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Abstract:We show that a group of diffeomorphismsD on the open unit interval I, equippedwith the topology
of uniform convergence on any compact set of the derivatives at any order, is non-regular: the exponential
map is not defined for some path of the Lie algebra. This result extends to the group of diffeomorphisms of
finite dimensional, non-compact manifold M.
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Introduction
In the theory of compact Lie groups, the exponential map defines a chart around the neutral element. This
map plays a central role inmany aspects of the theory. In infinite dimensional Lie groups, the existence of the
exponential map is not straightforward, mostly because of the lack of compact neighbourhood of the neutral
element. For this reason, when dealing with infinite dimensional Lie groups, we often work only with regular
Lie groups. These are Lie groups that have an exponential map, i.e. a map that integrates any smooth path v
on the Lie algebra to a smooth path g on the Lie group via the equation on logarithmic derivatives

dg.g−1 = v.

In easy examples, such as Banach Lie groups, the exponential map also defines a chart around the neutral
element, but in some other examples such as groups of diffeomorphisms on a compact manifold, it is not the
case. This last pathology generates technical difficulties [1, 2].

The notion of a regular Lie group was first described by Omori, motivated by the discovery of non-
enlargeable Lie algebras of vector fields [2] after a series of works on the ILH structures of the group of
diffeomorphisms of a compact manifold (see e.g. [1]). The terminology of ”regular Lie group” was introduced
with a second class of examples: groups of Fourier-integral operators in series of articles. For an organized
exposition, see [3]. Since these founding examples, despite many efforts, there is still no known example of
non-regular Fréchet Lie group. As quoted in [4], there exists many candidates, but there are still significant
difficulties in showing that a differential equation on an infinite dimensional Lie group has no solution.

In addition, we have to mention that the universal setting for infinite dimensional geometry seems not to
exist. Historically, various authors developedmore andmore general settings for infinite dimensional "mani-
folds”: Hilbert, Banach, then Fréchet and locally convexmanifolds (equippedwith atlas), and then raised the
necessity to deal with "manifolds” without charts. This phenomenon was even so embarrassing that the pre-
cise setting for differential calculus in an infinite dimensional setting has been skipped by several authors for
applications, see e.g. [5]. Several definitions and settings have been given by various authors, and the choice
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that we make is to use diffeological spaces as a maximal category, and Frölicher spaces as an intermediate
category for differential geometry [6, 7]. This choice is still quite controversial but this setting is developed
enough formany applications. Moreover, historically, diffeological spaces have been developed by Souriau in
the 80’swith themotivation to dealwith the precise objects of interest here, that is groups of diffeomorphisms
on non-compact, locally compact, smooth manifolds without boundary.

In this short communication, we describe an example of non-regular group of diffeomorphismsD on the
unit interval, which is in the setting of Frölicher Lie groups. The difference is that, in the Frölicher setting,
existence of charts is not assumed. For basics on this setting, due to Frölicher and Kriegl, see [4, 8] and e.g.
[6, 7, 9] for a short exposition on Frölicher spaces and Frölicher Lie groups.

This example, which can appear as a toy example, acts as a preliminary result in order to show that
the (full) group of diffeomorphisms Di� (M) is non-regular. Here, M i sa non-compact, finite dimensional
manifold M, equipped with the topology of uniform convergence of any partial derivative on any compact
subset of M, called the smooth compact-open topology (or weak topology in [10]). This topology appears as
quite natural, and quite minimal compared to the (much stronger) topologies described in [4, section 43.1]
(similar to the classical C∞-Whitney topology) and in the more diversified [11], which furnish examples of
regular Lie groups (with atlas). In our example, no chart can be actually successfully constructed by the lack
of adequate implicit functions theorem in this topology, and also because this example seems not locally
homeomorphic to any open subset of a function space for the considered (smooth compact-open) topology.
Of course, these considerations are still open questions. Indeed, at present it is unknown whether one can
get these local homeomorphism properties forD.

