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We present, in this paper, numerical simulations of bubble sloshing in a spherical
tank, resulting from a tank rotation around a fixed axis in microgravity conditions.
This configuration is of great interest in space applications where sloshing can
have harmful effects on the stability of satellites. Depending on the dimensionless
numbers characterising this phenomenon, our study is focused on the motion and the
deformation of a bubble, initially at rest, which is set in motion when the manoeuvre
is starting until it reaches a constant rotation speed around the axis. It is shown in
this article that, during the first stage of the manoeuvre, the motion of the bubble
is essentially driven by the inertial force that depends on the angular acceleration.
Next, when the angular velocity is increasing, the centrifugal force being dominant,
the trajectory of the bubble is pushed towards the direction between the centre of the
tank and the axis of rotation. Finally, when the angular velocity becomes constant,
the bubble, reaching a quasi-steady position, is deformed and pressed against the
solid boundary of the tank. A quantified description of these phenomena is proposed
through a parametric study varying the essential dimensionless numbers, i.e. the
Bond number based on the angular velocity, and another Bond number based on the
angular acceleration. As the temporal evolution of the forces acting on the satellite
wall is of utmost importance for designing satellites and manoeuvres, we also present
an analysis characterising the latter. We also detail the first comparisons between
the numerical simulations and the Fluidics experiment performed in the International
Space Station (ISS) in microgravity conditions. Thanks to these comparisons, we can
validate the simulations in configurations of interest.
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1. Introduction
The sloshing of a liquid phase contained in a tank under the effect of an external

force is a topic of high interest in many applications. Several disruptions can affect
the stability of a satellite. They may originate from the space environment, as
solar winds, magnetic fields or atmospheric residues. Furthermore, they may come
from the satellite itself such as inertial reactions due to propulsion or internal
mechanisms, construction defects, sloshing generated by flexible components (solar
panel or antenna) or fluids inside the tank. It is well known (Lepilliez 2015) that
the magnitude of fluid sloshing disruption is one of the most important of all those
cited. Indeed, during its lifetime in space, a satellite will execute a wide range of
operational manoeuvres, such as reorientation of an Earth observation device or solar
panels. During these manoeuvres, inertial forces acting on propellant tanks will induce
sloshing of a helium bubble formed inside these tanks after the latter gas was injected
to maintain a sufficient pressure. By generating forces and torques on the structure,
this bubble sloshing can deteriorate the quality of satellite imaging. Substantial
efforts are undertaken to predict this unexpected phenomenon in order to propose
technical solutions to decrease the amplitude of bubble sloshing in microgravity
conditions. Several previous studies have been conducted to predict slosh behaviour
inside a satellite tank, as in Abramson (1967) and Dodge (2000), where analytical
models were proposed, respectively based on a one-dimensional mass–spring system
or a pendulum system. The motion of the centre of mass was deduced from a
second-order linear equation which gives the sloshing frequency, the damping ratio
and allows calculation of the sloshing forces. These models provide a correct order
of magnitude of the sloshing parameters for high values of Bond number (Bo > 10)
and are currently used in the space industry, in particular for high thrust manoeuvres.
However, they become inefficient for applications involving lower values of the
Bond number where surface tension effects cannot be neglected, leading to nonlinear
equations. Several theoretical studies have also been proposed recently (Faltinsen &
Timokha 2010; Faltinsen, Firoozkoohi & Timokha 2011; Ikeda et al. 2012; Faltinsen
& Timokha 2013) in configurations involving circular, spherical or rectangular tanks.
Considering the complexity of these phenomena where a strongly perturbed interface
can interact with a complex geometry in nonlinear regimes, numerical simulations, as
the ones presented in Veldman et al. (2007), Liu & Lin (2008), are complementary
to theoretical studies in order to push back the limits of our knowledge in the field of
sloshing. However, none of the previous studies have considered the bubble motion in
a spherical tank subjected to an external force, as can occur during the manoeuvring
of a satellite in microgravity conditions. Little experimental data exist on bubble
sloshing in microgravity conditions, and significant advances are expected by using
the direct numerical simulation to investigate the low Bond number regimes which
are of great interest for satellite station keeping, rather than high thrust manoeuvres.
Consequently, the present study is focused on configurations involving external forces
which have the same order of magnitude or a smaller magnitude than the capillary
forces, i.e. for a low Bond number varying between 0.05 and 5.

The objectives of this paper are as follows; (i) first, by providing accurate
comparisons between well-resolved three-dimensional numerical simulations and
microgravity conditions experiments, a strong validation of the overall numerical
methodology is given in the considered configurations, (ii) secondly, depending
on the dimensionless numbers, a detailed numerical study of the bubble motion is
presented both in the first unsteady phase and in the steady phase of the manoeuvring,
finally (iii) a numerical investigation on the steady bubble deformation depending on
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the centrifugal Bond number is detailed. As this parameter is of utmost importance
for the design of satellites, our study also includes an analysis on the forces acting
on the tank wall during the manoeuvre.

In § 2, the tank configuration in microgravity conditions is presented. The
dimensionless analysis of the governing equations highlights the dominating effects
coming from the inertial forces which are expressed with two Bond numbers. Some
of the physical hypotheses we make are also justified in this section, such as the
incompressibility of both phases and the perfectly wetting contact angle model.
Section 3 details the formalism and the numerical methods we implement to model
the fluids’ behaviour inside the tank. Then the validation of our numerical code with
experimental data collected in the International Space Station is presented in § 4.
The evolution of the centre of mass of the fluids inside the tank is investigated in
§ 5. After presenting a space convergence study and an example of bubble behaviour
during a manoeuvre, the trajectory of the centre of mass of the fluid medium is
analysed depending on the dimensionless parameters. A focus on the oscillation
regime and on the equilibrium position of the centre of mass is presented. The forces
acting on the solid frontier at the steady state are also investigated in this section.
Finally, § 6 depicts the bubble shape evolution through time. The capillary wave and
the first bounces of the bubble against the tank wall are studied and the equilibrium
shape of the bubble is described.

2. Formalism and description of the tank modelling
We propose in this section, a description of the satellite tank configuration and the

manoeuvres we enforce. The analysis of the dimensionless Navier–Stokes equations
emphasises the dominating effects and physical assumptions are justified.

2.1. Dimensionless Navier–Stokes equations
Consider a domain Ω = Ωf ∪ Ωs with boundary ∂Ω . The regions Ωf and Ωs
represent the fluid and solid regions, respectively. The boundary between the fluid
and the solid, denoted by Γs, is a sphere of diameter Dt which symbolises the tank
wall. The incompressible Navier–Stokes equations for Newtonian single-phase flows
can be written

∇ · u= 0 in Ωf , (2.1)

ρ

(
∂u
∂t
+ (u · ∇)u

)
=−∇p+∇ · (2µD)+Fext in Ωf , (2.2)

where t is the time, ρ the fluid density, u = (u, v, w) the velocity field, µ the fluid
viscosity, p the pressure, Fext the volume forces induced by the motion of the satellite
and D is the rate-of-deformation tensor defined as

D =
∇u+∇uT

2
. (2.3)

We now divide the fluid domain Ωf into two parts, a liquid and a gas region
denoted by Ωl and Ωg, respectively. (We consider a liquid region and a gas region
for the sake of presentation, but this work is equally applicable to two liquids.) The
interface between the two fluids is called Γ and n is its outward normal. Likewise, ns
corresponds to the outward normal of the solid’s boundary Γs. Initially, the liquid–gas
interface is a sphere, the liquid is in contact with the tank wall and the gas forms a
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FIGURE 1. (Colour online) Typical positioning of tanks in a satellite and inside view of
a tank.

spherical bubble of diameter D0 in the centre (see figure 1). The density and viscosity
fields are discontinuous at the interface and the effect of the surface tension σ must
be considered.

