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We present several time dependent analytical solutions for the incompressible Euler
system with free surface. These analytical solutions give quantitative descriptions of some
physical phenomena and can be used as reference solutions when validating numerical
simulation codes. They concern fluid flows governed by Euler equations with or without
hydrostatic hypothesis including wet/dry interface, variable density, wide variety of
boundary conditions and possibly non-uniform bottom topographies. Some of these
analytical solutions concern shallow water type models or free surface Navier-Stokes
model i.e. with a viscous fluid.

1. Introduction

Models arising in fluid dynamics are often based on the Euler equations and are
generally difficult to analyze both at the mathematical and numerical level. As a conse-
quence the derivation of simplified models is important, despite this the design of effi-
cient/validated numerical schemes for such very models remains complex. The presence of
the free surface coupled with the non-linearities complicates the numerical analysis of such
models. Even if some discrete stability properties can be proved (consistancy, invariant
domains. . . ), some of them e.g. discrete entropy inequalities are hardly accessible and in
most of the cases the proof of the convergence of the numerical scheme is out of reach.

This paper proposes a list of analytical test cases that allow to validate the efficiency
of the numerical tools. These analytical solutions can be adapted to two-dimensional
shallow water type models or to models where the velocity is distributed along the vertical
direction. Some of the proposed solutions include
• wet/dry interfaces,
• the hydrostatic assumption,
• a variable density (the density depends on a tracer concentration).

To validate the boundary conditions, we have analytical solutions in a cubic tank
with open boundary and in a semi-open domain with hyperbolic topography and open
boundary. In such cases we have access to the value of all variables and if necessary all
derivatives of these variables at the boundary.

Some of these analytical solutions are also solutions of the free surface Navier-Stokes
system for a viscous fluid meaning they satisfy a minimum energy principle.

It is important to notice that these analytical solutions correspond to possible physical
configurations, even if they are expressed over simple geometrical domains. To compare
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Figure 1. Links between the analytical solutions proposed and the models considered. With
indication of the shape of the domain (Bowl, Tank, Hyperbolic or Various shape), the fact that
they are also solutions of Navier-Stokes (NS) and the paragraph where they are presented.

them to a laboratory experience or a numerical simulation, it is necessary to be able
to impose the suitable boundary conditions, what is practicable without difficulties in a
numerical simulation but can become more complex in a laboratory experiment.

All the graphics presented is this document represent the exact analytical solutions,
but we are able to obtain a good approximation of them by using the Freshkiss3D
simulation code (Freshkiss3d 2017) by imposing only the geometry of the domain and
the corresponding initial and boundary conditions. With these analytical solutions, it is
possible to test simulation codes and to obtain convergence curves when increasing the
numerical scheme order and the mesh resolution, see for example (Allgeyer et al. 2019).
Figure 1 presents the simplified distribution of the proposed analytical solutions and
the corresponding model. Indication Bowl, Hyperbolic, Tank or Var. topo. (for various
topography) refers to the shape of the basin; NS refers to the fact that the solutions are
also valid for Navier-Stokes system and § precedes the section number to be referred to.

This paper is organized as follows. In Section 2 we present the notations and the
various forms of the Euler and the Navier-Stokes systems used in this paper. In Section 3
we propose some extensions of the solution proposed by Thacker (Thacker 1981) in
a parabolic bowl in order to have a velocity distributed along the vertical direction, a
moving bottom or a variable density. In Section 4 we consider a domain with a hyperbolic
topography for which we can exhibit some solutions in which the horizontal components
of the velocity do not depend on the vertical axis. In Section 5 we present a cubic tank
domain that permits to test the boundary conditions. Finally, in Section 6 we present
some analytical solutions for the hydrostatic system with variable density.
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Figure 2. Flow domain with water height h(t, x, y), free surface η(t, x, y) and bottom zb(x, y).

2. The Euler and Navier-Stokes systems

2.1. Free surface Navier-Stokes models

Let us first describe below the mass and momentum equations with associated bound-
ary conditions for which we will propose analytical solutions. We assume in this part
that the density is constant and that the bottom topography does not depend on the
time. We consider the three-dimensional Navier-Stokes system describing a free surface
gravitational flow moving over a bottom topography zb(x, y) (unit: m) with constant
density.

