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Introduction

Statistical models based on stochastic counting processes are one of the most useful mathematical tools for population study [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF].

When they include the effects of covariates in a generalized linear formulation of their intensity, they provide a strong and handy explanatory way to link response-variables to what supposedly influences them, and quantify this statistical link. Among such explanatory models, Cox's proportional hazard regression model is most popular for having long been successfully used in epidemiology for survival analysis [START_REF] Cox | Regression Models and Life-Tables[END_REF][START_REF] Cox | Analysis of Survival Data[END_REF] ; [START_REF] Collett | Modelling Survival Data in Medical Research[END_REF] and in demography for event-history analysis [START_REF] Courgeau | Analyse démographique des biographies[END_REF]. These generalized linear counting-process models, as powerful as they are, have the same Achilles' heel as all classical regression models: they cannot handle high-dimensional data, i.e. data where explanatory variables outnumber observations. Nor can they handle highly correlated explanatory variables. High dimension and high correlation make such models unidentified if one does not add some constraints or penalty to the goodness-of-fit criterion they currently maximize. Theory-based crisp identification constraints, when they do exist, are usually too rare to make the model identified. Moreover, in practice, they do not exist at all, for the excess of variables over observations and the presence of highly redundant variables arise from an "excess of measurement" : as the "true" explanatory variables can usually not be observed directly, they are replaced with a number of proxies supposedly revolving "about" some of them, which is why they are so correlated. This lack of constraints makes the penalty-based regularized models, such as ridge-or least absolute shrinkage and selec-tion operator-penalised regression models [START_REF] Tibshirani | The Lasso method for variable selection in the Cox model[END_REF][START_REF] Perperoglou | Reduced-rank hazard regression for modelling non-proportional hazards[END_REF], an all-terrain and very much appreciated way of breaking down the curse of dimensionality. But these regularized models still miss one point: if they do provide a linear predictor of the response, this linear predictor is very hard to interpret, for the variables in it are too many and redundant. What the analyst needs is a small set of explanatory, i.e. predictive and interpretable dimensions which capture the statistical link between the response and the set of its regressors. So, true explanatory modeling in a high-dimensional framework requires, on top of regularization, analytical dimension reduction.

On the other hand, classical exploratory analysis methods as principal component analysis (PCA) and correspondence analysis are justly reputed as powerful dimension-reduction techniques, but have no explanatory power of their own. Now, in-between regression and principal component analysis lies partial least square (PLS) regression. The basic idea of partial least squares regression [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (PLS) approach to gener-59 alized inverses[END_REF] is to bridge principal component analysis and ordinary least squares (OLS) regression by maximizing a trade-off criterion between ordinary least squares regression's goodness-of-fit criterion (square correlation of dependent variable with component) and the compo-nent's "strength", as measured by its variance under a unit-norm constraint on the coefficient-vector. But partial least squares regression is not at all straightforward to extend to generalized linear models. [START_REF] Bry | / Exploring explanatory models ; an event history application[END_REF], [START_REF] Bastien | PLS generalised linear regression[END_REF] and [START_REF] Bry | Extension de l'Analyse en Composantes Thématiques univariée au modèle linéaire généralisé[END_REF] have proposed different ways to do it.

In our view, all had to be improved in terms of generality, flexibility, and mathematical consistency. More recently, [START_REF] Bry | THEME: THEmatic Model Exploration through Multiple Co-Structure maximization[END_REF] have proposed to extend the measure of a component's strength beyond its variance, by introducing a flexible measure of structural relevance. This measure can act as a bonus given to components close to certain variable-structures, e.g. bundles of highly correlated variables. This is an important asset in "explanatory exploration" , for it produces components all the easier to interpret as they are close to enough explanatory variables. Below, we develop in detail what was briefly introduced by [START_REF] Bry | Supervised-Component based Cox Regression[END_REF]. We propose to flexibly combine the structural relevance with the partial likelihood of the proportional hazard model into a new criterion. Maximizing this criterion under a unit-norm constraint on the coefficient vector allows to calculate a first structurally relevant explanatory component. A rank-h component can then be calculated by maximizing the same criterion under the additional constraint that it be orthogonal to all lower-rank components. As the calculated components are supervised ones, they are not exogenous, which entails that standard significance-tests are invalid. As a consequence, once a given (and presumably too large) number of components is obtained, a cross-validation procedure is required to only keep the really predictive ones. Eventually, one gets a regularized linear predictor of the hazard function, decomposed on a small number of dimensions spanning an interpretable explanatory subspace. By varying the parameter tuning the combination of the structural relevance with the partial likelihood, one can make the method go smoothly from standard non-regularized Cox regression to Cox Regression on such exogenous (non-supervised) "strong" components as principal components.

These two extremities are usually not very interesting: on the one hand, in a high-dimensional setting, standard Cox regression yields highly unstable and hardly interpretable coefficients, if any, for want of prior dimension reduction; on the other hand, exogenous components are not optimized to predict the survival time, so do not usually provide the best explanatory view of it. In practice, the most interesting components will be given by some intermediate values of the tuning parameter.

The paper is organized as follows. In section 2, after a short reminder on Cox's proportional hazard model, we present the corresponding componentmodel and its estimation technique in a formal way. In section 3, a simulation study is performed with intent to show how the tuning-parameters condition the estimation results, and how to interpret them. Finally, in section 4, the hints given in section 3 are used to analyse life-history data of men in Dakar, in order to find which variables are useful to model their change from monogamy to polygamy.

