approximation of the
Hamiltonian, leads to the desired port-Hamiltonian approximate models in state space form. Section 5
illustrates the method using Whitney finite elements on a 2D simplicial grid. In particular, we highlight
the interpretation of the finite-dimensional state and power variables in terms of integral quantities on the
grid. Moreover, we show how discretization schemes with different approximation quality are obtained
via the parametrization of the power-preserving maps. Section 6 closes the paper with a summary and
an outlook to ongoing and future work.

2 Distributed-Parameter Port-Hamiltonian Systems

2.1 Canonical systems of two conservation laws

We consider canonical systems of two conservation laws1 on an open, bounded and connected n-dimensional
spatial domain2 Ω with Lipschitz boundary ∂Ω in port-Hamiltonian form as described in [60]. We use the
language of differential forms, see e.g. [26]. Initially, we assume all differential forms to be sufficiently
smooth and denote Λk(Ω) the space of smooth differential k-forms on Ω.

The partial differential equations (PDEs) for this canonical class of PH systems are written as3[
−∂tp(z, t)
−∂tq(z, t)

]
=
[

0 (−1)rd
d 0

]
︸ ︷︷ ︸

Jcan

[
δpH(p(z, t), q(z, t))
δqH(p(z, t), q(z, t))

]
, (1)

with p(z, t) ∈ Λp(Ω), q(z, t) ∈ Λq(Ω) the state variables subject to initial conditions p(z, 0) = p0(z),
q(z, 0) = q0(z). Jcan denotes a canonical, matrix-valued and formally skew-symmetric4 differential op-
erator with d : Λk(Ω) → Λk+1(Ω) the exterior derivative. Moreover, r = pq + 15. The Hamiltonian or

1Or a system of two conservation laws with canonical interdomain coupling.
2We consider Ω ⊂ Rn, however, Ω can be, in general, a smooth manifold.
3Here, we indicate the dependencies of the variables on the spatial coordinate z ∈ Ω and time t ∈ [0,∞). Later on, they

will be omitted for brevity.
4A formal differential operator J is defined without boundary conditions (see e.g. [36], Sect. III.3). Formal skew-

symmetry is verified by 〈e,J e〉 = −〈J e, e〉 under zero boundary conditions, where 〈·, ·〉 is the inner product on the
appropriate functional space.

5We use the same symbol for the state variables (as differential forms) and their degrees, which should in general not
provoke any confusion.
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energy functional is given by

H(p(z, t), q(z, t)) =
∫

Ω
H(p(z, t), q(z, t), z) (2)

with the Hamiltonian density H : Λp(Ω)×Λq(Ω)×Ω→ Λn(Ω). The vector on the right hand side of (1)
contains the co-energy or co-state variables

ep(z, t) := δpH(p(z, t), q(z, t)) ∈ Λn−p(Ω), eq(z, t) := δqH(p(z, t), q(z, t)) ∈ Λn−q(Ω), (3)

which are – for the considered class of hyperbolic systems – defined as the variational derivatives of the
Hamiltonian, i.e. differential forms δpH and δqH that satisfy6

H(p+ δp, q + δq) =
∫

Ω
H(p, q, z) +

∫
Ω
δpH ∧ δp+ δqH ∧ δq + O(δp2, δq2). (4)

We call the equations to define ep and eq constitutive or closure equations. They determine the nature
of the system (linear or nonlinear; hyperbolic as considered here or parabolic, see [67]). Comparing the
degrees of the co-energy differential forms (n − p and n − q) with the degrees for the right hand side of
(1) to make sense (q− 1 and p− 1) yields the relation p+ q = n+ 1 between the dimension of Ω and the
degrees of the differential forms7.

The boundary port variables are defined as[
f∂(z, t)
e∂(z, t)

]
=
[
1 0
0 (−1)p

] [
δpH(p(z, t), q(z, t))
δqH(p(z, t), q(z, t))

]∣∣∣∣
∂Ω
, (5)

where (·)|∂Ω represents the trace or the restriction to the boundary of a differential form. Imposing the
port variables f∂(z, t) ∈ Λn−p(∂Ω) and/or e∂(z, t) ∈ Λn−q(∂Ω) on a subset of ∂Ω as control input (and
understanding the port variables on the remaining boundary as observation or output), makes the system
representation (1), (5) a boundary control system in the sense of [24].

For 1D linear PH systems with a generalized skew-symmetric system operator, [39] gives conditions on
the assignment of boundary in- and outputs for the system operator to generate a contraction semigroup.
The latter is instrumental to show well-posedness of a linear PH system, see [35]. Essentially, at most
half the number of boundary port variables can be imposed as control inputs for a well-posed PH system
in 1D.

Taking δp = ṗ, δq = q̇ as variations in (4), and omitting the higher order terms, the time derivative of
the energy functional (2) reads8

Ḣ =
∫

Ω
δpH ∧ ṗ+ δqH ∧ q̇ =: 〈δpH|ṗ〉Ω + 〈δqH|q̇〉Ω, (6)

Replacing ṗ, q̇ according to (1), using the integration-by-parts formula for differential forms and the
definition (5) of boundary port variables, yields

Ḣ =
∫
∂Ω

(−1)p δqH|∂Ω ∧ δpH|∂Ω =: (−1)p〈δqH|δpH〉∂Ω. (7)

Equating the right hand sides of the last two equations gives a (differential) energy balance equation or
a power continuity equation that relates the internal power flows (i.e. the lossless exchange of energy
between the two energy types) inside the domain Ω (6) and the power supplied over the system boundary
∂Ω (7). Due to the energy exchange over the system boundary, we call (1), (5) an open system of two
conservation laws in canonical port-Hamiltonian form.

6The skew-symmetric wedge product ∧ : Λk(Ω)× Λl(Ω)→ Λk+l(Ω) pairs two differential forms, adding their degrees.
7See [60] for several examples
8For brevity, all arguments are omitted
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Notation 1. 〈·|·〉Ω : Λn−k(Ω)× Λk(Ω)→ R is the short notation for the duality product

〈λ|µ〉Ω :=
∫

Ω
λ ∧ µ (8)

between two differential forms on the n-dimensional domain Ω. Accordingly for ∂Ω.

Example 1 (1D transmission line). The simplest example in 1D of a system of two conservation laws is
an electric transmission line with Ω = [0, L], see e.g. [30]. With p(z) ∈ Λ1(Ω), the magnetic flux density
one-form, q(z) ∈ Λ1(Ω), the electric charge density one-form, l(z)dz, c(z)dz ∈ Λ1(Ω) the distributed
inductance and capacitance per length (note that in this representation, l(z) and c(z) are functions, i.e.
zero-forms), the Hamiltonian density one-form is H(p, q) = 1

2

(
p(z) ∧ ∗p(z)l(z) + q(z) ∧ ∗ q(z)c(z)

)
. The Hodge

star operator ∗ : Λk(Ω)→ Λn−k(Ω) renders in the 1D case a one-form a zero-form and vice-versa9. The
variational derivatives of the Hamiltonian H =

∫ L
0 H turn out to be the current and the voltage along

the line, δpH = ∗p(z)l(z) = i(z) ∈ Λ0(Ω), δqH = ∗ q(z)c(z) = u(z) ∈ Λ0(Ω).

Example 2 (2D shallow water equations). The shallow water equations describe the two-dimensional
flow of an inviscid fluid with relatively low depth (“shallow”) which permits the averaging of the horizontal
components of the velocity field and the omission of the vertical velocity component. The two equations
that describe the conservation of mass and momentum over an infinitesimal, fixed surface element10, are
(we consider the fluid in a non-rotating system) can be written in vector calculus notation, see e.g. [25],

∂th+ div(hu) = 0

∂t(hu) + div(huu) + 1
2g∇h

2 + gh∇zb = 0.
(10)

h denotes the water level over the bottom, zb is the vertical coordinate that describes the bottom profile,
u = [u v]T the 2-dimensional velocity field, hu = F the discharge vector and g the gravitational
acceleration. u ·u and uu denote the scalar and the tensor (dyadic) product of two vectors, respectively.
With some rules of tensor calculus11, and replacing the continuity equation, the momentum equation can
be reformulated in terms of u and one obtains[

∂th
∂tu + qF⊥

]
=
[

0 −div
−grad 0

] [ 1
2u · u + gh+ gzb

hu

]
, (11)

where q = 1
h (∂xv − ∂yu) denotes the potential vorticity12, and F⊥ = [hv − hu]T . The term qF⊥

represents the acceleration of the fluid due to rotation of the flow. It stems from the rotational part of
the transport term in the momentum equation. The total energy (per unit mass) is

H =
∫

Ω

1
2hu · u + 1

2gh
2 + ghzb dx. (12)

To rewrite the equations in terms of differential forms (in a covariant formulation), we use the relations,
see [1]13

∇f = (df)], div f = ∗d(∗f [). (13)
9The Hodge star induces an inner product on the space of differential forms on a manifold M by

(α, β) :=
∫

M

α ∧ ∗β =
∫

M

β ∧ ∗α = (β, α), α, β ∈ Λk(M). (9)

see Section 8.4 of [26] or Section 3.6 of [34]. The inner product is not necessarily the standard L2 norm, but may be equipped
with another metric, see e.g. the energy norm fo linear PH systems [35]. The Hodge star is, hence, metric dependent.

10Which corresponds to the Eulerian representation of the fluid flow.
11See appendix A.4 of [8]: ∇ · (sI) = ∇s, ∇ · (vw) = v · ∇w + w(∇ · v), v · ∇v = 1

2∇(v · v)− v× (∇× v). The last term
with cross product and rotation has to be evaluated based on the 3D velocity vector with zero vertical component.