∇.U = 0, (2.1)

∂U

∂t
+∇.(U⊗U) = g +

1

ρ0
∇.ΣT, (2.2)

where U(t, x, y, z) = (u, v, w)T is the velocity (unit: m s−1), p is the fluid pressure (unit:
Pa), ρ0 is the density (unit: kg m−3) assumed to be constant and g = (0, 0,−g)T repre-

sents the gravity forces (unit: m s−2). The quantity nabla denotes ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
.

We assume a Newtonian fluid, µ is the viscosity coefficient (unit: Pa s). The viscosity
stress tensor Σ (unit: Pa) is given by

Σ = µ
(
∇U + (∇U)T

)
, (2.3)

and we denote the total stress tensor by ΣT = −pId +Σ. We consider a free surface flow
(see Fig. 2), therefore we assume

zb(x, y) 6 z 6 η(t, x, y) := h(t, x, y) + zb(x, y),

with h(t, x, y) the water depth (unit: m).

2.2. Boundary conditions

At the free surface, the kinematic boundary condition is

∂η

∂t
+ us

∂η

∂x
+ vs

∂η

∂y
− ws = 0, (2.4)

whereas at the bottom we have the non-penetration condition

ub
∂zb
∂x

+ vb
∂zb
∂y
− wb = 0, (2.5)
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where Us = (us, vs, ws)
T = (u(t, x, y, η(t, x, y)), v(t, x, y, η(t, x, y)), w(t, x, y, η(t, x, y)))T ,

Ub = (ub, vb, wb)
T = (u(t, x, y, zb(x, y)), v(t, x, y, zb(x, y)), w(t, x, y, zb(x, y)))T .

We also precribe dynamic boundary conditions as follows. Let nb and ns be the unit
outward normals at the bottom and at the free surface respectively defined by

nb =
1√

1 + |∇x,yzb|2

(
∇x,yzb
−1

)
, and ns =

1√
1 + |∇x,yη|2

(
−∇x,yη

1

)
,

where ∇x,y corresponds to the projection of ∇ on the horizontal plane i.e. ∇x,y =(
∂
∂x ,

∂
∂y

)T
.

At the bottom we prescribe a friction condition given e.g. by a Navier law

(ΣT .nb).t
i
b = −κ Ub.t

i
b, (2.6)

with κ = κ(h, Ub) > 0 a Navier coefficient (unit: kg m−2 s−1) and tib, i = 1, 2 are two
tangential vectors (nb.t

i
b = 0).

At the free surface, we impose the condition

ΣT .ns = −pa(t, x, y)ns + τw(t, x, y)ts, (2.7)

where pa(t, x, y) and τw(t, x, y) are two given quantities, pa (resp. τw) mimicks the effects
of the atmospheric pressure (resp. the wind blowing at the free surface), ts being a
tangential vector satisfying ns.ts = 0.

The system (2.1)-(2.7) has to be completed with initial and boundary conditions at
the lateral boundaries (inflow, outflow or wall type) that are not detailed here but will
be defined by each analytical solution.

2.3. The Euler system

The Euler system consists in considering an idealized fluid for which the total stress
tensor ΣT reduces to the pressure part. It writes

∇.U = 0, (2.8)

∂U

∂t
+∇.(U⊗U) +

1

ρ0
∇p = g, (2.9)

and it is completed with the two kinematic boundary conditions (2.4), (2.5). The dynamic
boundary condition at the free surface reduces to

ps = p(t, x, y, η) = pa(t, x, y). (2.10)

We can also consider that the fluid contains a passive tracer φ(t, x, y, z) governed by a
transport equation

∂φ

∂t
+ U.∇φ = 0. (2.11)

This tracer is assumed to have no impact on the flow. This differs from the case of fluid
with variable density depicted in Section 6.

2.4. Hydrostatic models

Hydrostatic models consist in neglecting the vertical acceleration of the fluid i.e.

