
HAL Id: hal-01831884
https://hal.science/hal-01831884v1

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Tomography back-projection parallelization on Intel
FPGAs using OpenCL

Maxime Martelli, Nicolas Gac, Alain Mérigot, Cyrille Enderli

To cite this version:
Maxime Martelli, Nicolas Gac, Alain Mérigot, Cyrille Enderli. 3D Tomography back-projection paral-
lelization on Intel FPGAs using OpenCL. Journal of Signal Processing Systems, 2019, 91 (7), pp.1939-
8115. �10.1007/s11265-018-1403-6�. �hal-01831884�

https://hal.science/hal-01831884v1
https://hal.archives-ouvertes.fr

Journal of Signal Processing Systems manuscript No.
(will be inserted by the editor)

3D Tomography back-projection parallelization on
Intel FPGAs using OpenCL

Maxime MARTELLI · Nicolas GAC ·
Alain MÉRIGOT · Cyrille ENDERLI

Received: date / Accepted: date

Abstract This article deals with the evaluation of FPGAs resurgence for
hardware acceleration applied to computed tomography on the back-projection
operator used in iterative reconstruction algorithms. We focus our attention
on the tools developed by FPGAs manufacturers, in particular the Intel FPGA
SDK for OpenCL, that promises a new level of hardware abstraction from the
developers perspective, allowing a software-like programming of FPGAs. Our
first contribution is to propose an accurate memory benchmark, and we follow
with an evaluation of different custom OpenCL implementations of the back-
projection algorithm. With some clues on memory fetching and coalescing, we
then further tune designs to improve performance. Finally, a comparison is
made with GPU implementations, and a preliminary conclusion is drawn on
FPGAs future for computed tomography.

Keywords High-Level Synthesis · FPGA · OpenCL · Tomography Recon-
struction · GPU

1 Introduction

Moore’s law is the observation that the number of transistors in a dense inte-
grated circuit doubles approximately every two years. More like a roadmap, the
current tendency shows its pace seizing up, a fact officially acknowledged by
the industry. It was expected that physical limitations would eventually block

Maxime MARTELLI · Nicolas GAC
Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRS, Université Paris Sud,
Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif sur Yvette, FRANCE

Maxime MARTELLI · Alain MÉRIGOT
Laboratoire des Systèmes et Applications des Technologies de l’Information et de l’Énergie,
ENS Paris Saclay, CNRS, Université Paris Sud, Université Paris-Saclay, FRANCE

Maxime MARTELLI · Cyrille ENDERLI
Thales Systèmes Aéroportés S.A., Elancourt, FRANCE

2 Maxime MARTELLI et al.

the circuit miniaturization, and the Semiconductor Industry Association an-
nounced the effective end of Moore’s law for 2021 [6]. Circuits miniaturization
(up to 10 nanometres thin today) should soon tip over microprocessors from
the realm of traditional physics to quantum physics, which governs the proba-
bility behaviour of atoms. This technological shift is due to happen at the start
of next decade. Until then, traditional chip thickness is expected to reach a
ceiling of around 7 nm, stabilizing a high-cadenced progression over the years.

The processor industry, which already dealt in the past with other issues
regarding Moore’s law, like the increase of heat generation correlated with
miniaturization, is now facing what looks like a deadlock. However, by consid-
ering performance instead of circuit density, the law can be transcended, and
a logical evolution is to rethink commonly used architectures. One possible
solution is for future computer chips to rely on a granular hardware special-
ization with reconfigurable fabric at their core, allowing processors to offload
specific processing to a suited architecture.

With this in mind, Field Programmable Gate Array (FPGA) is a key tech-
nology for the post Moore era. Since the creation of the first mask-programmed
gate array with Motorola’s XC157 in 1969, FPGAs are widely used for specif-
ic needs like embedded [13] and critical [28] systems. For the last ten years,
data centers have dramatically increased, and with this expansion comes a
new research problem regarding power consumption. This market is due to be
the largest one for FPGA technology for decades thanks to their technological
potential, and the two main FPGA manufacturers (Xilinx and Altera1) devel-
oped tools (called SDAccel and Intel FPGA SDK for OpenCL, respectively)
for the use of FPGA as mainstream software co-processing architectures, in
a similar approach as Graphics Processing Units (GPUs) manufacturers did
with OpenCL and CUDA toolkits.

Their main advantage is, for programmers, usage of well-known software
languages. OpenCL is commonly used for GPU programming, and Intel FPGA
SDK for OpenCL claims to allow program optimization by having little to no
FPGA experience. This assertion is a potential game changer in the computing
field and the mainstream adoption of FPGAs is now at stake. Over the last few
years, many research work focused on FPGA implementations with OpenCL
in various fields like lossless data compression [9], stencil codes [17], but also
on proposing some clues about OpenCL code tuning for FPGAs [27] [23]. In
this context, our approach is focused on characterizing possible bottlenecks
for FPGAs implementations, and memory optimization.

As a use case, we consider the back-projection algorithm used in iterative
reconstruction [10]. Computed Tomography (CT) is used in multiple domains
such as medical imaging [12], quality control [25], or even food characterization
[26], and its primary mission is to reconstruct a 3D cartography of an object’s
parameter.