In order to understand the prominent physical effects involved in this configuration,
we present here the expressions of the external forces acting in the Navier–Stokes
equations (2.1) and (2.2). The equations are solved in the frame of the tank which is
a non-Galilean referential when the satellite is rotating. Figure 1 shows that satellite
tanks are usually not aligned with the rotation axis. As a consequence, external forces,
induced by the rotation of the tank around the rotation axis, such as inertial and
Coriolis effects (although the latter forces are weak in the configurations discussed
in this study), are taken into account. The Coriolis acceleration a1 is expressed as
follows,

a1 = 2Ω × u, (2.4)

where Ω =Ωez is the angular velocity vector of the satellite. The inertial acceleration
ace is the sum of the Euler acceleration a2, the centrifugal acceleration a3 and the
acceleration aR between the centre of mass of the satellite and the tank.

ace = a2 + a3 + aR with a2 = Ω̇ ×OM and a3 =Ω × (Ω ×OM), (2.5a,b)

where Ω̇ = Ω̇ez the angular acceleration vector, OM the position vector of the fluid
particle, defined as OM= xex+ (L+ y)ey+ zez with L the lever arm (distance between
the centre of the tank and the axis of rotation). As the tank is fixed to the satellite, aR
is null. After defining the forces induced by the change of referential, we give now
the expression of the Navier–Stokes equations in the frame of a rotating tank,

∇ · u= 0, (2.6)

ρ

(
∂u
∂t
+ (u · ∇)u

)
=−∇p+∇ · (2µD)+ ρ(a1 + ace). (2.7)

To define dimensionless Navier–Stokes equations in our configuration, the latter two
expressions can be specified with the dimensionless variables,

ρ∗ =
ρ

ρl
, µ∗ =

µ

µl
, p∗ =

pD0

σ
, u∗ = u

√
ρlD0

σ
, t∗ = t

√
σ

ρlD3
0
, (2.8a−e)

∇
∗
=D0∇, a∗1 =

a1

γ
, a∗2 =

a2

γa
, a∗3 =

a3

γ
, (2.9a−d)
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 with γ and γa characteristic accelerations of the flow that are defined below. Then the 
Navier–Stokes equations become

∇
∗
· u∗ = 0, (2.10)

ρ∗
(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
=−∇

∗p∗ +Oh∇∗ · (2µ∗D∗)+ Boiρ
∗a∗2 + Bocρ

∗(a∗1 + a∗3),

(2.11)

with Oh the Ohnesorge number and two Bond numbers, defined as

Oh=
(

µ2
l

ρlσD0

)1/2

, Boc =
ρlγD2

0

σ
, Boi =

ρlγaD2
0

σ
. (2.12a−c)

The Bond numbers compare the inertial effects induced by the satellite motion
to surface tension effects, and the Ohnesorge number compares viscosity to surface
tension effects. The two different accelerations, γ and γa, are respectively based on
the angular velocity Ω , such as γ =Ω2L, and the angular acceleration γa = Ω̇L. As
a result, the following two Bond numbers can be defined to characterise our physical
system,

Boc =
ρlΩ

2LD2
0

σ
, Boi =

ρlΩ̇LD2
0

σ
, (2.13a,b)

where Boc is the Bond number related to the angular velocity responsible of
centrifugal forces, and Boi the Bond number depending on the angular acceleration.

2.2. Description of the tank and the manoeuvres
The spherical tank has a diameter of Dt= 0.585 m and is not aligned with the rotation
axis of the satellite. The lever arm, for which the value is L= 0.4 m, is the distance
between the centre of the tank and the axis of rotation. The properties of the fluids
included in the tank (close to the actual properties of fluids used in space applications)
are ρl = 1004 kg m−3, µl = 9.13 × 10−4 kg m−1 s−1 for the liquid phase, and ρg =

2.41 kg m−3, µg = 1.99× 10−5 kg m−1 s−1 for the gas phase. The surface tension is
equal to σ = 0.03325 N m−1. The bubble is initially located at the centre of the tank.
As the wall of the tank is perfectly wet, the static contact angle is set to θs = 0◦,
preventing the formation of a contact line on the solid frontier. This assumption is
justified in § 2.3.

The manoeuvres consist in a rotation of the satellite around its vertical axis ez.
They can be split in two steps, first a constant acceleration phase, Ω̇ = Cste 6= 0
and Ω(t)= Ω̇t until the final angular velocity Ω is reached. In the second step, the
angular acceleration is stopped Ω̇ = 0, and the final angular velocity is maintained
to its final value Ω . These angular acceleration and final velocity are respectively
related to the impulsional and centrifugal Bond numbers defined in (2.13). Figure 2
illustrates the evolution of Boc and Boi throughout the manoeuvre. The figure on the
left presents two configurations with the same Boi to reach different values of the final
Boc, whereas the figure on the right shows two different Boi to obtain the same Boc
in the final step of the manoeuvre.

The range of the Bond numbers are described in tables 1 and 2 in the case of a
half-filled tank. The corresponding angular accelerations and velocities are low values,
which correspond to low inertial manoeuvres.

https://doi.org/10.1017/jfm.2018.389
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


(a) (b)

cste
cste

FIGURE 2. (Colour online) Examples of different velocity profiles, with the evolution of
Ω throughout the manoeuvre.

Boi 0.116 0.58 1.16 2.32 5.8

Ω̇ (10−3 rad s−2) 0.045 0.223 0.445 0.892 2.229

TABLE 1. Inertial parameters used for this study for τfill = 50 %: Boi and Ω̇ .

Boc 0.058 0.116 0.29 0.58 1.16 2.90 5.80

Ω (10−2 rad s−1) 0.472 0.668 1.055 1.493 2.111 3.338 4.721

TABLE 2. Inertial parameters used for this study for τfill = 50 %: Boc and Ω .

2.3. Assumptions of the physical model
In this section, we justify two important assumptions that have been made in our
physical model, i.e. the fluids’ incompressibility and the zero contact angle condition.
First, the effect of gas compressibility is investigated through the Mach number. We
define two characteristic velocities v1 and v2 which depend on the angular velocity Ω
and the angular acceleration Ω̇ imposed during the manoeuvre of the tank,

v1 =ΩL and v2 =

√
Ω̇L. (2.14a,b)

Considering helium gas, the velocity of sound che is computed using the ideal gas
law che=

√
γRT/M with γ = 1.4 the adiabatic index, R= 8.31 J mol−1 K−1 the molar

gas constant, M=4 g mol−1 the molar mass of the helium and T≈300 K the absolute
temperature. Finally, the following two Mach numbers can be considered

Ma1 =
v1

che
=ΩL

√
M
γRT

, (2.15)

Ma2 =
v2

che
= L

√
Ω̇M
γRT

. (2.16)

Given the inertial parameters of tables 1 and 2, the Mach numbers always respect
Ma1< 2.2× 10−5 and Ma2< 2.2× 10−5. Therefore, we neglect the gas compressibility
and consider the incompressible Navier–Stokes equations in the fluid phase.
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We introduce now a discussion on the no contact angle assumption which is made
in our simulations. A contact angle between a solid and a liquid–gas interface results
from a force balance between the surface tension forces between the liquid–gas,
liquid–solid and the solid–gas interfaces. If the surface tension characterising
the solid–fluid interactions is not always well known (Langbein 2002), indirect
measurements of the difference between these two surface tension coefficients can be
obtained by measuring the contact angle of a bubble or a droplet on a substrate.