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
≈ 0. (2.12)
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Hence, the hydrostatic Euler system writes

∇.U = 0, (2.13)

∂Ũ

∂t
+∇.(Ũ⊗U) +

1

ρ0
∇p = g, (2.14)

with Ũ = (u, v, 0), completed with the boundary conditions (2.4), (2.5) and (2.10). This
means that

p(t, x, y, z) = pa(t, x, y) + ρ0g(h(t, x, y) + zb(x, y)− z). (2.15)

The hydrostatic version of the Navier-Stokes system (2.1)-(2.2) is obtained in the same
way by neglecting in addition viscous component in the third equations of (2.2). This
gives

∇.U = 0, (2.16)

∂Ũ

∂t
+∇.(Ũ⊗U) +

1

ρ0
∇p = g +

1

ρ0
∇.Σ̃, (2.17)

with Σ̃ = (Σx, Σy, 0) and it is completed with the boundary conditions (2.4)-(2.7).

These hydrostatic models are very often used for the study of geophysical flows,
see Brenier (1999); Grenier (1999); Bresch et al. (2004); Masmoudi & Wong (2012) for
justifications of such models.

3. Parabolic bowl

This first set of analytical solutions are extensions of the solutions proposed by
Thacker (Thacker 1981). The solution initially proposed by Thacker corresponds to
the solution of shallow water equations i.e. an hydrostatic flow where the horizontal
velocity (u, v) does not depend on the vertical coordinate z. Thacker’s approach requires
a parabolic shape of the basin and its solution implies to treat wet/dry interfaces.
We propose here two extensions of Thacker’s solutions, the first one having a velocity
distributed along the vertical axis, and the second one valid with a time dependant
topography.

3.1. Hydrostatic Euler model and parabolic topography

We propose here an extension of the Thacker’s solutions with curved surface Thacker
(1981) where components of the velocity are functions of the z variable. The following
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Figure 3. 3D Axisymmetrical parabolic bowl: free surface at t = 0 (red), t = T/4 (dark grey),
t = T/2 (blue), with the period T defined by T = 2π/ω and for parameters set to h0 = 1, α = 2,
β = 1, γ = 0.3, c = −1, L = 1.

proposition gives an analytical solution for the hydrostatic Euler model presented in
Section 2.4.

Proposition 1. For some t0 ∈ R, (α, β, γ) ∈ R3
+∗, such that γ < 1 let us consider

the functions h, u, v, w, p defined for t > t0 by

h(t, x, y) = max

{
0,

1

r2
f

(
r2

γ cos(ωt)− 1

)}
,

u(t, x, y, z) = x

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)

2(1− γ cos(ωt))

)
,

v(t, x, y, z) = y

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)

2(1− γ cos(ωt))

)
,

w(t, x, y, z) = −β(z − zb)2 +

(
βh− 2Γ − βαr2 +

β

2

(
x
∂h

∂x
+ y

∂h

∂y

))
(z − zb)

−αr
2

2
(βh− 2Γ )

p(t, x, y, z) = g(h+ zb − z),

with ω =
√

4αg, r =
√
x2 + y2, Γ = −ωγ sin(ωt)

2Λ
, a bottom topography defined by

zb(x, y) = α
r2

2
,

and the function f given by

f(z) = −4g

β2
+

2

β2

√
4g2 + cz + β2αg(γ2 − 1)z2,

c being a nonpositive constant such that c 6 4g2/(γ − 1).
Then h, u, v, w and p as defined previously satisfy the 3d hydrostatic Euler

system (2.13)-(2.14) completed with the boundary conditions (2.4), (2.5) and (2.10)
with pa = cst.

Proof. The proof of Prop. 1 relies on simple (but tedious) computations since it is
enough to verify that the proposed expressions are exact solutions of the Euler equations
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Figure 4. 3D Axisymmetrical parabolic bowl: velocity field and norm at t = 0, T/6, 2T/6, T/2,
in (x, y = 0, z) slice plane with the period T defined by T = 2π/ω and for parameters set to
h0 = 1, α = 2, β = 1, γ = 0.3, c = −1, L = 1.

given in paragraph 2.4. Taking the limit when β → 0, the solutions proposed here are
similar to those proposed by Thacker.

