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Integral Shape Averaging applied to delayed windows of the same signal

Integral Shape Averaging (ISA) is a technique for averaging a series of positive signals using their normalized integrals. In case of equal shape signals, ISA gives an estimation of this shape with an increased SNR due to integration. A new application of ISA is presented here: from only one recording of a positive signal embedded in noise, applying ISA to a series of delayed windows containing the signal can give a good estimation of this signal. Simulation results are given on a double and then a triple Gaussian embedded in white zero mean noise, with different SNRs.

INTRODUCTION

The estimation of a signal embedded in another one, considered as noise, with a low signal to noise ratio (SNR), and present in a series of realizations is commonly made by the classical signal averaging method (or synchronous averaging). In the biomedical domain the main applications are in High Resolution Electrocardiography (HR ECG) for the detection and estimation of late potentials (LP) embedded in Electromyography (EMG) signal, and for Evoked Potentials (EP) embedded in EEG. In the first application the alignment for averaging is synchronized on the QRS complex, commonly the R wave. In the second one, the trials are aligned using the stimulus time. This averaging technique is optimal when all the averaged signals are the same shape with a perfect alignment, i.e. no jitter, and also no time scaling factor. In fact, due to physiology, random time shift and time scale fluctuations are often present which modify the common shape as detailed in [START_REF] Rix | Averaging Signals with Random Time Shift and Time Scale Fluctuations[END_REF]. If shape equality of two signals is the invariance through increasing affine transformations, the averaged signal, using Integral Shape Averaging (ISA), of a set of equal shape positive signals is the same shape with the mean position and the mean scale factor [START_REF] Rix | Averaging Signals with Random Time Shift and Time Scale Fluctuations[END_REF], [START_REF] Boudaoud | Integral Shape Averaging and Structural Average Estimation: A Comparative Study[END_REF].

In case of poor SNR an option is to increase the number or averaged signals. This is generally possible when the stimulus is repetitive, e.g.in auditory EPs. But if we are interested in cognitive EPs, like N400 wave emitted by the brain when a semantic incongruity is detected, the stimulus must be changed at each trial. For further application to this situation the following method is proposed which artificially multiplies the number of averaged signals.

The theory is explained in the next section, and then a simulation study with a double and then a triple Gaussian embedded in white noise is presented with different SNRs. The aim of the paper is to present a new method improving the SNR on a single realization of a noisy signal, with the only information that the embedded signal is positive. Applications to practical situations like cognitive EP estimation are foreseen in a further work. THEORY 1. Hypotheses Let s(t) and v(t) be two positive signals, with finite supports, they will be said the same shape if and only if they are linked by equation ( 1) or its equivalent form [START_REF] Boudaoud | Integral Shape Averaging and Structural Average Estimation: A Comparative Study[END_REF].
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Practically the offset C is assumed to be zero after subtracting a linear base line.

The data are a series of N positive equal shape signals embedded in zero mean noise, with random fluctuations of their time occurrences, their heights and their widths, as defined in (3):
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In this equation k i , d i and a i are realizations of independent random variables K, D and A, and n i (t) is a sequence of the random zero mean noise n(t). In fact, for computation we have to deal with the discrete form of (3) where the variable t is sampled in M equidistant values t j , with step h, j=1 to M, leading to system (4):
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Every signal s i (t) is assumed to have a finite support, each support being boarded by two intervals with only noise, and included in a larger time interval [0,T]. Since we cannot know the exact support of the signal in every single trial, we take a larger interval [T 1 , T 2 ], practically the union of all the supports, in estimating the support of the classical average. As shown in Fig. 1, the signal support is assumed to be included in interval [T 1 , T 2 ], which is included in the larger interval [0, T], where T1=1.5, T2=8.5 (indicated by the arrows on the time axis) and T= 10. With our previous notations, we have:
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Definition of the delayed windows

For a given trial, ISA signal is computed over the (n 1 +1) windows [0, T 2 ], [h, T 2 +h]… [T 1 , T 2 +T 1 ] containing the same noisy signal, with different sequences of noise before and after the signal. This ISA signal obtained on delayed versions of the same signal will be called ISAD. On Fig. 1 the window sequence goes from [0, 8.5] to [1.5, 10]. Since we have only one trial, the index of s will be omitted. Without noise, all these windows move from left to right around the same signal s(t). For ISA it's the same as moving the signal from right to left on a time distance T 1 . So the ISAD signal is this signal centered at the mean position i.e. at T 1 /2. To get the good estimation we need to translate the ISA signal from left to right according to T 1 /2. In other words, if w(t) is the ISAD signal, without noise, we have:
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, and the estimate of s(t) is:

) ( )) 2 / ( ( ) ( 1 t s T t w t s    
The last equality is true only without noise, but this correction of the position does not depend on the presence of noise. It is only due to the estimation method. In presence of noise, the data are the delayed versions of:
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(5) Fig. 1 Signal averaging with and without jitter or time scale fluctuations In fact since ISA must be applied to positive signals, it is applied to the positive part z(t) of y(t) defined in (6) :
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In Fig. 2, an example of the first and the final window is shown, for signal z(t) defined in (6). In these precedent examples we can see that ISAD gives on one trial and 200 windows a better estimation than ISA on 200 trials. In fact we have about 20 realizations to make 20 estimations with ISAD. This number is the maximum allowed if we want to make a classical average with different stimuli. In our case we observed variability in shape estimation by ISAD: but we can choose the" best one" or one of the best ones, computing the ISA signal of these 20 ISAD signals, the shape difference (using DFM) of each ISAD to this class centre, and also their mutual shape differences for outliers elimination. In this example, we obtain from only one trial, without any information on the embedded signal except its positivity, practically the best estimation we could expect by the classical averaging of 200 trials in case of perfect alignment and no scale fluctuation!

  Fig. 2 ISAD: first and final windows applied to the positive part of the signal

  synchronous averaging b: ISAD 1 trial, 200 windows k: Affine transformation of b to eliminate the offset.

SIMULATION STUDY WITH WHITE NOISE

The simulation study was made on two signal models: y 2 and y 3 representing the sum of two Gaussians (7) and three Gaussians (8) respectively.

Then white noise sequences were added to these models for given signal to noise ratios (SNR). The averaging of such noisy signals gives an idea of SNR improvement in the ideal case, i.e. without jitter or scale factor fluctuations (Fig. 1, blue curve). Since we are dealing with such possible fluctuations of the position and the width of averaged signals, a random delay and a random scale factor were introduced. Their values were chosen in order to obtain an averaged signal with only one maximum, for both the sums of two and three Gaussians. An example of the filtering effect of averaging in this case can be seen on Fig. 1.