The reconstruction of a N3 voxels (stands for VOlume piXEL) volume from
N projections on the N2 detectors plane of the X-ray tomograph, is a time-

1 Now Intel FPGA, since Altera’s acquisition in December 28th, 2015

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 3

consuming task. For the last decades, the data size is continuously growing
with currently N=512 for medical imaging) and N=2048 for Non-Destructive
Testing. To get a reasonable computing time, hardware acceleration has been
sought on several architectures : CPU (openMP, MPI), FPGA [16] [20] [12],
multi-FPGA like the imageProX by Siemens [15] or specific processors like D-
SP, IBM Cell [18] or GPU [29] (before CUDA). However, from the last decade,
the many core architectures belonging to the General Purpose GPU (GPGPU)
family have proved to be the most efficient hardware accelerators specially the
ones designed by Nvidia [22] with CUDA facilities. After the rise of GPG-
PU, architectures designed on FPGA with a much longer conception flow,
handwritten VHDL and fixed-point arithmetic has been put aside by the to-
mography reconstruction community with, however, some attempts [19] [30]
to put back in the saddle FPGA architectures. Current FPGA architectures
with a growing number of floating point computing units (DSP) and improved
HLS tools are worth to be reviewed as an accelerator for 3D tomography re-
construction.

Even though GPUs can solve problems with multiple dimensions and large-
scale data thanks to their Single Instruction on Multiple Data (SIMD) archi-
tecture, there are some specific algorithmic limitations in tomography like
memory bottlenecks that have been unlocked with FPGAs [20] [12]. There-
fore, there is an interest to estimate if new FPGA improvements make them
competitive relative to GPUs for Computed Tomography.

In this paper our contributions consist firstly in evaluating the impact of
new FPGAs tools in tomography, and secondly, in assessing OpenCL code
optimization from a software engineer’s perspective on Intel FPGAs.

The remainder of this paper is organized as follows: in Section 2, we present
the back-projection algorithm to be implemented via OpenCL on FPGAs.
Then, we introduce in Section 3 relevant concepts of the Intel FPGA SD-
K for OpenCL. Section 4 describes our memory benchmark, while Section 5
deals with the different kernel optimizations. Finally, results are provided and
discussed in Section 6.

2 3D Tomography algorithm

Computed Tomography relies on the analysis of a known radiation stream
through the considered object to recover said physical characteristic by re-
versing the matter transport equation [24]. An X-ray source (Fig.1) revolves
around the ϕ axis at z = constant. Radiation emitted from it is attenuat-
ed depending on the object local density, and a two-dimensional sensor array
records intensity values, for each elementary ϕ angle. Those values are stored
in a 3D matrix along (u,v,ϕ) in what is called a sinogram sCT (u, v, ϕ). From
these sinograms, 3D volume is reconstructed using analytic algorithms like
filtered back-projection [11] or iterative algorithms [14]. Both methods use
the back-projection operator which represents respectively 90% and 50% of

4 Maxime MARTELLI et al.

the computing time [12]. For iterative algorithms, a projector operator is also
needed but its acceleration won’t be investigated in this paper.

Fig. 1 3D Computed Tomography Projection.

The back-projection which equations are described in detail in [12] con-
sists, for a given voxel c = (x, y, z), in summing up the contribution of every
elementary detector (u, v) in line with the source and the considered voxel for
every ϕ value. We then obtain the density d(c) given as follows :

d(c) =

∫ 2π

0

sCT (u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ (1)

where (u(ϕ0, c), v(ϕ0, c)) are the values on the sinogram of the beam pass-
ing through c for ϕ = ϕ0, and w(ϕ0, c) is the distance weight[21].

The sensors distribution being discrete, the integral transforms in a sum for
all ϕ values. This algorithm is particularly suited for SIMD cores, because this
sum has to be computed for every voxel of the object, and is best executed on
massively parallel architectures. However, a way to accelerate our algorithm
is to do coalesced memory access patterns, also referred as memory coalesc-
ing. Many times, memory objects are retrieved in large blocks, and cached in
smaller but faster caches. To group contiguous memory accesses is an efficient
way to improve the efficiency of our algorithm. Here, for a given voxel, the
gathering of sinogram values for each ϕ iteration follows an irregular pattern,
and a way to improve the algorithm is by grouping density computation per
localx ∗ localy voxel rectangle to take advantage of memory coalescing. This
particular point is discussed in Section 5.2.

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 5

3 OpenCL with the Intel FPGA SDK

3.1 Architecture

OpenCL is an abstract programming model and the corresponding basic ar-
chitecture is showcased in Fig.2. Adapted to a co-processing implementation
on heterogeneous architectures, the framework is designed to easily abstract
most hardware considerations. As so, the host program is written in standard
C, and communicates with Compute Devices via library routines that handle
communication between the host processor and devices function, also called
kernels.

Fig. 2 OpenCL Memory architecture.

Each kernel instruction is transformed by the Altera Offline Compiler in a
sequence of logic blocks, creating elementary pipelines that are then aggregated
to form the kernel pipeline, which we refer to as Compute Unit (CU). There are
two OpenCL kernel categories : NDRange (ND) and single work-item (SWI),
detailed in Section 5. Generally, Intel FPGA SDK for OpenCL Guides [7] [8]
recommends implementing a single work-item kernel in case of loop or memory
dependencies, and a NDrange kernel otherwise.

Given the 3-dimensional back-projection problem, with a dimension of
(dimX , dimY , dimZ) voxels, we can use the OpenCL work-group and work-
item partitioning to handle its computation.

The 3D object is divided in elementary voxels in the three dimensions, and
those voxels are gathered as shown in Fig. 3 in work-groups and work-items.
In this case, a work-item, that is the elementary instantiation of a kernel, will
do the computation of the volume density of a given (x0, y0, z0) voxel, that is
a sum of dimϕ sinogram values as explained in Section 2. Once the partition

6 Maxime MARTELLI et al.

Fig. 3 OpenCL two dimension mapping. Source : engcore.com

is complete, the Altera Offline Compiler will implement as many pipelines as
requested and is limited to the hardware resources available.