In Figure 3, the shape of the free surface of the analytical solution is plotted at different
times. In (Allgeyer et al. 2019), convergence curves towards the analytical solution are
obtained with the numerical code (Freshkiss3d 2017). In Figures 4, we represented an
axial section of the analytical solution at four moments (t = 0, T/6, T/3, T/2) for a
parameters set h0 = 1, α = 2, β = 1, γ = 0.3, c = −1, L = 1. The arrows represent the
velocity field and the color shading the velocity norm.

The analytical solution proposed in prop. 1 can be also expressed in a two dimensional
(x, z)-domain and the following corollary holds.

Corollary 1. The analytical solution depicted in prop. 1 can be written in the 2d
case. With obvious notations and β > 0, we choose γ 6 2g/(βω), c > 0, and we consider
the functions h, u, w, p defined for t > t0 by

h(t, x) = max
{

0, f
(
x− γ

ω
sin(ωt)

)}
,

u(t, x, z) = β

(
z − zb −

h

2

)
+ γ cos(ωt),

w(t, x, z) = 4αx(βz + γ cos(ωt)),

p(t, x, z) = g(h+ zb − z),

with a bottom topography defined by zb(x) = 2αx2, a function f given by

f(z) = −4g

β2
+

2

β2

√
4g2 − 2cβ2 − β2ω2z2.
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Then h, u, w, p as defined previously satisfy the 2d hydrostatic Euler system completed
with the boundary conditions (2.4),(2.5) and 2.10 with pa = cst.

Proof. It is enough to verify that the expressions of u, w, and h are solutions of the
following equations

∂h

∂t
+

∂

∂x

∫ zb+h

zb

u(x, z) dz = 0,

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
+ g

∂h+ zb
∂x

= 0,

where w is then given thanks to the incompressibility condition by

w(t, x, z) = − ∂

∂x

∫ z

zb

udz.

3.2. Hydrostatic Euler model and time dependant topography

In many situations e.g. earthquake generated tsunami, the topography of the domain
varies with respect to time t. In such a context, the non-penetration condition at the
bottom (2.5) must be replaced by

∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y
− wb = 0. (3.1)

In the two dimensional case (x, z), the following proposition gives analytical solutions for
the 2d hydrostatic Euler system.

Proposition 2. For some t0 ∈ R, (h0, α, β, γ) ∈ R4
+, let us consider the functions

h, u, w, p defined for t > t0 by

h(t, x) = max
{

0, h0 −
α

4
(γ cos(ωt)− γ sin(ωt)− x)

2
}
,

u(t, x, z) = β

(
z − zb −

h

2

)
− γω sin(ωt),

w(t, x, z) =
∂zb
∂t
− ∂

∂x

∫ z

zb

udz,

p(t, x, z) = g(h+ zb − z),

with ω =
√
αg and with a bottom topography defined by

zb(x, t) = α
x2

4
+
αγ

2
x
(
cos(ωt) + sin(ωt)

)
.

Then h, u, w, p as defined previously satisfy the 3d hydrostatic Euler system (2.13)-(2.14)
completed with the boundary conditions (2.4), (2.10), (3.1) (with pa = cst) and restricted
to the (x, z)-plane (i.e. assuming y = 0 and v = 0).

Proof. The proof relies on simple computations. We only have to verify that Eq. (2.14)
is satisfied since Eq. (2.13) gives the expression of w(t, x, z). Inserting the expressions of
u, h and zb in Eq. (2.14), we observe that this equation is satisfied under the hypothesis
ω =
√
αg.

Figure 5 represents of the evolution of the analytical solution in the moving domain
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Figure 5. Analytical solution of prop. 2, evolution of the topography and free surface for the
parabolic bowl with topography at t = 0, T/6, T/4, 2T/6, T/2, in (x, z) plane with the period T
defined by T = 2π/ω and for parameters set to h0 = 0.1, α = 1, β = 1, γ = 0.1, L = 4.

given in prop. 2. We can observe that in the computation of η = h+ zb, quadratic terms
disappear, thus the free surface remain planar.