Model and technique

We consider a survival time Y , depending on a set of covariates X, plus a set of extra-covariates Z. X and Z can be time-dependent. There may be noninformative right-censoring on Y . Variables in Z are few and exhibit low or no correlation. By contrast, variables in X are many and possibly redundant, so that the proportional hazard model demands regularization with respect to X.

Notations:

• y i is the survival-time or censoring-time of unit i ∈ {1, ..., n}.

• x i,t and z i,t are the values of vectors of covariates x and z respectively for unit i at time t.

• Event-indicator δ is defined through: ∀i, δ i = 1 if the event occurs for i at time y i , and δ i = 0 if i is censored at time y i .

• R(t) denotes the set of all individuals at risk at time t.

• Π A , where A is a matrix, denotes the orthogonal projector on the space spanned by the column-vectors of A, with respect to a given metric.

• A being a matrix, A denotes the transpose of A.

The proportional hazard model

Cox's model is based on the following formulation of the hazard function of unit i at time t:

h(t; x i,t , z i,t ) = h 0 (t)e β x i,t +γ z i,t , (1) 
where h 0 (t) is the baseline hazard function. The survival function having hazard function h 0 (t) is the baseline survival function.

The partial likelihood defined by [START_REF] Cox | Regression Models and Life-Tables[END_REF][START_REF] Cox | Partial Likelihood[END_REF] is, when there are no simultaneous events:

L p (β , γ; X, Z) = n ∏ i=1 p i , where p i = e β x i,y i +γ z i,y i ∑ j∈R(y i ) e β x j,y i +γ z i,y i δ i (2)
The partial likelihood can, under some assumptions, be interpreted as a marginal likelihood of events' ranks [START_REF] Cox | Partial Likelihood[END_REF]. The partial likelihood is rid of h 0 , involving only (β , γ). When the model is identified (i.e. matrix [X, Z] is full column rank), maximizing the partial likelihood with respect to (β , γ) through a Newton-Raphson algorithm yields estimates ( β , γ) based on which [START_REF] Kalbfleisch | Marginal likelihoods based on Cox's regression and life model[END_REF] and [START_REF] Breslow | A large-sample study of the life table and product limit estimates under random censorship[END_REF], among others, proposed an estimation of the baseline survival function.

The problem with our data is the large amount of collinearity within X, which causes the X-part of the linear predictor to be unstable, if identified.

We shall make it identified and stable by prompting it to lean on components that have some structural relevance. The idea is to replace regressor-block X with a block F = XU of H orthogonal components, in the model. The regressors being time-dependent, so will the components. Let X be the matrix the columns of which are the X-regressors and the N rows of which are the individuals-at-risk-at-time-points: (i,t). Orthogonality of the f 's will be taken with respect to matrix W = N -1 I N . The hazard function of a unit i at time t will thus be:

h(t; x i,t , z i,t ) = h 0 (t)e α f i,t +γ z i,t = h 0 (t)e α f i,t +γ z i,t (3) 
Components will be calculated hierarchically, starting with one, and each extra-component being constrained to be orthogonal to the former ones.

Now, what we want is that the components be structurally relevant, in that they should be as close as possible to directions of a pre-defined type, such as explanatory variables, or other relevant subspaces.

Here is how we propose to measure that.

Structural relevance of a component

To X we associate a p × p symmetric positive definite (s.p.d.) matrix A, such that principal component analysis of X with metric matrix A and weightmatrix W is relevant.

Let τ ∈ [0; 1], and M = (τA -1 + (1τ)X WX) -1 . The purpose of coefficient τ is to tune the regularization of the model as follows. Matrix M is s.p.d., and component f = Xu will be constrained by : u 2 M -1 = 1, so that:

• τ = 0 ⇒ M = (X WX) -1 , so that u 2 M -1 = 1 ⇔ f 2 W = 1 . All
directions in X are equivalent, be them close to subsets of variables or not: X is then seen as a pure vector-space.

• τ = 1 ⇒ M = A . Recall that the program of the principal component analysis of (X, A,W ) is:

max w Aw=1 XAw 2 W ⇔ max u A -1 u=1 Xu 2 W with u = Aw (4) So, s.t. u 2 A -1 = 1 , f 2 W is the inertia of observations (rows) along w = A -1 u ∈ R p .
Components with a larger inertia will hence be favoured over those with a smaller one.

Structural relevance was introduced by [START_REF] Bry | THEME: THEmatic Model Exploration through Multiple Co-Structure maximization[END_REF] as a possible extension of the component's variance to measure the ability of a component to capture information in its variable-block. Given a set of "reference" s.p.d. matrices N = {N j ; j = 1, ..., J} encoding types of structures of interest (target-spaces, e.g. variables in X), a weight system Ω = {ω j ; j = 1, ..., J}, and a scalar l ≥ 1, the associated structural relevance measure is defined as a generalized average of quadratic forms of u:

φ N,Ω,l (u) := J ∑ j=1 ω j (u N j u) l 1 l (5) 
In Eq. ( 5), the value of l tunes the locality of the bundles of structures coded in N. The larger the value of l, the more local the bundle. An example is given below.

Particular instances of structural relevance measures

• Component Variance:

φ (u) = V (Xu) = Xu 2 W = u (X WX)u
Under constraint u M -1 u = 1, this is the inertia of units along direction u , and is maximized by the first (direct) eigenvector in the principal component analysis of (X, M,W ) .