Our method of proof is inspired by:
– first the example of non-integrable Lie subalgebra of Vect(S1) due to Omori [2], where non-integrability

is due to the existence of translations,
– secondly the non-existence of horizontal lifts for connections on fiber bundles when the typical fiber

is not compact, see [12]. Moreover, if the typical fiber is compact, connections on the considered fiber
bundle are in one-to-one correspondence with connections on a principal bundle with structure group a
(regular) group of diffeomorphisms, see e.g. [4].

We need to mention that the example that we develop seems already known in the mathematical litera-
ture,but nowhere stated clearly to our knowledge so that we feel the need of a rigorous description of the
announced phenomenon: a constant path on the Lie algebra is not integrable into a path of the group. This
is done in three steps:
– first summarize the settings that have been developed to enable a rigorous differential geometry on

groups of diffeomorphisms on non-compact manifolds (section 1), namely diffeological spaces and
Frölicher spaces, applied to our example of group of diffeomorphisms on the open unit interval;

– secondly show that the constant map on the unit interval is in TId]0;1[D, and that this element understood
as a constant path cannot integrate in D by an argument of “translation semi-group” discovered by [2]
for a different goal;

– finally embedding D into Di� (M), for a non-compact manifold M, in a way such that the translation
semi-group required onD cannot be described as a semi-group of transformations onM, we get a direct
proof, new to our knowledge, of the following result:

Theorem 0.1. Let M be a locally compact, non-compact manifold. Then the group Di� (M), equipped with its
functional diffeology, is a diffeological Lie group which is non-regular.
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1 Preliminaries

1.1 Souriau’s diffeological spaces and Frölicher spaces

Definition 1.1. [13–15] Let X be a set.
• A p-parametrization of dimension p (or p-plot) on X is a map from an open subset O of Rp to X.
• A diffeology on X is a set P of parametrizations on X, called plots of the diffeology, such that, for all p ∈ N,

- any constant map Rp → X is in P;
- Let I be an arbitrary set of indexes, let {fi : Oi → X}i∈I be a family of compatible maps that extend to a

map f :
⋃︀
i∈I Oi → X. If {fi : Oi → X}i∈I ⊂ P, then f ∈ P.

- Let f ∈ P defined on O ⊂ Rp. Let q ∈ N, O′ to be an open subset of Rq, and g to be a smooth map (in
the usual sense) from O′ to O. Then f ∘ g ∈ P.

• If P is a diffeology on X, then (X,P) is called a diffeological space.
Let (X,P) and (X′,P′) be two diffeological spaces; a map f : X → X′ is differentiable (=smooth) if and only if
f ∘ P ⊂ P′.

Remark 1.2. Any diffeological space (X,P) can be endowed with the weakest topology such that all the maps
that belong to P are continuous. This topology is called the D-topology, see [16].

We now introduce Frölicher spaces, see [8], using the terminology defined in [4].

Definition 1.3. • A Frölicher space is a triple (X,F, C) such that : - C is a set of paths R → X; - F is the set of
functions from X to R, such that the function f : X → R is in F if and only if for any c ∈ C, f ∘ c ∈ C∞(R,R);

- A path c : R → X is in C (i.e. is a contour) if and only if for any f ∈ F, f ∘ c ∈ C∞(R,R).

• Let (X,F, C) and (X′,F′, C′) be two Frölicher spaces; a map f : X → X′ is differentiable (=smooth) if and
only if F′ ∘ f ∘ C ⊂ C∞(R,R).