12The potential vorticity satisfies the balance equation ∂tq+ u · ∇q = 0, i.e. it is advected with the fluid flow see e.g. [4].
It plays an important role in the long-time numerical simulation of large scale flow problems, see e.g. [51].

13Index raising (]) produces a vector field with the same components from a one-form. Index lowering ([) produces a
one-form with identical components from a vector field. Raising and lowering refers to the fact that upper (lower) indices
are typically used for the components of vector fields (one-forms).
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Taking into account that ∗ ∗ λ = (−1)k(n−k)λ for a k-form λ, we obtain[
−∂t(∗h)

−(∂tu + qF⊥)[
]

=
[

0 −d
d 0

] [
pdyn
−(∗F[)

]
, (14)

where ∗h ∈ Λ2(Ω) and u[ ∈ Λ1(Ω) are the 2-form and 1-form associated with the water depth and the
flow velocity (p = 2, q = 1). pdyn = 1

2u · u + gh + gzb ∈ Λ0(Ω) is the hydrodynamic pressure function
(0-form) and ∗F[ ∈ Λ1(Ω) is the 1-form associated to the discharge per unit width. Indeed the vector
on the right can be expressed in terms of the variational derivatives pdyn = δ∗hH and −(∗F[) = δu[H of
the Hamiltonian H =

∫
ΩH density 2-form14 H = 1

2h(u[ ∧∗u[) + 1
2gh ∗ h+ g ∗ hzb. If the rotational term

qF⊥ can be neglected15, (14) has the canonical structure (1).

2.2 Stokes-Dirac structures and port-Hamiltonian systems

Power continuity is a property of the underlying linear geometric structure that relates the dual power
variables of the system, independent of the closure equations for the co-state variables. Defining the
distributed and boundary flow and effort differential forms as[

fp

fq

]
:=
[
−∂tp
−∂tq

]
,

[
ep

eq

]
:=
[
δpH
δqH

]
,

[
f∂

e∂

]
:=
[

δpH
(−1)pδqH

]∣∣∣∣
∂Ω
, (15)

the Stokes-Dirac structure describes a linear subspace of the bond space16 F × E ,

F = Λp(Ω)× Λq(Ω)× Λn−p(∂Ω)
E = Λn−p(Ω)× Λn−q(Ω)× Λn−q(∂Ω)

(16)

of dual power variables where power continuity

〈ep|fp〉Ω + 〈eq|fq〉Ω︸ ︷︷ ︸
power extracted from

distributed storage

+ 〈e∂ |f∂〉∂Ω︸ ︷︷ ︸
power supplied

over the boundary

= 0 (17)

holds. The Stokes-Dirac structure extends the notion of the finite-dimensional Dirac structure to infinite-
dimensional systems. The latter can be considered “the geometrical notion formalizing general power-
conserving interconnections” [60]:

Definition 1 ([60], Def. 2.1). Given the finite-dimensional linear spaces Ffin and Efin over R17 and a
duality pairing 〈·|·〉 : Ffin × Efin → R. Define the symmetric bilinear form

〈〈(f1, e1), (f2, e2)〉〉 := 〈e1|f2〉+ 〈e2|f1〉, (fi, ei) ∈ F × E , i = 1, 2. (18)

A Dirac structure is a linear subspace Dfin ⊂ Ffin × Efin such that D⊥fin = Dfin, where ⊥ denotes the
orthogonal complement with respect to the bilinear form 〈〈·, ·〉〉.

From the requirement that each element of a Dirac structure Dfin belongs to its orthogonal complement
D⊥fin (and vice versa), it follows that for all (f , e) ∈ Dfin

〈〈(f , e), (f , e)〉〉 = 2〈e|f〉 = 0, (19)

which is a (finite-dimensional) power-continuity relation as (17). For more details and different represen-
tations of Dirac structures (in the PH context) refer to [59], [60].

14In 2D we have ∗dx = dy, ∗dy = −dx.
15If not, (14) still represents a PH system, as the rotational term does not contribute to the energy balance. It can be

associated to a canonical Stokes-Dirac structure, with a different definition of the dynamic equation for the 1-form u[.
16As a reference to bond graph modeling of dynamical systems [45], see also [23], Chapter 1)
17or another field
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For the infinite-dimensional Stokes-Dirac structure, we consider the duality pairing over differential forms
as defined in (8) and the symmetric bilinear form

〈〈(fp1 , fq1 , f∂1 , ep1, eq1, e∂1 ), (fp2 , f
q
2 , f

∂
2 , e

p
2, e

q
2, e

∂
2 )〉〉 :=

〈ep1|fp2 〉Ω + 〈eq1|fq2 〉Ω + 〈e∂1 |f∂2 〉∂Ω + 〈ep2|fp1 〉Ω + 〈eq2|fq1 〉Ω + 〈e∂2 |f∂1 〉∂Ω (20)

with (i = 1, 2)
fpi ∈ Λp(Ω), fqi ∈ Λq(Ω), f∂i ∈ Λn−p(Ω)
epi ∈ Λn−p(Ω), eqi ∈ Λn−q(Ω), e∂i ∈ Λn−q(Ω).

(21)

Theorem 1. ([60], Thm. 2.1) The linear subspace of F × E, see (16), given by

D = {(fp, fq, f∂ , ep, eq, e∂) ∈ F × E | [
fp

fq

]
=
[
0 (−1)rd
d 0

][
ep

eq

]
,

[
f∂

e∂

]
=
[
1 0
0 (−1)p

][
ep|∂Ω
eq|∂Ω

]
}. (22)

with r = pq + 1 and |∂Ω the restriction to the boundary ∂Ω is a Dirac structure, i.e. D = D⊥ holds with
respect to the bilinear mapping defined in (20).

As the application of Stokes’ theorem instrumental in showing that the above subspace is a Dirac struc-
ture, the so-defined geometric structure is called a Stokes-Dirac structure. In order to represent the
situation of boundary inputs with different causality in a formally consistent way, we introduce the
Stokes-Dirac structure with an alternative designation of boundary port variables.

Corollary 1. The linear subspace

D̂ = {(fp, fq, ê∂ , ep, eq, f̂∂) ∈ F̂ × Ê | [
fp

fq

]
=
[

0 (−1)rd
d 0

][
ep

eq

]
,

[
ê∂

f̂∂

]
=
[
1 0
0 (−1)p

][
ep|∂Ω
eq|∂Ω

]
} (23)

with
F̂ = Λp(Ω) × Λq(Ω) × Λn−q(∂Ω)
Ê = Λn−p(Ω) × Λn−q(Ω) × Λn−p(∂Ω) (24)

is a Dirac structure.

We can understand the representation of the Hamiltonian systems with canonical interdomain coupling
(1), (5) as the composition of an underlying geometric interconnection for the pairs of port variables
(fp, ep), (fq, eq), (f∂ , e∂) with dynamic and closure equations (15).

Definition 2. ([60], Def. 2.2, Prop. 2.1) The distributed-parameter system on a closed and bounded n-
dimensional manifold Ω with boundary ∂Ω, defined by (1), (5) with Hamiltonian H(p, q) =

∫
ΩH(p, q, z)

and Hamiltonian density H : Λp(Ω) × Λq(Ω) × Ω → Λn(Ω), with p + q = n + 1 and r = pq + 1 is a
port-Hamiltonian system. It represents an open system of two conservation laws and satisfies the energy
balance equation (7).

Remark 1. Note that a Stokes-Dirac structure does not lead necessarily to the PH representation of a
hyperbolic system of conservation laws as in the two examples above. With the corresponding definition
of flow and effort variables and closure equations, parabolic phenomena based on irreversible conservation
laws of thermodynamics (heat conduction) can be modeled based on the same canonical Stokes-Dirac
structure. See the 3D heat conduction example in [23] (Section 4.2.2, p. 233) or the relation [67].

2.3 Boundary ports

The choice of boundary port variables to define a Stokes-Dirac structure (an infinite-dimensional PH
system) is not unique, see [39] for the 1D case. On parts of the boundary, eq may define the control
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input, while, vice versa, this role is assigned to ep on the rest. The only constraint on the definition
of pairs of boundary port variables is that their entirety reflects the power flow over the boundary as
indicated in (7).
In order to represent a larger class of boundary control problems for systems of two conservation laws,
the following proposition generalizes the definition of the Stokes-Dirac structure to multiple pairs of in-
and outputs on ∂Ω with different causality.
Proposition 1. Given the n-dimensional open and connected domain Ω with Lipschitz boundary ∂Ω.
Consider ∂Ω completely covered by subsets Γi ⊂ ∂Ω, i = 1, . . . , nΓ, and Γ̂j ⊂ ∂Ω, j = 1, . . . , n̂Γ with
orientation according to ∂Ω. Let

⋃nΓ
i=1 Γi ∪

⋃n̂Γ
j=1 Γ̂j = ∂Ω and the intersections Γi ∩ Γ̂j are either empty

or have dimension n− 1. Define the boundary flow and effort forms

fΓ
i = ep|Γi ,
eΓ
i = (−1)p eq|Γi ,

f̂Γ
j = (−1)p eq|Γ̂j ,
êΓ
j = ep|Γ̂j ,

(25)

such that the bond space F × E is composed of18

F = ΛpΩ × ΛqΩ × Λn−pΓ1
× · · · × Λn−pΓnΓ

× Λn−qΓ̂1
× · · · × Λn−qΓ̂n̂Γ

E = Λn−pΩ × Λn−qΩ × Λn−qΓ1
× · · · × Λn−qΓnΓ

× Λn−pΓ̂1
× · · · × Λn−pΓ̂n̂Γ

.
(26)

The subspace D ⊂ F × E, on which [
fp

fq

]
=
[
0 (−1)rd
d 0

][
ep

eq

]
(27)

holds and the boundary ports are defined as in (25), is a Dirac structure.