In practice, explanatory variables are often a mixture of numeric and nominal variables. Assume that X = x 1 , ..., x K , X 1 , ..., X L , where: x 1 , ..., x K are column-vectors coding the numeric regressors, and X 1 , ..., X L are blocks of centred indicator variables, each block coding a nominal regressor ( X l has q l -1 columns if the corresponding variable has q l levels, the removed level being taken as "reference level"). We should then consider the following A , which bridges ordinary principal component analysis of numeric variables with multiple correspondence analysis of nominal variables:

A := diag (x 1 W x 1 ) -1 , ..., (x K W x K ) -1 , (X 1 W X 1 ) -1 , ..., (X L W X L ) -1 (6) 
• Variable powered inertia :

For a block X consisting of p standardised numeric variables x j , the variable powered inertia is defined as:

φ (u) = p ∑ j=1 ω j Xu|x j 2l 1 l = p ∑ j=1 ω j (u X W x j x j W Xu) l 1 l (7) ⇔ φ (u) = p ∑ j=1 ω j ρ 2l ( f , x j ) 1 l f 2 W (8)
Assuming we take τ = 0, we have f 2 W = 1 and: 

<u> ϕ 1 (u) ϕ 2 (u) ϕ 4 (u)
In the elementary case of 4 coplanar variables x with ∀ j, ω j = 1 , fig. 1 graphs φ l X (u) in polar coordinates (using the complex notation, where vector u is identified with complex number e iθ : z(θ ) = φ l X (e iθ )e iθ ;θ ∈ [0, 2π) ) for various values of l . Note that φ l X (u) was graphed instead of φ X (u) so that curves would not overlap. One can see how the value of l tunes the locality of bundles considered: the greater the l , the more local the bundle.

For a block X consisting of p categorical variables X j , each of which is coded through the set of its centred indicator variables less one, the variable powered inertia is:

φ (u) = p ∑ j=1 ω j cos 2l (Xu, X j ) 1 l = p ∑ j=1 ω j Xu|Π X j Xu l W 1 l (10) 
where:

Π X j = X j (X j W X j ) -1 X j W

Combining the partial likelihood with the structural relevance

We propose to combine the partial likelihood with the structural relevance using a geometric average:

c(u, α, γ;Z;s) = [L p (u, α, γ)] 1-s [φ (u)] s with 0 ≤ s ≤ 1 (11)
The scales of L p and φ are not comparable, and the geometric average has the obvious advantage to make the compound criterion insensitive to these scales in that, at the optimum, the relative variations of L p and φ compensate with a fixed rate:

dc = 0 ⇔ d ln c = 0 ⇔ (1 -s)d ln L p + sd ln φ = 0 ⇔ dL p L p = - s 1 -s dφ φ (12)

The Supervized Component Cox Regression algorithm

Maximizing the criterion c in Eq. ( 11) subject to constraint u M -1 u = 1 yields vector u 1 , hence the first component :

f 1 = Xu 1 .
When looking for rank-h component f h = Xu h , we take former compo-

nents F h-1 = [ f 1 , ..., f h-1 ]
as known, and impose the additional orthogonality constraint:

F h-1 W f h = 0 ⇔ D h u h = 0 with D h = X W F h-1 (13) 
Besides, F h-1 is taken as a block of extra-covariates, thus appended to

Z. Let Z h = [Z, F h-1 ].
Vector u h is obtained as the solution of the following program:

P : max u, α, γ s.t.: u M -1 u = 1; D h u = 0 c(u, α, γ; Z h ; s) (14) 
Program P is solved by iteratively maximizing the criterion with respect to u and (α, γ), in turn:

• Maximization with respect to u : given (α, γ) , the criterion is maximized on u s.t. u M -1 u = 1; D h u = 0 through the projected iterated normed gradient algorithm given in appendix B. The formula for calculating gradient ∇c may be found in appendix A.

• Maximization with respect to (α, γ) : given u , the criterion is maximized on (α, γ) exactly as in the classical Cox regression on covariates

{Xu, Z h } , with Z h = Z ∪ F h-1 .
Overall, we get the following algorithm:

-A number H of components to be calculated is chosen. Let D 1 = nullmatrix, F 0 = / 0 and Z 1 = Z. Then:

For h = 1 to H :

-Calculate u h as the solution of P with Z h as extra-covariates.

-Set

f h = Xu h , F h = [F h-1 ; f h ] , D h+1 = X W F h and Z h+1 = [Z; F h ] ;
End for.

-Perform Cox regression on regressors [F H , Z] . This yields linear predictor:

η = F R α + Zγ = XU R α + Zγ = Xβ + Zγ, whereβ = U R α (15)
If X denotes the original uncentered-variable matrix, then:

X = X -1 N W X , so: (16) η = β 0 + X β + Zγ , with β = U R α and β 0 = -1 N W X β . (17) 

Model-assessment

As said earlier, when s < 1, the components are supervised, hence nonexogenous, which requires that their assessment be made through crossvalidation.

Cross-validation quality coefficient

To each triplet (s, l, H) we associate a corresponding model M . 

CV k (M ) = l(θ -k (M )) -l -k (θ -k (M )) (18) 
where θ = (β 0 , β , γ) , l -k is the log-partial likelihood excluding part k of the data, and θ -k (M ) is the θ (M ) estimated on the non-left out data. The overall CV (M ) is the average of {CV k (M ); k = 1, ..., K} .