In Fig. 4, imagine an algorithm that needs to add five to each value of
an array of 128 elements. We choose for this mono dimensional problem to
split it in 8 work-groups, each containing 16 work-items. We therefore have
128 work-items in total, each in charge of handling the addition of one value
of the array. In this example, we asked the tool to generate 3 processing units,
allowing three work groups to be processed in parallel. Depending on the
number of processing units, the Altera Offline Compiler will implement an
enqueue mechanism to compute each work-group in an iterative pattern.

Fig. 4 OpenCL work-group enqueue mechanism.

3.2 Memory structures

As shown in Fig. 2, the OpenCL model has four memory types : global, con-
stant, local, and private.

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 7

3.2.1 Global memory

Despite having the highest access latency amongst memory structures, global
memory storage within the Intel FPGA SDK for OpenCL can still be efficient,
thanks to automatic embedded on-chip caches implementation in Load-Store
Units (LSUs) [7]. In case of repetitive global memory access, data is stored in
embedded caches (direct-mapped 64 bytes cache with a 12 cycles mean latency)
guaranteeing a high memory bandwith and a shorter latency compared to
global memory, provided that memory access is not too large. A coalescent
memory access through LSU embedded caches are the best way to optimize
global memory bandwith.

3.2.2 Constant memory

Constant memory is implemented as on-chip global read-only memory. Access
Port allocation size and width can be manually tuned to a maximum defined by
the hardware manufacturer. However, latency improves substantially with the
number of ports accessing the constant memory, thus simultaneous constant
memory access per work-item must be narrowed to the strict minimum.

3.2.3 Local, and private memory

The main difference between local and private memory is their accessibility
within a work-group. A private variable is stored in registers, and accessible
only to one work-item, whereas a local one is visible to all work-items of
a work-group. Altera Offline Compiler automatically implements local and
private memories depending on the underlying access patterns, but users can
also allocate and use those two memory types.

4 Memory characterization - custom benchmark

Manual memory handling is essential for effectively improving software imple-
mentation efficiency. In order to efficiently characterize each memory structure,
we propose a custom benchmark to calculate their memory latency. The FP-
GA board to be tested is a DE1-SoC [2] coming with 1 GB of DDR3 memory
and an Altera Cyclone V chip that integrates both a dual core ARM Cortex
A9 processor and the FPGA fabric, with a maximum FPGA frequency of 305
MHz. All versions were compiled and synthesized using the Intel FPGA SDK
for OpenCL 16.0. Measured execution time (Table 1 and Table 3) are obtained
with the Intel FPGA Profiler tool.

8 Maxime MARTELLI et al.

4.1 Accurate measurements

4.1.1 Preventing the automatic embedded cache mechanism

As explained in Section 3.2.1, whenever we have a coalescent memory access,
the compiler automatically implements LSU embedded caches. To prevent
this, we can mark the data as ”volatile” and the tool then ignores the mem-
ory optimization for the corresponding data. Even though it is the best way
to optimize global and constant memory bandwidth, we want, to efficiently
measure the different memory latency, to prevent the trigger of those caches.

4.1.2 Preventing automatic loop unrolling

Another FPGA-bound automatic optimization is loop unrolling. When it is
possible, the compiler tries to unroll iterations in the inner loops when there
is no data dependency and replicate the corresponding hardware to improve
parallelism. For our benchmark, we do not want loops to be unrolled, and we
implemented the randomization explained below in order to prevent it (Listing
1).

/* Host randomization */

/* ... */

1 for int i = 0 to size - 1 do
2 host in[i] = (int) (rand()) ((float)RAND MAX * size);
3 end

/* Copy host in to srcArray on device global memory */

/* Launching kernel */

/* ... */

/* Kernel random pattern */

4 int test value = 0;
5 for int i = 0 to size - 1 do
6 test value = srcArray[test value];
7 end
8 outValue[0] = test value;

Listing 1: Host array randomization and kernel random access pattern (For
Global and Constant memory structure)

From the host side, we construct (lines 1 to 3) an array of size elements of
random values between 0 and size - 1 (host in). The kernel function then reads
the first element of the array, and its value corresponds to the next element
to read, and so on (lines 5 to 7). Eventually, the last read value is stored and
recovered afterwards on the host. If we do not do this extra step, the tool will
not launch the kernel because it detects that there is no output, and declares
the function unnecessary.

Because each iteration in the kernel needs the previous iteration to know
where to look in the array, the report explicitly states that data dependen-

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 9

cy was preventing loop unrolling, as expected. Therefore, we can accurately
measure the real access time without automatic optimizations.

/* Host randomization */

/* ... */

1 for int i = 0 to
√
size - 1 do

2 host local in[i] = (int) (rand()) ((float)RAND MAX *
√
size);

3 end
/* Copy host local in to globalArray on device global memory */

/* Launching kernel */

/* ... */

/* Kernel random pattern */

4 async work group copy(localArray, globalArray,
√
size);

5 int test value = 0;

6 for int i = 0 to
√
size - 1 do

7 for int i = 0 to
√
size - 1 do

8 test value = localArray[test value];
9 end

10 end
11 outValue[0] = test value;

Listing 2: Host array randomization and kernel random access pattern (For
Local and Private memory structure)

4.2 Getting past local memory size limitation

Each FPGA chip has a maximum allocable local memory size. On the DE1-
SoC, we could not allocate large integer arrays (> 10242 elements) in local
memory. Thus, we adapted the randomization explained above and imple-
mented a specific algorithm for local memory benchmarking (Listing 2).