Proof. First observe that with the choice of boundary ports, and by construction of the subsets Γi and
Γ̂j , the boundary power flow can be expressed as

nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = (−1)p〈eq|ep〉∂Ω. (28)

The proof that the above subspace is a Dirac structure, consists of appropriately decomposing Ω and
exploiting the compositionality property, see Remark 2.2 of [60], of the Stokes-Dirac structure on each
subset.
1. Decompose Ω in a set of n-dimensional submanifolds Ωk and Ω̂l, with the same orientation as ∂Ω on
∂Ωk ∩ ∂Ω and ∂Ω̂l ∩ ∂Ω. On each subset, a Stokes-Dirac structure is defined, in an alternating manner,
according to Theorem 1 and Corollary 1, respectively. Then

⋃
k ∂Ωk ∩ ∂Ω =

⋃
i Γi,

⋃
l ∂Ω̂l ∩ ∂Ω =

⋃
j Γ̂j

and Γi∩∂Ωkl = ∅, Γ̂j ∩∂Ω̂lk = ∅ for all i, j, k, l. ∂Ωkl = −∂Ω̂lk denotes the common part of the boundary
of Ωk and Ω̂l, respectively, where the minus sign underscores the inverse orientation by construction. For
an illustration of the case n = 2, see Fig. 1.
2. Define on each common boundary ∂Ωkl = −∂Ω̂lk the interconnection conditions fklk = ep|∂Ωkl = êlkl
and eklk = (−1)peq|∂Ωkl = f̂ lkl . Then, the terms 〈eklk |fklk 〉∂Ωkl and 〈f̂ lkl |êlkl 〉∂Ω̂lk in the overall power
continuity equation cancel each other out due to the reverse integration direction. The interconnection
is hence power-preserving, and the composition of the separate Stokes-Dirac structures is a Stokes-Dirac
structure due to their compositionality property.

Remark 2. In the above proposition, boundary efforts and flows are defined as pure restrictions of either
of the distributed efforts to the corresponding subsets Γi, Γ̂j of the boundary. It is, however, also possible
to define mixed boundary variables (e.g. scattering variables), as long as the boundary power continuity
equation (28) holds. Such a more general parametrization of boundary in- and outputs is presented in
[39] for linear 1D PH systems with general skew-symmetric interconnection operators. In- and outputs
are characterized such that the resulting system is a boundary control system which is associated to a
contraction semigroup.

18For brevity, the domain of the differential forms is written as an index, Λp
Ω = Λp(Ω).
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Figure 1: Sketch of a 3-dimensional domain Ω with subdomains Ω1,Ω2, Ω3 and Ω̂1 and a subdivision of
the boundary into Γ1,Γ2,Γ3 and Γ̂1

Convention 1. In terms of control, we consider the boundary efforts eΓ
i , i = 1, . . . nΓ and êΓ

j , j = 1, . . . , n̂Γ

as boundary input variables, while the boundary flows fΓ
i , f̂Γ

j are the (power conjugated) boundary outputs.
Remark 3. So far, we considered (sufficiently) smooth differential forms. Indeed, the (strong) formu-
lation of the Stokes-Dirac structure in Prop. 1 requires that the effort forms are at least continuously
differentiable on the closed domain Ω = Ω ∪ ∂Ω, which yields continuous flow differential forms:

fp ∈ C0Λp(Ω),
fq ∈ C0Λq(Ω),

ep ∈ C1Λn−p(Ω),
eq ∈ C1Λn−q(Ω). (29)

The efforts being continuously differentiable on Ω, this holds also for their restriction to the boundary
∂Ω ⊂ Ω:

eΓ
i , f̂

Γ
j ∈ C1Λn−q(∂Ω), êΓ

j , f
Γ
i ∈ C1Λn−p(∂Ω), i=1, . . . , nΓ, j=1, . . . , n̂Γ. (30)

Note that with these functional spaces, the duality products (power density integrals) in (17) and (28)
are well-defined and finite.

2.4 Further classes of distributed parameter PH systems

In this chapter, we concentrate on canonical systems of two conservation laws in arbitrary spatial di-
mension. Beyond this basic class of PH systems (which however covers different linear and nonlinear
physical phenomena), there exists a growing number of PH models for different physical phenomena, see
e.g. [65] for the modeling of the plasma in a fusion reactor, [3] for the reactive Navier-Stokes flow or
[48] for irreversible thermodynamic systems to mention only a few interesting examples. In [46], a PH
formulation of the compressible Euler equations in terms of density, weighted vorticity and dilatation is
presented.

For the class of linear 1D PH systems represented by general higher order skew-symmetric system opera-
tors, the parametrization of in- and outputs to define a boundary control system with a system operator
that generates a (contractive or unitary) C0 semigroup is presented in [39]. The PH representation is
not unique. An important approach for mechanical systems is based on a jet bundle formulation [54],
see also [53] where the PH formulation of the Mindlin plate based on the jet bundle approach and the
Stokes Dirac structure are compared. In [52], different PH representations (symplectic and polysymplec-
tic, both based on jet bundles; Stokes-Dirac structure) which yield different definitions of state variables
and Hamiltonian densities, are compared at the illustrative example of the Timoshenko beam.

3 Galerkin approximation of the Stokes-Dirac structure

In this section, we study the Galerkin approximation of the Stokes-Dirac structure defined in Prop. 1. To
this end, we introduce the weak form of the Stokes-Dirac structure and use a mixed Galerkin approach
to approximate the differential forms according to their geometric nature.
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3.1 Weak form of the Stokes-Dirac structure

The first motivation to study the approximation of distributed-parameter PH systems based on their weak
form is the fact that most of the common numerical methods in engineering, including commercial tools,
are based on a Galerkin-type finite-dimensional approximation of the variational problem associated to
the PDE. Assuming this perspective is even more natural for system classes, where the PDEs are derived
from variational principles, as it is the case in structural mechanics19, see e.g. [50].

Also in the context of existing works on linear port-Hamiltonian distributed-parameter systems in one
spatial dimension, this perspective is natural. The statements on well-posedness and stability based on
the theory of C0 semigroups rely on the mild solution of the abstract (operator) differential equation.
These solutions, however, corresponds to the weak solutions, as known from the theory of PDEs, see [35],
page 127: “In fact, the concept of a mild solution is the same as the concept of a weak solution used in
the study of partial differential equations.”

A third point which motivates to discretize port-Hamiltonian distributed-parameter systems based on
their weak form, is the close relation of discrete exterior calculus (i.e. the mathematical formalism for
integral modeling of conservation laws), which has been used in [55] for PH systems: “Note that the
process of integration to suppress discontinuity is, in spirit, equivalent to the idea of weak form used in
the Finite Element method.” [22]20

Finally, also in the work of Bossavit on the mixed geometric discretization for computational electromag-
netism [11], [12], the quality of a weak formulation is addressed “How weak is the weak solution in finite
element methods” [13].

In the following, we will lift the smoothness assumption of the differential forms and specify concrete
functional spaces with conditions on their (weak) differentiability. This is necessary to choose appropriate
basis forms for the finite-dimensional approximation of the Stokes-Dirac structure. For a quick overview
on the necessary notions from functional analysis, we refer to Appendix ??.

The weak form of the Stokes-Dirac structure of Prop. 1 is obtained by a duality pairing (which involves
exterior multiplication and integration) on Ω with test forms of appropriate degree which do not vanish on
the boundary21. The latter allows for a weak imposition of the input boundary conditions eΓ

i , i = 1, . . . , nΓ
and êΓ

j , j = 1, . . . , n̂Γ.

Definition 3. The weak form of the Stokes-Dirac structure of Prop. 1 is given by the subspace D ⊂ F×E
with22

F = L2ΛpΩ × L2ΛqΩ × L2Λn−pΓ1
× · · · × L2Λn−pΓnΓ

× L2Λn−qΓ̂1
× · · · × L2Λn−qΓ̂n̂Γ

E = H1Λn−pΩ ×H1Λn−qΩ × L2Λn−qΓ1
× · · · × L2Λn−qΓnΓ

× L2Λn−pΓ̂1
× · · · × L2Λn−pΓ̂n̂Γ

(31)

where
〈vp|fp〉Ω = 〈vp|(−1)rdeq〉Ω ∀vp ∈ H1Λn−p(Ω),
〈vq|fq〉Ω = 〈vq|dep〉Ω ∀vq ∈ H1Λn−q(Ω),

(32)

and
fΓ
i = trΓie

p,
eΓ
i = (−1)p trΓie

q,

f̂Γ
j = (−1)ptrΓ̂je

q,

êΓ
j = trΓ̂je

p.
(33)

Remark 4. Note the subtle formal difference in the definition of the boundary port variables. In (25)
they are defined as restrictions of the smooth effort forms to the boundary, uniquely defined by continuity.
Here, we use the trace operator, which defines the extension of an H1 form to the boundary, see Appendix
??.

19By using a discrete variational formulation space-time discrete models can be even obtained directly, see e.g. [41].
20The paper is a good introduction to exterior differential calculus.
21In the variational formulation of boundary value problems, mostly test functions with compact support inside Ω are

chosen such that boundary conditions have to be imposed directly on the solution. This is however, not mandatory. By
test functions which are non-zero on ∂Ω, boundary conditions can be imposed in a weak fashion, cf. [47], Section 14.3.1, p.
483.