As usual propellants are perfectly wetting fluids, we impose in our simulations a
perfectly wetting condition, i.e. the contact angle is set equal to zero, when the liquid–
gas interface will be close to the tank wall. This condition prevents the formation
of a contact line at the frontier between the liquid, the gas and the solid phase. As
a result a thin liquid film is still entrapped between the solid wall and the liquid–
gas interface. Consequently, there is no hydrodynamical singularity on the viscous
dissipation in this specific configuration since there is no contact line, and thus no
contact line velocity. This no contact line assumption seems reasonable within the
limits of low Bond numbers which is consistent with the present study. Indeed, it
is clear that even if a perfectly wetting fluid is considered, in high Bond number
configurations, the thin liquid film can be disrupted by strong external forces, such
as gravity in ground applications. However, to the best of our knowledge, the critical
Bond number for which the liquid film disruption will be observed is not known. In
fact, an indirect validation of the no contact line assumption is presented in the rest
of the paper by comparing our numerical simulations with experimental results from
fluidics experiments both on the force acting on the tank wall and more specifically
on the torque exerted by the fluid motion on the tank.

Finally, it should be noticed here that an apparent contact angle can also result
from boiling phenomena, even if perfectly wetting fluids are involved, see for instance
Stephan & Busse (1992), Huber et al. (2017), Urbano et al. (2018) for more details.
However as we consider here isothermal conditions, this physical effect is not relevant
in the present study.

3. Numerical methods
Our numerical simulations have been performed by using the home-made code

DIVA (dynamics of interface for vaporisation and atomisation) which is based on
a wide range of numerical methods specifically dedicated to the computation of
two-phase flows. In particular, the level set method (Sussman, Smereka & Osher
1994) and the ghost fluid method (Fedkiw et al. 1999; Kang, Fedkiw & Liu 2000;
Liu, Fedkiw & Kang 2000; Sussman et al. 2007) are used jointly to ensure a sharp
and accurate representation of the liquid–gas interface. Computations in complex
geometry can be performed by using the numerical scheme proposed in Ng, Min
& Gibou (2009) for single-phase flows and for which an extension to two-phase
flows is proposed in Lepilliez et al. (2016). This numerical scheme is based on a
second-order numerical scheme to impose the Neumann boundary condition on the
pressure field at the solid frontier while maintaining a sharp representation of the
solid–fluid interface. Our numerical tool also allows computations of liquid–vapour
phase change following the numerical methods described in Gibou et al. (2002,
2007), Tanguy, Menard & Berlemont (2007), Papac, Gibou & Ratsch (2010), Tanguy
et al. (2014), Rueda Villegas et al. (2016) and interaction of acoustic waves with
bubbles (Huber et al. 2015). It has been validated by direct comparisons with a wide
range of theoretical studies (Tanguy et al. 2014; Huber et al. 2015; Lalanne et al.
2015b; Rueda Villegas et al. 2016) and experimental data (Tanguy & Berlemont
2005; Lalanne et al. 2015a; Huber et al. 2017; Rueda Villegas et al. 2017) both
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for isothermal two-phase flows and configurations involving liquid–vapour phase
change. This section describe briefly the formalism and the numerical methods used
to perform multiphase flows simulations by solving the Navier–Stokes equations, and
imposing the suitable boundary conditions on the solid frontier when an irregular
domain is involved.

3.1. Interface tracking method
In this work, the level set method of Osher & Sethian (1988) and Sussman et al.
(1994) is used, both to capture the interface motion between the two fluids and to
impose the static boundary condition between the fluids and the solid. Signed and
continuous level set functions φ and φs are defined in the domain Ω respectively
such as Ωg = {x : φ(x) < 0}, Ωl = {x : φ(x) > 0} and Γ = {x : φ(x) = 0} where
Γ represents the fluid–fluid interface and Ωs = {x : φs(x) > 0}, Ωf = {x : φs(x) < 0}
and Γs = {x : φs(x) = 0}, the fluid–solid interface. The fluid–solid interface does not
move because the simulation is done in the referential of the tank. The motion of the
liquid–gas interface Γ is captured by solving the following transport equation

∂φ

∂t
+ u · ∇φ = 0. (3.1)

The level set method benefits from attractive regularity properties in the whole
domain that allow a simple, stable and efficient computation of the interface curvature.
In particular, the signed distance function property can be imposed at the initial step
of the computation and maintained all along the temporal integration process by
applying the reinitialisation algorithm proposed in Sussman et al. (1994) at the end
of every physical time step. It consists in solving the following partial differential
equation over a fictitious time τ ,

∂d
∂τ
+ sign(φ)(1− ‖∇d‖)= 0. (3.2)

Next, geometrical properties such as n the outward unit normal vector to the
interface and κ the local mean curvature can be computed by a simple differencing
of the level set function φ. Spatial derivatives in the transport equation and the
reinitialisation equation are computed with the weighted essentially non-oscillatory
scheme (Borges et al. 2008), and the temporal derivatives with a third-order total
variation diminishing Runge–Kutta scheme. Inside the solid domain, the following
boundary condition is imposed on the level set function,

ns · ∇φ|Γ = cos θs, (3.3)

where θs is the contact angle formed on the triple line between the liquid, the gas
and the solid. Let us note here that θs = 0◦ and thus, the right-hand side is equal to
1. Based on the previous works of Fedkiw et al. (1999), this boundary condition can
be imposed by extending the level set function φ inside the solid domain, following
the approach proposed in Lepilliez et al. (2016).

The motion of the liquid–gas interface occurs at the beginning of each time step
and allows us to update the viscosity and density fields {µn+1

; ρn+1
}. They can be

expressed with the following expressions

ρ(φ)= ρl

(
ρg

ρl
+

(
1−

ρg

ρl

)
H(φ)

)
, (3.4)

µ(φ)=µl

(
µg

µl
+

(
1−

µg

µl

)
H(φ)

)
, (3.5)
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where H(φ) is the Heaviside function, defined as H(φ)= 0 in the gas and H(φ)= 1 in
the liquid. For cells crossed by the interface, a sharp interpolation of the density and
the viscosity is used following the general guidelines proposed in Liu et al. (2000)
and Sussman et al. (2007).

3.2. Projection method
The incompressible Navier–Stokes equations for Newtonian two-phase flows can be
described in different ways, whether the jump conditions between the two fluids are
imposed as smoothed singular functions, or as sharp jump conditions locally applied
to the density, viscosity and pressure field. In what follows, we briefly present one of
the formulations for two-phase flows, adapted from the projection method of Chorin
(1967) and first introduced by Sussman et al. (2007). Some other formulations are
thoroughly detailed and compared by Lepilliez (2015) and Lalanne et al. (2015b). The
authors demonstrate that the following formulation is best suited for our study. The
implicit temporal discretisation, referred to as the ghost fluid conservative method with
an implicit scheme (GFCMI) in Lepilliez (2015) is used in this study. First, given a
velocity un at time tn

= n1t, an auxiliary field u∗ can be computed for a time step
1t without considering the pressure component

ρn+1u∗ −1t∇ · (2µn+1D∗)= ρn+1

(
un
−1t

(
(un
· ∇)un

−
Fext

ρn+1

))
, (3.6)

which leads to a large linear system where the three velocity components are coupled.
As it is a diagonally dominant linear system, it can be simply and quickly solved
(approximately 10 iterations or less in most configurations) by using a Gauss–Seidel
algorithm.