The idea previously mentioned in Section 4.1.2 is, to accurately measure
the elementary access time, to average it over a large number of accesses.
To compare all the memories access time, we need size memory accesses per
different memory type. For local memory, instead of allocating an array of
size elements and doing size reads (Listing 1), we allocate an array of

√
size

elements, and with two nested
√
size loops (Listing 2, lines 6 to 10), it also

results in size read. Lines 1 to 3 of the same Listing show the same mechanism
as explained in Section 4.1.2 to prevent automatic loop unrolling.

Contrary to the global and constant memory which can be allocated di-
rectly from host before the execution of the kernel on the FPGA, the copy
to local memory is carried out in the kernel. This new step translates in an
additional variable for latency measurements, and is discussed and explained
in the following section.

10 Maxime MARTELLI et al.

Table 1 Measured kernels execution time for x2 memory accesses on an Altera Cyclone V.

Number of
accesses

Global Kernel
Time (ms)

Constant Ker-
nel Time (ms)

Local Kernel
Time (ms)

Private Kernel
Time (ms)

1024 ∗ 1024 1252.03 614.03 418.65 287.81
2048 ∗ 2048 5007.85 1546.67 712.67 302.03
3072 ∗ 3072 11267.56 3088.14 1193.67 343.13
4096 ∗ 4096 20031.13 5253.55 1870.3 380.34

4.3 Proposed model for accurate latency measurements

All our kernels do size reads to their corresponding memory structure and one
global write. Additionally, they have a delay due to the launch of the kernel by
the tool. For the local kernel, we have in addition a copy of

√
(size) elements

from global to local memory. Our model (2) represents the total time of our
different kernels in comparison with their implementation. Here, x represents
the size of the array.

– Rα
2 : time of one read access (integer) to the α memory structure

– Wα : time including one write (integer) and the tool delay for launching
kernels

– G L : time to copy an integer from global to local device memory

G(x) = RG ∗ x+WG

C(x) = RC ∗ x+WC

L(x) = RL ∗ x+G L ∗
√
x+WL

P (x) = RP ∗ x+WP

(2)

Our objective is to calculate the Rα coefficients, corresponding to the access
time for one elementary read to the α structure, in order to compute the mean
latency of the different memory structures.

4.4 Results and discussion

The goal of this benchmark is to efficiently measure the mean latency of the
different memory structures. In order to do so, we measure the total execution
time of the different kernels. Afterwards, we do a linear resolution of our
system to achieve the smallest error variance. For the Global, Constant, and
Private Kernel, the solution is a linear function obtained with the Least Square
Method, whereas the Local kernel solution is a polynomial in

√
(x) of the

second degree, obtained through a polynomial interpolation in the Lagrange
form. Measurements are shown in Table 1 for different array sizes, and the

2 α = G,C,L, or P for Global, Constant, Local, and Private

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 11

solution of our systems is shown in Eq.(3) and superimposed to the measured
values in Fig. 5.

G(x) = 1.2 ∗ 10−3 ∗ x+ 7.75 ∗ 10−2

C(x) = 3.0 ∗ 10−4 ∗ x+ 301.6

L(x) = 8.9 ∗ 10−5 ∗ x+ 1.323 ∗ 10−2 ∗
√
x+ 318.1

P (x) = 6.4 ∗ 10−6 ∗ x+ 280.5

(3)

Measured and modeled execution time for different memory structures

0 0.5 1 1.5 2

Nb of accesses 107

0

1

2

3

E
xe

cu
tio

n
tim

e
(m

s)

104 Global Memory

y = measured
y = modelisation

0 0.5 1 1.5 2

Nb of accesses 107

0

2000

4000

6000

E
xe

cu
tio

n
tim

e
(m

s)
Constant Memory

0 0.5 1 1.5 2

Nb of accesses 107

0

500

1000

1500

2000

E
xe

cu
tio

n
tim

e
(m

s)

Local Memory

0 0.5 1 1.5 2

Nb of accesses 107

250

300

350

400

E
xe

cu
tio

n
tim

e
(m

s)

Private Memory

Fig. 5 Measured and modeled execution time for the different memory structures

This figure shows that our approach for the model is accurate, and we can
therefore calculate the mean memory latency for the memory structures using
Eq.(4). Final values are shown in Table 2.

Mean Latency(cycles) = Mean Read T ime(s)∗Kernel Frequency(Hz) (4)

Our benchmark approach proved to be adequate, and the FPGA memory
model for HLS is quite similar to GPUs, with the same principal characteristic
: a reduced available size goes with a lesser latency. With this in mind, we could
implement our different mechanism with efficient memory optimization.

12 Maxime MARTELLI et al.

Table 2 Measured memory latency on an Altera Cyclone V.

Memory structure Kernel Frequency (MHz) Mean latency (cycles)

Global 137.36 164
Constant 150.4 45

Local 137.11 12
Private 161.31 1

5 OpenCL 3D Back-projection implementations

The main FPGA advantage is its ability to be programmed for task or da-
ta parallelism. The Intel FPGA SDK for OpenCL allows both programming
models, whose implementations are showcased further on.

5.1 Task parallelism - Single Work-Item

Single work-item is referred to as Task or Pipeline Parallelism on FPGAs [4].
Similar to the sequential model of a mono-threaded CPU program, there is
no data repartition across work-items. In fact, Single work-item architecture
is as in Fig.2, but with only one work-group and one work-item per work
group. The Altera Offline Compiler optimization for this programming model
is based on two core concepts : memory handling, and Shif-Register Pattern
(SRP). This last concept is illustrated in Fig. 6. If an algorithm needs to
access a memory object in a streaming pattern (the first work-item uses the
first value, the second work-item uses the second, and so on), we can load this
shared memory object in a ring counter and reduce memory latency.

Fig. 6 Shift-Register Pattern - Ring counter. Source : electronics-tutorials.ws

Because the kernel is mono-threaded, the high-throughput is achieved by
ensuring that at any moment, multiple instructions of the same kernel are
processed concurrently at every pipeline step.

