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We describe a mathematical link between aspects of information theory, called pairwise comparisons, and discretized gauge
theories. The link is made by the notion of holonomy along the edges of a simplex. This correspondence leads to open questions in
both fields.

1. Introduction

We present here an overview, addressed to physicists, of
a possible bridge between gauge theories (and also some
aspects of quantum gravity) with pairwise comparisons
matrices and their applications in information theory and
approximate reasoning. This is the reason why we rapidly
summarize features in physics (assuming that they are known
by the reader) and give more details for selected features
on pairwise comparisons (PC) matrices (assuming that this
field is less known). This paper is a companion work to
[1–3] where, after a tentative in [4], the extension of the
notion of classical PC matrices to matrices with coefficients
in a group is considered, partially motivated (in my case) by
the striking similarities with mathematical constructions in
discretized gauge theories. A not complete list of reference
about PC matrices is [5–7], oriented in our perspective, and
a very partial list of references about gauge theories and their
discretized forms is [8–19].

We begin with an oriented survey of selected problems
in discretization of 𝐺-gauge theories, where 𝐺 is a Lie group,
and a selection of features in evaluation of inconsistency
in pairwise comparisons with coefficients in R∗+. Then we
describe, following [1, 2], a straightforward extension of PC
matrices with coefficients in R∗+ to a general Lie group 𝐺.

The link with gauge theories is performed via holonomy,
which appears in discretizations described in [3, 16]. In
order to make a link with questions raised by computer
scientists in private communications, we have to precise
that any matrix group is a finite dimensional Lie group and
that most finite dimensional groups can be expressed as
matrix groups, for inversion and multiplication of matrices.
We finish with the possible interpretations in both sides of
this correspondence, first from quantities on PC matrices
to gauge theories and secondly from second quantization to
approximate reasoning.

2. A Short and Not Complete Survey of Each
Field of Knowledge

We present here the two fields under consideration, dis-
cretized gauge theories and pairwise comparisons in approx-
imate reasoning, in a way to highlight the correspondence.

2.1. Gauge Theories Discretized. The phase space of a (con-
tinuum) gauge theory is a space of connections on a (finite
dimensional) principal bundle 𝑃 with structure group 𝐺 and
with base 𝑀. We denote by 𝐶(𝑃) the space of connections
considered. If𝑀 is not compact and Riemannian, one often
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uses the space of connections which are smooth and square-
integrable. A gauge theory is defined by an action functional𝑆 : 𝐶(𝑃) → R which has to be minimized.

A discretized gauge theory is defined on a triangulation,
a cubification or any other way to discretize the manifold𝑀, and the principal bundle 𝑃 can be often trivial. Let us
highlight two kind of discretizations:

(i) Whitney’s discretization [20], where a connection𝜃 ∈ 𝐶(𝑃) is integrated on the 1-vertices of the
chosen triangulation. This mimics a finite element
method of approximation for scalar functions, and
the discretized connection 𝜃𝑊 generates a 𝐻1-
approximation 𝜃 of 𝜃, which𝐻1-converges to 𝜃 when
refining the triangulation. The action functional 𝑆
is then evaluated on the finite dimensional space
of connections 𝜃 instead of the infinite dimensional
space𝐶(𝑃).This is, to our knowledge the most widely
developed approach, but this approach seems to fail
partially for nonabelian theories, partly because the
trivialization is not gauge covariant. This leads to
gauge-fixing strategies.

(ii) Holonomydiscretization,mostly inspired by the ideas
of quantum gravity [16], where connections along
the edges are discretized through their holonomy.
This approach requires mathematical precisions by
fixing a preliminary gauge on the 1-vertices of the dis-
cretizedmanifold, but in a final analysis, only theories
depending of secondary characteristic classes (e.g.,
Chern-Simons theory) can give rise to pathologies
in gauge covariance, whereas gauge theories arising
from primary characteristic classes (e.g., Yang-Mills
theories) are fully gauge covariant when discretized
[3].

2.2. Pairwise Comparisons, Consistency, and Inconsistency. A𝑛 × 𝑛 pairwise comparisons (PC) matrix is a matrix𝐴 = (𝑎𝑖,𝑗)(𝑖,𝑗)∈N2𝑛 (1)

such that

(i) ∀(𝑖, 𝑗) ∈ N2𝑛, 𝑎𝑖,𝑗 ∈ R∗+,
(ii) ∀𝑖 ∈ N𝑛, 𝑎𝑖,𝑖 = 1,
(iii) ∀(𝑖, 𝑗) ∈ N2𝑛, 𝑎𝑖,𝑗 = 𝑎−1𝑗,𝑖 .