Any family of maps Fg from X to R generates a Frölicher structure (X,F, C) by setting, after [4]:
- C = {c : R → X such that Fg ∘ c ⊂ C∞(R,R); }
- F = {f : X → R such that f ∘ C ⊂ C∞(R,R)}.
In this case we callFg a generating set of functions for the Frölicher structure (X,F, C). One easily see that

Fg ⊂ F. This notion will be useful in the sequel to describe in a simple way a Frölicher structure. A Frölicher
space (X,F, C) carries a natural topology, which is the pull-back topology ofR via F. We note that in the case
of a finite dimensional differentiable manifold X we can take F the set of all smooth maps from X toR, and C

the set of all smooth paths from R to X. In this case the underlying topology of the Frölicher structure is the
same as the manifold topology [4]. In the infinite dimensional case, there is to our knowledge no complete
study of the relation between the Frölicher topology and the manifold topology; our intuition is that these
two topologies can differ.

We also remark that if (X,F, C) is a Frölicher space, we can define a natural diffeology on X by using the
following family of maps f defined on open domains D(f ) of Euclidean spaces (see [6]):

P∞(F) =
∐︁
p∈N

{ f : D(f ) → X; F ∘ f ∈ C∞(D(f ),R) (in the usual sense)}.

If X is a differentiable manifold, this diffeology has been called the nébuleuse diffeology by J.-M. Souriau
[13] or nebulae diffeology in [14]. We can easily show the following:

Proposition 1.4. [6] Let(X,F, C) and (X′,F′, C′) be two Frölicher spaces. A map f : X → X′ is smooth in the
sense of Frölicher if and only if it is smooth for the underlying diffeologies P∞(F) and P∞(F′).
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Thus, we can also state:

smooth manifold ⇒ Frölicher space ⇒ diffeological space

A deeper analysis of these implications has been given in [7]. The next remark is inspired by this work
and by [6]; it is based on [4, p.26, Boman’s theorem].

Remark 1.5. We notice that the set of contours C of the Frölicher space (X,F, C) does not give us a diffeology,
because a diffelogy needs to be stable under restriction of domains. In the case of paths in C the domain is
alwaysRwhere as the domain of 1-plots can (and has to) be any interval ofR. However, C defines a “minimal
diffeology” P1(F) whose plots are smooth parameterizations which are locally of the type c ∘ g, where g ∈
P∞(R) and c ∈ C. Within this setting, we can replace P∞ by P1 in Proposition 1.4.

We also remark that given an algebraic structure, we can define a corresponding compatible diffeological
structure. For example following [14, pp. 66-68], an R−vector space equipped with a diffeology is called a
diffeological vector space if addition and scalar multiplication are smooth. An analogous definition holds for
Frölicher vector spaces.

Remark 1.6. Frölicher andGateaux smoothness are the same notion if we restrict to a Fréchet context. Indeed,
for a smooth map f : (F,P1(F)) → R defined on a Fréchet space with its 1-dimensional diffeology, we have
that ∀(x, h) ∈ F2, the map t ↦→ f (x + th) is smooth as a classical map in C∞(R,R). By the way, it is Gateaux
smooth. The converse is obvious.

Diffeologies on cartesian products, projective limits, quotients, subsets aswell as pull-back andpush-forward
diffeologies are described in [14, Chapter 1]. The reader can refer also to [13] or [9, 17] for faster exposition.

1.2 Functional diffeology

Let (X,P) and (X′,P′) be two diffeological spaces. LetM ⊂ C∞(X, X′) be a set of smooth maps. The functional
diffeology on S is the diffeology PS made of plots

ρ : D(ρ) ⊂ Rk → S

such that, for each p ∈ P, the maps Φρ,p : (x, y) ∈ D(p) × D(ρ) ↦→ ρ(y)(x) ∈ X′ are plots of P′. With this
definition, we have the classical fundamental propertiy for calculus of variations:

Proposition 1.7. [14] Let X, Y , Z be diffeological spaces,

C∞(X × Y , Z) = C∞(X, C∞(Y , Z)) = C∞(Y , C∞(X, Z))

as diffeological spaces equipped with functional diffeologies.