22For brevity, the domain of the differential forms is written as an index, e.g. L2Λp
Ω = L2Λp

Ω.
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With the functional spaces of the flow and effort differential forms (fp, fq, fΓ
1 , . . . , f

Γ
nΓ
, f̂Γ

1 , . . . , f̂
Γ
n̂Γ

) and
(ep, eq, eΓ

1 , . . . , e
Γ
nΓ
, êΓ

1 , . . . , ê
Γ
n̂Γ

) integration by parts according to (??) is applicable, which yields the
following weak form of the Stokes-Dirac structure.
Proposition 2. The weak form of the Stokes-Dirac structure in Prop. 1 with weak treatment of boundary
port variables is given by the subset D ⊂ F × E, F and E according to (31), where

〈vp|fp〉Ω = (−1)r+q〈dvp|eq〉Ω − (−1)r+p+q
nΓ∑
i=1
〈tr vp|eΓ

i 〉Γi − (−1)r+p+q
n̂Γ∑
j=1
〈tr vp|f̂Γ

j 〉Γ̂j

〈vq|fq〉Ω = (−1)p〈dvq|ep〉Ω − (−1)p
nΓ∑
i=1
〈tr vq|fΓ

i 〉Γi − (−1)p
n̂Γ∑
j=1

tr 〈vq|êΓ
j 〉Γ̂j ,

(34)

holds for all test forms vp ∈ H1Λn−p(Ω) and vq ∈ H1Λn−q(Ω).

Proof. Eq. (34) follows from (32) via integration by parts and the identities

(−1)p〈vp|tr eq〉∂Ω =
nΓ∑
i=1
〈vp|eΓ

i 〉Γi +
n̂Γ∑
j=1
〈vp|f̂Γ

j 〉Γ̂j ,

〈vq|tr ep〉∂Ω =
nΓ∑
i=1
〈vq|fΓ

i 〉Γi +
n̂Γ∑
j=1
〈vq|êΓ

j 〉Γ̂j .
(35)

The latter are due to the definition (33) of boundary port variables and the definition of the subsets Γi,
Γ̂j which cover completely ∂Ω and whose intersections are either empty or have dimension n− 1.

Remark 5. The latter representation of the Stokes-Dirac structure – if considered on a single control
volume – is suitable for discontinuous Galerkin schemes, see e.g. [32], where the boundary terms are
replaced by suitable numerical fluxes.

Using the effort forms as test forms, vp = ep, vq = eq, and adding both equations of (34), we obtain
(after some reformulations and exploiting (28), see appendix)

〈ep|fp〉Ω + 〈eq|fq〉Ω + (−1)p〈eq|ep〉∂Ω = 0, (36)

or, with the definition of boundary port variables,

〈ep|fp〉Ω + 〈eq|fq〉Ω +
nΓ∑
µ=1
〈e∂,µ|f∂,µ〉Γµ +

n̂Γ∑
ν=1
〈f̂∂,ν |ê∂,ν〉Γ̂ν = 0, (37)

which corresponds to the initially derived power continuity equation (17).
We have arrived at a weak (or variational) representation of the Stokes-Dirac structure of Prop. (1) which
suits to establish discretized mixed Galerkin models of PH systems of two conservation laws.

3.2 Mixed Galerkin approximation

In this section, we introduce the mixed Galerkin approximation of the weak form of the Stokes-Dirac
structure for a system of two conservation laws. For convenience of notation, we omit to explicitly write
out the trace operator on the subsets of the boundary, i.e. 〈vp|eq〉Γi := 〈tr vp|tr eq〉Γi etc. in the sequel.
We start with the representation

〈vp|fp〉Ω = (−1)r+q〈dvp|eq〉Ω − (−1)r+q
nΓ∑
i=1
〈vp|eq〉Γi − (−1)r+q

n̂Γ∑
j=1
〈vp|eq〉Γ̂j

〈vq|fq〉Ω = (−1)p〈dvq|ep〉Ω − (−1)p
nΓ∑
i=1
〈vq|ep〉Γi − (−1)p

n̂Γ∑
j=1
〈vq|ep〉Γ̂j ,

(38)

i.e. (34) without the explicit denomination of the boundary port variables. For a mixed Galerkin approx-
imation of the Stokes-Dirac structure, we
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• use different (mixed) bases to approximate the spaces of flow and effort forms

• and, from these bases, we choose the appropriate ones to approximate the test forms (Galerkin
method).

For the Stokes-Dirac structure, the effort bases are the natural choice to approximate the spaces of test
forms, as they retain the interpretation of the duality products as power products, see (36).

Note that from the original (strong) formulation of the Stokes-Dirac structure, until its weak formulation,
both equations feature only the exterior derivative and not the co-differential, i.e. no information about
the metric on the functional spaces is contained. Nor do we decide – for a finite-element (FE) discretiza-
tion which serves as illustrative example – to approximate the two equations on different, staggered grids,
as it is common practice in computational electromagnetism [12] or the numerical treatment of transport
phenomena [44]. Instead, we approximate the variables in both conservation laws with the same con-
forming subspaces (i.e. on the same mesh in FE), which has the advantage that boundary variables are
defined directly on ∂Ω, without having to cope with an eventual grid shift.

Nevertheless, the power-preserving maps that will be introduced to ensure non-degenerate duality pairings
between the discrete bond variables will give rise to an interpretation of the resulting schemes in terms
of staggered grids by the localization of the mapped discrete variables. The ability to parametrize the
power-preserving maps will allow to adapt the approximation to the nature of the system, e.g. to account
for diffusive effects in a hyperbolic system.

3.2.1 Approximation problem and compatibility condition

The flow differential forms will be approximated by linear combinations of appropriate basis forms of
subspaces

Ψp
h = span{ψp1 , . . . , ψpNp} ⊂ L2Λp(Ω)

Ψq
h = span{ψp1 , . . . , ψqNq} ⊂ L2Λq(Ω). (39)

The subspaces for the effort and test forms are, accordingly,

Φp = span{ϕp1, . . . , ϕpMp
} ⊂ H1Λn−p(Ω)

Φqh = span{ϕq1, . . . , ϕqMq
} ⊂ H1Λn−q(Ω). (40)

From the trace theorem for H1 spaces (see Appendix ??), we know that the restriction of the latter spaces
to the boundary is L2. h > 0 denotes the discretization parameter23 and we assume an appropriate choice
of approximation spaces, i.e. for a given functional space V and its approximation Vh (see [47], Section
5.2) it is true that infvh∈Vh ‖v − vh‖ → 0 for all v ∈ V if h → 0. The mixed Galerkin approximation
problem is as follows: Find approximate flow and effort forms

fph(z) =
Np∑
k=1

fpkψ
p
k(z) = 〈fp,ψp(z)〉 ∈ Ψp

h,

fqh(z) =
Nq∑
l=1

fql ψ
q
l (z) = 〈f q,ψq(z)〉 ∈ Ψq

h,

(41)

and

eph(z) =
Mp∑
i=1

epiϕ
p
i (z) = 〈ep,ϕp(z)〉 ∈ Φph,

eqh(z) =
Mq∑
j=1

eqjϕ
q
j(z) = 〈eq,ϕq(z)〉 ∈ Φqh,

(42)

23Which corresponds to the spatial extent of finite elements or the reciprocal order of a polynomial approximation.
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where 〈·, ·〉 denotes the standard inner product in Rn, such that

〈vph|f
p
h〉Ω = (−1)r+q〈dvph|e

q
h〉Ω − (−1)r+q

nΓ∑
µ=1
〈vph|e

q
h〉Γµ − (−1)r+q

n̂Γ∑
ν=1
〈vph|e

q
h〉Γ̂ν

〈vqh|f
q
h〉Ω = (−1)p〈dvqh|e

p
h〉Ω − (−1)p

nΓ∑
µ=1
〈vqh|e

p
h〉Γµ − (−1)p

n̂Γ∑
ν=1
〈vqh|e

p
h〉Γ̂ν .

(43)

holds for all vph ∈ Φph, v
q
h ∈ Φqh. The discrete flow and effort vectors

fp = [fp1 , . . . , f
p
Np

]T ,
f q = [fq1 , . . . , f

q
Nq

]T , and
ep = [ep1, . . . , e

p
Mp

]T ,
eq = [eq1, . . . , e

q
Mq

]T , (44)

contain the approximation coefficients, and the vectors (we omit the argument z in the sequel)

ψp(z) = [ψp1(z), . . . , ψpNp(z)]T ,
ψq(z) = [ψq1(z), . . . , ψqNq (z)]T , and

ϕp(z) = [ϕp1(z), . . . , ϕpMp
(z)]T ,

ϕq(z) = [ϕq1(z), . . . , ϕqMq
(z)]T , (45)

contain the approximation basis forms.
The flow variables are understood as time derivatives of the distributed states with negative sign, see
(15). Thus, they are approximated with the same bases,

ph(z) =
Np∑
k=1

pkψ
p
k(z) = 〈p,ψp(z)〉 ∈ Ψp

h,

qh(z) =
Nq∑
l=1

qlψ
q
l (z) = 〈q,ψq(z)〉 ∈ Ψq

h,

(46)

and
p = [p1, . . . , pNp ]T and q = [q1, . . . , qNq ]T . (47)

denote the discrete state vectors.
The mixed Galerkin approximation (43) of (38) is exact for flow and effort forms from the approximation
spaces (39), (40) (in these subspaces, the residual error vanishes), if the following compatibility conditions
hold:

span{ψp1 , . . . , ψpNp} = span{dϕq1, . . . ,dϕqMq
}

span{ψq1, . . . , ψqNq} = span{dϕp1, . . . ,dϕpMp
}.

