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a b s t r a c t

Flash point is a major indicator on the study of fire and explosion hazards of liquid mixtures. Mixtures

presenting a minimum flash point behavior are particularly dangerous. It has been shown before that

minimum/maximum flash point mixtures could be related with azeotropic behavior under some con-

ditions. Since the 70's a classification of ternary azeotropic mixtures has been developed based on the

topological properties of residue curve maps arising from the simple evaporation equilibrium model. In

this paper we show that such a general classification also exists for flash point diagram of miscible

flammable compound ternary mixtures and that it could help anticipate fire and explosion hazard in

ternary mixtures. The demonstration is based on the construction of an auxiliary theoretical system

under equilibrium equivalent to a non-equilibrium flash point system.

1. Introduction

The study of flash point temperature of mixtures plays an

important role for the safety in the chemical industry. Several ac-

cidents due to explosions [1e3] highlight the importance of

knowing the flash point temperature in pure compounds and

mixtures.

Since the flash point data available for mixtures is quite scarce,

several different methods have been proposed to compute the flash

point of different types of mixtures. The first method based on the

assumption of Vapor-Liquid Equilibrium (VLE) mv
i ¼ ml

i (excluding

air) was developed for flammable miscible mixtures [4] and then

extended for miscible mixtures with flammable and non-

flammable compounds [5,6]. Liaw et al. [7] showed that miscible

mixtures of flammable compounds satisfy the following equation:

Xc

i¼1

xigiðx; TÞP
sat
i ðTÞ

Psat
i;fp

¼ 1 (1)

Here c is the number of flammable components in the mixture, and

for each liquid phase component i ¼ 1; …; c xi represents the

corresponding mole fraction, gi describes its activity coefficient,

Psati denotes the saturation pressure and Psat
i;fp

denotes the saturation

pressure at the flash point temperature. T is the flash point tem-

perature of the system and x ¼ ðx1; x2;…; xc$1Þ is the composition

vector.

Eq. (1) is derived by assuming that each component i in the

vapor-air mixture (excluding the air) is in equilibrium with the

liquid mixture and that the vapor-phase behaves like an ideal gas

because of the flash point being measured under atmospheric

pressure. Under these assumptions, the following equation holds

true:

yi ¼
xigiP

sat
i

Psyst
(2)

Model described by eq. (1) can also be extended to partially

miscible mixtures [8e11]. The models referred above are based on

two main assumptions: xair ¼ 0 and equality of chemical potentials

for the remaining components. The last assumption suggests to

generalize the classical equilibrium approach used to describe the

distillation curves and boiling temperature surfaces in the theory of

vaporeliquid equilibrium [12]. The similarity between both flash

point and boiling point description has been highlighted in previ-

ous works [5,13]. We have recently addressed a relation between

the occurrence of azeotropic behavior and minimum/maximum
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flash point in binary mixtures and showed it to be dependent on

the ratio
DTfp
DTb

of pure component flash point and boiling point

temperature differences [14].

In the VLE equilibrium theory, the topology of the boiling point

temperature surfaces is intrinsically connected to the structure of

the VLE diagrams describing the residue curves maps. The most

compact and consistent classification of ternary VLE diagrams was

first proposed by Gurikov in 1958 and then improved by Serafimov

in 1970 [12], who established 26 classical feasible structures for

these diagrams under certain conditions on the number and type of

possible azeotropes. This classification have been derived from the

Poincare's topological theory of dynamical systems applied to the

residue curves differential equations arising in the open evapora-

tion equilibrium model [12,15].

The aim of the present article is to propose a classification for

the flash point temperature surfaces of ternarymixtures of miscible

flammable compounds. Such a classification may simplify the

detection of ternary extremum flash point behaviors, which can

increase the hazards of fire and explosion in the case of a minimum

flash point. The new classification is inspired by Serafimov's clas-

sification of ternary azeotropicmixtures and its direct transposition

for boiling temperature isotherms diagrams describing the open

evaporation under thermodynamic equilibrium conditions at con-

stant pressure. However, the boiling temperature results cannot be

directly extended to the flash point closedecup systems, since the

presence of air does not allow the whole system (biphasic LV

mixture þ air) to be in thermodynamic equilibrium, as we shall

explain later. Hence, the key idea of the theoretical part of this

paper is the proof of a formal equivalence of a closed-cup system

with an auxiliary VLE system with properly selected components.

This equivalence allows the extension of the VLE Serafimov's clas-

sification to the flash point closed-cup systems.

The paper is organized as follows. In Section 2 we recall the

main facts about simple distillation of homogeneous mixtures

under thermodynamic equilibrium condition. In particular, we

recall the properties of their residue curvemaps in connectionwith

the structure of the associated boiling temperature surfaces, and

the main principles underlying the Serafimov's classification of

ternary VLE diagrams. In Section 3 we consider flash point closed-

cup ternary systems and propose an approach leading to a classi-

fication of the ternary flash point closed-cup systems. In Section 4

we discuss several experimental and simulation results through the

prism of the theoretical part of this work.

2. Distillation under thermodynamic equilibrium: summary

2.1. Thermodynamic equilibrium for closed bi-phasic systems

Consider a closed c-component bi-phasic system. Let T l ðvÞ and

PlðvÞ denote the temperature and the pressure of each phase, the

superscripts l and v referring to the liquid and to the vapor phase

respectively. By xi and yi we denote the mole fractions of the

component i in the liquid and in the vapor phases. An example of

such a system for c ¼ 3 is represented in Fig. 1.

The thermodynamic equilibrium is reached when the following

set of conditions is satisfied:

T l ¼ Tv; Pl ¼ Pv; mli ¼ mvi ; i ¼ 1; …; c (3)

Here m
lðvÞ
i

represent the chemical potential of the i-th component in

a given phase l or v.

According to Lewis [16] the fugacity fi of the i-th component is

defined as follows:

mi $ m0i ¼ RT & ln
fi
f 0
i

!