Then the pressure field pn+1 serves as the scalar potential function of the Hodge
decomposition, satisfying a Poisson equation with homogeneous Neumann boundary
conditions on ∂Ω and non-homogeneous Neumann boundary condition on Γs

∇ ·

(
∇pn+1

ρn+1

)
=
∇ · u∗

1t
+∇ ·

(
σκnδΓ
ρn+1

)
, (3.7)

where κ and δΓ are respectively the local curvature of the interface and a
multidimensional Dirac distribution located at the interface. It is well known that
the resolution of the Poisson equation is the most expensive step in numerical
simulations of two-phase flows. Consequently, to speed up our simulations, we have
implemented the black box multigrid method from Dendy (1982) and MacLachlan,
Tang & Vuik (2008) which allows a fast resolution of pseudo-Poisson equations that
contain irregular terms either in the matrix coefficients (density jump) or on the
right-hand side (pressure jump) of the linear system. These singular source terms
are approximated using the general schemes developed in Liu et al. (2000) for
maintaining a sharp representation of the liquid–gas interface.

Finally, the fluid velocity un+1 is defined at the new time step tn+1 as the projection
of u∗ onto the divergence-free space

un+1
= u∗ −

1t
ρn+1

(∇pn+1
− σκnδΓ ). (3.8)

3.3. Numerical methods for the fluid–solid boundary
As our simulations imply a solid irregular frontier immersed in the computational
domain, the velocity field must respect the impermeability and no-slip conditions
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FIGURE 3. (Colour online) The Fluidics experiment.

at the tank wall. A subcell resolution of a Dirichlet boundary condition has to
be imposed on the velocity field. For numerical stability consideration, the latter
condition can be imposed by applying the second-order numerical scheme from
Gibou et al. (2002) that requires the implicit temporal discretisation of the viscous
terms (Ng et al. 2009; Lepilliez et al. 2016) when solving Navier–Stokes equations.

The pressure field is computed with the formulation proposed in Lepilliez et al.
(2016). This formulation, based on the previous works of Ng et al. (2009) for single-
phase flows, enables taking into account the surface tension forces in a grid cell that
contains both a liquid–gas interface and a solid–fluid interface. A Neumann boundary
condition on the immersed solid boundary Γs is imposed on the pressure field. If a
contact line is formed on the solid frontier, the surface tension effect must be taken
into account on the Neumann pressure boundary condition

ns ·
∇p
ρ

∣∣∣∣
Γs

= ns · (u∗ − us + σκnδΓ )|Γs, (3.9)

with us the solid velocity.

4. Comparison with the Fluidics experiment data
Very few experimental data exist for the study of low Bond number manoeuvres in

a microgravity environment because of the long time period required that cannot be
achieved with drop tower or parabolic flight experiments. In 2017, the Fluidics
experiment was sent by the CNES, the French national space agency, to the
International Space Station (ISS) to quantify the sloshing phenomenon inside a
spherical tank (Mignot et al. 2017). To validate the numerical code, we implement
the case of the Fluidics experiment and compare our numerical results with the
experimental data.

4.1. Description of the Fluidics experiment
The experiment, represented in figure 3, consists of a spherical transparent tank
containing a safe substitute of propellant and helium, connected by an arm to a
motor in the centre. The global system is integrated into a metallic housing and fixed
on the seat rack rails of the ISS. The tank is subjected to angular velocity profiles
similar to figure 2 followed by a deceleration and a zero velocity phase. Forces and
torques generated on the tank are measured by sensors and bubble deformations are
observed thanks to cameras. Two tanks have been sent to the ISS with a filling ratio
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FIGURE 4. Evolution of the y-direction force and z-direction torque generated by the fluids
in the half-filled tank for Boc = 76 and Boi = 23 and three different meshes: 643, 1283

and 2563.

of respectively 50 % and 75 %. The same angular acceleration Ω̇ and velocity Ω
are enforced on the tanks. Equation (2.13) returns the Bond numbers of each tank
as Boi = 23 and Boc = 76 for the half-filled tank and Boi = 15 and Boc = 48 for the
tank with a filling ratio of 75 %. The values of the Bond numbers are higher than
those of § 2.2 because of the noise of the experimental data. Indeed, the data from
the force and torque sensor contain an important level of noise which prevents the
data recovery from low Bond numbers manoeuvres.

4.2. Space convergence
The simulations of the Fluidics case are computed with a mesh of 128 cells in the
3 directions. To prove the space convergence, we consider the half-filled tank because
the Bond numbers, Boi=23 and Boc=76, are higher than those of the tank with τfill=

75 %. The evolution of the force in the y-direction and the torque in the z-direction
through time are shown in figure 4, for three different meshes, 64, 128 and 256
nodes in each direction. We observe that the global evolution of the force through
time is well predicted by the three meshes. The average force during the constant
angular velocity phase remains identical but the magnitude and the frequency of the
oscillations depend weakly on the mesh size. A finer grid leads to slightly stronger
oscillations around the mean value. The same behaviour appears for the evolution of
the z-direction torque. Finally, we can conclude that the two finer grids give results
that are close enough to allow us to compare the experimental data with the results
from the mesh with 128 cells in each direction.

4.3. Study of the force exerted on the tank wall
First, the force exerted on the tank wall by the fluids during the manoeuvre is
investigated. The results from the sensor are compared to the computed force defined
as

F=
∫
Ωf

(∇p− σκnδΓ ) dV. (4.1)

Figure 5 confronts the dimensionless force in the y-direction measured by the
sensor with the one obtained by computation during the manoeuvre on the two tanks.
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FIGURE 5. Comparison of the y-direction force from the experimental data and our
numerical simulations with (a) τfill = 50 % and (b) τfill = 75 %.

τfill Fexp
y /σDt Fnum

y /σDt

50 % 33.80 33.19
75 % 49.82 47.91

TABLE 3. Comparison of the mean y-direction forces in both cases of the Fluidics
experiment.

The force in the y-direction, denoted by Fy, increases quickly at the beginning because
of the angular acceleration. When the constant angular velocity phase is reached, the
force oscillates around a constant value. This value corresponds to the centrifugal
force exerted by the liquid on the tank wall. The average value of the dimensionless
force is higher for the tank with τfill = 75 % because more liquid is subjected to
the centrifugal acceleration. The force evolution with the filling ratio is discussed in
§ 5.6. Moreover, the damping of the oscillations of the force is more important in the
τfill = 75 % tank. Indeed, the gas bubble is smaller in this tank and more constrained
by the liquid against the tank wall. Finally, the angular velocity decreases until it
reaches zero leading to the cancellation of the force on the tank wall.

The global evolution of the force achieved with our simulations is similar to the
force measured under microgravity conditions despite the important noise that remains
in the experimental signal. Table 3 lists the average values of the dimensionless
force during the constant angular velocity phase obtained with the experimental data,
Fexp

y /σDt, and our simulations, Fnum
y /σDt, for both filling ratio cases. These values are

close together with an error of 1.8 % for the half-filled tank and 3.8 % for τfill= 75 %
which consolidates the validity of the numerical simulations. The oscillations are
difficult to compare because of the noise of the experimental data. Nevertheless, the
first oscillations of the half-filled tank case, which magnitudes are higher than the
level noise, are well predicted by the numerical simulations.