1.3 Tangent space

There are actually two main definitions, (2) and (3) below, of the tangent space of a diffeological space:
1. The internal tangent cone defined in [18]. For each x ∈ X, we consider

Cx = {c ∈ C∞(R, X)|c(0) = x}

and take the equivalence relation R given by

cRc′ ⇔ ∀f ∈ C∞(X,R), ∂t(f ∘ c)|t=0 = ∂t(f ∘ c′)|t=0.
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12 | Jean-Pierre Magnot

The internal tangent cone at x is the quotient
iTxX = Cx/R.

If V = ∂tc(t)|t=0 ∈ iTxX, we define the simplified notation

Df (V) = ∂t(f ∘ c)|t=0.

2. The internal tangent space at x ∈ X described in [19].
3. The external tangent space eTX, defined as the set of derivations on C∞(X,R) [4, 14].
It is shown in [18] that the internal tangent cone at a point x is not a vector space in many examples. This
motivates [19]. For finite dimensional manifold, definitions (1), (2) and (3) coincide. For more comparisons,
see [4, section 28] for a comparison for infinite dimensional manifolds and also [19].

1.4 Regular Lie groups

Definition 1.8. Let G be a group, equiped with a diffeology P. We call it diffeological group if both multipli-
cation and inversion are smooth.

The same definitions hold for Frölicher groups. Let us now recall [20, Proposition 1.6.], which shows that
the distinction between internal tangent cone and internal tangent space is not necessary for diffeological
groups.

Proposition 1.9. Let G be a diffeological group. Then the tangent cone at the neutral element TeG is a diffeo-
logical vector space.

Following Iglesias-Zemmour [14] who does not assert that arbitrary diffeological groups have a Lie alge-
bra, we restrict ourselves to a smaller class of diffeological groups which have such a tangent space at the
neutral element. Intuitively speaking, the diffeological group G is a diffeological Lie group if and only if the
derivative of the Adjoint action of G on iTeG defines a Lie bracket. In this case, we call iTeG the Lie algebra of
G, that we note generically by g. One crucial question consists in giving a technical condition which ensures
the classical properties of Adjoint and adjoint actions, e.g.:
– Let (X, Y) ∈ g2, X + Y = ∂t(c.d)(0) where c, d ∈ C2, c(0) = d(0) = eG , X = ∂tc(0) and Y = ∂td(0).
– Let (X, g) ∈ g × G, Adg(X) = ∂t(gcg−1)(0) where c ∈ C, c(0) = eG , and X = ∂tc(0).
– Let (X, Y) ∈ g2, [X, Y] = ∂t(Adc(t)Y) where c ∈ C, c(0) = eG , X = ∂tc(0).
According to [9] (which deals with Frölicher Lie groups), one can assume only that the desired properties
are fulfilled, leaving technicities for specific examples. One criteria has been given in [20, Definition 1.13 and
Theorem 1.14] but this is not necessary here since in the framework that we consider, the properties of the Lie
bracket will arise naturally and directly. For these reasons, we give the following definition:

Definition 1.10. The diffeological group G is a diffeological Lie group if and only if the derivative of the Ad-
joint action of G on iTeG defines a smooth Lie bracket. In this case, we call iTeG the Lie algebra of G, that we
note generically g.

Let us now concentrate on diffeological Lie groups, and in this case we note g = iTeG. The basic properties of
adjoint, coadjoint actions, and of Lie brackets, remain globally the same as in the case of finite-dimensional
Lie groups, and the proofs are similar. We only need to replace charts by plots of the underlying diffeologies
(see e.g. [20] for further details, and [? ] for the case of Frölicher Lie groups), as soon as one has checked that
the Lie algebra g is a diffeological Lie algebra, i.e. a diffeological vector space with smooth Lie bracket.

Definition 1.11. [20] A diffeological Lie group G with Lie algebra g is called regular if and only if there is a
smooth map

Exp : C∞([0; 1], g) → C∞([0, 1], G)
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such that g(t) = Exp(v(t)) is the unique solution of the differential equation{︃
g(0) = e,
dg(t)
dt g(t)

−1 = v(t).
(1.1)

We define the exponential function as follows:

Exp : g → G
v ↦→ exp(v) = g(1) ,

where g is the image by Exp of the constant path v.