(48)

In contrast to [29] (Assumptions 3 and 7), this compatibility of forms is understood in the weak sense.
This means, more precisely – consider the original weak formulation (32) and the definition of the weak
exterior derivative – that for all test forms with compact support inside Ω, i.e. vp ∈ H1

0 Λn−p(Ω),
vq ∈ H1

0 Λn−q(Ω), there exist constants apk, a
q
l , b

p
i , b

q
j such that

Np∑
k=1

apk〈vp|ψ
p
k〉Ω +

Mq∑
j=1

bqj〈vp|dϕqj〉Ω = 0,

Nq∑
l=1

aql 〈vq|ψ
q
l 〉Ω +

Mp∑
i=1

bpi 〈vq|dϕpi 〉Ω = 0.

(49)

3.2.2 Approximation of the variational problem

The weak formulation (38) of the Stokes-Dirac structure represents a variational problem: flow and
effort forms are sought under arbitrary variation of the test forms. Replacing the finite-dimensional
approximations (41), (42) and using the test forms from the effort bases,

vph = 〈vp,ϕp〉, vqh = 〈vq,ϕq〉, vp ∈ RMp , vq ∈ RMq , (50)
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we obtain the equations (the exterior derivative applies element-wise to a vector of differential forms)〈
〈vp,ϕp〉

∣∣∣ 〈fp,ψp〉〉
Ω
− (−1)r+q

〈
〈vp,dϕp〉

∣∣∣ 〈eq,ϕq〉〉
Ω

+ (−1)r+q
nΓ∑
µ=1

〈
〈vp,ϕp〉

∣∣∣ 〈eq,ϕq〉〉
Γµ

+ (−1)r+q
n̂Γ∑
ν=1

〈
〈vp,ϕp〉

∣∣∣ 〈eq,ϕq〉〉
Γ̂ν

= 0 (51)

and〈
〈vq,ϕq〉

∣∣∣ 〈f q,ψq〉〉
Ω
− (−1)p

〈
〈vq,dϕq〉

∣∣∣ 〈ep,ϕp〉〉
Ω

+ (−1)p
nΓ∑
µ=1

〈
〈vq,ϕq〉

∣∣∣ 〈ep,ϕp〉〉
Γµ

+ (−1)p
n̂Γ∑
ν=1

〈
〈vq,ϕq〉

∣∣∣ 〈ep,ϕp〉〉
Γ̂ν

= 0 (52)

Evaluating the integrals over the basis forms, we get the short notation of the finite dimensional variatonal
problem

〈
vp,Mpfp

〉
+
〈
vp,
(
Kp +

nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp
)
eq
〉

= 0 ∀vp ∈ RMp ,

〈
vq,Mqf q

〉
+
〈
vq,
(
Kq +

nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq
)
eq
〉

= 0 ∀vq ∈ RMq .

(53)

whose matrices Mp ∈ RMp×Np , Mq ∈ RMq×Nq , Kp,Lµp , L̂νp ∈ RMp×Mq , Kq,Lµq , L̂νq ∈ RMq×Mp , µ =
1, . . . , nΓ, ν = 1, . . . , n̂Γ, are composed of the elements

[Mp]ik = 〈ϕpi |ψpk〉Ω, [Mq]jl = 〈ϕqj |ψql 〉Ω,
[Kp]ij = −(−1)r+q〈dϕpi |ϕqj〉Ω, [Kq]ji = −(−1)p〈dϕqj |ϕpi 〉Ω,
[Lµp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γµ , [Lµq ]ji = (−1)p〈ϕqj |ϕpi 〉Γµ ,
[L̂νp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γ̂ν , [L̂νq ]ji = (−1)p〈ϕqj |ϕpi 〉Γ̂ν .

(54)

Equations (53) must hold for arbitrary vectors (discrete variations) vp, vq, which gives the matrix equa-
tions

Mpfp + (Kp + Lp)eq = 0,
Mqf q + (Kq + Lq)ep = 0.

(55)

It is straightforward to show by application of (??) that

[Lµp ]ij = [Lµq ]ji, [L̂νp ]ij = [L̂µq ]ji (56)

i.e. Lµp = (Lµq )T and L̂νp = (L̂νq )T . By defining

Lp =
nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp , Lq =
nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq , (57)

we can prove the following.

Proposition 3. The following relation holds between the elements of the matrices Kp,Kq and Lp,Lq.

[Kp + Lp]ij + [Kq + Lq]ji = [Lp]ij = [Lq]ji, (58)

i.e. (Kp + Lp) + (Kq + Lq)T = Lp = LTq .
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Proof. By the definition (57), the elements of Lp,Lq are duality products over the effort basis forms on
the complete boundary ∂Ω. Thus, we have that

[Kp + Lp]ij + [Kq + Lq]ji =
− (−1)r+q〈dϕpi |ϕqj〉Ω + (−1)r+q〈ϕpi |ϕqj〉∂Ω − (−1)p〈dϕqj |ϕpi 〉Ω + (−1)p〈ϕqj |ϕpi 〉∂Ω. (59)

Using skew-symmetry of the wedge product and the integration-by-parts formula for differential forms,
the right hand side can be rewritten as

(−1)p〈ϕqj(z)|ϕpi (z)〉∂Ω = [Lq]ji = [Lp]ij , (60)

which completes the proof.

Proposition 4. The finite-dimensional approximation of the power continuity equation (36) is

〈ep,Mpfp〉+ 〈eq,Mqf q〉+ 〈eq,Lqep〉 = 0 (61a)

or
〈ep,Mpfp〉+ 〈eq,Mqf q〉+ 〈Lpeq, ep〉 = 0, (61b)

where 〈·, ·〉 denotes the standard inner product on Euclidean space.

Proof. The relations follow from replacing vp = ep, vq = eq in the finite-dimensional variational problem
(53), adding both equations, substituting the definition (57) of Lp, Lq, and exploiting the property
(58).

As the matrices Lp,Lµp , L̂νp and Lq,Lµq , L̂νq describe the approximate power transferred over the boundary
∂Ω or parts of it, we refer to them as them boundary power matrices. Lp = LTq , whose elements are the
integrals of duality pairings between approximation forms on the boundary, will have reduced rank. The
reason is that basis forms for interior effort degrees of freedom will be, in general, zero on the boundary24.

3.2.3 Discrete boundary port variables

In the next step, we characterize mappings to discrete boundary port variables, according to the subdivi-
sion of the boundary ∂Ω into disjoint regions Γi, i = 1, . . . , nΓ, Γ̂j , j = 1, . . . , n̂Γ. These subsets of the
discrete effort variables will be assigned either the role of discrete boundary in- or outputs.

Definition 4. The vectors of discrete boundary port variables25 eb,µ, f b,µ0 ∈ RM
µ
b and êb,ν , f̂ b,ν0 ∈ RM̂ν

b ,
associated with the boundary subdomains Γµ ⊂ ∂Ω, µ = 1, . . . , nΓ, Γ̂ν ⊂ ∂Ω, ν = 1, . . . , n̂Γ are defined
via the discrete expression of the power transfered over Γµ and Γ̂ν , respectively:

〈eq,Lµq ep〉 =: 〈eb,µ, f b,µ0 〉, 〈ep, L̂νpeq〉 =: 〈êb,ν , f̂ b,ν0 〉. (62)

We decompose the boundary power matrices for each boundary subdomain in matrix products

Lµq = (Tµ
q )TSµp,0, L̂νp = (T̂ν

p)T Ŝνq,0. (63)

The boundary trace matrices26 Tµ
q ∈ RM

µ
b
×Mq , T̂ν

p ∈ RM̂ν
b ×Mp define the effort degrees of freedom

eb,µ = Tµ
q eq, êb,ν = T̂ν

pep. (64)

that lie on the boundary and are assigned the roles of input variables. We call Sµp,0 ∈ RM
µ
b
×Mp , Ŝνq,0 ∈

RM̂ν
b ×Mq the collocated boundary output matrices. They define the boundary flow variables

f b,µ0 = Sµp,0ep, f̂ b,ν0 = Ŝνq,0eq, (65)

which, together with the discrete efforts (64), satisfy exactly the discrete power balance (62) on the
different portions of the boundary.

24This is definitely true for finite elements, which are the standard Galerkin approximation in more than one spatial
dimension. Also for the 1D pseudo-spectral collocation method, see [42].

25Discrete boundary variables have index b, in contrast to index ∂ for the original distributed quantities.
26This denomination refers to the trace theorem that clarifies the functional space of H1 functions restricted to (a subset

of) the boundary.
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Because of

〈e∂,µ|f∂,µ〉Γµ = (−1)p〈eq|ep〉Γµ ≈ (−1)p
〈
〈eq,ϕq〉

∣∣∣〈ep,ϕp〉〉
Γµ

= 〈eq,Lµq ep〉 = 〈eb,µ, f b,µ0 〉,

〈ê∂,ν |f̂∂,ν〉Γ̂ν = (−1)p〈ep|eq〉Γ̂ν ≈ (−1)p
〈
〈ep,ϕp〉

∣∣∣〈eq,ϕq〉〉
Γ̂ν

= 〈ep, L̂νpeq〉 = 〈êb,ν , f̂ b,ν0 〉,
(66)

the definition of discrete boundary port variables is consistent with the distributed definition (33). Sum-
mation over the individual boundary power matrices according to (57), yields the boundary power balance
in compact notation

TT
q Sp,0 + ŜTq,0T̂p = Lq, (67)

where

Tq =

 T1
q
...