(4)

In the above equation, m0i and f 0i denote the chemical potential

and the fugacity at a given reference state. It can be proven [16,17]

that the equality of the chemical potentials of each component in

two phases at the thermodynamic equilibrium is equivalent to the

equality of their corresponding fugacities:

f li ¼ f vi ; i ¼ 1; …; c (5)

2.2. Simple distillation and the residue curve maps

Distillation is a process of separation of liquidmixtures based on

the differences among the relative volatility of their components.

Nomenclature

gi Activity coefficient of compound i

mi Chemical potential of compound i

f
lðvÞ
i

Fugacity of component i in the liquid (vapor)

phase

Psati Saturation vapor pressure of compound i at a

given temperature

Psat
i;fp

Saturation vapor pressure of compound i at its

flash point temperature

Psyst Overall pressure of the system

Tb Boiling temperature

Tfp Flash point temperature

v Equilibrium vector: v ¼ y$ x

x Composition vector of the liquid phase: x ¼ ðx1;x2;

…;xc$1Þ

xi Mole fraction of compound i in liquid phase

y Composition vector of the liquid phase: y ¼ ðy1;y2;

…;yc$1Þ

yi Mole fraction of compound i in vapor phase
DTfp
DTb

Ratio of pure component flash point and boiling

point temperature differences

VLE Vapor-Liquid Equilibrium

Fig. 1. Closed ternary biphasic system.



The most volatile components concentrate in vapor phase,

enriching the remaining liquid phase with the less volatile com-

ponents. The simple distillation (or open evaporation) is the

simplest type of distillation, inwhich the liquid is boiling in a still at

constant pressure and the created vapor is continuously evacuated

from the system. The system as a whole is kept at thermodynamic

equilibrium between the liquid and the vapor phases, so that re-

lations (3) are satisfied at any time [12]. Models of simple distilla-

tion give rise to a set of differential equations which can be

analyzed with concepts from the field of topology in mathematics

to establish the concise and complete Serafimov's classification of

boiling point temperature diagrams. We now recall the main steps

leading to such a classification.

According to the phase rule [17], the total number of degrees of

freedom in an c-component bi-phasic liquid-vapor heterogeneous

system is equal to c. Since
Pc

i¼1xi ¼ 1, by assuming that the process

is isobaric (P ¼ const), we can choose the first c$ 1 liquid mole

fractions (independent variables) and the temperature T (depen-

dent variable) to describe the whole state space of the system.

Applying mass balances, the evolution of the liquid composition in

such process can be described by the set of differential equations

[18]:

dxi
dx

¼ xi $ yiðx; TÞ ; i ¼ 1;…; c$ 1 (6)

where x ' 0 is a dimensionless non-decreasing parameter

describing the time evolution of the overall molar quantity of the

liquid phase: x ¼ ln nlð0Þ
nlðtÞ

!

. The right-hand sides of the residue

curve differential eq. (6) form the equilibrium vector field v ¼ ðx1 $

y1; …; xc$1 $ yc$1 Þ in the c$ 1-dimensional composition space of

the system. Its integral curves, solutions to eq. (6), are called the

residue curves. The set of such curves forms a residue curves map

(RCM) of a given mixture. In the left part of Fig. 2 we show several

examples of RCMs in case of ternary systems.

The topological structure of RCMs is intrinsically related to the

properties of the boiling temperature of the mixture. Indeed, in

order to compute the residue curves by solving eq. (6), one should

complete it with the VLE condition for isobaric processes:

Xc

i¼1

yiðx; TÞ ¼ 1 (7)

Here the functions yiðx; TÞ are to be defined by an appropriate

thermodynamic model. Eq. (7) defines a hyper-surface in the

c-dimensional state space fðx; TÞg, called the boiling temperature

surface. Even though eq. (7) defines this surface only implicitly, it

can in theory be solved with respect to the temperature. So, the

boiling temperature surface can be represented in the form T ¼

TbðxÞ, i.e., as a graph of the boiling temperature function

TbðxÞ corresponding to the given composition x. The right part of

Fig. 2 shows the isotherms, i.e. the level sets of the function Tb for

the ternary mixtures shown on the left of Fig. 2. The arrows

describing the inverse evolution of the level sets correspond to the

inverse of the equilibrium vector field. The exact relation between

the equilibrium vector field v and the boiling temperature follows

from a more general argument.

Indeed, in alternative to eq. (7), the boiling temperature along

the residue curves can be recovered from the generalized Van der

Waals e Storonkin equation [19], which follows directly from the

second law of thermodynamics. It provides another theoretical way

to define the thermodynamic equilibrium condition in the differ-

ential form:

Fig. 2. eResidue curve maps of ternary mixtures (left) and their respective boiling temperature isotherms (right), extracted from Fig. 4 and Fig. 6 in Kiva et al. (2003) [12]. Copyright

2003 Elsevier.



Ds dT $
Xc$1

i;j¼1

v
2gl

vxivxj
ðxi $ yiÞdxj ¼ 0 (8)

Here gl denotes the Gibbs free energy of the liquid phase and the

function Ds>0 is defined as follows:

Ds ¼ sv $ sl þ
Xc$1

i¼1

ðxi $ yiÞ
vsl

vxi
¼
Xc

i¼1

yi

%

svi $ sli

&

In the above expression slðvÞ and s
lðvÞ
i

denote the overall and the

partial molar entropies of the liquid (vapor) phases. As it was

recently shown in Ref. [20], eq. (8) implies that the equilibrium

vector v restricted to the boiling temperature surface is equal to the

generalized gradient of the boiling temperature function Tb:

vðxÞ ¼
def

vðx; TbðxÞÞ ¼ Ds
%

D2
x gl
&$1

VTbðxÞ¼
def

V
GTbðxÞ (9)

where the gradient VG is defined with respect to the Riemannian

metric associated to the Hessian D2
x gl of the Gibbs free energy gl

normalized by the entropy term Ds. This fact establishes a strong

one-to-one correspondence between the topology of the boiling

temperature surface and the underlying RCM.