4.4. Study of the torque exerted on the tank wall
The torque data are also compared to our numerical results. The sensor is located
at the interface between the rotating arm and the tank. The torque data allow us to
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FIGURE 6. Comparison of the z-direction torque from the experimental data and our
numerical simulations with (a) τfill = 50 % and (b) τfill = 75 %.

validate the force exerted by the fluids on the tank wall and the position of the centre
of mass. The torque T is integrated in our simulations as

T=
∫
Ωf

SM× (∇p− σκnδΓ ) dV. (4.2)

with SM the vector between the sensor position and the fluid particle.
Figure 6 compares the torque in the z-direction from the Fluidics data to our

numerical results for the two tanks cases. During the acceleration phase, we observe
a positive peak of the z-direction torque which is due to the component of the
acceleration in the x-direction depending on Boi in (2.7). We observe the same peak
with the opposite sign during the deceleration phase, at t∗ = 11.5 for the half-filled
tank and at t∗ = 16 for the tank with τfill = 75 %. During the constant velocity
phase, the z-direction torque oscillates around zero. It represents the oscillation
of the bubble around its equilibrium position against the tank wall. This bubble
behaviour generates forces in the x-direction which appear in the z-direction torque.
The numerical simulation reproduces well the torque oscillations until the damping
brings their magnitudes around the noise level. The damping of the oscillation is
more important with the higher filling ratio because more liquid is subjected to the
centrifugal acceleration. Finally, during the zero velocity phase at the end, the torque
remains zero. The peaks and the oscillations for which the magnitude is higher than
the noise level are well predicted by the numerical simulations.

As the torque depends both on the force exerted on the tank wall and on the centre
of mass of the liquid, these results provide a strong validation for these variables. As
a result, an indirect validation of the zero contact angle hypothesis is obtained here
since the centre of mass depends mainly on the bubble volume and on the interface
shape and thus on the contact angle value.

5. Evolution of the centre of mass
This section investigates the evolution of the centre of mass of the fluid medium

under the effect of the inertial forces. First, a grid sensitivity study is presented.
Then, an overview of the physical phenomena is given through an example of the
fluids behaviour during a manoeuvre. The temporal evolution of the centre of mass
is described for a wide range of the Bond numbers. For some of the higher values
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FIGURE 7. Evolution of the coordinates of the centre of mass of the fluids for Boc= 5.80,
Boi = 5.80, τfill = 50 % and three different meshes: 643, 1283 and 2563.

of the dimensionless parameters, an oscillatory phenomenon of the centre of mass
around its equilibrium position is observed and discussed. Finally, the position of
the centre of mass and the force exerted on the tank wall at the steady state are
described and fitted by semi-empirical laws.

The subsections focusing on the transient regime consider the filling ratio of 50 %
and the Bond numbers summarised in tables 1 and 2. The two last subsections aim
the steady state, which does not depend on Boi, and investigate the influence of the
filling ratio. The filling ratios considered in the steady state are listed in table 4.

5.1. Grid sensitivity study
We present here numerical evidence about the grid sensitivity of the numerical
simulations. All the simulations presented in this study have been computed with
a mesh of 128 cells in each direction. In figure 7, the evolution of the coordinates
of the centre of mass of the fluids throughout time has been plotted for three
different meshes containing respectively 64, 128 and 256 nodes in each direction. The
z-coordinate of the centre of mass does not appear in figure 7 because no external
acceleration happens in the z-direction and therefore, the bubble stays centred in
the z-direction. The z-coordinate of the centre of mass obtained in our numerical
results is always lower than the mesh size. These results correspond to the case with
Boc = 5.80, Boi = 5.80 and τfill = 50 % implying the highest velocity of the centre
of mass and the highest deformation of the bubble. These comparisons show a good
agreement between the solutions on the latter two grids, from which we assume that
the intermediate grid 1283 is thin enough considering the spatial convergence of our
computations.

5.2. An example of bubble motion
This section describes the motion of the fluids inside the tank in a specific case. It
illustrates the global behaviour of the bubble gas, and consequently the centre of mass
evolution, during a manoeuvre. We consider the half-filled tank case with Boi = 1.16
and Boc = 0.116.
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τfill = Vl/Vtank 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

D0 (m) 0.519 0.507 0.493 0.479 0.464 0.0448 0.431 0.412 0.392

TABLE 4. Filling ratios of liquid in the tank and the corresponding initial bubble
diameters.
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FIGURE 8. (Colour online) Trajectory of the centre of mass of the tank in the xy-plane
and bubble positions at 6 different times with Boi = 1.16, Boc = 0.116 and τfill = 50 %.

The first plot in figure 8 shows the trajectory of the centre of mass in the xy-plane.
The other plots in figure 8 are pictures of the position of the fluids inside the tank at
6 specific times and are described below. The dark blue interface represents the gas-
liquid interface and the grey represents the fluid–solid interface. In addition, movie 1
(available at https://doi.org/10.1017/jfm.2018.389) displays the accelerated motion of
the bubble during the manoeuvre.

Initially, the bubble is spherical and located in the centre of the tank (a). At the
beginning of the manoeuvre, the bubble goes toward the axis −ex until it reaches the
tank wall (b). The bubble spreads and bounces (c), moves in the direction −ey and
spreads on the wall a second time (d). Finally, the bubble follows the tank wall (e)
until it reaches its final position around the x-axis ( f ). The motion of the centre of
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mass is the opposite of the global motion of the bubble. The first bouncing of the
bubble leads to the loop in the trajectory of the centre of mass. In all the pictures in
figure 8, a thin film of liquid is always trapped between the gas bubble and the tank
wall because of the perfectly wetting condition.

The detailed analysis of the trajectories for different Bond numbers is the aim of
the next subsection.

5.3. Trajectory of the centre of mass
The trajectory of the centre of mass of the fluids depends on the temporal evolution
of the inertial acceleration ai = a1 + a2 + a3, expressed here as a function of the two
main dimensionless numbers Boi and Boc characterising our physical system,

ai =
σ

ρlD2
0L
[Boi(−(L+ y)ex + xey)− Boc(xex + (L+ y)ey)]. (5.1)

The trajectories are presented in figure 9. The evolution of each coordinate of the
centre of mass throughout time is given in the Appendix.

At early flow times, Boi dominates the flow, regardless of the final value of the Boc.
As predicted by (5.1), the centre of mass moves along the opposite direction to the
acceleration as L� x,

ai '−
σ

ρlD2
0L

Boi(L+ y)ex. (5.2)

In the case where the rotational acceleration and the rotational velocity are small,
the acceleration is stopped before the bubble reaches the tank wall. The rest of the
flow entirely relies on Boc. This can be observed in figure 9(a,b), where for a given
Boc, there is no distinction between the different values of Boi. After the end of the
acceleration phase, the rest of the trajectory can be predicted by

ai =−
σ

ρlD2
0L

Boc(xex + (L+ y)ey). (5.3)

The deformation of the bubble during the first contact is described in § 6.2. Then
the bubble stays close to the tank wall due to the xex term, to finally reach its final
equilibrium value (where xcm(teq)= 0, and ycm(teq) is discussed in § 5.5).

In figure 9(c), the trajectories are similar, except for the lowest value of Boi. In this
case, the final value of Boc is not reached before the bubble touches the tank wall.
After the bounce, the terms corresponding to the angular acceleration are still not
equal to zero and the centrifugal acceleration is more important in the direction −ex.
The bubble tends to move faster to the tank wall in this direction. The parameter
γ =Boi/Boc is defined to determine if the angular acceleration phase is ended before
the bubble first spreads on the wall. We report that the bubble is not subjected
to any Boi contribution after the spreading of the bubble against the tank wall for
γ > γlim = 2L/Dt. This limiting value γlim is obtained geometrically considering the
simplified motion of the centre of mass at early flow time. This result predicts that
all trajectories are similar if γ > γlim. Actually, if the acceleration phase ends before
the bubble reaches the tank wall, the angular velocity during the spreading is constant
and identical for a given Boc. This means that the resulting trajectory of the bubble
remains similar. Yet, another phenomenon can disrupt the accuracy of this predictive
parameter: when the acceleration is stopped, a capillary wave on the bubble interface
is observed. This is discussed in § 6.1 on the early motion of the bubble.