Proposition 2 can be extended in the three dimensional case leading to the following
proposition.

Proposition 3. For some t0 ∈ R, (h0, α, β, γ) ∈ R4
+, let us consider the functions

h, u, v, w, p defined for t > t0 by

h(t, x, y) = max
{

0, h0 −
α

4
(γ cos(ωt)− γ sin(ωt)− x+ y)

2
}
,

u(t, x, y, z) = β

(
z − zb −

h

2

)
− γω sin(ωt),

v(t, x, y, z) = β

(
z − zb −

h

2

)
+ γω cos(ωt),

w(t, x, y, z) =
∂zb
∂t
− ∂

∂x

∫ z

zb

udz − ∂

∂y

∫ z

zb

vdz,

p(t, x, y, z) = g(h+ zb − z),

with ω =
√
αg and with a bottom topography defined by

zb(x, y, t) = α
(x− y)2

4
+
αγ

2
(x+ y)

(
cos(ωt) + sin(ωt)

)
.

Then h, u, v, w, p as defined previously satisfy the 3d hydrostatic Euler system (2.13)-
(2.14) completed with the boundary conditions (2.4),(2.10) and(3.1).

However, this solution presents some numerical difficulties since the moving domain is
a kind of oscillating gutter, indeed there are open boundaries in the direction of y = x
and it is necessary to impose on these boundaries incoming or outgoing conditions that
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Figure 6. Analytical solution of prop. 3, planar surface in the parabolic bowl: free surface,
velocity field and norm at t = 0, T/6, 2T/6, T/2, in (x, y = 0, z) slice plane with the period T
defined by T = 2π/ω and for parameters set to h0 = 0.1, α = 1, β = 6, γ = 0.1, L = 4.

are given by the solution indicated above. For example, we can set a positive value for a
parameter L and impose the flow on boundaries (x− y = −L and x− y = L).

Figure 6 represents a cross section (y = 0) of the velocity field associated with prop. 3
(the velocity norm is associated with the three dimensional components of the velocity).

4. Hyperbolic topography

In this section, we are interested in characterizing the shallow water analytical solutions
of the Euler system. More precisely, we show that under a reasonable hypothesis, we can
find all the solutions of Euler free surface equations whose horizontal velocity does not
depend on z. More precisely, we exhibit the analytical solutions of the system (2.8)-(2.9)
completed with the boundary conditions (2.4), (2.5) and (2.10) having a velocity field of
the form u = ū(t, x, y) and v = v̄(t, x, y). Moreover, it is possible to exhibit the shallow
water analytical solutions of the hydrostatic Euler equations (2.13)-(2.14) and also for
Navier-Stokes equations (2.1)-(2.2). At the numerical level, these solutions permits to
test free surface Euler equations with open boundary and a wet/dry interface.
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4.1. Non hydrostatic Euler equations

Proposition 4. For some (α, β, c0) ∈ R+3
, (b0, t0) ∈ R2, t1 ∈ R∗+, θ ∈ [0, 2π],

let us consider the function h, u, v, w and p defined for t > t0, (x, y) ∈ R+2
and z ∈

[zb(x, y), η(x, y, t)] by

h(t, x, y) = max {0, αf(t)− b0 − zb(x, y)} ,
u(t, x, y, z) = f(t)(x cos θ + y sin θ + β) cos θ,

v(t, x, y, z) = f(t)(x cos θ + y sin θ + β) sin θ,

w(t, x, y, z) = −f(t)(z + b0),

p(t, x, y, z) = pa,0(t) + f2(t)(η(x, y, t)− z2) +
(
2b0f

2(t) + g
)

(η − z),

where f(t) = 1/(t− t0 + t1), zb(x, y) = c0
x cos θ+y sin θ+β − b0, and pa,0(t) a given function.

Then h, u, v, p as defined previously satisfy the Euler system (2.8)-(2.9) completed with
the boundary conditions (2.4), (2.5) and (2.10).