1.5 Groups of diffeomorphisms

Let M be a locally compact, non-compact manifold, which is assumed to be Riemannian without restric-
tion, equipped with its nébuleuse diffeology. We equip the group of diffeomorphisms Di� (M) with the topol-
ogy of convergence of the derivatives an any order, uniformly on each compact subset of M, usually called
C∞−compact-open topology or weak topology in [10]. Traditionnally, Vect(M) is given as the Lie algebra of
Di� (M), but [4, section 43.1] shows that this strongly depends on the topology of Di� (M). Indeed, the Lie
algebra of vector fields described in [4, section 43.1] is the Lie algebra of compactly supported vector fields,
which is not the (full) Lie algebra Vect(M). In another context, when M is compact, Vect(M) is the Lie alge-
bra of Di� (M), which can be obtained by Omori’s regularity theorems [1, 3] and recovered in [19]. What is
well known is that infinitesimal actions (i.e. elements of the internal tangent space at identity) of Di� (M)
on C∞(M,R) generates vector fields, viewed as order 1 differential operators. The bracket on vector fields is
given by

(X, Y) ∈ Vect(M) ↦→ [X, Y] = ∇XY −∇YX,

where∇ is the Levi-Civita connection on TM. This is a Lie bracket, stable under the Adjoint action of Di� (M).
Moreover, the compact-open topology on Di� (M) generates a corresponding C∞−compact-open topology on
Vect(M). This topology is itself the D−topology for the the functional diffeology on Di� (M). Following [20,
Definition 1.13 and Theorem 1.14], Vect(M) equipped with the C∞ compact-open topology is a Fréchet vector
space, and the Lie bracket is smooth. Moreover, we feel the need to remark that the evaluation maps

T*M × Vect(M) → R

separate Vect(M). Thus Di� (M) is a diffeological Lie group matching with the criteria of [20, Definition 1.13
and Theorem 1.14], and for the functional diffeology, with Lie algebra g ⊂ Vect(M).

2 A non-regular group of diffeomorphims of the unit interval

2.1 Premilinaries

Let F be the vector space of smooth maps f ∈ C∞(]0; 1[;R). We equip F with the following semi-norms:
For each (n, k) ∈ N* ×N,

||f ||n,k = sup
1
n+1 ≤x≤

n
n+1

|Dkx f |.

This is a Fréchet space, and its topology is the smooth compact-open topology, which is the D−topology
of the compact-open diffeology. Let

A = {f ∈ C∞(]0; 1[; ]0; 1[)| lim
x→1

f (x) = 1 ∧ lim
x→0

f (x) = 0}.
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14 | Jean-Pierre Magnot

Finally, we set
D = {f ∈ A| inf

x∈]0;1[
f ′(x) > 0}.

D is a contractible set of diffeomorphismsof the open interval ]0; 1[which is an (algebraic) group for composi-
tion of functions. Composition of maps, and inversion, is smooth for the functional diffeology. Unfortunately,
D is not open in A. As a consequence, we are unable to prove that it is a Fréchet Lie group. However, con-
sidering the smooth diffeology induced onD by A, the inversion is smooth. As a consequence,D is (only) a
Frölicher Lie group.

2.2 A non-integrable path of the Lie algebra

Let us consider the standard mollifier
ϕ(u) = 1

K e
1

u2−1

defined for u ∈] − 1; 1[, with

K =
1∫︁

−1

e
1

u2−1 du > 0, 4

and extended smoothly toR by setting ϕ(u) = 0 whenever u /∈] − 1; 1[. We set ϕα(u) = 1
αϕ

(︀ x
α
)︀
. Let us define,

with 1 the standard characteristic function of a set,

ct(x) = x + t
(︁
1[|t|;1−|t|](x) * ϕ|t|(x)