The coefficients 𝑎𝑖,𝑗 are traditionally called ratios and are
supposed to translate into a score the comparison of two
states with numbers 𝑖 and 𝑗. When there exists a family of
positive real numbers 𝜆1, . . . , 𝜆𝑛 such that

𝑎𝑖,𝑗 = 𝜆𝑖𝜆𝑗 , ∀ (𝑖, 𝑗) ∈ N
2
𝑛, (2)

the PCmatrix𝐴 is called consistent. When it is not consistent,
the formula 𝑎𝑖,𝑘 ⋅ 𝑎𝑘,𝑗 = 𝑎𝑖,𝑗 (3)

does not hold for at least one choice of indexes (𝑖, 𝑗, 𝑘) ∈
N3𝑛. By the way, it is easy to explain the inconsistency in
PC matrices when we consider cycles of three comparisons,
called triads and represented here as (𝑥, 𝑦, 𝑧) ∈ (R∗+)3, relative
to the PC matrix

( 1 𝑥 𝑦𝑥−1 1 𝑧𝑦−1 𝑧−1 1) ∈ 𝑀3 (R∗+) , (4)

which donot have the “morphismof groupoid” property such
as

𝑥 ⋅ 𝑧 ̸= 𝑦. (5)

The use of “inconsistency” has a meaning of a measure of
inconsistency in this study, not the concept itself. In order to
measure inconsistency, we define maps

ii: PC matrices 󳨀→ R+, (6)

called inconsistency indicators, which are vanishing on con-
sistent PC matrices and which intend to measure the lack of
consistency, that is, intuitively speaking, the distance of a PC
matrix to the nearest consistent PC matrix. In applications,
PC matrices are modified with algorithms (which are often
recursive) in order to minimize the chosen inconsistency
indicator. One approach to inconsistency (originated in [6]
and generalized in [5]) can be reduced to a simple observa-
tion:

(i) Search all triads (which generate all 3 by 3 PC
submatrices) and locate the worst triad with an
inconsistency indicator (ii).

(ii) The inconsistency indicator evaluated on the worst
triad becomes the inconsistency indicator evaluated
on the entire PC matrix.

Expressing it a bit more formally in terms of triads (the upper
triangle of a PC submatrix 3 × 3), we have

ii3 (𝑥, 𝑦, 𝑧) = 1 −min{ 𝑦𝑥𝑧 , 𝑥𝑧𝑦 } = 1 − 𝑒−|ln(𝑦/𝑥𝑧)|. (7)

The expression |ln(𝑦/𝑥𝑧)| stands for the distance of the
triad 𝑇 to the “nearest” consistent PC matrix. When this
distance increases, the ii(𝑥, 𝑦, 𝑧) also increases. It is important
to notice here that this definition allows us to localize the
inconsistency in the PC matrix, which is of importance for
most applications. For higher rank matrices, ii3 is evaluated
on each 3 × 3 matrix, taking the supremum of the obtained
values.
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Another possible definition of the inconsistency indicator
can also be defined (following [7]) as

ii𝑛 (𝐴) = 1 − min
1≤𝑖<𝑗≤𝑛

min( 𝑎𝑖𝑗𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖+2 ⋅ ⋅ ⋅ 𝑎𝑗−1,𝑗 , 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖+2 ⋅ ⋅ ⋅ 𝑎𝑗−1,𝑗𝑎𝑖𝑗 ) (8)

since the matrix 𝐴 is consistent if and only if for any 1 ≤ 𝑖 <𝑗 ≤ 𝑛 the following equation holds:𝑎𝑖𝑗 = 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖+2 ⋅ ⋅ ⋅ 𝑎𝑗−1,𝑗. (9)

This is equivalent to

ii𝑛 (𝐴) = 1 − max
1≤𝑖<𝑗≤𝑛

(1 − 𝑒−|ln(𝑎𝑖𝑗/𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖+2 ⋅⋅⋅𝑎𝑗−1,𝑗)|) . (10)

One of the main features in applications is to minimize
the inconsistency indicator ii.This is the reason why, instead
of using the inconsistency indicator ii defined before, there
is plethora of inconsistency indicators. Each inconsistency
indicator intends to measure how far a PC matrix is from the
set of consistent PC matrices, which, for 3 × 3 PCmatrices, is
a 2-dimensional manifold of matrices of the form