2.3. Singularities of the RCMs

The main topological characteristics of a RCM is the structure of

its singular points defined by the set of points where the equilib-

rium vector field v vanishes and hence

xi ¼ yi; i ¼ 1; …; c (10)

These points are stationary points of the dynamical system

described by eq. (6). Physically, singular points represent the pure

states of the components or the azeotropic compositions and are

thus of practical importance. Under generic conditions, the singular

points of the RCM can only be of node (stable or unstable) or saddle

types. Before its formal demonstration [15,19], this fact was

established experimentally [12,21]. In Fig. 3 we show the local

behavior of the residue curves in the vicinity of the singular points

in the ternary case.

SN, UN and S in Fig. 3 refer respectively to stable node, unstable

node and saddle point. The only possible types of the RCMs singular

points are imposed by the gradient type of the dynamical system in

eq. (6) [20]. Moreover, according to eq. (9), the singular points of a

RCM are the critical points of the associated boiling temperature

function Tb. More precisely, in the ternary case [15,22], the stable/

instable nodes correspond to theminimum/maximumpoints of the

boiling temperature surface, and the saddles correspond to the

saddle points on this surface. Such a duality between the types of

singularities of the RCM and the critical points of the associated

boiling temperature function can be easily seen by comparing the

two sides of Fig. 2. According to the shape of the isotherms in the

vicinity of a critical point, one can distinguish the elliptic-type

points corresponding to the maxima/minima of the boiling tem-

perature (i.e., to the nodes of the RCM), and the hyperbolic-type

points corresponding to saddles.

2.4. Serafimov's classification of ternary VLE diagrams

The classification of the ternary VLE diagrams is based on

following nomenclature of the singular points of ternary RCMs:

N1 number of pure states of node (stable or unstable) type

(Fig. 3a);

N2 number of binary azeotropes of node (stable or unstable)

type (Fig. 3b);

N3 number of ternary azeotropes of node (stable or unstable)

type (Fig. 3c);

S1 number of pure states of saddle type (Fig. 3d);

S2 number of binary azeotropes of saddle type (Fig. 3e);

S3 number of ternary azeotropes of saddle type (Fig. 4f)

The Poincare - Hopf Index Theorem (see in Milnor (1965) [23]

for more details) implies a strict rule relating the total number of

singularities of a dynamical systemwith their type. In the case of a

ternary VLE system, it has the following form [15,24]:

2N3 þ N2 þ N1 ¼ 2S3 þ S2 þ 2 (11)

Serafimov's classification of ternary RCM diagrams is based on

this rule, completed by the following assumptions:

(i) the diagram contains at most one binary azeotrope for each

binary pair of components (N2 þ S2 * 3);

(ii) the diagram contains at most one ternary azeotrope

(N3 þ S3 * 1);

(iii) only generic (saddles and nodes) azeotropes are taken into

account.

Assumptions (i) e (iii) hold, except for a few rare cases with

multiple binary azeotropes and ternary azeotropes [25]. Using eq.

(11) constraint with assumptions (i) e (iii), Gurikov [24] proposed

Fig. 3. Stationary points of the residue curve mapsfrom Fig. 7 in Kiva et al. (2003) [12].



the first classification for ternary VLE diagrams, which was then

improved by Serafimov in 1970's [12]. Fig. 4 shows the 26 standard

Serafimov's classes which describe all possible topological struc-

tures of ternary RCM diagrams verifying assumptions (i) - (iii).

In this figure, the symbols (+) and (◦) refer to stable (unstable)

and unstable (stable) nodes, and V to a saddle point. Note that the

interchange of stable and unstable nodes simply reverses the di-

rection of the residue curves: the residue curves converge to stable

nodes, diverge from unstable nodes and have hyperbolic behavior

near the saddle points. The above classification uses the so-called

b.t-z notation, where b refers to the number of binary stationary

points, t refers to the number of ternary stationary points and z

allows to distinguish diagrams with the same b and t numbers but

with different residues curves shapes [12].

In view of the duality between the location and the type of

singular points of the RCM and the critical points of the corre-

sponding boiling temperature, it is possible to classify the feasible

topological classes of the VLE systems according to the type of the

boiling temperature critical points and the shape of the isotherm

curves instead of the residue curves, as it was proposed in Ser-

afimov et al. (2012) [27]. In the next section we extend this

approach to the flash point temperature surfaces of flammable

systems.

Fig. 4. Serafimov's classification for ternary VLE diagrams, extracted from Fig. 1 in Hilmen et al. (2002) [26].



3. Classification of the flash point temperature critical points

There exist various standard test methods for flash point mea-

surement. Heat rate is one of the differences in the values of

experimental parameters between these test methods. For

example, heat rate-1 is 1 ,C/min, 5e6 ,C/min, and 1.3 ,C/min for

ASTMD56, ASTMD93A and ASTMD93B, respectively. The degree of

equilibrium between liquid phase and gas phase is affected by the

heat rate during the flash point test, with low heat rate, long

equilibrium time, more approaching to equilibrium. It seems the

suitability of this study may depend on the standard test methods.

However, our previous study indicated that the difference in the

measured values of flash point for 1% (molar fraction) of ethanol

mixed with 99% of tetradecane is small, with the measured value

being 39.5 ,C and 41.3 ,C when based on ASTM D56 and ASTM 93B,

respectively [28]. In addition, Eq. (1) is applicable to the mixtures

when based on the flash point values of individual components,

irrespective of the data are obtained by the standard test method

ASTM D56, ASTM D93A, ASTM D1310-86 or ASTM D3971

[5e7,13,29e31], and it is more reliable than other models [31e33].