)︁

=

⎧⎪⎨⎪⎩
∀x < 2|t|, ct = x + t

∫︀ |t|
|t|−x ϕ|t|(u)du,

∀x ∈ [2|t|; 1 − 2|t|], ct(x) = x + t,
∀x > 1 − 2|t|, ct = x + t

∫︀ 1−|t|−x
−|t| ϕ|t|(u)du,

where * is the standard convolution in the x−variable, and −1/4 < t < 1/4. For t ≠ 0, (t, x) ↦→ ct(x) is smooth.
Moreover, since

supϕ < e−1
0, 4 < 1,

for fixed t, one can easily check that ∂xct > 0, which shows that ∀t ∈] − 1/4; 1/4[, ct ∈ D.

Theorem 2.1. The path t ↦→ ct is of class C∞(] − 1/4; 1/4[,D). Moreover,

∂tct|t=0 = 1]0;1[

is a constant map.

Proof. Let x ∈]0; 1[. Let us now check smoothness of (t, x) ↦→ ct(x) at (0; x). Let α = min{x, 1 − x} and let us
restrict our study on the open subset

]︀
− α4 ;

α
4
[︀
×
]︀
x − α

2 ; x +
α
2
[︀
. For t ∈

]︀
− α4 ;

α
4
[︀
, we have that

ct(u) = x + t

whenever
u ∈

]︁
x − α2 ; x +

α
2
[︁
⊂

]︁α
2 ; 1 −

α
2
[︁
⊂ ]2|t|; 1 − 2|t|[ .

By the way, (u, t) ↦→ ct(u) is smooth on
]︀
− α4 ;

α
4
[︀
×
]︀
x − α

2 ; x +
α
2
[︀
and hence it is smooth everywhere. By direct

differentiation,

∂tct(x)|t=0 = 1.
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Now, we get the following:

Theorem 2.2. There exists a smooth path v on TId]0;1[D such that no smooth path g onD satisfies the equation

∂tg ∘ g−1 = v.

Proof. Let v be the constant path equal to 1. Let t ↦→ gt be a solution of the last equation and let x ∈]0; 1[.
Then we have, ∀y ∈]0; 1[, setting x = gt(y),

∂tgt(y) = (∂tgt) ∘ g−1t (x) = 1,

and by the way,
∀(t, y) ∈

]︀
−1/4; 1/4

[︀
× ]0; 1[ , ∂tct(y) = 1 and co(y) = y

so that the only possible solution is the translation gt(x) = x + t. We have

∀t > 0, gt /∈ A

so that
∀t > 0, gt /∈ D.

As a consequence, we get the announced result:

Theorem 2.3. D is a non-regular Frölicher Lie group.

2.3 Final remark: Di� (M) is a non-regular diffeological Lie group

Wenowfinishbygiving adirect proof for thenon-regularity of the groupof diffeomorphismsof anon-compact
boundaryless manifold. Let M be a smooth manifold, for which there is an embedding

e :]0; 1[→ E

for which Im(e) is closed in M. We also assume that this embedding can be extended to a so-called “thick
path", whose imagewill be a tubular neighbourhood of Im(e). These are themain conditions that are needed,
which are fulfilled whenM is n−dimensional. Under these conditions, following the “smooth tubular neigh-
bourhood theorem" (see e.g. [21]) we can assume that there is a parametrization of the closed tubular neigh-
bourhood under consideration via an embedding

E :]0; 1[×Bn−1 → M,

where Bn−1 is the Euclidian n − 1 dimensional unit ball and E(x, 0) = e(x). We set ϕ : R → R+ a smooth
function with support in [−1; 1] and such that ϕ = 1 on a neighbourhood of 0. We also parametrize Bn−1 via
spherical coordinates (r, θ1, ...θn−1). Under these conditions, we consider the path

Ct : R → Di� (M),

defined by

Ct(x) =
{︃

x if x /∈ Im(E),
E(cϕ(r).t(x′), r, θ1, ..., θn−1) if x = E(x′, r, θ1, ..., θn−1).