TnΓ
q

 , Sp,0 =

S1
p,0
...

SnΓ
p,0

 , Ŝq,0 =

Ŝ1
q,0
...

Ŝn̂Γ
q,0

 , T̂p =

 T̂1
p
...

T̂n̂Γ
p

 . (68)

The discrete power continuity equation, which represents the counterpart of (37) in the approximation
subspaces, finally reads

〈ep,Mpfp〉+ 〈eq,Mqf q〉+ 〈eb, f b0〉+ 〈êb, f̂ b0〉 = 0, (69)

where the vectors

eb =

 eb,1
...

eb,nΓ

 , f b0 =

 f b,10
...

f b,nΓ
0

 , êb =

 eb,1
...

eb,n̂Γ

 , f̂ b0 =

 f b,10
...

f b,n̂Γ
0

 . (70)

satisfy
eb = Tqeq, f b0 = Sp,0ep, êb = T̂pep, f̂ b0 = Ŝq,0eq. (71)

We are at the point to express the subspace of the discrete bond space on which power continuity according
to (69) holds, corresponding to the infinite-dimensional Stokes-Dirac structure in Prop. 1:

Proposition 5. Given the finite-dimensional space of discrete flows and efforts

F × E = RNp × RNq × RMb × RM̂b × RMp × RMq × RMb × RM̂b (72)

with Mb =
∑nΓ
µ=1M

µ
b , M̂b =

∑n̂Γ
ν=1 M̂

ν
b . The subspace

{(fp, f q, f b0 , f̂ b0 , ep, eq, eb, êb) ∈ F × E | (53) and (64), (65) hold} (73)

satisfies the isotropy27 condition, D ⊂ D⊥ with respect to the bilinear form 〈〈·, ·〉〉M that results from
symmetrization of the degenerate duality product

〈·, ·〉M := 〈ep,Mpfp〉+ 〈eq,Mqf q〉+ 〈eb, f b0〉+ 〈êb, f̂ b0〉. (74)

Proof. Along the lines of Prop. 18 in [42].

The subspace described in the proposition is, however, not a Dirac structure. This is due to the fact that
the duality product 〈·, ·〉M is degenerate in general, i.e. its value can be zero for nonzero discrete flows
and/or efforts that lie in the kernel of Mp, Mq, or their transposes28.

27A quadratic form is called isotropic if there exists a non-zero vector which is mapped to zero.
28Consider systems of conservation laws with p = n, q = 1. In 1D, we have for Whitney finite elements on a simplicial

triangulation or a polynomial approximation [42], dim ep = dim fp + 1 and dim ep = dim fp + 1, i.e. dim(ker MT
p ) = 1

and dim(ker MT
q ) = 1. On a 2D triangulation with Whitney forms, Mq will be square, while Mp will be fat, for a certain

minimal grid size, i.e. ker Mp 6= ∅.
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3.2.4 Discrete conservation laws

Instead of the mixed Galerkin approximation of (32) on the complete spatial domain Ω, we can approxi-
mate both conservation laws on the discrete, oriented geometric objects of dimension p and q (faces and
edges in 2D, for example) of the discretization mesh. We obtain a discrete representation of the two
conservation laws in the form [

fp
f q
]

=
[

0 (−1)rdp
dq 0

] [
ep
eq
]
. (75)

Dp and Dq are considered discrete derivative matrices, which replace the exterior derivative in the
original infinite-dimensional representation. If Whitney forms of lowest polynomial degree are used as
finite element approximation bases, they represent the co-incidence or co-boundary relations between the
discrete geometric objects associated to effort and flow forms. The term co-incidence matrix is preferred
to co-boundary matrix in the PH framework to avoid confusion with the system boundary, see [55] or [61].

Replacing (75) in (55), we obtain the relations

(−1)rMpdp + (Kp + Lp) = 0
Mqdq + (Kq + Lq) = 0

(76)

for the matrices of both representations.

4 Geometric discretization of the port-Hamiltonian system

By power-preserving projections of the discrete power variables (flows and efforts), we formulate an
approximate Dirac structure, which is based on non-degenerate duality pairings between discrete bond
variables. This Dirac structure admits different representations, in particular it can be written in an
explicit input-output form. The consistent approximation of the constitutive relations, which defines a
discrete Hamiltonian, finally yields the family of PH finite-dimensional state space models, which are
parametrized by the power-preserving projections and the definitions of boundary control inputs.

4.1 Power-preserving projections and conjugated output maps

Due to the different approximation bases for flows and efforts, the matrices Mp and Mq can be non-
square such that the duality products 〈ep,Mpfp〉 and 〈eq,Mqf q〉 are degenerate. An approximation Dirac
structure must be based on a non-degenerate duality product between the variables of the discrete bond
space. To this end, we will determine power-preserving projections

ẽp = Pepep, ẽq = Peqeq and f̃p = Pfpfp, f̃ q = Pfqf q. (77)

such that

Ñp := dim ẽp = dim f̃p ≤ rank(Mp) and Ñq := dim ẽq = dim f̃ q ≤ rank(Mq). (78)

We refer to the vectors f̃p, ẽp ∈ RÑp , f̃ q, ẽq ∈ RÑq as projected discrete flows and efforts, as they can be
interpreted as projections on subspaces of the original discrete bond spaces.

Example 3. In the 1D case, p = q = 1, using Whitney finite elements or the pseudo-spectral method
[42], we have, N = Np = Nq and M = Mp = Mq with M = N + 1. Fixing f̃p = fp, f̃ q = f q and
Pep = MT

p , Peq = MT
q , the new efforts ẽp, ẽq are projections of ep, eq in direction of the kernel of MT

p

and MT
q , respectively.

The following definition summarizes the core property of power-preserving projections.
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Definition 5. The discrete flow and effort projections (77) are power-preserving if they satisfy a discrete
power balance

〈ẽp, f̃p〉+ 〈ẽq, f̃ q〉+ 〈eb, f b〉+ 〈êb, f̂ b〉 = 0 (79)
with the given boundary inputs eb, êb according to (64) and possibly modified boundary outputs

f b = Sµpep, f̂ b = Ŝνqeq. (80)

Remark 6. If the projections satisfy PT
epPfp = Mp and PT

eqPfq = Mq, the “interior” part of the power
balance (61) is exactly represented by the new flows and efforts, and (79) holds with the original, collocated
outputs f b0 , f̂ b0 . If, however, Ñq < rank(Mq) and/or Ñp < rank(Mp), a part of the power, originally
described by 〈ep,Mpfp〉 + 〈eq,Mqf q〉, must be “swapped” to the boundary terms of (79) via the re-
definition of the outputs. This way, the power-balance is maintained globally, and conservativeness of
the finite-dimensional approximation is guaranteed.

To characterize the power-preserving projections and modified output maps that guarantee power conti-
nuity (79), we replace the definitions of projections, in- and outputs, and substitute fp, f q according to
the discrete representation (75) of the conservation laws. The new power variables are now expressed in
terms of the original discrete efforts,

f̃p
f̃ q
f̂ b
f b


︸ ︷︷ ︸

f̄

=


0 (−1)rPfpdp

Pfqdq 0
0 Ŝq
Sp 0


︸ ︷︷ ︸

ET

[
ep
eq
]

︸︷︷︸
e

,


ẽp
ẽq
êb
eb


︸ ︷︷ ︸

ē

=


Pep 0
0 Peq

T̂p 0
0 Tq


︸ ︷︷ ︸

FT

[
ep
eq
]

︸︷︷︸
e

.
(81)

Equation (79) must hold for arbitrary ep, eq, and we obtain the following matrix condition.

Proposition 6. The effort and flow projections and output maps are power-preserving, if they satisfy
the matrix equation

(−1)rdTp PT
fpPep + PT

eqPfqdq + TT
q Sp + ŜTq T̂p = 0. (82)

The power-preserving projections and output maps are not unique. Different parametrization of the
matrices, yield different finite-dimensional Dirac structures that approximate the original Stokes-Dirac
structure of Proposition 1. Together with a consistent approximation of the constitutive equations, we
can obtain PH approximate models with different numerical properties. A favorable parametrization
will depend on the nature of the system (e.g. if the closure equations make the system hyperbolic or
parabolic), the distribution and type of boundary inputs, and the application case.
In Section 5, we will illustrate the power-preserving projections at the example of Whitney approximation
forms on a rectangular simplicial mesh in 2D. The degrees of freedom in the projections will allow for a
trade-off between centered schemes and upwinding in the discretized PH models.

4.2 Dirac structure on the new bond space

The power-preserving projections and output maps that satisfy (82) define a Dirac structure. We verify
that (81) is an image representations of this Dirac structure on the new discrete bond space. If the effort
maps are invertible, an unconstrained input-output representation exists.

Proposition 7 (Image representation). Consider the discrete flow and effort vectors f̄ and ē as indicated
in (81). (f̄ , ē) is an element of the bond space F̄ × Ē = RÑp+Ñq+Mb+M̂b × RÑp+Ñq+Mb+M̂b . Let Ñp +
Ñq + M̂b +Mb = Mp +Mq and the projection and output matrices satisfy the matrix condition (82). If

rank(
[
Pep

T̂p

]
) = Mp and rank(

[
Peq

Tq

]
) = Mq, (83)

then the subspace
D̄ = {(f̄ , ē) ∈ F̄ × Ē | f̄ = ETe, ē = FTe, e ∈ RM

p+Mq}, (84)
is a Dirac structure.
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Proof. According to the definition of the image representation of a Dirac structure (see e.g. [59], Section
4.4.1) the dimensions of f̄ and ē must be less29 or equal dim(e), which is ensured by Ñp+Ñq+M̂b+Mb =
Mp + Mq. The condition rank([F E]) = Mp + Mq is satisfied by (83), from which rank(F) = Mp + Mq

follows. Moreover, the skew-symmetry condition EFT + FET = 0 must hold. EFT + FET according to
(81) gives[

0 dTq PT
fqPeq + (−1)rPT

epPfpdp + STp Tq + ŜTp T̂q

(−1)rdTp PT
fpPep + PT

eqPfqdq + TT
q Sp + ŜTq T̂p 0,

]
(85)

which equals zero by the characterization of power-preserving projections and output maps (82).