( 1 𝑥 𝑥𝑦𝑥−1 1 𝑦𝑥−1𝑦−1 𝑦−1 1 ) , with (𝑥, 𝑦) ∈ (R∗+)2 . (11)

Unfortunately, the notion and the theory of inconsistency
indicators are not actually fixed and achieved, and many
competing, incompatible approaches are actually developed.
In order to relate PC matrices to gauge theories, we need
to generalize (quite straightway) the framework described
before, changing the group R∗+ to any Lie group 𝐺. In
the setting of gauge theories, 𝐺 is in most cases a finite
dimensional, compact (or at least unimodular) group which
can be represented as a matrix group. But this assumption is
not technically necessary for the generalization and will be
only recoveredwhendiscussing the possible correspondences
announced.

3. The Matrix of Holonomies and
Pairwise Comparisons

We first follow [2]. Let 𝐼 be a set of indexes among Z, N, or{0, . . . , 𝑛} for some 𝑛 ∈ N∗.
Definition 1. Let (𝐺, ⋅) be a group. A PC matrix is a matrix𝐴 = (𝑎𝑖,𝑗)(𝑖,𝑗)∈𝐼2 (12)

such that

(1) ∀(𝑖, 𝑗) ∈ 𝐼2, 𝑎𝑖,𝑗 ∈ 𝐺,
(2) ∀(𝑖, 𝑗) ∈ 𝐼2, 𝑎𝑗,𝑖 = 𝑎−1𝑖,𝑗 , where −1 is the inversion in𝐺,
(3) 𝑎𝑖,𝑖 = 1𝐺.

Thematrix 𝐴 is covariantly consistent if𝑎𝑖,𝑗 ⋅ 𝑎𝑗,𝑘 = 𝑎𝑖,𝑘, ∀ (𝑖, 𝑗, 𝑘) ∈ 𝐼3. (13)

Due to the contravariant composition thereafter, we will
use the following notion: the PC matrix is contravariantly
consistent if 𝑎𝑗,𝑘 ⋅ 𝑎𝑖,𝑗 = 𝑎𝑖,𝑘, ∀ (𝑖, 𝑗, 𝑘) ∈ 𝐼3. (14)

These two notions are dual and depend on which order we
require for the group multiplication. Similarly, a contravari-
ant consistent PCmatrix𝐴 = (𝑎𝑖,𝑗)(𝑖,𝑗)∈𝐼2 generates a covariant
consistent PC matrix 𝐵 = (𝑏𝑖,𝑗)(𝑖,𝑗)∈𝐼2 setting𝑏𝑖,𝑗 = 𝑎−1𝑖,𝑗 = 𝑎𝑗,𝑖 in 𝐺. (15)

For convenience, we use the term covariant PC matrix (resp.,
contravariant PC matrix) when covariant consistency (resp.,
contravariant consistency) is naturally required. In order
to make the difference more clear with the more general
cases described in next section, we have to recall that each
coefficient here is in a group, and hence there is no vanishing
coefficient in the matrix 𝐴.
Theorem 2.𝐴 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ⇐⇒ 𝑎𝑖,𝑗 = 𝜆−1𝑖 ⋅ 𝜆𝑗, ∃ (𝜆𝑖)𝑖∈N𝑛 . (16)

Let 𝑛 ∈ N∗ and

Δ 𝑛 = {(𝑥0, . . . , 𝑥𝑛) ∈ R
𝑛+1 | ( 𝑛∑

𝑖=0

𝑥𝑖 = 1)
∧ (∀𝑖 ∈ {0, . . . , 𝑛} , 𝑥𝑖 ≥ 0)} (17)

be an 𝑛-simplex. This simplex can be generalized to the
infinite dimension:

ΔN = {(𝑥𝑛)𝑛∈N ∈ 𝑙1 (N,R∗+) | ∞∑
𝑖=0

𝑥𝑖 = 1} ,
ΔZ = {(𝑥𝑛)𝑛∈Z ∈ 𝑙1 (Z,R∗+) | ∑

𝑖∈Z

𝑥𝑖 = 1} , (18)

where the summation over Z is done by integration with
respect to the counting measure. In the sequel, Δ will denoteΔ 𝑛, ΔN, or ΔZ. Let (𝑠𝑖) be the 0-vertices of Δ. Since Δ
is smoothly contractible, any 𝐺-principal bundle over Δ is
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Table 1