Proof. It is not very difficult to ensure that the above expressions are a solution of the
Euler system (2.8)-(2.9) completed with the boundary conditions (2.4), (2.5) and (2.10).
We will detail here how they are obtained.

For the sake of simplicity, the computations are carried out in 2d, that corresponds to
take θ = 0 and to consider only the (x, z) direction.

Assuming u = ū(t, x), the divergence free condition (2.8) coupled with (2.5) gives

w = −z ∂ū
∂x

+
∂(zbū)

∂x
, (4.1)

and the two components of (2.9) give

∂ū

∂t
+ ū

∂ū

∂x
+
∂p

∂x
= 0, (4.2)

−z

(
∂2ū

∂x∂t
+ ū

∂2ū

∂x2
−
(
∂ū

∂x

)2
)

+
∂2(zbū)

∂x∂t
+ ū

∂2(zbū)

∂x2
− ∂ū

∂x

∂(zbū)

∂x
+
∂p

∂z
=−g.(4.3)

From Eqs. (4.2), (4.3) and (2.10), it comes that the pressure p satisfies

p(t, x, η) = 0,
∂2p

∂x∂z
=
∂3p

∂z3
= 0,

therefore the pressure p has necessarily the form

p̄ =
a(t)

2

(
η2 − z2

)
+ b(t)

(
η − z

)
, (4.4)

where a = a(t) and b = b(t) are two functions to be determined.

Hence the shallow water solutions of the incompressible Euler system with free surface
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are characterized by

∂h

∂t
+
∂(hū)

∂x
= 0, (4.5)

∂ū

∂t
+ ū

∂ū

∂x
+
(
a(t)η + b(t)

)∂η
∂x

= 0, (4.6)

∂2ū

∂x∂t
+ ū

∂2ū

∂x2
−
(
∂ū

∂x

)2

= −a(t), (4.7)

∂2(zbū)

∂x∂t
+ ū

∂2(zbū)

∂x2
− ∂ū

∂x

∂(zbū)

∂x
= b(t)− g. (4.8)

Now subtracting to Eq. (4.7) the derivative of Eq. (4.6) w.r.t. the variable x gives

2

(
∂ū

∂x

)2

= a(t)− ∂

∂x

((
a(t)η + b(t)

)∂η
∂x

)
. (4.9)

Likewise, substracting Eq. (4.7) multiplied by zb to Eq. (4.8) gives

∂ū

∂t

∂zb
∂x

+ ū2
∂2zb
∂x2

+ ū
∂ū

∂x

∂zb
∂x

+ a(t)zb = b(t)− g.

The solution η(t, x) of Eq. (4.6) can be obtained explicitly if we assume a(t) > 0 and
then h(t, x) is given by

h(t, x) = −zb(x)− b(t)

a(t)
+

1

a(t)

√
a(t)

(
F1(t)− ū2 − 2

∫ x

∂tūds

)
, (4.10)

where t 7→ F1(t) is any function such that F1(t) > ū2 + 2
∫ x

∂tūds.
A solution of the derivative of equation (4.7) w.r.t. the variable x is given by

ū(t, x) =
u1(x)

t− t0 + t1
. (4.11)

Let us assume that (4.11) holds true. Inserting (4.11) into Eq. (4.5), we can write this
equation formally under the form

∂hu1
∂x

+
t− t0 + t1

u1

∂hu1
∂t

= 0, (4.12)

then we apply the characteristic method following t′(x) = t−t0+t1
u1

, that gives t(x) =

(t− t0 + t1)

∫ x 1

u1(s)
ds and we can exhibit a formal form of h(x, t):

h(t, x) =
F0

(
(t− t0 + t1)e

−
∫ x ds

u1(s)

)
u1(x)

, (4.13)

where ξ 7→ F0(ξ) is any function.
Likewise, inserting the expression of ū given by (4.11) into Eq. (4.10) gives another

expression for h(t, x) under the form

h(t, x) = −zb(x)− b(t)

a(t)
+

1

a(t)(t− t0 + t1)

√
a(t)

(
(t− t0 + t1)2F1(t)− u2

1(x) + 2

∫ x

u1(s)ds

)
.