It seems that the vapor liquid equilibrium assumption for the

mixtures' components except for air, assumption in deriving Eq. (1),

is applicable in flash point prediction.

In this section we focus on the closed-cup flash point of ternary

mixtures. All the experimental data used in this study to validate

the proposed theory were obtained according to ASTM D56, with

low heat rate. On one hand we remark that the VLE theory argu-

ments cannot be applied straightforwardly to this flash point sys-

tem since not all the components are at thermodynamic

equilibrium for the latter. On the other hand, the available experi-

mental data and the results of numerical simulations of ternary

flammable mixtures suggest that flash point and boiling point

surfaces have similar topologies, as we prove below. In order to

validate this conjecture, first we have to re-consider the thermo-

dynamic properties of the flammable mixtures. Below we focus on

ternary mixtures, but the same arguments remain valid for any

number of components.

3.1. A closed-cup flash point system and the thermodynamic

equilibrium

Let us look in detail at the closed-cup flash point system con-

taining components 1, 2 and 3 in both liquid and vapor phases, and

component 4, air, being presented only in the vapor phase. Fig. 5a

represents the closed-cup flash point test, described by ASTM D 56

[34]. The pressure for the flash point measurement is kept constant

and equal to the atmospheric pressure. A spark is produced for a set

of temperatures, and the lowest temperature for which the spark

generates a flame is defined as the flash point temperature T for

that mixture at a given composition and pressure. It is assumed that

the described system, named as system S, satisfies the following

assumptions:

(a) the vapor phase has an ideal behavior;

(b) each component i in the vapor-air mixture (excluding the air)

is in equilibrium with the liquid mixture.

Under these assumptions, eqs. (1) and (2) are valid. However,

system S in Fig. 5a is not strictly at equilibrium, since the air is

assumed to be present only in the vapor phase. For this reason, the

chemical potentials of air in the two phases are different, and the

last of eq. (3) is not satisfied.

Now let us consider another system represented in Fig. 5b and

referred below as the system S’. Hereafter the “ 0 ” symbol is used to

mark its parameters.

The system S0 is composed of three compounds 10, 20 and 3’. We

assume that these compounds have the same interactions in the

liquid phase as the compounds 1, 2 and 3 of the system S, i.e., for a

given temperature Tand liquid composition x1; x2 ; x3, the activity

coefficients gi and g
0

i are the same. In contrast, the thermodynamic

characteristics of their vapor phases are different. More precisely,

we assume that

P
0 sat
i ðTÞ ¼

Psati ðTÞPatm

Psat
i;fp

(12)

In addition, we assume that the two systems, S and S0, share the

same liquid phase composition, and that they are kept at the same

temperature and pressure, but the vapor compositions of systems S

and S0 are not the same. More precisely, the parameters of two

systems are related as follows:

T
0

≡T ; P
0

≡Patm; x
0

i≡xi; y
0

i≡yi
Patm

Psat
i;fp

(13)

Here is now the demonstration that system S0 is at thermody-

namic equilibrium. As we shall also demonstrate from eq. (12), the

individual flash points of system S are the individual boiling points

of system S’. These conclusions will enable us to establish a novel

classification for flash point ternary diagram in the next section.

Theorem I. System S’ is at thermodynamic equilibrium

Proof. First of all, observe that system S’ is a correctly defined

thermodynamic system whose vapor phase contains only three

components. Indeed, since the liquid composition in both system S

and S’ is the same, Liaw’s law expressed by eq. (1) together with eq.

(13) and eq. (2) imply:

X3

i¼1

y
0

i ¼
z}|{
13ð Þ

X3

i¼1

yi
Patm

Psat
i;fp

¼
z}|{
2ð Þ
X3

i¼1

xigiP
sat
i

Patm
Patm

Psat
i;fp

¼
X3

i¼1

xigiP
sat
i

Psat
i;fp

¼
z}|{
1ð Þ

1

By construction, in both systems the temperature and pressure

are the same in the liquid and in the vapor phases:

T
0 l ¼ T

0
v ¼ T; P

0 l ¼ P
0
v ¼ Patm (14)

where T is the flash point temperature of the mixture in the closed-

cup flash point system. Hence the first two eq. (3) are satisfied. In

Fig. 5. The closed-cup flash point system S and the associated auxiliary system S’.



order to prove that the system S’ is at thermodynamic equilibrium,

it remains to prove that the components chemical potentials (or

equivalently their fugacities) in liquid and vapor phases are the

same, i.e., we have to prove that f
0 l
i ¼ f

0
v

i
for all components.

The Liaw’s flash point model - eq. (1) - for the closed-cup flash

point system is based on the ideality assumption of the vapor at the

atmospheric pressure (assumption (a)). Under this assumption we

have [17]:

f
0
v

i ¼ y
0

if
00 v

i pure (15)

where f
00 v

i pure denotes the fugacity of pure component i
0

in the vapor

phase, f
0
v

i
represents the fugacity of component i

0

in the vapor

mixture, and y
0

i is the mole fraction of i
0

in the vapor phase. The

ideality assumption reads:

f
00 v

i pure ¼ Psyst0f
0
v

i ¼ y
0

iP
syst (16)

The activity coefficients of system S’ can be defined as follows

[16]:

g
0

i≡
f
0 l
i

f
0 l
i ideal

¼
f
0 l
i

x
0

i
f
00 l
i

(17)

Here Lewis/Randall reference state (Fig. 6a) is chosen for the liquid

phase. In particular, this means that in eq. (17) f
00 l
i represents the

fugacity of pure component i
0

in the liquid phase at the conditions

(pressure and temperature) of system S’.

It is complicated to derive an explicit expression for f
00 l
i directly

at the Lewis/Randall state (Fig. 6a). Instead, let us consider a single-

component system containing only component i
0

at the reference

state defined by the same temperature T, but at Psati , as shown in

Fig. 6b. Below we will mark by (*) the parameters related to the

saturated pressure reference state.