Obtaining good values for the tuning-parameters

We shall, from now on, use the variable powered inertia to measure structural relevance. The tuning parameters are many (s, l, τ, H), so that using cross-validation to compare all combinations of them on a cross-product grid is out of the question in practice. Therefore, heuristics are needed. It is important to note that, even if these parameters have different purposes, which can to some extent be served sequentially, they are not completely independent. We propose to momentarily separate the exploratory goal from the predictive one, these two goals being served in this very order. Indeed, contrary to prediction, exploration does not require regularization, which simplifies tuning, and should lead to interpretable explanatory dimensions used then for reliable prediction.

Exploratory phase: The primary key-parameter to be tuned in this stage is s (importance of structural relevance with respect to partial likelihood), which entails the approximate number H of components to be retained ultimately. Choosing s = 0 (pure goodness-of-fit maximization) should lead to a single component: the predictor of the classical Cox regression. To the other end, s = 1 leads to exogenous components that do not take the goodness of fit into account, which means that many such components may be necessary to correctly fit the model. The higher s is, the higher H should be. In practice, we propose the following heuristic way to identify the explanatory dimensions. First, take a low value of τ, strictly positive to ensure identification but producing only minimal regularization, e.g. τ = 10 -2 .

Then:

(a) Perform principal component analysis on X (e.g. with s = 0 and (e) Select the value of τ leading to the best CV * (τ) , and try to fine-tune τ so as to yet improve it.

l = 1),
(f) In the process, see that the interpretation of components is not altered, which may be the case with large values of τ. Should this happen, either decrease τ, or re-interpret components.

Simulation study

The simulation scheme is intended to show how the tuning of parameters s, l and τ influence the estimation results, which gives some insight on their roles and how to use them in practice.

Simulation scheme

We defined the time-span as [0,30] , divided in 30 unit-length elementary intervals. over [0,30], a baseline hazard function was simulated as:

h 0 (t) = a + b(t -t m ) 2 with t m = 12, a = .2, b = 10 -3 (19)
Time-dependent covariates describing n = 75 subjects were then simulated with bundle-structures, as follows:

Firstly, three independent latent variables taking time-independent values at subject-level were simulated :

ψ j i ∼ N(0; 1), j ∈ {1, 2, 3}, i ∈ {1, ..., 75}.
Secondly, three independent latent variables were simulated on the 75 × 30 (subject, elementary interval) pairs: φ j it ∼ N(0; 1), j ∈ {1, 2, 3}, i ∈ {1, ..., 75},t ∈ {1, ..., 30}. Thirdly, these variables were combined into three latent vari-ables directing the covariate-bundles:

∀(i,t, j) : ξ j it = ψ j i + φ j it ( 20 
)
Revolving around latent variables ξ 's,"observed" covariates were simulated as follows:

∀ j ∈ {1, 2, 3} : bundle B j = {x jk , k = 1, ..., K j } with x jk it = ξ j it + ε k it , ε k it ∼ N(0; σ 2 ) , with σ = .3. We took K 1 = 4, K 2 = 6, K 3 = 10.
Finally, 20 independent pure noise covariates were simulated as N(0;1).

Covariates were renumbered as:

B 1 = {x 1 , ..., x 4 } ; B 2 = {x 5 , ..., x 10 } ; B 3 = {x 11 , ..., x 20 } ; Noise = {x 21 , ..., x 40 }
The linear predictor was calculated as the following function of latent variables f j :

∀(i,t, j) : η it = .25 + ξ 1 it -.5ξ 2 it (21)
Hence the hazard function of each subject i: h i (t) = h 0 (t)e η it .

Note that : 1) Within every variable-bundle B j , correlation is very high (0.96), which precludes standard Cox regression.

2) The bundle playing the major role is B 1 , which is only the third in size, and the latent variable structuring it, ξ 1 , has a positive coefficient.

3) The bundle playing the secondary role is B 2 , which is the second in size, and the associated latent variable, ξ 2 , has a negative coefficient. 4) ξ 3 does not play any part in the hazard.

Associated bundle B 3 is thus a decoy-structure, and it is the first in size, weighing the same as B 1 and B 2 together. 5) Pure noise outnumbers every bundle, weighing the same as all bundles together.

The challenge is to identify B 1 as the primary explanatory structure, with positive effect, and B 2 as the second, with negative effect.

Independent right-censoring was simulated according to an exponential distribution (constant hazard rate) so that 21 subjects were censored before undergoing the event, and 54 underwent the event.

Estimation results

The parameter-varying scheme we follow is the one proposed in section 2.6:

• We start with s = 1 (taking no account of the goodness-of-fit), and see how gradually taking the goodness-of-fit into account by decreasing s changes the results.

• Parameter l is regarded as secondary tuning-parameter which may improve interpretation of components when raised, once a reasonably good value of s has been found.

• Taking a low value (e.g. 0 < τ < .05) is enough for pure exploratory purposes, but stable prediction requires higher values. Starting with τ = 10 -2 merely to ensure identification in presence of high collinearities, we vary τ only in the prediction-stage.