In figure 9(d–g), it is shown, for a given Boc, that the trajectories evolve depending
on the Boi. For higher values of Boc, more potential energy is transmitted through
the centrifugal acceleration to the system. As a result, for Boc > 0.58, the centre of
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FIGURE 9. Trajectories of the centre of mass of the fluids in the xy-plane with τfill= 50 %,
for different Boi and Boc = [0.058; 0.116; 0.290; 0.580; 1.16; 2.90; 5.80] from (a–g).

mass of the fluids goes beyond the equilibrium point in the x-direction. Indeed, the
formulation of the inertial acceleration at this time of the flow is given by (5.3). If
the centre of mass goes beyond x= 0, the inertial acceleration tends to correct it by
forcing the centre of mass in the opposite direction (if xcm < 0, ai · ex > 0, and if
xcm > 0, ai · ex < 0). This correction of the inertial acceleration is the source of an
oscillatory phenomenon, discussed in § 5.4.
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FIGURE 11. (Colour online) Bubble position in the tank at three different times of the
oscillation phase defined in figure 10.

5.4. Oscillations of the centre of mass of the fluids upon reaching equilibrium state
Figure 9 exhibits that for high Boc and for all the values of Boi, an oscillatory motion
appears around the x-axis before the system stabilises. Upon reaching its equilibrium
state, when the bubble goes beyond x = 0, the inertial acceleration corrects the
trajectory: if xcm< 0, ai · ex> 0 and if xcm> 0, ai · ex< 0. This results in an oscillatory
motion of the centre of mass, as observed in figure 10. Features of the bubble inside
the tank at three different times are shown in figure 11.

The oscillatory phenomenon can be approached by the analytical model of a one-
dimensional mass–spring system with a damping term described by

∂2x
∂t2
+ 2ξω0

∂x
∂t
+ω2

0x= 0, (5.4)

with ω0 the natural pulsation of the mass–spring system, and ξ a damping coefficient.
The solution of this equation is

x(t)= A0 exp(−ξω0t) sin(ωt+Φ), (5.5)

with ω =
√

1− ξ 2ω0, A0 the initial value of the amplitude of the oscillation, and Φ
the phase. Only the results for high Boc are presented because periods are very long
and are not entirely captured in the simulations with Boc < 1. Moreover, the study is
limited to cases for Boi > 1 because the observed oscillations are not related to the
angular acceleration phase.
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FIGURE 12. Position of the centre of mass of the fluids in the y-direction for different
Boc and filling ratios.

Boc = 1.16 Boc = 2.90 Boc = 5.80
Boi ω0 (rad s−1) ξ ω0 (rad s−1) ξ ω0 (rad s−1) ξ

1.16 0.0277 0.1161 0.0402 0.1286 0.0555 0.1312
2.32 0.0272 0.1241 0.0404 0.1268 0.0553 0.1257
5.80 0.0290 0.1062 0.0403 0.1265 0.0555 0.1302

TABLE 5. Characteristics of the oscillatory phenomenon.

The parameters ξ and ω0 are deduced from the fitting of our numerical results with
(5.5) using a nonlinear least squares method and are reported in table 5. An example
of the oscillation phase is circled in red in figure 10. The oscillations produced during
manoeuvres with other Bond numbers are shown in figure 19(e–g) of the Appendix.
It corresponds to the trajectory of the centre of mass of the fluids at the final stage of
the manoeuvre when it oscillates around an equilibrium state. The two first periods of
oscillations are not considered in the comparison between the theoretical model and
the numerical results, because it corresponds to the early time of the manoeuvre when
the bubble motion, the bouncing and the capillary waves participate in the motion.

Table 5 shows that when Boc increases, the natural pulsation and the damping
ratio also increase. Indeed, when the centrifugal acceleration is important, the bubble
spreads on the wall with a high magnitude and is maintained against the wall. We
observe that Boi does not affect ω0. In the same way, the damping ratio stays
relatively close to the same value regardless of Boi. This value depends essentially
on the Boc.

5.5. Equilibrium position of the centre of mass
As the equilibrium state is reached, the resulting position of the centre of mass of
the fluids corresponds to xcm = 0 and differs in the y-direction for different Boc and
filling ratios, as illustrated by the markers in figure 12 and plots of the Appendix. The
impulsional Bond number Boi become irrelevant in the steady state.

The y-position of the centre of mass increases with the angular velocity until it
approaches an asymptotic value because of the tank wall. The evolution of y-position
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with the Bond number has been fitted with several functions: polynomial, exponential
and logarithmic functions. We show that the best candidate is the logarithmic law.
Indeed, at low Bond number, the evolution of the centre of mass is highly impacted
by the Bond number because the inertial effects are lower than the surface tension
effects. At higher Bond numbers, we are close to a saturation phenomenon due to the
tank geometry and this leads to a weaker effect of the Bond number on the bubble
shape. It is more complicated to spread an already deformed bubble. This saturation
phenomenon is well depicted by the logarithmic function. On the contrary, the linear
dependency on the filling ratio is clear in figure 12. It reveals that for each Bond
number, the amount of liquid affects proportionally the position of the centre of mass.
The position of the centre of mass in the y-direction is denoted by ycm and estimated
by

ycm

Dt
(teq)=C1(1− τfill) ln(C2Boc + 1), (5.6)

where τfill = Vliq/Vtank is the filling ratio of the tank, C1 and C2 correspond to
constants obtained with a least squares method: C1= 2.62× 10−2 and C2= 3.35× 104

in our cases. The law is plotted with dashed lines in figure 12 and gives a good
approximation of the numerical results.

5.6. Force generated on the tank wall at the equilibrium state
The theoretical force Fth(teq) corresponds to the reaction to the centrifugal acceleration
at the equilibrium state,

Fth(teq)=−

∫
Vt

ρai(teq) dV ' ρlΩ
2(L+ ycm(teq))Vley, (5.7)

with ai the sum of all the external accelerations, Vl the volume of liquid inside the
tank by neglecting ρg against ρl. The volume of liquid is deduced from the filling
ratio and the tank diameter as Vl = τfillVt = τfill(π/6)D3

t .
We can write the dimensionless force with the parameters Boc and τfill,

Fth

σDt
(teq)'

π

6
Boc

(
1+

ycm(teq)

L

)
τfill

(1− τfill)2/3
ey, (5.8)

with D0 =Dt(1− τfill)
1/3.

Section 5.5 exhibits that the final position of the centre of mass of the fluids ycm(teq)

depends on Boc and τfill. We must consider the data in figure 12 or the approximation
of (5.6) to obtain the force generated on the tank wall. In our numerical simulations,
the integration of the pressure inside the tank (see (4.1)), allows deducing the value
of the force in the y-direction at the equilibrium state. This computed force and the
theoretical force of (5.8) are plotted, respectively with symbols and dashed lines, in
figure 13.

We observe that the force evolves linearly with the Bond number and as a power
law with the filling ratio. Indeed, the centrifugal force depends directly on the
square of the angular velocity and the mass of the fluid inside the tank. Finally, the
approximations given by (5.6) and (5.8) give really close results with the computed
force.
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FIGURE 13. Evolution of the y-direction generated force, for different Boc and filling
ratios.

6. Evolution of the bubble shape
This section is focused on the bubble shape, from the initial sphere located at the

centre of the tank until its equilibrium shape spread against the tank wall. First, the
capillary wave, observed for some configurations, is described through the variation
of the bubble surface. Then, the bubble behaviour is analysed during the first contact
with the tank wall for several pairs of Bond number. Finally, the description of the
equilibrium shape of the bubble, as its spreading diameter and its thickness, is done
for different values of Boc and τfill.