Fig. 6b represents a system in thermodynamic equilibrium, and

so eq. (3) are valid. Replacing eq. (16) into eq. (5) for the systems of

Fig. 6b we get:

P
0 sat
i ¼ f

0
* l
i pure (18)

Here f
0
* l
i pure is the fugacity in the liquid phase of compound i

0

in the

system shown in Fig. 6b. According to Koretsky (2013) [16], the

fugacity in the liquid phase is a weak function of pressure at

pressures below 100 bar. Hence

f
0
* l
i pure ¼

def
f
0 l
i pure

+
+
+
T ;Psat

i

yf
0 l
i pure

+
+
+
T;Patm

¼ f
00 l
i 0f

00 l
i ¼
z}|{
18ð Þ

P
0 sat
i (19)

Then substituting eq. (19) into eq. (17) yields

g
0

i ¼
f
0 l
i

x
0

i
P

0 sat
i

(20)

Recall now that system S’ and the closed-cup flash point system

S have the same activity coefficients for given pressure, tempera-

ture and liquid composition. Therefore g
0

i≡gi. In view of eqs. (13),

(16) and (20), in order to conclude the proof, it is sufficient to

show that

xigiP
0 sat
i ¼ y

0

iP
atm

; i ¼ 1;2;3 (21)

Inserting eq. (2) into the last of eq. (13) yields:

y
0

i ¼
xigiP

sat
i

Psat
i;fp

(22)

Expressing Psati from eq. (12) and replacing it into eq. (22) yields:

y
0

i ¼
xigiP

0 sat
i

Patm
(23)

Eq. (23) is equivalent to eq. (21), and hence the liquid and the

vapor fugacities are equal for all components of system S’. Together

with eq. (14) this implies that S’ is at thermodynamic equilibrium

and the theorem follows.

The following facts are the immediate consequences of eq. (12)

(Corollary 1) and Theorem I (Corollaries 2-4).

Corollary 1. The flash point temperatures of pure components 1, 2

and 3 are actually the normal boiling temperatures of pure compo-

nents 10, 20 and 30

Proof. By definition, Psat
i;fp

¼ Psati ðTi;fpÞ, so by writing eq. (12) at T ¼

Ti;fp we get

P
0 sat
i

%

Ti;fp

&

¼
Psati

%

Ti;fp

&

Patm

Psat
i;fp

¼
Psat
i;fp

Patm

Psat
i;fp

¼ Patm (24)

Since the temperature for which the saturation pressure equals

the atmospheric pressure is the normal boiling temperature,

Corollary 1 is demonstrated.

Corollary 2. The critical points of the flash point temperature of

system S are the stationary points of the dynamical system

dxiðxÞ

dx
¼ xiðxÞ $

yiðxðxÞÞP
atm

Psat
i;fp

; i ¼ 1; 2 (25)

Proof. By construction, in the three-dimensional state space

fðx; TÞg the flash point temperature surface of system S and the

boiling temperature surface of system S’ coincide. According to

Theorem I, the system S’ is a VLE system. Hence, as it follows from

eq. (9), the critical points of its boiling temperature are the singular

points of the associated equilibrium vector field v
0 ¼ ðx

0

1 $ y
0

1; x
0

2 $

y
0

2Þ. In other words, they are stationary points of the residue curves

equations of system S’, which, in view of eq. (13), has the form of eq.

(25).

Corollary 3. The number and the type of critical points of the flash
Fig. 6. The Lewis/Randall reference state (a) vs. reference state at saturation pressure

Psati (b).



Fig. 7. Flash point classification represented by isotherm lines diagrams, adapted from Serafimov et al. (2012) [27].



point temperature of the closed cup system S verify the following rule

2M3 þM2 þM1 ¼ 2S3 þ S2 þ 2 (26)

whereMi and Si stand for the minima/maxima and saddle points of the

flash point temperature surface, the sub-index i referring to: ternary

compositions (i¼3), binary compositions (i¼2), and pure states (i¼1).

Proof. Recall that local maxima/minima or saddle points of the

boiling temperature surface correspond to the nodes and saddles of

the underlying RCM. So, the result follows from Corollary 2 and the

Poincare-Hopf index theorem written in the form of eq. (11).

Corollary 4. For critical points of the flash point surface inside the

composition triangleð0< xci <1; i ¼ 1;2;3Þ, the following relation is

valid:

giP
sat
i

Psat
i;fp

+
+
+
+
+
xc

¼ 1; i ¼ 1; 2; 3 (27)

Proof. Eq. (27) follows directly from the well-known definition of

azeotropic points of a VLE system expressed in terms of the dis-

tribution coefficients [12]:

K1 ¼ K2 ¼ K3 ¼ 1 (28)

For an isobaric system kept at atmospheric pressure, eq. (28)

reads

g1P
sat
1

Patm

+
+
+
+
+
xazeo

¼
g2P

sat
2

Patm

+
+
+
+
+
xazeo

¼
g3P

sat
3

Patm

+
+
+
+
+
xazeo

¼ 1 (29)

Since the critical points of the flash point temperature of system

S coincide with the critical points of the boiling temperature of

system S’, the critical points lying inside the composition triangle

correspond to a ternary azeotropes of system S’. Hence

g
0

iP
0 sat
i

Patm

+
+
+
+
+
xc

¼ 1; i ¼ 1; 2; 3 (30)

Since g
0

i ¼ gi the result follows from eq. (12).

More corollaries can be added but are not essential for estab-

lishing the classification of the flash point temperature surfaces.