Let us now see the evolution of the results when we follow this parametervarying scheme. Decreasing s to .95 has a dramatic effect: ξ 1 captures important parts of B 1 and B 2 with opposite effects (4). But B 3 still has a non-negligible projection in plane ( f 1 , f 2 ). Raising l to 4 allows the plane to focus on B 1 and B 2 exclusively (fig. 6). Now, fig. 7 shows that f 3 aligns B 3 perfectly, and that f 4 aligns noise-variable x 39 , which is obvious over-fitting, yet given away by a high p-value. We witness on it the opposite roles of B 1 and B 2 , but the component is not so close to the direction of either, and is likely to contain over-fitting. Component f 2 is not really determined. Starting to take some structural relevance into account by raising s to .1 brings back B 3 along component f 2 but does not change much f 1 , essentially determined by the maximum likelihood estimation.

The regularization step

Once we retain a suitable (s, l) pair, e.g. here (.95, 4), we can tune τ so as to regularize the coefficient-vector, with intent to lessen fitting on noise, so distribute coefficients more evenly among highly correlated variables. Using the estimated coefficients of the first two components calculated every time, we get the estimated linear predictor η, and calculate its correlation with the actual simulated η. The results are given in table 1 and show regularization Table 1: Coefficients of variables in components f 1 , f 2 and correlation of estimated predictor η with actual one η for increasing τ (s = .95, l = 4). 4 Application to real data

τ = 0 τ = .1 τ = .3 τ = .5 τ = .7 f 1 f 2 f 1 f 2 f 1 f 2 f 1 f 2 f 1 f 2 B 1 x 1 -.
The supervized component Cox regression method will now be used to study the advent of polygamy among men living in Dakar.

Poverty in Senegal is high. Dakar gathers about one fourth of the senegalese population and attracts an important migration. The society in Dakar is moslem and women are dominated by men to a notable extent. The 2002 census revealed that among men, polygamy is on the increase mostly from the age of 45. Among married men living in Dakar aged 45 to 49, the percentage of the polygamous is over 20%. Among those aged 60 and over, this percentage is rather stable, ranging between 30% and 40%.

The mechanisms making polygamy possible have been studied and are well-documented [START_REF] Pilon | Contribution à l'analyse de la polygamie[END_REF]. The existence of polygamy rests upon an important age-gap at marriage between men and women: women enter marriage much younger than men. The frequent and quick remarrying of divorced women and widows also favors this practice. Among other things, polygamy allows the man to maximize his posterity [START_REF] Chojnacka | Early marriage and polygyny : feature characteristics of nuptiality in Africa, Genus[END_REF].

Having many descendants means benefitting from an important manpower.

It also means hoping for a better assistance in the old age: in case of health problems, it raises the chances to be looked after by at least one wife and her children [START_REF] Møller | Polygamy, economic security and well-being of retired Zulu migrant workers[END_REF][START_REF] Gning | Polygamie et personnes âgées au Sénégal[END_REF]. In that, polygamy may serve as a safety net. Finally, polygamy is, for a man, a way to reconcile the preferences of the group (social choice) when his parents impose a spouse on him, with his own (individual choice).

We are going to confront these elements with the results of a first and somewhat naive application of supervized component Cox regression. Our intention here is not to complete a thorough analysis of the data, but to Cross-validated supervised components can be used as such a criterion.

To illustrate the gain provided by supervised-component Cox regression,

we first performed Cox regression on principal components, which is one end of the continuum spanned by SCCoxR, associated with s = 1. Then, to the other end of the continuum (s arbitrarily close to 0), we performed

Cox regression on the whole explanatory subspace, in order to see whether the linear predictor is close to an interpretable dimension. In view of the findings provided by these two attempts, we finally tune the parameters of SCCoxR so as to track down interpretable explanatory dimensions.

Cox regression on the first 8 principal components

Cox regression on principal components is obtained setting s = 1 and l = 1. 

Cox regression on the full explanatory space

To the other end of the continuum is value s = 0. Setting s = 0 is forbidden here because of the exact linear dependence of some variables, e. once by the first one. Since we took a small s, component 2 is identified, but almost random, and plays no role in the prediction. By taking τ = 1, we ensured regularisation of the linear predictor, i.e. that confusion be minimized between correlated variables. So, the signs of coefficients reflect better the effects of the associated variables, provided their absolute value is not too low. These coefficients are given in line β of table 3.

They should a priori not be considered completely reliable, insofar as they are not based on strong structural dimensions of the explanatory variables.

Neither of these extreme choices has provided substantial insight as to the main dimensions influencing the risk. Let us track these by fine-tuning the parameters, as in the simulations: first s, then l, and finally τ.

Fine-tuning supervized component Cox regression

As in the simulations, we kept l = 1 and started decreasing s from s = 1 to s = 0.95, then 0.9, 0.85 and 0.8. The best results were obtained for s = 0.9, with p-values (viewed as descriptive indicators) of components 2 to 5 lower than 1e -5. Then, in order to improve interpretability of the supervised components by dragging them towards close variable-structures, we raised l from 1 to 8.

Cox regression on the obtained first 10 supervized components shows that components 2 to 5 have a p-value lower than 1e-4, and component 8 has a p-value lower than 1e-2. In order to assess the real predictive power of the components, we perform cross-validation on models built with a number of We may now take a look at some correlation scatterplots associated with 6 components and try to interpret the space they span in terms of explanatory sets out the secondary education, to which it is highly positively correlated.