A key difficulty for single work-item implementations are loop handling,
because the Altera Offline Compiler default behaviour is to have each loop it-
eration executed sequentially, thus drastically reducing the kernel throughput.

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 13

The baseline model for this article is the basic translation of Eq.(1) de-
scribed in Section 2 as a single kernel on FPGAs, in a sequential CPU-like
programming, and without any optimization.

From this implementation, a first optimization is to improve streaming
throughput. By default, when a kernel needs to access an array, it allocates
memory resources for efficient reads and writes. When an array access pat-
tern matches with a streaming pattern, implementation can be modified to
integrate a Shift-Register Pattern.

Input: α[dimϕ], β[dimϕ], sinogram[dimU*dimV *dimϕ]
Output: volume, 3D array of reconstructed volume

1 local int2 SRP[dimϕ];
2 for ϕ = 0 to dimϕ - 1 do
3 SRP[ϕ] = (α[ϕ], β[ϕ]);
4 end
5 for zn = 0 to dimZ - 1 do
6 for yn = 0 to dimY - 1 do
7 for xn = 0 to dimX - 1 do
8 voxelsum = 0;
9 #pragma unroll;

10 for ϕ = 0 to dimϕ - 1 do
11 SRP[dimϕ - 1] = SRP[0];
12 for i = 0 to dimϕ - 2 do
13 SRP[i] = SRP[i+1];
14 end

/* Calculate (Un, Vn) from SRP[ϕ] */

15 voxelsum += sinogram[Un, Vn, ϕ];

16 end
17 volume[xn,yn,zn] = voxelsum;

18 end

19 end

20 end

Listing 3: Single Work-Item with Shift Register Pattern optimization

Listing 3 describes the back-projection algorithm explained in Section 2.
The first step is loading in a local array the precalculated projection coeffi-
cient α and β (lines 2 to 4). For every voxel, they are sequentially accessed.
To improve the efficiency of our implementation, we implement a Shift Reg-
ister Pattern mechanism from lines 10 to 12. For every successive (x, y, z, ϕ)
iteration, the implemented shift-register pattern shifts the data contained in
the shift-register pattern array in a loop pattern. A streaming pipeline is gen-
erated through all the loops and shifted for each iteration, instead of a costly
memory mechanism. This optimization allows the compiler to extract the par-
allelism between each loop iteration, effectively reducing the execution time as
shown in the Single Work-Item with Shift Register Pattern SWI+SRP kernel
version in Section 6.2.2. From a software developer perspective, those three
lines seem counter-intuitive. In reality, the Altera Offline Compiler recognize

14 Maxime MARTELLI et al.

the shit-register pattern and implements it as a cascade of flip flops, sharing
the same clock.

5.2 Data parallelism - NDRangeKernel

Data parallel implementations on OpenCL strongly depends on the underlying
hardware architecture. GPUs have SIMD architectures, whereas FPGAs can
be reprogrammed as such, but works best with pipelined architectures. As
explained in Section 3.1, the Altera Offline Compiler instantiates an iterative
loop in order to sequentially execute each work-group and, if the design allows
it, multiple compute units can be implemented, allowing some work-groups to
be processed in parallel.

Therefore, the main difference between data and task parallelism is the
handling of shared local memory within a work-group. The shift-register pat-
tern optimization (Section 5.1) of the projection coefficient α and β can no
longer be implemented because the work-group repartition denies the pipeline
streaming approach. The FPGA architecture inherent adequacy to pipeline
parallelism does not necessarily mean all data parallel implementations are
not efficient. One of the best advantages of data parallelism is allowing work-
groups to share local memory objects, reducing memory stalls if memory han-
dling is efficient. The main challenge of the back-projection algorithm being to
access the sinogram array, we designed a custom pre-fetching algorithm suited
for a SIMD architecture, and the implementation is discussed in the following
section.

Fig. 7 Sinogram memory fetching pattern optimization.

As explained in Section 2, (U, V, ϕ) is the projection of a voxel over the
detector matrix. For a given ϕ, a projection of a (localx, localy, 1) voxel rect-
angle is alike the geometrical projection of Fig. 7, the four ends of the volume
rectangle corresponding to the four black points. To compute the volume den-
sity of the initial voxel rectangle, the kernel needs to access all the cells of

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 15

the sinogram that are directly around the geometrical projection. They are
the needed values of Fig. 7, and its access pattern cannot be predicted by the
Altera Offline Compiler. Defining (Wblue, Hblue) as the Cartesian width and
height of the needed values region, the geometry of the 3D back-projection
problem guarantees the following :

Wblue <
√
local2x + local2y, Hblue <= 4 (5)

In our implementation, localx = localy = 16. By choosing a local ar-
ray dimension of Xoff ∗ Yoff = 24*4, we are assured to fetch all necessary
sinogram cells needed for the work-group computation. Therefore, the imple-
mented fetching algorithm (Listing 4) first calculates the top-left coordinates
(Or bottom-right, depending on the array boundaries) of a matching rectangle
(intersection of the dotted lines), and then evenly distributes the fetching of
the values inside the constant size ”Fetched values” rectangle. To guarantee a
well-ordered execution, work-item synchronization is mandatory, and achieved
at lines 4, 5, and 6.

Additionally, α and β arrays are stored in constant memory, in order to
reduce memory latency through all work-groups.