Corollary 2 (Input-output representation). Under the conditions of Prop. 7, the Dirac structure admits
an unconstrainted input-output representation[

−f̃p
−f̃ q

]
=
[

0 Jp
Jq 0

]
︸ ︷︷ ︸

J=−JT

[
ẽp
ẽq
]

+
[

0 Bp

Bq 0

]
︸ ︷︷ ︸

B

[
êb
eb
]

[
f̂ b
f b
]

=
[

0 Cq

Cp 0

]
︸ ︷︷ ︸

C=BT

[
ẽp
ẽq
]

+
[

0 Dq

Dp 0

]
︸ ︷︷ ︸

D=−DT

[
êb
eb
]
.

(86)

with
Jp = −JTq , Bp = CT

p , Bq = CT
q , Dq = DT

p . (87)

Proof. The (skew-)symmetry conditions can be summarized as[
−Jp −Bp

Cq Dq

]
+
[
−Jq −Bq

Cp Dp

]T
=
[
0 0
0 0

]
. (88)

By invertibility of the matrices in (83),[
−Jp −Bp

Cq Dq

]
=
[
(−1)rPfpdp

Ŝq

] [
Peq

Tq

]−1
,

[
−Jq −Bq

Cp Dp

]
=
[
Pfqdq

Sp

] [
Pep

T̂p

]−1

. (89)

Substituting these relations in (88) and multiplying with
[
PT
ep T̂T

p

]
from the left and

[
Peq

Tq

]
from the

right, yields the left hand side of (82). The right hand side being zero, this proves (skew-)symmetry of
the matrices (87) of the input-output representation.

The proposition is a generalization of Prop. 20 in [42] for the 1D case and the pseudo-spectral method.
Note that the rank condition (83) on the effort and flow and boundary maps is sufficient (not necessary)
for the subspace (84) to be a Dirac structure. The fact that both matrices in (83) are assumed square
and invertible, guarantees the input-output representation in the corollary.

4.3 Finite-dimensional port-Hamiltonian model

To render the input-output representation of the Dirac structure a finite-dimensional port-Hamiltonian
model of a canonical system of two conservation laws, we replace the projected discrete flow variables by
time derivatives of discrete states30

−f̃p =: ˙̃p ∈ RÑp , −f̃ q =: ˙̃q ∈ RÑq . (90)
29This is the case of a relaxed image representation.
30If a flow variable is defined differently, as in the case of the 2D SWE with the additional rotation term, this has to be

accounted for also in the discrete equation.
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On the other hand, the projected efforts need to be replaced by the partial derivatives of a suitable
discrete Hamiltonian H̃d(p̃, q̃)

ẽp =
(
∂H̃d

∂p̃

)T
∈ RÑp , ẽq =

(
∂H̃d

∂q̃

)T
∈ RÑq . (91)

The discrete Hamiltonian must be defined in such a way that the discrete effort variables represent a con-
sistent approximation of their continuous counterpart. We present the discretization of the constitutive
equations in detail in the FE example of Section 5.
With the state, input and output vectors

x =
[
p̃
q̃

]
, u =

[
êb
eb
]
, y =

[
f̂ b
f b
]
, (92)

the resulting state space model
ẋ = J∇Hd(x) + Bu
y = BT∇Hd(x) + Du

(93)

has PH form and the discrete energy satisfies the balance equation

Ḣd = −yTu, (94)

which is the finite-dimensional counterpart of (7). The PH form allows to easily interconnect the finite-
dimensional model of the system of two conservation laws with other subsystems in a power-preserving
way, which is the basis for energy-based control design by interconnection see e.g. [40].

Can we use the projections to define new approximation bases that can be used in the variational
problem and directly yield square and invertible matrices Mp, Mq?

5 Example: Whitney forms on a 2D rectangular grid

To illustrate the steps to obtain an approximate PH state space model with desired boundary inputs by
geometric discretization, we consider a 2-dimensional rectangular domain Ω = (0, Lx) × (0, Ly) ⊂ R2,
with boundary ∂Ω, covered by a regular, oriented simplicial triangulation Th, as sketched in Fig. 2.
The approximation bases for flows and efforts (39), (40) are composed of Whitney forms [66] of lowest
polynomial degree, which can be constructed based on the barycentric node weights [14]. The degrees
of freedom are directly associated to the nodes, directed edges and faces of the mesh. The well-known
geometric discretization of Maxwell’s equations [12] is based on Whitney forms, and the resulting finite-
dimensional models feature the (co-)incidence matrices of the underlying discretization meshes [10]. They
can be considered a direct representation of the physical laws on the discrete balance regions of the
triangulation, which underscores the strong relation to Tonti’s cell method [57]. In contrast to [10],
[57], where the conservation laws are evaluated on dual or staggered grids, we start with a single mesh.
Nevertheless, in our approach, the projections of the original degrees of freedom gives rise to interpret
the projected flows and efforts in terms of topological duality.

5.1 Mesh, matrices and dimensions

Using Whitney basis forms, the degrees of freedom in the mixed Galerkin approach are associated to
integrals of distributed quantities on the k-simplices of the mesh. The dimensions of the (initial) discrete
flow and effort vectors equal the numbers of corresponding nodes, edges and faces on the grid. The
same holds for the discrete efforts on the boundary, which are designated inputs and are localized at the
corresponding boundary nodes and edges, see Table 1.
The mixed Galerkin approximation of the Stokes-Dirac structure yields a set of matrices with different
sizes and ranks, see Table 2. The construction of power-preserving projections and conjugated output
matrices that satisfy the matrix equation (82), is based on rank considerations of the involved matrix
products.
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Table 1: Dimensions of discrete flow and efforts spaces on the rectangular N ×M simplicial grid.

Vector(s) f p f q, eq ep ep
b , eq

b

Dimension 2NM 3NM+N+M (N+1)(M+1) 2(N+M)
Symbol(s) Np Nq = Mq Mp Mb

p , Mb
q

Table 2: Sizes and ranks of the matrices for the discrete variational problem and the direct discret model,
respectively. N,M > 2.

Matrix Mp Kp + Lp dp Mq Kq + Lq dq Lp = LT
q

Size Mp ×Np Mp ×Nq Np ×Nq Nq ×Nq Nq ×Mp Nq ×Mp Mp ×Nq

Rank Mp − 2 Mp − 2 Np 2(Mp − 2) Mp − 1 Mp − 1 2(M +N) − 1

5.2 Power-preserving projections, in- and outputs

We describe the different matrices that define the discrete power variables on the projected bond space.

5.2.1 Input trace matrices and effort projections

Identifying the elements of the input vector u =
[
(êb)T (eb)T

]T with effort degrees of freedom on the
boundary nodes and edges corresponds to a consistent imposition of the effort boundary conditions in
the finite-dimensional model. To arrive at the input-output representation (86), the matrices

Πp :=
[
Pep

T̂p

]
and Πq :=

[
Peq

Tq

]
(95)

should be square and invertible. Choosing Πp and Πq as permutation matrices, each projected ef-
fort/boundary effort is assigned to an interior/boundary simplex. The property Π−1

p/q = ΠT
p/q makes the

matrices of the state space model, which result from a right multiplication with Π−1
p/q, particularly simple.

5.2.2 Flow/state projections

For the considered rectangular simplicial grid, we propose the following constructions for Pfp and Pfq.
We omit the derivations, and illustrate the results graphically.

Each element f̃pi , i = 1, . . . , Ñp, of f̃p = Pfpp̃ is related to a 2-chain (a weighted formal sum of 2-
simplices), located around the node associated to ẽpi . The node and the weighted 2-chain can be con-
sidered, hence, topologically dual objects. The weights of the 2-simplices around a node, are illustrated
in Fig. 3. The index I refers to the lower right, II to the upper left triangles and αν + βν + γν = 1,
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Figure 2: Left: Numbering of nodes, edges and faces on a N ×M rectangular simplicial mesh. K =
(M + 1)N , L = K +M(N + 1). Right: 3× 2 mesh.
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βI

γI αI

αII γII

βII

ẽp
i

Figure 3: Illustration of an element of the row elements of Pfp, associated to a discrete flow variable f̃pi .
Defined as a weighted sum of original discrete flows on the neighboring 2-simplices, it can be considered
also topologically dual to ẽpi .

ν ∈ {I, II} holds31. This convex combination of weights ensures that

Ñp∑
i=1

p̃i =
Np∑
j=1

pj − εp, (96)

where εp is a weighted sum of the original discrete states pj on 2-simplices around boundary input nodes.
εp describes a defect of the total conserved quantity on the original grid. This defect at the boundary
must be considered in the consistent definition of the discrete constitutive equations as shown further
below.
Remark 7. By the topological duality between the elements of f̃p and ẽp as illustrated in Fig. 3, it is
easy to imagine that the deviation εp can be related to well-known effects from the discretization with
staggered grids, like ghost values, see e.g. [38] for a discussion from the PH point of view.