3.2. Classification of the flash point temperature surfaces

As we showed in Section 3.1, the flash point temperature sur-

faces of closed cup systems are topologically equivalent to the

boiling temperature surfaces of VLE systems.We stress out that this

equivalence does not stand for one particular mixture. Rather, the

set of all topologically feasible flash point surfaces is identical to the

set of all topologically feasible boiling temperature surfaces. Thus,

the Serafimov's classification of the topological structure of iso-

therms of ternary VLE systems [27] can be extended to the flash

point temperature level sets. It concerns in theorymixtures with no

flash point extremum, with minimum flash point behavior, with

maximum flash point behavior or with maximum minimum flash

point behavior. In practice, up to now the maximum FP behavior

and the maximum minimum FP behavior have not been described

for ternary mixtures yet. Fig. 7 shows this new classification ob-

tained under the assumptions equivalent to those discussed in

Section 2.4:

Table 1

Data of pure compounds.

Compound Flash point Tfp Antoine coef.

propyl acetatea 11.8 ,C A¼ 4.05548

B¼ 1233.46

C¼$70.07

IPAa 12.9 ,C A¼ 5.24268

B¼ 1580.92

C¼$53.54

octanea 14.5 ,C A¼ 4.05075

B¼ 1356.36

C¼$63.515

methanol 10 ,C A¼ 82.718

B¼ 6904.5

C¼$8.8622

D¼ 7.4664E-6

E¼ 2

toluene 4 ,C A¼ 76.945

B¼$6729.8

C¼$8.179

D¼ 5.3017E-6

E¼ 2

acetonitrile 5 ,C A¼ 58.302

B¼$5385.6

C¼$5.4954

D¼ 5.3634E-6

E¼ 2

Methyl methacrylate 10 ,C A¼ 107.36

B¼$8085.3

C¼$12.72

D¼ 8.3307E-6

E¼ 2

1,2 - dichloroethane 15 ,C A¼ 92.355

B¼$6920.4

C¼$10.651

D¼ 9.1426E-6

E¼ 2

Phenolb 81 ,C A¼ 4.26906

B¼ 1523.420

C¼$97.75

acetophenoneb 83.5 ,C A¼ 7.45474

B¼ 1950.500

C¼$49.118

1-octanolb 88 ,C A¼ 3.90225

B¼ 1274.800

C¼$141.16

a Antoine coefficients obtained from Poling et al. (2001) [38].
b Antoine coefficients obtained from Gmehling et al. (1978) [39].

Table 2

Calculated compositions corresponding to critical ternary points on flash point temperature surface.

Composition

x1 x2 x3 Tð,CÞ g1P
sat
1

Psat
1;fp

g2P
sat
2

Psat
2;fp

g3P
sat
3

Psat
3;fp

propyl acetate þ IPA þ n-octane 0.24 0.36 0.40 5.5 1.00 0.99 1.01

methanol þ toluene þ acetonitrile 0.255 0.456 0.289 $3.5 1.00 1.00 1.00

methanol þ methyl methacrylate þ1,2-dichloroethane 0.425 0.282 0.293 2.6 1.00 1.00 1.00

phenol þ acetophenone þ 1-octanol 0.47 0.21 0.32 87.5 1.00 1.01 1.00



(i’) The diagram contains at most one binary flash point for each

binary pair of components;

(ii’) The diagram contains at most one ternary flash point;

(iii’) Only generic (saddles and nodes) flash points are taken into

account.

In Fig. 7, “fp 3” stands for ternary flash point mixture, and the

remaining is similar to b.t-z notations used in Fig. 4. The curves

inside the composition triangles represent topologically correct

sketches of the isotherms of the flash point temperature, i.e., the

projections on the composition space of the constant level sets of

the temperature on the flash point temperature surface. In addi-

tion, Ei stands for elliptical points, while Hi stands for hyperbolic

points, the index i referring to: ternary compositions (i¼3), binary

compositions (i¼2), and pure components (i¼1). Recall that the

terms “elliptic” and “hyperbolic” describe the shape of the iso-

therms in the neighborhood of the critical points of T: the maxima/

minima points generate a family of closed elliptic curves, whereas

the saddle points generate hyperbolic shape isotherms. Further-

more, we distinguish minimum and maximum points using the

superscript (’). In other words, if E is a minimum (maximum) on the

surface, E0 is a maximum (minimum).

Fig. 8. Experimental and predicted flash point surface of different mixtures, adapted from Liaw and Chen (2013) [13]. Copyright 2013 American Chemical Society.



According to Corollary 3, the number and the type of the

minima/maxima and saddle points on the flash point temperature

surface must satisfy eq. (26), which can be adapted to the novel

classification presented in Fig. 7 as follows:

2E3 þ E2 þ E1 ¼ 2H3 þ H2 þ 2 (31)

One interesting consequence of this rule is that a ternary min-

imum flash point cannot appear without binary minima/maxima,

as seen in Fig. 7. So, to keep the safety of ternary mixtures with

binary components not presentingmaximum/minimum flash point

behavior, it is sufficient to manipulate them at a temperature

inferior to the minimum flash point temperature of its pure com-

pounds. On the other hand, the presence of a single minimum bi-

nary flash point in a mixture may generate ternary minimum flash

point temperatures, as seen for category fp3.1.1-1a, which would

increase the fire and explosion hazard of the mixture.

4. Results and discussion

4.1. Ternary flash points: simulation data

In this section we compare the ternary flash point criterion

formulated in Corollary 4 with the simulation data. To the best of

our knowledge, until now no ternary mixture has been reported to

present a singular flash point inside the composition triangle:

0< xci <1; i ¼ 1;2;3. However, by inspection we found 4 ternary

mixtures for which our flash point prediction model forecasts such

behavior: propyl acetate þ isopropanol (IPA) þ octane,

methanol þ toluene þ acetonitrile, methanol þ methyl

methacrylate þ 1,2-dichloroethane and

phenol þ acetophenone þ 1-octanol. The results of numerical

simulations presented in Table 2 suggest that the three former

mixtures present a ternary minimum flash point and belong to

fp3.3.1e2 class, while the last mixture presents a ternary saddle

point and thus belongs to fp3.3.1e4 class.