Input: constant α[dimϕ], constant β[dimϕ], sinogram[dimU*dimV *dimϕ]
Output: volume, 3D array of reconstructed volume

1 local int local sinogram[Xoff ∗ Yoff];
/* Recovery of work-item characteristics */

2 voxelsum = 0;
3 for ϕ = 0 to dimϕ - 1 do

/* Calculate Un, Vn coordinates */

/* Dispatch min, max coordinates computation between local work-items

*/

4 barrier(CLK LOCAL MEM FENCE);
/* Global sinogram fetching by local work-items */

5 barrier(CLK LOCAL MEM FENCE);
6 voxelsum += local sinogram[local Un,local Vn];

7 end
8 volume[xn,yn,zn] = voxelsum;

Listing 4: NDRange kernel fetching optimization

The drawback of this algorithm is that there are more memory fetching
than needed, that is, in Fig. 7, all ”Needed values” are always included in
the ”Fetched values” rectangle area, but its major advantage is that each line
fetching is coalesced and shared between work-items of a work-group, thus
improving burst read access and potentially reducing memory stalls.

16 Maxime MARTELLI et al.

6 Results and discussion

6.1 Experiment setup

In addition to the DE1-SoC board (see Section 4), the GPUs used for com-
parison are the NVIDIA Titan X [5] and the Jetson TX2 [3], both having the
Pascal architecture, and the CUDA toolkit version is 8.0.

The considered volume is a 2563 voxel cube, with 256 angles variations.
Each kernel execution is monitored through the Altera OpenCL Profiler for
the FPGA and NSIGHT for NVIDIA cards. For each implementation, these
tools provide amongst other things the operating frequency, the execution time
and memory stalls.

In the following subsection, we suggest a benchmark for this specific back-
projection algorithm, to further discuss the execution results shown in Table 3.
Kernel implementations match the different optimizations previously discussed
in Section 5.

6.2 OpenCL optimization for FPGA

6.2.1 Performance benchmarking

The Altera Offline Compiler memory management reduces the maximum op-
erating frequency for kernels, and use an irreducible percentage of logical ele-
ments for kernel enqueueing. To evaluate the minimum logical footprint of our
algorithm, we construct the ND+Backbone kernel by removing all memory
accesses in the code, with only the algorithm backbone remaining. This gives
us two important information. Firstly, the logic utilization cannot be shrunk
more than 21% on the DE1-SoC board, and secondly, the measured mean
frequency for NDRange kernels is of 140 MHz.

Also, because of the specificity of each design, every kernel implemented
uses a varying percentage of the total available logic elements. In order to
accurately compare those designs, we propose a linear extrapolation of the
execution time for a given logic utilization to a full-chip usage. To validate
this assertion, we replicated the initial design (ND+Naive) into a design with
two Compute Units (ND+2CU in Table 3) on the same chip. Each compute
unit of this new kernel handles half of the total voxels. Results show that the
time estimated with our linear model (Normalized Execution Time (NET))
is slightly slower than the actual replicated kernel execution time (ND+2CU
Measured Execution Time (MET)). This is mostly due to the memory foot-
print of two compute units being smaller than twice the logic utilization used
for a single one thanks to the Altera Offline Compiler optimizations. Overall,
it validates our extrapolation as a good empirical model, and we can safely
use the Normalized Execution Time to compare performances.

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 17

6.2.2 Task Parallelism or Data Parallelism ?

As discussed in Section 5.1, we implemented two different single work-item
kernels. The first one (SWI+Naive) is the baseline algorithm for this article
with no optimization, and the second one implements a shift-register pattern
to reduce memory footprint and increase streaming efficiency. This simple
improvement gives a normalized 4.5 speedup, underlining the importance of a
comprehensive approach to the algorithm data access pattern for performance
optimization.

With a single work-item there is no notion of shared memory within a work-
group. Therefore, it has less logical footprint than a NDrange kernel. However,
with an execution time of 67.5 s, the kernel mean frequency is of 63.6 MHz,
compared to a maximum operating frequency of 140 MHz per normalized
stream. Improving a single work-item kernel is closely related to optimizing
memory handling and data streaming effectiveness, in order to increase kernel
frequency.

The ND+Naive kernel is the GPU-like version of the back-projection al-
gorithm, with no memory optimization. From this version, we implemented
the replicated kernel (ND+2CU) already presented in Section 6.2.1 and the
memory fetching kernel described in Section 5.2.

What is noticeable is that the Altera Offline Compiler top priority is to
guarantee no kernel stall. With approximately an execution time of 30 s, and
a 140 MHz operating frequency for all NDrange kernels with one normalized
stream, this means that we execute one (x, y, z, ϕ) computation per clock cycle.
Also, Normalized Execution Time for the memory fetched kernel (ND+MF)
has a 1.4 speedup compared to the ND+Naive iteration, thanks to a reduced
logical footprint.

From a software developer’s perspective, the Altera Offline Compiler is
quite effective. Firstly, a program can be implemented on FPGAs using two
different kernel types suited for task or data parallelism, and this generic
characteristic can be used over a wide range of algorithm implementations on
FPGAs. Secondly, the automatic optimizations are focused on performance,
and guarantees a filled pipeline. However, this automatization comes with two
main drawbacks : a bigger memory footprint, and a reduced kernel frequency.
Therefore, effective optimization tracks is to reduce the logical footprint and
increase operating frequency, allowing more kernel replication.

6.3 GPU versus FPGA, consumption and performance

The DE1-SoC chip is a low-value product. For an adequate comparison to
high-end GPUs, we compiled the ND+MF kernel with 17 replicated CU tar-
geting the SX660 Arria 10 FPGA [1], using 98% of its logic elements. Within
Quartus, we obtained the kernel operable frequency (260 MHz), and using the
PowerPlay Early Power Estimator, we get the power of the design (2.27 W).
Because we did not have access to a SX660 Arria 10 , we estimated the exe-

18 Maxime MARTELLI et al.

Table 3 Measured and Normalized Execution Time of various kernel optimizations on the
Cyclone V SoC.