PC matrices Discretized gauge theories Continuum gauge theories
Consistency 0-holonomy 0-curvature
Consistency in 3 × 3matrices 0-holonomy on the border of a 2-simplex Δ 2 Ω(𝑋, 𝑌) = 0 with𝑋,𝑌 tangent to Δ 2
Koczkodaj’s inconsistency indicator ii sup 𝑑(Hol(𝜕Δ 2), 1𝐺) when Δ 2 is any 2-simplex of the

triangulation sup𝑀 ‖Ω‖
Minimization of inconsistency ? Minimization of the curvature norm

isomorphic to Δ × 𝐺 and a 𝐺-connection 1-form on Δ is a
1-form 𝜃 ∈ Ω1(Δ, g), which extends to a 𝐺-covariant 1-form
in Ω1(Δ, g), with respect to the coadjoint action of 𝐺 on g.
We define a gauge (𝑔𝑖)𝑖∈𝐼 ∈ 𝐺𝐼 with 𝛾𝑖(1) = (𝛾𝑖(1), 𝑔𝑖) where
the piecewise smooth paths 𝛾𝑖 are defined by the standard
composition ∗ of the paths along 1-vertices [𝑠𝑗, 𝑠𝑗+1] of Δ
setting: 𝛾𝑖 = [𝑠0, 𝑠1] ∗ ⋅ ⋅ ⋅ ∗ [𝑠𝑖−1, 𝑠𝑖] if 𝑖 > 0,𝛾𝑖 = [𝑠0, 𝑠−1] ∗ ⋅ ⋅ ⋅ ∗ [𝑠𝑖+1, 𝑠𝑖] if 𝑖 < 0. (19)

Let Hol the (mathematical) holonomy on loops relative to a
fixed connection 𝜃.We set 𝑔𝑖 = Hol(𝑠0 ,1𝐺)𝛾𝑖. Let us recall that,
for two paths 𝑐 and 𝑐󸀠 such that 𝑐∗ 𝑐󸀠 exists (i.e., 𝑐(1) = 𝑐󸀠(0)),
if 𝑝 = (𝑐(0), 𝑒𝐺), 𝑝󸀠 = (𝑐󸀠(0), 𝑒𝐺), and ℎ = Hol𝑝𝑐, we have

Hol𝑝 (𝑐 ∗ 𝑐󸀠) = Hol𝑝 (𝑐) ⋅ (ℎ−1Hol𝑝󸀠 (𝑐󸀠) ℎ)= Hol𝑝󸀠 (𝑐󸀠) ⋅Hol𝑝 (𝑐) . (20)

This enables the (physics) definition of holonomy present, for
example, in [16] that we apply to the edges [𝑠𝑖, 𝑠𝑗] and identify
with the coefficients 𝑎𝑖,𝑗:𝑎𝑖,𝑗 = 𝑔𝑗 ⋅Hol(𝑠0 ;𝑒𝐺) (𝛾𝑖 [𝑠𝑖, 𝑠𝑗] 𝛾−1𝑗 ) ⋅ 𝑔−1𝑖 . (21)

In the light of these specifications, we set, for any
connection 𝜃 ∈ Ω1(Δ, g),𝐴 = Mat (𝑎𝑖,𝑗) (22)

and the required notion of consistency is contravariant
consistency.

Proposition 3. 𝐴 is a PC matrix with coefficients in 𝐺.
Proof. This follows from holonomy in “reverse orientation.”

Let 𝛾𝑖,𝑗,𝑘 = 𝛾𝑖 ∗ [𝑠𝑖, 𝑠𝑗] ∗ [𝑠𝑗, 𝑠𝑘] ∗ [𝑠𝑘, 𝑠𝑖] ∗ 𝛾−1𝑖 be the
loop based on 𝑠𝑖 along the border of the oriented 2-vertex[𝑠𝑖, 𝑠𝑗, 𝑠𝑘], where ∗ is the composition of paths.