Table 3

Experimental and simulated molar compositions and flash point temperature (in ,C) of critical points displayed in Fig. 8 [13].

IPA (1) þ ethanol (2) þ octane (3)

(Fig. 8a)

2-butanol (1) þ ethanol

(2) þ octane (3)

(Fig. 8b)

Cyclohexanol (1) þ ethanol

(2) þ octane (3)

(Fig. 8c)

prediction measurement prediction measurement prediction measurement

Flash point of pure component (1) e (1,0,0)

T¼ 12.9

e (1,0,0)

T¼ 22.0

e (1,0,0)

T¼ 67.2

Flash point of pure component (2) e (0,1,0)

T¼ 13.0

e (0,1,0)

T¼ 13.0

e (0,1,0)

T¼ 13.0

Flash point of pure component (3) e (0,0,1)

T¼ 14.5

e (0,0,1)

T¼ 14.5

e (0,0,1)

T¼ 14.5

Binary minimum flash point (1þ3) (0.47,0,0.53)

T¼ 6.3

(0.6,0,0.4)

T¼ 6.7

(0.26,0,0.74)

T¼ 10.7

(0.4,0,0.6)

T¼ 10.7

e e

Binary minimum flash point (2þ3) (0,0.67,0.33)

T¼ 4.3

(0,0.5,0.5)

T¼ 4.7

(0,0.67,0.33)

T¼ 4.3

(0,0.5,0.5)

T¼ 4.7

(0,0.67,0.33)

T¼ 4.3

(0,0.5,0.5)

T¼ 4.7

Fig. 9. Experimental and predicted flash point surface of two different mixtures, extracted from Fig. 9 and 10 in Liaw et al. (2011) [5].



The simulations were made using Simulis Thermodynamics®

software [35]. Eq. (1) was solved implicitly for T, using UNIFAC

Dortmund 93 model to compute the activity coefficients. The flash

point temperatures of the pure compounds have been taken from

experimental measures for propyl acetate, IPA, octane, phenol,

acetophenone and 1-octanol; Liaw et al. (2011) [5] for methanol;

Alfa Aesar [36] for the remaining compounds. For pressure com-

putations we used the Antoine equation log10ðP
satÞ ¼ Aþ B

TþC for

propyl acetate, IPA, octane, phenol, acetophenone, 1-octanol, and

the DIPPR equation [37] lnðPsatÞ ¼ Aþ B
T þ C lnðTÞ þ DTE for other

compounds, where T is measured in K and P is in bar for the formers

(except for acetophenone in mmHg) and Pa for the latter.

One can see that the values of
giP

sat
i

Psat
i;fp

are very close to 1 at the

ternary critical points, validating Corollary 4.

4.2. Flash point classification to measured and simulated flash point

surfaces

The lack of available flash point data for ternary mixtures makes

it difficult to validate experimentally all classes in the new flash

point classification. Notice that the same issue arises for Ser-

afimov's classification for VLE systems: only 16 out of 26 classes had

been reported experimentally until 2003 [12]. To overcome this

problem, we combined experimental and theoretical flash point

surfaces in this section. The theoretical approach was made by

simulations, as described in section 4.1.

In Fig. 8, the white squares correspond to measured data. Blue

dots are predicted flash points calculated based on UNIFAC Dort-

mund 93 model. The experimental and simulated critical points

compositions of the surfaces shown in Fig. 8 are summarized in

Table 3.

Fig. 8 a shows the flash point temperature surface for the

mixture isopropanol þ ethanol þ octane. Its binary constituent

mixtures ethanol þ octane and isopropanol þ octane exhibit

minimum flash point behavior. However, isopropanol þ ethanol

mixture behaves ideally, and so, it does not present such a behavior.

Hence the mixture in Fig. 8a, isopropanol þ ethanol þ octane, is of

type fp3.2.0-2b.

The mixture 2-butanol þ ethanol þ octane (Fig. 8b) has the

same topology as the mixture in Fig. 8a, and so belongs to the same

category fp3.2.0-2b.

In the mixture cyclohexanol þ ethanol þ octane, the binary

ethanol þ octane shows a minimum flash point temperature. This

mixture is of type fp3.1.0-1a.

Fig. 9 reports experimental and simulation results for the flash

point of two ternary mixtures. In this figure, white squares

correspond to experimental data, bluedots correspond to predicted

flash point based on UNIFAC Dortmund 93model. The critical points

composition of the surfaces shown in Fig. 9 are summarized in

Table 4.

Mixture methanol þ ethanol þ acetone has no binary minima/

maxima, and thus it belongs to type fp3.0.0e1. Mixture

methanolþmethyl acetateþmethyl acrylate has no ternary critical

point, but it presents one binary critical point. This critical point

corresponds to a minimum flash point for the binary mixture

methanol þ methyl acrylate, and it has a hyperbolic shape on the

flash point surface in Fig. 9b. Therefore, this mixture corresponds to

category fp3.1.0e2. Note that, despite some deviation from the

experimental data, all thermodynamic models predict the correct

topology for both mixtures in Fig. 9. The difference in composition

exhibiting minimum flash point behavior between the measured

data and the simulated one for IPA þ octane, ethanol þ octane, 2-

butanol þ octane, cyclohexanol þ octane and methanol þ methyl

acrylate, which are displayed in Figs. 8 and 9, is attributed to that

Table 4

Experimental and simulated molar compositions and flash point temperature (in ,C) of critical points displayed in Fig. 9 [5].

Methanol (1) þ ethanol (2) þ acetone (3)

(Fig. 9a)

Methanol (1) þ methyl acetate (2) þ methyl acrylate (3)

(Fig. 9b)

prediction measurement prediction measurement

Flash point of pure component (1) e (1,0,0)

T¼ 10.0

e (1,0,0)

T¼ 10.0

Flash point of pure component (2) e (0,1,0)

T¼ 13.0

e (0,1,0)

T¼$14.4

Flash point of pure component (3) e (0,0,1)

T¼$18.6

e (0,0,1)

T¼$2.1

Binary minimum flash point (1þ3) e e (0.24,0,0.76)

T¼$3.8

(0.15,0,0.85)a

T¼$2.5a

(0.4,0,0.6)

T¼$2.6

a Simulation based on original UNIFAC model.