It is negatively, but poorly correlated with low education levels. Figure 15 shows an interesting plane, spanned by components 3 and 4. Its interpretation is wholly connected to places of birth and infancy, with a triangle opposing the three factor-levels: Dakar ("Dak"), other city ("urb") , rural zone ("rur"). As in most situations where the variable-vectors illustrating the components sum up to zero (this is the case of the three birth-place levels, and of the three infancy-place ones), variables don't align components really well, but the plane they span is clearly related to the risk. Finally, component 5 aligns the age-gap, revealing its role in polygamy, and component 6 is loosely related to the kinship of the first spouse to ego.

At this stage, we may use the components to try and select promising subsets of explanatory variables for a standard Cox regression, bearing in mind that doing so, we may lose valuable predictive information, since predictive components combine many more variables to be efficient. The estimated effects of some variable-subsets, with corresponding p-values, are given in table 2.

Supervised components do seem to help variable-selection. Yet, one can see that some confusion remains: the p-values of effects sometimes change dramatically when a variable (e.g. "Infancy in Dakar") is replaced with a Components are combinations of variables, and the proper way to use them is as follows: select the best number of supervized components through cross-validation; then, as they are regularized combinations of variables, use them to calculate the corresponding β , and interpret the signs and magnitudes of the largest effects. In the table displayed on fig. 3, line β 5 displays the coefficients calculated on the basis of the first 5 components. These are the ones to be used for interpretation of variable-effects, because the corresponding linear predictor is based on the best predictive component-model.

The linear predictor has been regularised so as to minimise confusion between effects of correlated variables. One consequence of this is that the signs of the betas can overall be trusted, at least if the absolute value is not negligible.

Bootstrapping can of course provide confidence intervals associated with the coefficients, but it is computationally very costly.

From coefficients in table given on fig. 3, it seems possible to calculate relative risk ratios. For instance, the risk-ratio of a man having spent his infancy in the country relative to a man having the same characteristics except having spent his infancy in Dakar would be: But one should never forget that this "having the same other characteristics" is sheer fiction: in the situation being dealt with, variables may be linked up to perfection. Picture a variable denoted a, linked to no other, and having coefficient β a in the estimated model. Now, picture duplicating a into a 1 and a 2 in a new model, with all other variables unchanged. Then, regularization will entail that the former effect of a be distributed evenly on a 1 and a 2 , so that their coefficients in the estimated new model will both be equal to β a 2 . So, one must keep in mind the statistical links between explanatory variables before trying to interpret the magnitude of these relative risk ratios.

For a binary variable without its complement, or for a quantitative variable, the rule would be the same as in Cox regression. For instance: the risk-ratio of a man having given his consent for his first marriage relative to a man not having, but sharing all other characteristics, would be:

r(Consent / no Consent) = exp(β 5 Consent ) = 0.93 (23)
And the effect of an extra-year in age-gap, all other characteristics equal, would be to multiply the risk by: r(AgeGap) = exp(β 5 AgeGap ) = 0.66 (24)

We shall now interpret the signs and sometimes the magnitudes of the coefficients of variables linked to the first dimensions found by supervisedcomponent Cox regression. We chose to include component 6 because it is illustrated by a kinship variable, and even if on average it tends to produce overfitting, there are many cross-validations samples with which it contributes to improve the CV coefficient. As a general rule, we advise to possibly consider a few extra-components after the optimum, provided the fall in CV keeps moderate and such components are reasonably correlated to some variables.

Linked to component 1 are the offspring variables. On the whole, the effect of the number of children on the hazard-rate is negative. Having no son appears to have a special effect, increasing the risk with respect to all other numbers of sons. This is not the case with daughters.

Linked to component 2 are the ego-education variables, and more specifically secondary education. Indeed, the coefficients show that its effect relative to all other levels is to decrease the risk. For example, the relative risk ratio of a man with secondary education with respect to a man having no Table 3: Coefficients of variables in the regularized linear predictor obtained for: s = 1e -3, l = 1, τ = 1, 1 component (β ), and s = .9, l = 8, τ = 1, 5 components (β 5) 

.21e-1 -1.33e-1 1.76e-1 1.02e-1 -2.01e-1 -1.54e-1 -2.04e-2 -4.81e-2 β 5 -9.08e-2 4.29e-2 1.41e-1 -8.54e-2 2.21e-1 1.34e-1 -1.76e-1 -3.00e-1 -3.79e-3 -3.
-1.74e-2 1.74e-2 1.21e-1 -5.27e-2 1.47e-1 -2.21e-1 -1.38e-1 β 5 -3.47e-2 3.47e-2 1.96e-1 2.50e-2 1.37e-1 -3.81e-1 -1.55e-1
education, and all other characteristics identical, would be:

r(Edu Sec/Edu Non) = exp(β 5 Edu Sec -β 5 Edu Non ) = exp(-0.143 -0.0635) = 0.81 (25) 
Men having had a secondary education or above tend to enter marriage later and with a partner they chose. Their conception of marriage is less traditional. This may account for a lesser risk of becoming polygamous.