Contravariant consistency seems to fit naturally with
flatness of connections:𝑎𝑖,𝑘 = 𝑎𝑗,𝑘 ⋅ 𝑎𝑖,𝑗 ⇐⇒𝑎𝑘,𝑖 ⋅ 𝑎𝑗,𝑘 ⋅ 𝑎𝑖,𝑗 = 𝑎𝑖,𝑖 = 1𝐺 ⇐⇒

Hol (𝛾𝑖,𝑗,𝑘) = 1𝐺, ∀𝑖, 𝑗, 𝑘.
(23)

By fixing an indicator map, defined in [4] as

In : 𝐺 󳨀→ R+ (24)

to In(1𝐺) = 0, we get a generalization of the inconsistency
indicator by setting

iiIn = sup {In (Hol (𝛾𝑖,𝑗,𝑘)) | (𝑖, 𝑗, 𝑘) ∈ 𝐼3} . (25)

For example, if 𝑑 is a left-invariant distance on 𝐺, a natural
indicator map can be

In : 𝑔 󳨃󳨀→ 𝑑 (1𝐺, 𝑔−1) . (26)

Such definitions extend to triangularizedmanifolds along
the lines of [3], where one can see that the notion of holonomy
on a manifold can be discretized, inserting “gaps” (i.e., 0
entries) on a larger matrix gathering all the PC matrices over
the simplexes of the triangulation, along the lines of [2]. We
then recover the discretization of connections via holonomies
described in [16]. When 𝐺 = R∗+ In (classical) pairwise
comparisons, matrix coefficients are scalar, which enable
simplifying the settings obtained.The indicator ii𝑛 appears as
the distance of the holonomy of the loop [𝑠𝑖𝑠𝑖+1 ⋅ ⋅ ⋅ 𝑠𝑖+𝑛𝑠𝑖] to
identity.

4. Correspondences and Open Questions

We give the table of correspondences (see Table 1) that we
comment on. We first highlight how the notions on PC
matrices correspond to geometric objects.

Minimization of inconsistency is an important feature for
applications of PC matrices. For decision making, it consists
in adapting slightly the parameters of the studied situation in
order tomake “approximately consistent” choices. In order to
check if the adapted PCmatrix is “approximately consistent,”
the criteria are given by the chosen inconsistency indicator,
for example, Koczkodaj’s ii, which needs to have a value 𝜖 ≥ 0
small enough. Again for Koczkodaj’s ii, it is trivial to see that
the sets 𝑉𝜖 = ii−13 [0; 𝜖[ (27)

form a filter base of open neighborhoods of the set of
consistent PC matrices. The analog for continuum gauge
theories is considering

𝑈𝜖 = {𝜃 ∈ 𝐶 (𝑃) | sup
𝑀

‖Ω‖ < 𝜖} . (28)
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Table 2

Continuum integration Discretized integration PC matrices
Heuristic Lebesgue measure Lebesgue measure (finite dimension, Whitney discretization) ?

Integral to be studied Product measure on 𝐺𝑛(𝑛−1)/2 (𝐺 compact), on the
discretization by holonomies

Measures on 𝑛 × 𝑛 PC
matrices

This defines a filter base of open neighborhoods of the set
of 0-curvature connections. This leads to the following open
problem.

On one hand, the procedures developed to get consis-
tencizations of PC matrices are specific to the case 𝐺 =
R∗+. However, there exist many methods for minimizing
functional, and onemaywonderwhetherminimization of the
curvature norm has a physical meaning. The corresponding
physical quantity would be the Yang-Mills action functional,
but we get here an average value instead of a supremum.This
questions the choice of the supremum in the formula

ii3 (𝐴)= sup {ii3 (𝐵) | 𝐵 is a 3 × 3 PC submatrix of 𝐴} . (29)

On the other hand, considering flat connections, or only
connections such that Ω = 𝑑𝜃 is a common feature in
gauge fixing. Since minimal states represent stable solutions,
consistencization may appear as a way to equilibrium.

Let us now reverse the perspective and consider second
quantization.We now analyze how the Feynman-like integra-
tion (i.e., cylindrical integration for discretized theories) may
arise in PC matrices (see Table 2).

If 𝐺 is compact, we can assume that it is of volume 1. In
this case, there is a convergence at the continuum limit to an
integral. This is the approach suggested in [16], which is an
alternative approach to the classical integration with respect
to the heuristic Lebesgue integral (see, e.g., [10]). On one
hand, for both cases, the possible interpretations in terms of
applications of PCmatrices are not investigated.Heuristically,
measures on PC matrices may arise when evaluations are
random, or subject to measurement errors. On the other
hand, PC matrices may furnish an interpretation in terms of
information theory of Feynman type integration.
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