(4.14)

Now inserting the expression (4.11) into Eq. (4.7) implies that necessarily

a(t) =
a0

(t− t0 + t1)2
,
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with a0 ∈ R. Similarly, inserting the expression (4.11) into Eq. (4.8) allows to obtain the
expression b(t) under the form

b(t) = g +
2b0

(t− t0 + t1)2
,

with b0 ∈ R.
Thus, equation (4.14) gives

h(t, x) = −zb(x)− b0
a0
− g

a0
(t− t0 + t1)2

+
1
√
a0

√
(t− t0 + t1)2F1(t)− u21(x) + 2

∫ x

u1(s)ds. (4.15)

The two expressions for h(t, x), namely (4.13) and (4.15) are compatible only if the

primitive function associated to
1

u1(x)
is a logarithmic function of x, leading to

u1(x) = γx+ β, (4.16)

with (β, γ) ∈ R2. Inserting (4.16) into (4.7) gives that

γ2 + γ = a. (4.17)

Now from Eq. (4.14) we can set −u21(x)+2
∫ x

u1(s)ds = C in order to have h(t, x)+zb(x)
only depending on time t i.e.

∂η

∂x
= 0. (4.18)

This property inserted into (4.6) gives γ = 1, and using equation (4.17), a0 = 2.
Finally we have obtained that

u1(x) = x+ β, (4.19)

and h = zb(x) + Fη(t). These two expressions inserted in Eq. (4.5) give{
zb(x) = c0

x+β − b0
h(t, x) = α

t−t0+t1 −
c0
x+β

(4.20)

These expressions are valid only if h(t, x) > 0. Then (4.19), (4.20), (4.11) give a proof of
proposition 4 in the two-dimensional (x, z) case (when θ = 0).

Corollary 2. If we assume that all the solutions of equation (4.7) can be written
under the form (4.11), proposition 4 gives all the solutions of the free surface Euler
equations in which u and v do not depend of z.

Figure 7 shows the velocity fields at time t = 0, 0.05, 0.1 and 0.15 second for a given
set of the parameters value (α = 0.5, β = 0.1, b0 = 0.4, t0 − t1 = 2., c0 = 1.2). The
solution proposed in proposition 4 is not a solution of the hydrostatic formulation of
the equation, but we can easily deduce a solution with the hydrostatic hypothesis by
reversing the direction of the velocity. Unfortunately, a space-time-dependent pressure is
necessary at the surface, this result is described in the following paragraph.

4.2. Hydrostatic Euler equations

If we consider the hydrostatic Euler system (2.13), (2.14), the following result hols.
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Figure 7. Decreasing bathymetry in 1/x: velocity norm and vectors at t = 0, 0.05, 0.1, 0.15
in (x, y = 0, z) for parameters set to α = 0.5, β = 0.1, b0 = 0.4, t0 − t1 = 2., c0 = 1.2.

Proposition 5. For some (α, β, c0, t0) ∈ R+3
, (b0, to) ∈ R2, t1 ∈ R∗+, θ ∈ [0, 2π], let

us consider the function h, u, v, w and p defined for t > t0 by

h(t, x, y) = max{0, αf(t)− b0 − zb(x, y)},
u(t, x, y, z) = −(x cos θ + y sin θ + β) cos θ/f(t),

v(t, x, y, z) = −(x cos θ + y sin θ + β) sin θ/f(t),

w(t, x, y, z) = (b0 + z)/f(t),

p(t, x, y, z) = pa,0(t) + pa,1(x, t) + g(η − z),

where f(t) = t − t0 + t1 and with bottom zb(x, y) = c0
x cos θ+y sin θ+β − b0, pa,0(t) a given

function and

pa,1(x, y, t) = −
(
(x cos θ + y sin θ)2 + 2u1,1(x cos θ + y sin θ)

)
/f(t)2.