Linked to components 3 and 4 are the places of birth and infancy. Of course, these variables being strongly linked, their effect on the risk will tend to be shared and distributed evenly across very correlated ones. As a consequence, one cannot for instance speak of the effect of "infancy in Dakar" with respect to "infancy in a rural zone" with all other characteristics identical, because infancy is much linked to place of birth, so that their effect is common to a large extent. Where standard Cox regression, as any non-regularized regression, tries to separate the effects of explanatory variables -thus having severe problems when these are not separable -supervised-component Cox regression does all the less so as variables are correlated. The effects of uncorrelated explanatory variables will be their "proper" effect indeed, just as in plain Cox regression, but the effects of highly correlated explanatory variables will be an even distribution across them of their "common" effect. How do we make use of that here? By considering the bundle { Inf rur , BP rur } as a whole and opposing it to { Inf Dak , BP Dak }, for instance. The relative risk ratio of a man born and raised in a rural zone with respect to one born and raised in Dakar, with all other characteristics identical, would then be: = exp(0.052 + 0.058 -0.011 + 0.12) = 1.29 (26)

Likewise, the relative risk ratio of a man born and raised in a city other than Dakar with respect to one born and raised in Dakar, with all other characteristics identical, would be: 1.17.

Of course, if the variables are not strictly linked through a logical constraint, it is always conceivable to vary the situation. For instance, the relative risk ratio of a man born and raised in a rural zone with respect to one born in a rural zone but raised in Dakar, with all other characteristics identical, would then be: down the risk by one third. This may be linked to the "safety net" approach to polygamy, namely the man's wish to increase his offspring when his first wife, having an age close to his, is getting old or unwilling to, or his wish to found a younger family to support him in his old age.

Component 6 is related to the kinship of ego to his first wife. The relative risk ratio of a man having a first wife unrelated to him with respect to a man having one related through his mother is: exp(β 5 ParSp1 Noβ 5 ParSp1 Mat ) = 0.62 , and the ratio is 0.66 when the first spouse is related to ego's father.

A kinship between spouses is very often the sign of a prescribed marriage, which may easily lead to polygamy because, if it is difficult to part from a spouse more or less imposed by the family, ego can make for it by marrying a second wife more freely chosen, most often unrelated.

It must be emphasized that we have given these ratio calculations for the mere sake of illustration. The reader will naturally be aware that such calculations should not be taken at face value. They merely indicate tendencies obtained here on a rather small sample, and always under the costly hypothesis of "all other characteristics kept identical".

This toy-application on real data allowed us to see what supervized component Cox regression brings to the analyst in terms of explanatory dimen-sion reduction, but we only demonstrated the first step of the analytical process. On a second step, the selected variables should be taken as extracovariates Z, and SCCoxR relaunched so as to track down more complementary predictive dimensions, if any. And so on until the predictive dimensionality is exhausted.

Conclusion

The Yet, staying "too close" to the current starting point on the arc (v [t] , γ [t] ) may make the algorithm too slow to reach the maximum. To avoid that, we propose to use a Gauss-Newton unidimensional maximization to find the maximum of g(v) on the arc (v [t] , γ [t] ), and take it as v [t+1] .

The fixed point of the resulting algorithm is a critical point of (1), hence a local maximum of g s.t. C v = 0 .
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 1 Figure 1: Polar representation of the variable powered inertia according to the value of l

  For a given model M , the cross-validation quality coefficient (CV) is calculated according to the technique proposed for the proportional hazard model by van Houwelingen et al. (2006): the sample is split into K parts, and for each part k, we calculate:
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 2 Figures 2 to 7 show the correlation-scatterplots of variables with com-
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 23456 Figure 2: Correlation scatterplot a : s = 1, l = 1 f 1 : coefft = -.03 ; p=.83 ; f 2 : coefft = -.42; p=.004

Figure 7 :

 7 Figure 7: Correlation scatterplot f : s = .95, l = 4 f 3 :coefft = .06 ; p=.70 ; f 4 : coefft = .18; p=.20

Figure 9 :Figure 10 :

 910 Figure 9: Correlation scatterplot g : s = 0 f 1 : coefft = -1.85 ; p<2.e-16 ; f 2 : coefft = -.12; p=.35

  provide a first illustration of how the supervised-component Cox regression method works, how it should be used, and the kind of help it may give to the data analyst. Supervised-component Cox regression is applied to life-histories of 222 married men born before 1967 and living in Dakar. The data comes from the 2001 retrospective survey conducted by Philippe Antoine (IRD) and Abdou Salam Fall: (IFAN-UCAD) "Crise, passage à l'âge adulte et devenir de la famille dans les classes moyennes et pauvres à Dakar"[START_REF] Antoine | Crise, passage à l'âge adulte et devenir de la famille dans les classes moyennes et pauvres à Dakar[END_REF], partially funded by the CODESRIA. Our aim is to find out the main explanatory dimensions that influence the risk of becoming polygamic by marrying a second wife. The survival time is the duration of the first union in the monogamic state. The terminal event is marrying a second wife. Death of the first wife and divorce were considered independent right-censoring, just as was the date of the survey. Of course, divorce is likely not to be independent of the event under study, so should be treated as a competing event in future work. The subjects are described with 107 time-varying numerical variables, most of which are indicators of nominal variable values.All are put in matrix X, matrix Z being null here. The total number of rows of the data matrix (number of (subject, date) pairs) is 2293, and 55 events were observed. The high number of variables and their collinearities make direct unregularized Cox regression impossible. Selection of variables by means of mere intuition is tricky and may be opposed on the grounds that the many confusion effects change the results according to the variables selected, so, at least, variable-selection should lean on some solid criterion.