Similarly than § 5, the two first subsections consider a filling ratio of 50 % and the
Bond numbers summarised in tables 1 and 2. The last subsection does not deal with
Boi and investigates the influence of the filling ratios listed in table 4.

6.1. Capillary wave
During the transient regime, different phenomena can be observed, such as a capillary
wave on the liquid–gas interface when the angular acceleration Ω̇ stops, or when the
bubble reaches the tank wall and spreads on it. The deformation of the bubble is
analysed by considering the temporal evolution of the dimensionless surface energy
variation 1Es(t) defined by

1Es(t)=
Es(t)− Es(t0)

Es(t0)
. (6.1)

For low values of Boc and Boi, a first variation of the surface energy is observed
before the bubble reaches the tank wall, as depicted in figure 14(a), whereas it does
not appear for higher Boc values, as in figure 14(b). This variation is generated by
Boi evolving from its original value to zero as the final centrifugal velocity is reached.
This time is denoted by tcw thereafter. The frequency of this capillary wave is equal
to the Rayleigh frequency fR, defined by

fR =

√
σ

ρlD3
0
. (6.2)

Table 6 contains the amplitude of the variation of the surface energy due to capillary
waves for different Boc and Boi, when measurable. From these data, we can conclude
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FIGURE 14. (Colour online) Evolution of the surface energy of the interface of the
bubble for Boi = 1.16, (a) Boc = 0.116 with the capillary deformation circled in red and
(b) Boc = 0.58.

Boc 0.058 0.116 0.29 0.58 1.16 2.90 5.80

Boi = 0.116 — — — — — — —
Boi = 0.58 5.08× 10−5 1.75× 10−4 — — — — —
Boi = 1.16 6.46× 10−5 2.52× 10−4 1.81× 10−3 — — — —
Boi = 2.32 8.51× 10−5 2.88× 10−4 1.85× 10−3 — — — —
Boi = 5.80 9.12× 10−5 3.05× 10−4 1.88× 10−3 — — — —

TABLE 6. Variation of the dimensionless surface energy at the capillary wave 1Es(tcw)
when measurable, and — otherwise.

that Boc has a great influence on the amplitude of the capillary wave. Moreover,
increasing Boi tends to approach 1Es(tcw) to an asymptotic value depending on
Boc. For the lower value of Boi, the amplitude is too low to be measurable. This
phenomenon also occurs for higher values of Boc, probably with a stronger amplitude,
but as the bubble has already reached the tank wall it cannot be accurately measured
when γ < γlim.

6.2. First bounce of the bubble
When the bubble reaches the tank wall, its deformation leads to a sharp increase of
the variation of the dimensionless surface energy of the bubble. The highest peaks in
figure 14 correspond to several spreadings of the bubble on the tank wall. The first
spreading on the wall has the greatest magnitude and, for all cases, the maximum of
the surface energy variation at that time are presented in figure 15.

The dimensionless surface energy variation follows a linear evolution in cases for
which the acceleration phase ends before the bubble reaches the tank wall for the first
time. These configurations correspond to γ > γlim and it can be approximated by

1Es(tb)= 0.0145Boc, (6.3)

with tb is the time of the bouncing defined as max(Es(t))= Es(tb).
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FIGURE 15. Maximum variation of the surface energy of the bubble interface at the first
bounce. Filled markers correspond to γ > γlim and empty markers to γ 6 γlim.

Boc 0.058 0.116 0.29 0.58 1.16 2.90 5.80

Boi = 0.116 + + + + + +

Boi = 0.58 ◦ ◦ + + + +

Boi = 1.16 ◦ ◦ ◦ + + +

Boi = 2.32 ◦ ◦ ◦ + +

Boi = 5.80 ◦ ◦ ◦ +

TABLE 7. Summary of early flow time phenomena: ◦ for configurations when the
capillary wave is clearly observed, + for γ < γlim.

In the same way as for the trajectories, Boi does not seem to influence the spreading
of the bubble on the tank wall when γ > γlim. The constant velocity phase remains
similar for a given Boc which leads to a similar deformation on the wall. In the
case where γ 6 γlim, figure 15 shows that the maximum of the dimensionless surface
energy variation reaches a limiting value for each Boi. Indeed, for a given centrifugal
acceleration, the same angular velocity is reached during the spreading of the bubble
and thus the same amount of momentum is introduced into the system. This explains
that Boc does not influence the spreading as long as the acceleration phase is in
progress. A summary of the phenomena observed at early flow time is proposed in
table 7.

6.3. Shape of the bubble at the equilibrium state
In this section, the final shape of the bubble is described and analysed, with
the spreading diameter Db and the thickness of the bubble yb. Depending on the
centrifugal Bond number Boc and the filling ratio τfill, the shape of the bubble can
change, as observed in figure 16. We note that the third parameter Boi has no influence
in the equilibrium state. An increase of Boc leads to an important spreading of the
bubble on the tank wall and a shrinking of its thickness. Because of the variation
of the filling ratio in our numerical simulations, these parameters are divided by the
initial diameter of the bubble to become dimensionless D0 =Dt(1− τfill)

1/3.
The dimensionless thickness of the bubble is represented with symbols in figure 17

for different values of the filling ratio and the Bond number. First, for Boc < 0.58,
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FIGURE 16. (Colour online) Final shape of the bubble for (a) Boc= 0.116 and (b) Boc=

5.8, with τfill = 50 %.

0.90

0.95

1.00

1.05

0.80

0.85

(a) (b)

10 2 3 4 5 6 0.25 0.35 0.45 0.55 0.65 0.75

0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08

0.86
0.84

FIGURE 17. Evolution of the thickness of the bubble, for different Boc and filling ratios.

the thickness decreases with the Bond number linearly and is not modified by the
filling ratio. This corresponds to the first regime when the surface tension is dominant
and the deformation of the bubble is small. For Boc > 0.58, the thickness of the
bubble keeps decreasing with the Bond number but with a slower magnitude. This
case, where the inertial effects must be considered, corresponds to the second regime.
As already seen in § 5.5, the thickness evolution has been approached with several
functions and the logarithmic function has given the best to fit the data. The same
saturation effect, like the position of the centre of mass, limits the influence of the
Bond number on the bubble shape. The thickness tends toward an asymptotic value
for high Boc because of the size of the tank. This limit depends on the filling ratio as
we can see on the left plot of figure 17. Indeed, when τfill<0.5, the bubble equilibrium
thickness approaches its initial value. For τfill > 0.5, the bubble is small compared to
the tank and spreads with a higher magnitude on the wall. For each Bond number,
the thickness of the bubble evolves linearly with the filling ratio. The dimensionless
bubble thickness is approached by

yb

D0
(teq)= 1+ (C3 +C4τfill) ln(C5Boc + 1), (6.4)

with C3 =−2.73× 10−2, C4 =−5.02× 10−2 and C5 = 2.95 in our simulations.
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FIGURE 18. Evolution of the thickness of the bubble, for different Boc and filling ratios.

This equation allows us to predict the behaviour of the bubble thickness with the
Bond number and filling ratio for the two regimes. Equation (6.4) is plotted with
dashed lines in figure 17.