Kernel version Logic utilization (%) MET(s) NET(s)

SWI+Naive 49 222.9 109.2
SWI+SRP 36 67.5 24.3
ND+Naive 55 32.26 17.7
ND+2CU 96 16.9 16.2
ND+MF 40 31.3 12.5

ND+Backbone 21 30.8 6.47

cution time by dividing the Measured Execution Time of the ND+MF kernel
on a Cyclone V by the number of replication fitting on an Arria 10 SX660,
and further multiplying it by the ratio of both designs operable frequency
(tArria 10 = 31.3

17 ∗
140
260 = 0.991 s).

We compare the extrapolated execution time on an Arria 10 to the mea-
sured execution time measured on a Titan X Pascal GPU (11 TFLOPS) and
on an embedded Jetson TX2 GPU (0.665 TFLOPS) optimized with the CUD-
A implementation from [12] adapted for cone beam geometry [11]. In terms of
raw performance, FPGA is merely comparable to GPUs due, as discussed in
Section 2 to the back-projection algorithm being appropriate for data parallel
architectures. As shown in Table 4, even if an Arria 10 OpenCL implementa-
tion has a better performance per watt than on both GPUs, the same program
is faster on a Jetson TX2 than on an Intel Arria 10 FPGA.

Table 4 Power and Energy consumption of the ray-driven back-projection best optimiza-
tion on GPUs and FPGAs.

Device Power (W) Execution time (ms) Energy for 2564 voxel
computation(mWh)

Titan X Pascal 250 12 0.83
Jetson TX2 15 253 1.054

Intel Arria 10 2.27 991 0.63

Even though performances were largely improved on FPGAs compared to
the naive version, the inadequacy between algorithm and architecture remains
a major obstacle for implementing this type of algorithm on FPGAs.

On the other hand, by observing the effectiveness of various architectures
(Eq. (6), FPGA is much more effective than GPUs (Table 5). Indeed, the most
optimized kernel on both FPGAs allows, at almost each clock tick, to update
a voxel computation per elementary core.

Cycles Neededfor one voxel update =
Kernel T ime(s) ∗ Freq.(Hz) ∗ Cores

Total updates of voxels
(6)

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 19

Table 5 Performance comparative between FPGA and GPU for 2564 voxel updates

Platform Execution
time (ms)

”Physical”
cores

Frequency
(MHz)

Cycles needed for one
voxel update per core

GPU Titan X Pascal 12 3072 1417 12.16
GPU Jetson TX2 253 256 1300 19.6
FPGA Cyclone V 31300 1 140 1.04
FPGA Arria 10 991 17 260 1.02

FPGA with VHDL or Verilog is known for its efficiency (performance/watt).
In our use case, this characteristic is preserved even with OpenCL. Indeed, its
characteristic in VHDL is to be able to provide a fine-grained architecture
fitted to the chosen algorithm, and to obtain a highly efficient design like in
[12] or in [16], and, with the Intel FPGA SDK for OpenCL, we were able to
harness this same efficiency with HLS. However, FPGAs low frequency and its
lower number of Multiplication Accumulation floating units remain a limiting
factor for acceleration compared to a GPU falling behind of a factor 5.

7 Conclusions and perspectives

In this paper we proposed an accurate characterization benchmark for mem-
ory latency measurement, and presented different FPGA optimizations using
the Intel FPGA SDK for OpenCL. We achieved to port a CPU code on a
FPGA, with an overall speedup of 8.74 between the naive and the best opti-
mized kernel on a Cyclone V chip (respectively SWI+Naive and ND+MF3 in
Table 3). What first spring to mind is that the developer must be aware of
its program specificity, and some hardware knowledge is required to fully har-
ness the power of OpenCL on FPGAs. Even more, memory management is at
the core of OpenCL implementation, and, on FPGAs, reducing kernels logical
footprint is key for further optimizations. Despite those improvements, FPGA
is lagging behind GPU implementations partly due to a mismatch between the
algorithm and FPGA architecture. The back-projection algorithm showcased
in this article is well suited for SIMD architectures whereas FPGAs are suited
for pipeline-like designs. We observed that the algorithm backbone was using
a significant percentage of the total available logic (ND+Backbone in Table
3)), and this overhead, caused by the OpenCL encapsulation, is not to be
neglected. The Intel FPGA SDK for OpenCL, however, is an impressive tool,
allowing our optimized FPGA HLS design to compete with hand-coded VHDL
implementation in much less coding time (2 months in OpenCL vs more than
a year for a 3D-cache memory fetching algorithm with VHDL [12]). Overall,
it does a fine job constructing an adequate architecture for the algorithm, but
eventually the lack of raw power from FPGAs compared to GPUs is a strong
liability for massively parallels algorithms.

3 ND+Backbone is, as explained in Section 6.2.1, not functional since all memory accesses
are removed.

20 Maxime MARTELLI et al.

In this way, FPGAs resurgence for tomography is not due to happen unless
manufacturers integrate dedicated graphical cores within FPGAs. However,
their rise as a software-defined accelerator is promising. Through OpenCL,
software developers can easily express the inherent data or task parallelism
of their algorithms while exploiting a GPU-like memory model. In the near
future, it is therefore viable to think about heterogeneous architectures where
algorithms will be segmented depending on their inherent specificity, and each
elementary partition executed on FPGA, GPU, or CPU devices, while using
the same language: OpenCL.