A related interpretation holds for the different elements of the projected flow vector f̃ q = Pfqf q. As shown
in Fig. 4, each element of f̃ q can be considered dual to a discrete effort ẽqi on a horizontal, vertical or
diagonal edge (drawn in red). f̃pi is constructed as a linear combination of the elements of f̃ q on adjacent
edges. The weights can be clustered, which corresponds to a decomposition of f̃qi into a rotational part
and components along and across the effort edge. Only the latter part (drawn in blue) contributes to the
discrete constitutive equations as discussed further below.

5.2.3 Conjugated discrete outputs

Like the projected flows and efforts, the discrete outputs f b = Spep and f̂ b = Ŝqeq are constructed as
weighted sums of the discrete efforts in the vicinity of the dual boundary input, see Fig. 5. f bi is defined
by a convex sum of node efforts. Note that f̂ bi is composed of a “rotation” part and a convex sum
associated to the direct neighbor edges.
Remark 8. By reconstructing the rotational components of q̃ from the given quantities, can be used to
discretize the vorticity term in the shallow water equation (14).

Show by short calculation that the models indeed have no feedthrough.

5.3 Discrete constitutive equations

To obtain a consistent numerical approximation of the system of conservation laws, the discrete states
p̃, q̃ and the above-defined efforts ẽp, ẽq must be related via discrete constitutive relations that are
consistent with the continuous ones. We consider the case of linear constitutive equations

ep = δpH = ∗p, eq = δqH = − ∗ q. (97)
31The weights can be different from node to node. For simplicity, we fix the same pairs (αI , βI) and (αII , βII) on the

whole mesh.
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Figure 4: Weights on directed edges to define the elements of f̃ q which are dual to ẽq. (a), (b) and (c)
show the construction based on discrete efforts in horizontal, diagonal and vertical direction (red). The
blue edges and weights display the contributions to the discrete constitutive equation, which is a flux
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Figure 5: Illustration of the elements of the output vectors f b = Spep and f̂ b = Ŝqeq as a weighted sum
of node/edge efforts in the neighborhood of the input edge/node.

that are derived from the simple quadratic Hamiltonian

H =
∫

Ω
(1
2p ∧ ∗p+ 1

2q ∧ ∗q). (98)

The discrete constitutive equations will be expressed by

ẽp = Qpp̃, ẽq = Qqq̃ (99)

with positive definite, diagonal matrices Qp, Qq. p̃ and q̃ are constructed as linear combinations of
integral conserved quantities on the 2- and 1-simplices of the discretization grid. By the construction
illustrated above, we can think p̃, q̃ localized on a (virtual) dual grid, whose localization is parameterized
by the projection parameters αI/II and βI/II . This justifies the interpretation of Qp, Qq as (diagonal)
discrete Hodge matrices that replace the Hodge star in (97).
For the consistent construction of these Hodge matrices, we assume a steady state. In this case, the
elements of ẽp must represent “average” values of p on the weighted balance areas32 for the p̃i. Accordingly,
the elements of ẽq must reflect the integral flux of the vector field33 q] across the corresponding horizontal,

32Precisely, the average value of the coefficient function of the 2-form p.
33Index raising of the 1-form q.
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vertical or diagonal edges. The weights in the definition of q̃i that belong to edges perpendicular to the
ẽqi determine the diagonal elements of Q−1

q .

5.4 Simulation study

We consider the linear wave equation with Hamiltonian density (98) on a square domain Ω = [0, 20]×[0, 20]
to illustrate the effects of different projection parameters, see Table 3. We impose the boundary conditions

ep(0, 0) = u(t) =
{

sin2(π8 t), 0 ≤ t < 8
0 t ≥ 8

, eq(x, y) = 0 on ∂Ω. (100)

by the input trace matrices
T̂p =

[
1 0 . . . 0

]
, Tq = I1b , (101)

where I1b ∈ RMb×Nq is the matrix composed of unit row vectors associated to boundary edges, and the
inputs to the simulation model

êb(t) = u(t), eb(t) = 0. (102)

Table 3: Parameter sets for the simulation.

αI αII βI βII

Parameters 1 1/2 1/3 1/3 1/2
Parameters 2 1/2 1/4 1/4 1/2
Parameters 3 2/3 1/6 1/6 2/3
Parameters 4 7/8 1/32 1/32 7/8

Fig. 6 shows the simulated propagation of the wave in radial direction under different parametrizations
of the method, see Table 3. The red line displays a circle with radius tsim − T/2 = 16, as a reference
for the maximum of the wavefront34. The first parameter set produces a centered numerical scheme
with respect to the propagation direction. The three remaining parameter sets correspond to a stronger
weighting of the simplices in the propagation direction for the computation of f̃pi , see Fig. 3. As a result,
the numerical schemes can be considered different realizations of “upwinding”. Observe also the different
variation from the shape of a quarter circle, which are due to the non-isotropic mesh and the different
weights αI/II , βI/II .

5.5 Spectral approximation

For a short analysis of the spectral approximation properties, we consider the 1D wave equation on a
domain Ω = [0, 1], which is characterized by the degree p = 1 (instead of p = 2) of the first conserved
quantity differential form. With the quadratic Hamiltonian as in (98), the sign of the second constitutive
equation eq = ∗q changes. The exponent in the canonical differential operator now becomes r = pq+1 = 2.
Table 4 shows the approximation of the spectrum of the canonical differential operator of the Stokes-Dirac
structure (exact eigenvalues ± 2k−1

2 πi, k = 1, 2, 3, . . .) under homogeneous Dirichlet boundary conditions.
As the eigenvalues remain purely imaginary, only the magnitude of the imaginary part is indicated. From
α = 0 to α = 0.5, the error for low frequencies decreases, while it increases for high frequencies. All
frequencies are under-estimated with respect to the exact values. For α = 0.5, every two eigenvalue
pairs coincide at values that approximate the original spectrum best. This centered parameter choice is
certainly more appropriate for a diffusive system. We will therefore, in a next step, analyze the spectral
approximation of the Dirac structure for the parabolic case of constitutive equations and boundary
conditions from the heat equation.

34Note that the plots in Fig. 6 represent the discrete, projected efforts ẽp
i in the nodes of the mesh. An appropriate

localization of the values of p̃ would be the weighted barycenters of the areas according to Fig. 3. This would advance the
plotted wavefront in the propagation direction.
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Figure 6: Propagation of a wave due to point-wise boundary excitation under different parametrizations
of the method. Snapshots at tsim = 16.

6 Conclusions

We introduced the weak form of the Stokes-Dirac structure with boundary inputs of different causality.
This Stokes-Dirac structure is the underlying geometric structure to represent power continuity in a
port-Hamiltonian distributed-parameter system. At the example of a system of two conservation laws
with canonical interdomain coupling, we described the mixed Galerkin discretization of the Stokes-Dirac
structure in a general way. To obtain finite-dimensional approximate models in port-Hamiltonian form
with the prescribed boundary inputs – as basis for the interconnection of multi-physics models, control
design and simulation – we proposed power-preserving projections. These maps on the space of discrete
bond variables (the mixed Galerkin degrees of freedom associated with flows and efforts) allow to define
non-degenerate duality pairings on a new bond spaces, leading to finite-dimensional approximate Dirac
structures. The latter admit several representations, one of them the input-output-representation. Port-
Hamiltonian state space models are obtained, if in addition, the energy and the constitutive equations are
approximated consistently. At the example of Whitney finite elements we demonstrated the discretization
procedure and gave interpretations of the resulting discretization schemes.

The proposed method is, to the best of our knowledge, the first method which allows for a structure-
preserving discretization of port-Hamiltonian distributed-parameter systems in more than one spatial
dimension with a systematic treatment of different boundary inputs and the possibility to tune the
discretized models between centered schemes and upwinding. The proposed family of approximation
Dirac structures avoids a direct feedthrough in the state space model and the over-estimation of higher
frequencies in the approximate spectrum, which is the case for the method presented in [29], where the
efforts instead of the flow degrees of freedom are projected. The weak form of the Stokes-Dirac structure is
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Table 4: Values of the imaginary parts for the discretized wave equation with different projection param-
eters, compared to the exact values. Grid size N = 20.

k Exact α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
1 1.5708 1.5321 1.5392 1.5464 1.5539 1.5614 1.5692
2 4.7124 4.5873 4.5985 4.6122 4.6284 4.6473 1.5692
3 7.8540 7.6156 7.6013 7.5974 7.6045 7.6231 4.6689
4 10.9956 10.5993 10.5115 10.4509 10.4193 8.4371 4.6689
5 14.1372 13.5207 13.2958 13.1256 13.0148 9.6285 7.6537

10 29.8451 26.6130 24.4593 22.6179 17.4897 15.0650 12.9890
20 61.2611 39.8826 31.9591 24.9858 21.8185 20.4059 19.9383

the key feature that allows to include additional effects such as dissipation or diffusion or, more generally,
to tackle the discretization of port-Hamiltonian systems with general and higher order interconnection
operators and distributed inputs.
Current and future work concerns the application of the method to the port-Hamiltonian representation
of the heat equation, which shares the same Stokes-Dirac structure, the analysis of system-theoretic
properties of the discretized models in view of control design and the interface to existing finite-element
and simulation software. Moreover, we intend to include the discretization of the nonlinear constitutive
relations for the 2D shallow water equations in our open models and clarify the links with recent work
on geometric mixed finite elements like [19], [20], where in- and outputs are not explicitly taken into
account, and upwinding in differential forms as presented in [18].
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