Figure 18 presents the evolution of the dimensionless spreading diameter of the
bubble against the tank, for different filling ratios and different Boc. As for the bubble
thickness, the variation of the spreading diameter Db/D0 can be divided into two
regimes depending on the Bond number. When Boc < 1.16, the spreading diameter
evolves linearly with the Bond number and remains independent from the filling ratio.
For higher Bond numbers, the spreading diameter increases with a slower magnitude
and we assume that it will reach an asymptotic value depending on the tank diameter
and the filling ratio. This dependency on the Bond number, like that of the bubble
thickness, is well predicted by the logarithmic function. The same low impact of the
filling ratio is noticeable for Boc=2.902 but a local increase of the spreading diameter
is observed for τfill < 0.5. As for the bubble thickness, the limiting value is closer
to the initial spreading diameter for a low filling ratio. By considering the regime
independent of the filling ratio, the spreading diameter can be approached by

Db

D0
(teq)= 1+C6 ln(C7Boc + 1), (6.5)

with C6 = 8.25× 10−2 and C7 = 4.34× 10−1 in our simulations and is depicted with
dashed lines in figure 18.

7. Summary
We have discussed the motion and deformation of a bubble in a spherical

tank rotating around a fixed axis in microgravity conditions. Based on three-
dimensional direct numerical simulations, our analysis is focused on low Bond number
configurations for which theoretical models are not available due to the prominence
of nonlinear surface tension effects. Very few experiments exist to predict the fluids
behaviour because of the long time required in microgravity conditions. Direct
numerical simulation is one of the promising ways to understand the fluid behaviour
during low Bond number manoeuvres. Because of the low inertial accelerations we

https://doi.org/10.1017/jfm.2018.389
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.09

 –0.06

0.15

0 5 10 15 20

(a) (b)

(c) (d )

(e) ( f )

(g)

FIGURE 19. The x-coordinate of the centre of mass of the fluids throughout time with
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enforce on the tank, the gas compressibility has been neglected. We considered the
perfectly wetting condition in our model because of the properties of the typical
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propellants used in the space industry. This assumption is reasonable for low inertial
manoeuvres for which the Bond numbers stay lower than a critical value. Further
experiments are required to determine this value. Nevertheless, the comparison with
experimental data showed that considering the no contact line assumption predicts
well the fluids’ behaviour for higher values of the Bond numbers. Our numerical
model have been validated through a detailed spatial convergence study. The data
from the Fluidics experiment, carried out in the International Space Station, have been
presented in a high Bond number case and compared to our results. The experiment
is a low rate centrifuge which applies a rotation around the motor axis of a spherical
tank containing a safe substitute of propellant and helium gas. Sensors measure the
force and torque exerted by the fluids on the tank wall in microgravity conditions.
We showed that the space convergence is still valid in the Fluidics experiment cases.
The comparison of the force and torque showed that we predict well the different
phases of the manoeuvre. The centrifugal force exerted during the constant angular
velocity phase is obtained with an error lower than 4 % for two different tanks. The
torque peaks corresponding to the acceleration and deceleration phases are similar
in both cases. The oscillations of the bubble around its equilibrium position have
been investigated through the torque evolution. The magnitude and the frequency of
the torque oscillations measured in the ISS comply with our numerical simulations
and the same damping of the oscillations throughout time is observed. This shows
that the simulations predict well the phenomena observed in space and validates
the assumptions made. The evolution of the centre of mass has been investigated
through a parametric study on two dimensionless Bond numbers respectively based
on the angular velocity and the angular acceleration. We showed that the trajectory of
the centre of mass is quite different depending on the final angular velocity. For low
values of Boc, the bubble goes toward the tank wall, bounces and follows the tank wall
until it reaches its final position. We observed in this case that the trajectory does not
depend on the angular acceleration. We defined a criterion γ =Boi/Boc>γlim= 2L/Dt
which quantifies that there is no influence of Boi on the trajectory of the centre of
mass. For higher values of Boc, the spreading and bouncing of the bubble against
the tank wall is more important. Several bounces against the tank wall may happen
and we observed a clear influence of the second Bond number Boi. In this case, the
bubble oscillates around its equilibrium position before reaching it. We approached
the oscillations phase with the solution of a one-dimensional mass–spring system with
a damping term. We obtained the natural pulsation of the oscillation and the damping
coefficient for different values of the Bond numbers. We showed that the natural
pulsation and the damping of the oscillations increase with Boc. The equilibrium
position of the centre of mass was investigated with Boc and the filling ratio τfill.
Its position corresponds to x = 0 and the value y depends linearly on the filling
ratio and follows a logarithmic law with the Bond number. Indeed, the amount of
liquid affects linearly the position of the centre of mass and increasing the angular
velocity tends to spread the bubble against the tank wall with a higher magnitude.
As a consequence, spreading an already deformed bubble against a tank wall is more
complicated. This saturation phenomenon is well predicted by a logarithmic law. We
deduced the force generated on the tank wall from the position of the centre of
mass. It evolves linearly with the Bond number and follows a power law with the
filling ratio. In a last part, we were interested in the shape of the bubble throughout
time. We observed at early flow time capillary waves for specific cases. This happens
when the angular acceleration stops because the final angular velocity is reached. We
observed a variation of the surface energy before the bubble reaches the tank wall for
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the first time in the case of low values of Boc and Boi. The amplitude of the variation
increases greatly with Boc and raising Boi leads the amplitude to reach an asymptotic
value. We also focused on the first spreading of the bubble because it corresponds to
the higher deformation of the bubble throughout time. The surface variation increases
with Boc and we observed that this evolution follows a linear evolution with Boc in
the case γ > γlim. For the other cases, the surface energy variation reaches a limiting
value for each Boi. The equilibrium shape of the bubble was investigated through its
thickness and spreading diameter. We divided the range of Boc in two regimes, the
first one where the surface tension dominates and the deformation of the bubble is
quite small and the second one where the inertial effects become more important. In
the first regime, the bubble thickness decreases linearly with the Bond number and
does not vary with the filling ratio. We observed the opposite effect on the spreading
diameter which increases linearly with the Bond number and stays constant with the
filling ratio. During the second regime, the bubble thickness decreases with a lower
magnitude because the spreading becomes more important and the bubble comes
closer to its asymptotic shape. This evolution is well predicted by a logarithmic law
for both the influence of the spreading diameter and the bubble thickness with the
Bond number.
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Appendix

This appendix contains the evolution of the x-coordinate (figure 19) and y-coordinate
(figure 20) of the centre of mass of the fluids throughout time, for different values of
Boi and Boc, and for a filling ratio of 50 %.

In figures 19 and 20, we observe distinctly that for the lower values of Boc and Boi,
the coordinates of the centre of mass and their evolution through time are identical
(see § 5.3). By increasing the centrifugal Bond number, the differences between the
trajectories become more important. In figure 19(e–g), the oscillations of the centre
of mass around the x-axis are clearly visible for the higher values of Boi. As in § 5.4,
we observe that the time period of one oscillation decreases with Boc and does not
seem to vary with Boi for its three higher values. Moreover, the oscillations disappear
sooner in time with a higher value of Boc. This is shown in § 5.4 with the computation
of the damping ratio. Finally, we notice that the final position of the centre of mass
does not depend on Boi. In the plots of figure 19, the final x-coordinate approaches

https://doi.org/10.1017/jfm.2018.389
https://doi.org/10.1017/jfm.2018.389
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

0

0.03

0.06

0.09

0.12

 –0.03

 –0.06

0.15

0.18

0 5 10 15 20

(a) (b)

(c) (d )

(e) ( f )

(g)

FIGURE 20. The x-coordinate of the centre of mass of the fluids throughout time with
τfill = 50 %, for different Boi and Boc = [0.058; 0.116; 0.290; 0.580; 1.16; 2.90; 5.80] from
(a–g).

zero and figure 19 shows that the final y-coordinate increases with Boc. The summary
of the final position for different Boc and τfill are presented in § 5.5.
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