References

1. Arria 10 Device Overview URL https://www.altera.com/en US/pdfs/literature/hb/arria-
10/arria 10 aib.pdf

2. DE1 SoC Device Overview URL http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&No=836

3. Jetson TX2 specifications URL https://elinux.org/Jetson TX2
4. OpenCL on FPGAs for GPU Programmers URL http-

s://www.altera.com/en US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-
fpgas-for-gpu-programmers.pdf

5. Titan X Pascal specifications URL https://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-titan-x/specifications

6. The International Technology Roadmap For Semiconductors 2.0. Semiconductor Indus-
try Association (2015)

7. Intel FPGA SDK for OpenCL Best Practices Guide. Intel (2017)
8. Intel FPGA SDK for OpenCL Programming Guide. Intel (2017)
9. Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip : High Performance Lossless

Data Compression on FPGAs using OpenCL. International Workshop on OpenCL
(2014)

10. E.Kinahan, P., et al.: Emission tomography : the fundamentals of PET and SPECT,
chapter Analytic image reconstruction methods. Elsevier Academic Press (2004)

11. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J.
Opt. Soc. Am. A 1(6), 612–619 (1984). DOI 10.1364/JOSAA.1.000612. URL
http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612

12. Gac, N., Mancini, S., Desvignes, M., Houzet, D.: High Speed 3D Tomography on CPU,
GPU, and FPGA. EURASIP journal on Embedded Systems (2008)

13. Garcia, P., Compton, K., Schulte, M., Blem, E., Fu, W.: An Overview of Reconfigurable
Hardware in Embedded Systems. EURASIP Journal on Embedded Systems (2006)

14. Geyer, L.L., Schoepf, U.J., Meinel, F.G., Nance, J.W., Bastarrika, G., Leipsic, J.A.,
Paul, N.S., Rengo, M., Laghi, P.A., Cecco, C.N.D.: State of the Art: Iterative CT
Reconstruction Techniques. Journal of Food Processing & Technology (2015)

15. Heigl, B., Kowarschik, M.: High-speed reconstruction for c-arm computed tomography.
In: Proceedings of the 9th international meeting on fully three-dimensional image re-
construction in radiology and nuclear medicine, pp. 25–28 (2007)

16. Iain Goddard, M.T.: High-speed cone-beam reconstruction: an embedded systems ap-
proach (2002). DOI 10.1117/12.466946. URL http://dx.doi.org/10.1117/12.466946

17. Jia, Q., Zhou, H.: Tuning Stencil Codes in OpenCL for FPGAs. International Conference
Computer Design (2016)

18. Kachelrie, M., Knaup, M., Bockenbach, O.: Hyperfast parallel-beam and cone-beam
backprojection using the cell general purpose hardware. Medical Physics 34(4), 1474–
1486 (2007). DOI 10.1118/1.2710328. URL http://dx.doi.org/10.1118/1.2710328

19. Kim, J.K., Fessler, J.A., Zhang, Z.: Forward-projection architecture for fast
iterative image reconstruction in x-ray CT. IEEE Trans. Signal Process-
ing 60(10), 5508–5518 (2012). DOI 10.1109/TSP.2012.2208636. URL http-
s://doi.org/10.1109/TSP.2012.2208636

3D Tomography back-projection parallelization on Intel FPGAs using OpenCL 21

20. Leeser, M., et al.: Parallel-beam backprojection: an FPGA implementation optimized
for medical imaging. VLSI SIgnal Processing Systems 39(3), 295–311 (2005)

21. Lu, H., Cheng, J.H., Han, G., Li, L., Liang, Z.: A 3D distance-weighted Wiener filter
for Poisson noise reduction in sinogram space for SPECT imaging. Medical Imaging,
Physics of Medical Imaging (2001)

22. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast gpu-based ct reconstruc-
tion using the common unified device architecture (cuda). In: 2007 IEEE Nucle-
ar Science Symposium Conference Record, vol. 6, pp. 4464–4466 (2007). DOI
10.1109/NSSMIC.2007.4437102

23. Shagrithaya, K., Kepa, K., Athanas, P.: Enabling Development of OpenCL Applications
on FPGA platforms. Conference on Application-Specific Systems, Architectures and
Processors (2013)

24. Thurston, M., Nadrljanski, M.M., et al.: Computed tomography - radiology reference
article. Radiopedia

25. Vasilev, S.L., Artemev, A.V., Bakulin, V.N., Yurgenson, S.A.: Testing loaded samples
using X-ray computed tomography. Russian Journal of Nondestructive Testing (2016)

26. Vidhya, M., Varadharaju, N., Kennedy, Z.J., Amirtham, D., Jesudas, D.M.: Applica-
tions of X-Ray Computed Tomography in Food Processing. RSNA (2015)

27. Wang, Z., He, B., Zhang, W., Jiang, S.: A Performance Analysis Framework for Op-
timizing OpenCL Applications on FPGAs. IEEE International Symposium on High
Performance Computer Architecture (HPCA) pp. 114–125 (2016)

28. Wegrzyn, M.: FPGA-Based Logic Controllers for Safety Critical Systems. IFAC Con-
ference on New Technologies for Computer Control (2001)

29. Xu, F., Mueller, K.: Accelerating popular tomographic reconstruction algorithms on
commodity pc graphics hardware. Nuclear Science, IEEE Transactions on 52(3), 654–
663 (2005). URL http://cvc.cs.stonybrook.edu/Publications/2005/XM05

30. Xu, J., Subramanian, N., Alessio, A., Hauck, S.: Impulse c vs. vhdl for accelerat-
ing tomographic reconstruction. In: Proceedings of the 2010 18th IEEE Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines, FC-
CM ’10, pp. 171–174. IEEE Computer Society, Washington, DC, USA (2010). DOI
10.1109/FCCM.2010.33. URL http://dx.doi.org/10.1109/FCCM.2010.33