We have that ∂tCt(x)|t=0 is a smooth vector field, which is equal to e*(1) when r = 0. As a consequence, we
have

Theorem 2.4. The vector field ∂tCt(x)|t=0 has no global flow on M and hence Di� (M) is a non-regular Frölicher
Lie group.
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16 | Jean-Pierre Magnot

Proof.We investigate the flow of ∂tCt(x)|t=0 on Im(e) and we have that

e*(∂tCt(x)|t=0) = 1 × {0} ∈ e*TM = C∞(]0; 1[;R ×Rn−1).

Thus the flow along Im(e) must be t ↦→ e(x + t). Since Im(e) is closed inM, this flow does not extend to a flow
in M.
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tensen, who helped to improve the last version of this paper with very interesting comments and questions.

References
[1] Omori H., Groups of diffeomorphisms and their subgroups, Trans. Amer. Math. Soc., 1973, 179, 85-122
[2] Omori H., A remark on nonenlargeable Lie algebras, J. Math. Soc. Japan, 1981, 33(4), 707-710
[3] Omori H., Infinite dimensional Lie groups, AMS Translations of Mathematical Monographs, Amer. Math. Soc., Providence,

R.I., 1997, 158
[4] Kriegl A., Michor P. W., The convenient setting for global analysis, AMS Math. Surveys and Monographs, AMS, Providence,

1997, 53
[5] Khesin B., Wendt R., Geometry of infinite dimensional groups, Springer, 2008
[6] Magnot J.-P., Difféologie du fibré d’Holonomie en dimension infinie, C. R. Math. Soc. Roy. Can., 2006, 28(4), 121-127
[7] Watts J., Diffeologies, differentiable spaces and symplectic geometry, University of Toronto, PhD thesis, 2013,

arXiv:1208.3634v1
[8] Frölicher A., Kriegl A., Linear spaces and differentiation theory, Wiley series in Pure and Applied Mathematics, Wiley Inter-

science, 1988
[9] Magnot J.-P., Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom.

Meth. Mod. Phys., 2013, 10(9), DOI: 10.1142/S0219887813500436
[10] Hirsch M., Differential topology, Springer, 1997
[11] Kriegl A., Michor P. W., Rainer A., An exotic zoo of diffeomorphism groups on Rn, Ann. Global Anal. Geom., 2015, 47(2),

179-222
[12] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer, 1993
[13] Souriau J.-M., Un algorithme générateur de structures quantiques, Astérisque (hors série), 1985, 341-399
[14] Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, 2013, 185
[15] Neeb K.-H., Towards a Lie theory of locally convex groups, Japanese J. Math., 2006, 1, 291-468
[16] Christensen D., Sinnamon G., Wu E., The D-topology for diffeological spaces, Pacific J. Math., 2014, 272(1), 87-110
[17] Magnot J.-P., q-deformed Lax equations and their differential geometric background, Lambert Academic Publishing, Saar-

brucken, Germany, 2015
[18] Dugmore D., Ntumba P., On tangent cones of Frölicher spaces, Quaetiones Mathematicae, 2007, 30(1), 67-83
[19] Christensen D., Wu E., Tangent spaces and tangent bundles for diffeological spaces, Cahiers de Topologie et Géométrie

Différentielle, 2016, LVII, 3-50
[20] Leslie J., On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory,

2003, 13, 427-442
[21] Berger M., A panoramic overview of Riemannian geometry, Springer, 2003

Unauthenticated
Download Date | 7/6/18 9:45 AM


	1 Preliminaries
	1.1 Souriau's diffeological spaces and Frölicher spaces
	1.2 Functional diffeology
	1.3 Tangent space
	1.4 Regular Lie groups
	1.5 Groups of diffeomorphisms

	2 A non-regular group of diffeomorphims of the unit interval
	2.1 Premilinaries
	2.2 A non-integrable path of the Lie algebra
	2.3 Final remark: Diff(M) is a non-regular diffeological Lie group