Fig. 10. Experimental and predicted flash point surface of propyl acetate (1) þ IPA

(2) þ octane (3).



the flash point values almost remain constant over a broad

composition range, covering the measured and simulated compo-

sitions [5].

Fig. 10 shows experimental and predicted flash point tempera-

tures for the mixture propyl acetate þ IPA þ octane. Differently

from Figs. 8 and 9, the data shown in Fig. 10 have not been pub-

lished in other papers. The critical points composition of the surface

of propyl acetate þ IPA þ octane are summarized in Table 5. The

three binary constituents of propyl acetate þ IPA þ octane show

minimum flash point behavior, with the experimental minimum

flash point values of the binary constituents being 8.2 ,C, 8.1 ,C,

6.3 ,C (Fig. 10). Blue dots predictions are based on the UNIFAC

Dortmund 93 model; red dots predictions are based on the original

UNIFAC model. The estimated minimum flash point of the ternary

mixture is 5.5 ,C and 5.1 ,C at molar fractions of propyl acetate, IPA

being 0.24, 0.36 and 0.18, 0.40 when based on UNIFAC-Dortmund

93 and original UNIFAC model, respectively. The experimental

minimumvalue is 5.1 ,C at molar fractions of propyl acetate and IPA

being 0.2 and 0.4 (Fig. 10). Hence, the topology for propyl

acetate þ IPA þ octane corresponds to fp3.3.1e2.

The color maps shown in Fig. 11a and Fig. 11bwere generated by

simulation. For both presented mixtures, the model forecasts

ternary minimum flash points, which have not yet been confirmed

by experiments. These two mixtures are classified as type

fp3.3.1e2.

Fig. 12 shows the color map of the flash point temperature

function for the mixture phenol þ acetophenone þ 1-octanol. The

data has also been generated by simulation. We clearly see the

hyperbolic behavior of the isotherms, which is an indicator of a

ternary saddle point on the flash point temperature surface. Hence,

this mixture belongs to fp3.3.1e4 type. The mixture's flash point

Fig. 11. Predicted flash point surface of two different mixtures (temperature scale in Celsius).

Fig. 12. ePredicted flash point surface for fp3.3.1e4 class

phenol(1) þ acetophenone(2) þ 1-octanol(3) (temperature scale in Celsius).

Table 5

Experimental and simulated molar composition and flash point temperature (in ,C)

of critical points of propyl acetate þ IPA þ octane.

propyl acetate (1) þ IPA

(2) þ octane (3)

prediction measurement

Flash point of pure component (1) e (1,0,0)

T¼ 11.8

Flash point of pure component (2) e (0,1,0)

T¼ 12.9

Flash point of pure component (3) e (0,0,1)

T¼ 14.5

Binary minimum flash point (1 þ 2) (0.58,0.42,0)

T¼ 8.2

(0.5,0.5,0)

T¼ 8.2

Binary minimum flash point (1 þ 3) (0.6,0, 0.4)

T¼ 8.7

(0.6,0,0.4)

T¼ 8.1

Binary minimum flash point (2 þ3) (0,0.47, 0.53)

T¼ 6.3

(0,0.6,0.4)

T¼ 6.3

Ternary minimum flash point (1 þ 2 þ 3) (0.24,0.36,0.40)

T¼ 5.5

(0.2,0.4,0.4)

T¼ 5.1



behavior has not been confirmed by experiments yet. Table 6

summarizes the binary critical flash point simulation data for

mixtures in Figs. 11 and 12. Flash point temperature for the indi-

vidual components is given in Table 1, and data for the ternary

critical points are presented in Table 2.

Unfortunately, lack of experimental data prevents us from

making statistical studies on the most occurring classes.

5. Conclusion

By creating an auxiliary VLE system associated to a given closed-

cup flash point system, it was possible to extend the main results of

the VLE theory to propose a classification of the flash point tem-

perature diagrams for ternary miscible flammable mixtures anal-

ogous to the Serafimov isotherms classification [27]. This

classification, shown in Fig. 7, was used to analyze several ternary

mixtures in section 4.2. In some cases, it may also be able to predict

the existence or the absence of critical and potentially dangerous

behavior of the flash point temperatures, even without ternary

experimental data. For instance, knowing that a ternary mixture

does not present binary minimum flash points is enough to ensure

that this mixture will not present a ternary minimum flash point.

More experimental data on flash point temperatures of ternary

mixtures is desirable to validate the proposed classification and to

establish the flash point temperatures behavior for the most

common mixtures. It could also enable to establish a statistical

occurrence of each diagram that would help engineers to better

assess potential risks. For example, statistical studies may show a

strong correlation between some functional groups in a mixture

and the corresponding type of flash point surface. During the

screening of potential solvents for an extraction operation, engi-

neers could use this to discard solvents which will form potential

hazardous mixtures with the process' stream.
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Table 6

Simulated molar composition and flash point temperature (in ,C) of binary critical

points displayed in Figs. 11 and 12.

Fig. 11a Fig. 11b Fig. 12

(1þ2) (0.4,0.6,0)

T¼$2.2

(0.5,0.5,0)

T¼ 3.8

(0.45,0.55,0)

T¼ 90.0

(1þ3) (0.35,0,0.65)

T¼ 1.9

(0.5,0,0.5)

T¼ 4.4

(0.26,0,0.74)

T¼ 89.3

(2þ3) (0,0.5,0.5)

T¼$1.3

(0,0.6,0.4)

T¼ 8.2

(0,0.65,0.35)

T¼ 80.8