  Figure 11: Correlation scatterplot with principal components (4,5)

Figure 13 :

 13 Figure 13: CV coefficient against number of components for s = 0.9, l = 8, τ = 1
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 1416 Figure 14: Correlation scatterplot with supervised components (1,2) for s = 0.9, l = 8, τ = 1

  r(Inf rur/Inf Dak) = exp(β 5 Inf rurβ 5 Inf Dak ) = exp(.059 + .12) = 1.20 (22)

  r(Rural/Dakar) = exp(β 5 BP rur + β 5 Inf rur -(β 5 BP Dak + β 5 Inf Dak ))

r(

  Inf rural/Inf Dakar) = exp(β 5 Inf rurβ 5 Inf Dak ) = 1.20 (27) Component 5 is very strongly correlated to the age-gap (age of ego -age of first wife). The corresponding relative risk has been given above: every extra-year in age-gap, all other characteristics kept equal, would roughly cut

  Figure 17: PING vectors

  

  

  

  

  

  

  

  

  

  

  For the retained value of s, start raising l gently (integer values are sufficient): l ∈ {1, 2, 3, 4, ..., 10, ...}. Rather soon, one notices on the scatterplots that if the interpretation of components was enhanced by an early raise

	The secondary key-parameter to be tuned in this stage is l (locality of
	variable-bundles components should align on).
	(c)
	of the potential modeling value of the component. Keep a value of s giving
	interpretable components with reasonably low p-values.

and choose H so that principal components with rank > H may be considered noise. Perform Cox's regression on the H principal components.

These being exogenous, the standard significance tests are valid. Downsize H to the highest rank of a significant component, which is its maximum possibly interesting value.

(b) Perform supervised-component Cox regression with a decreasing sequence of s values starting slightly below s = 1, e.g. 0.95 and using a reasonable step (e.g. 0.05). This is gradually letting the goodness-of-fit into the criterion. For each value of s, use the p-values of Cox's regression on the components as a mere descriptive indicator of their roles. These p-values are not taken here as rigorous inference values, which they aren't because components are not exogenous when s < 1 , but as "descriptive indicators" of l , raising it further only changes them negligibly. For the few values retained of l, examine the p-values of components and see that an easier interpretation is not paid for by some non-negligible rise (it may even decrease them).

Predictive phase:

We have now a good idea of the values to give to s, l, H. These mays still change slightly with the value of τ (tuning regularization), but not dramatically.

(d) Start raising τ gently (e.g.: τ ∈ {.1, .2, .3, .4, ..., 1} ). For each value, calculate the CV coefficient for models ranging from h = 1 to H components and select the number of components H * (τ) giving the best CV, then denoted CV * (τ).

Table 2 :

 2 Results of Cox regression on three variable-subsets selected through correlation with supervised components

	Variable	β	exp(β )	p
	Son 0	0.6590 1.9329 0.0553
	Edu Sec	-0.6567 0.5186 0.0315
	Inf Dak	-0.5452 0.5797 0.0697
	AgeGap	-0.0970 0.9075 0.0012
	ParSp1 No -0.9242 0.3968 0.0016
	Variable	β	exp(β )	p
	Son 0	0.7193 2.0531 0.0362
	Edu Sec	-0.6468 0.5237 0.0343
	BP Dak	-0.3060 0.7364 0.3058
	AgeGap	-0.0975 0.9071 0.0014
	ParSp1 No -0.9188 0.3990 0.0016
	Variable	β	exp(β )	p
	NumChild -0.1309 0.8773 0.0884
	Edu Sec	-0.6868 0.5032 0.0250
	Inf Dak	-0.6182 0.5389 0.0371
	AgeGap	-0.0964 0.9081 0.0012
	ParSp1 No -0.9459 0.3883 0.0012

 et al. , 2016), and application to counting processes is currently considered.

Appendix A : The gradient formulas

On every time-point t i when an event occurs for some subject i, δ i = 1 , we have the following partial likelihood term:

e αx it i u+z it i γ ∑ j∈R t i e

The overall partial likelihood is :

with:
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Putting ∀t i , ∀ j ∈ R t i : ω j,t i := e αx jt i u+z jt i γ and Ω t i := ∑ j∈R t i ω j,t i , we get:

And finally:

x it i -1

• Variable powered inertia:
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Letting Ω(u) = diag(ϖ l-1 j ) , we have:

Appendix B : The Projected Iterated Normed Gradient (PING) algorithm

Notation: the current value of any quantity a on iteration t is denoted:

Putting v = M -1/2 u , g(x) = h(M 1/2 x) and C = M 1/2 D , this is strictly equivalent to:

The corresponding lagrangian is:

Put back into (4), this yields:

In the particular case where C = 0 , we shall take:

Finally, ( 5) and (1) imply:

This gives the basic iteration of the PING algorithm:
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Let us show that this iteration follows a direction of ascent. Because, by construction: ∀s: v [s] ⊥ C, we have:

which has the sign of:

Picking a point on a direction of ascent does not guarantee that g actually increases, for we may "go too far" in this direction. Let γ

. Staying "close enough" to the current starting point on the arc (v [t] , γ [t] )

guarantees that g increases. Indeed, let ϖ be the plane tangent to the sphere on v [t] and let w denote the vector tangent to arc (v [t] , γ [t] ) on v [t] (cf. fig. 17).

Then:

∃τ > 0, w = τΠ ϖ γ [t] ⇒ w|γ [t] = τ Π ϖ γ [t] |γ [t] = τ cos 2 (γ [t] , ϖ) > 0 (55)