Then h, u, v, p as defined previously satisfy the hydrostatic Euler system (2.13) (2.14)
completed with the boundary conditions (2.4), (2.5) and (2.10).

Proof. The main idea of the proof is to observe that the analytical solution proposed
in Prop. 4 satisfies

∂w

∂t
= u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
. (4.21)

It is sufficient to reverse the direction of the components of the velocity to cancel the non
hydrostatic part of the third momentum equation. Compared to Prop. 4, with opposite
values of u and v, the water depth increases in time. We have then to find the pressure
term allowing to verify exactly the two other momentum equations.
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Figure 8. Decreasing bathymetry in 1/x: velocity norm and vectors at t = 0, 0.1, 0.2, 0.3 in
(x, y = 0, z) for parameters set to α = 1, β = 0.1, b0 = −1, t0 = 2., c0 = 1.2.

Figure 8 shows the velocity fields at times t = 0, 0.1, 0.2 and 0.3 second for a given set
of the parameters value (α = 0.5, β = 0.1, b0 = 0.4, t0 − t1 = 2., c0 = 1.2).

5. Tank

We consider in this section that the domain is a cubic tank with lateral artificial
boundary conditions. The free surface remains horizontal and decreases linearly with
time. With this hypothesis, we can exhibit some exact solution of the Euler and Navier-
Stokes equations, either under the hydrostatic assumption or in the non hydrostatic case.

These analytical solutions permit to test the good implementation of the boundary
conditions on artificial boundaries in a simulation code. Indeed, the solutions are exact
in all the domain, including the boundaries and we can then compute all the derivatives
of theses solutions at the boundaries. For example, if we want to test a condition such
that U · n = φ on a boundary,φ being a given function, we can impose U · n = Ua · n
where Ua is the analytical solution which is given here.
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5.1. Euler and Navier-Stokes equations with hydrostatic hypothesis

Considering the hydrostatic Euler system given in paragraph 2.4 in a tank such that
(x, y) ∈ [−L/2, L/2]2. The two following propositions hold.

Proposition 6. For some t0 ∈ R, t1 ∈ R∗+, φ0 ∈ R, (α, β) ∈ R2
+ such that αβ > L,

let us consider the functions h, u, v, w, p defined for t > t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2 θ + y sin2 θ),

v(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2 θ + y sin2 θ),

w(t, x, y, z) = f(t)(zb − z),
p(t, x, y, z) = pa(t, x, y) + g(h− (z − zb)),

where f(t) = 1/(t− t0 + t1) and with a flat bottom zb(x, y) = zb,0 = cst and pa(t, x, y) =
pa,1(t), with pa,1(t) a given function.

Then h, u, v, w, p as defined previously satisfy the 3d hydrostatic Euler system (2.13)-
(2.14) completed with the boundary conditions (2.4),(2.5) and (2.10). The appropriate
boundary conditions for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2} are also determined by
the expressions of h, u, v, w given above.

The vertical acceleration (2.12) in this analytical solution is equal to 2z/(t−t0+t1)2 <
2h3/α2. The hydrostatic hypothesis is justified only for values of h small enough that
corresponds to a shallow water regime.

Proof. The proof relies on very simple computations since it is enough to verify that
these solutions are solutions of the equations of hydrostatic Euler given in paragraph 2.4.

Remark 1. Notice that The solution proposed in prop. 6 can be written in the 2d (x, z)
case by taking θ = 0.

Remark 2. Choosing β = 0 in prop. 6 gives analytical solutions with a velocity field
that does not depend on the variable z. It is easy to see that it corresponds to analytical
solutions for the classical viscous Saint-Venant system Gerbeau & Perthame (2001).

Figure 9 represents the free surface elevation at different times (t = 0.0s, 0.5s, 1s, 1.5s, 2.0s)
for α = 5, L = 10, t0 = 0 and t1 = 1. This elevation is the same in all the tank solutions
proposed in this paper.

5.2. Euler and Navier-Stokes equations without hydrostatic hypothesis

Considering the Euler system (2.8)-(2.9) in a tank such that (x, y) ∈ [−L/2, L/2]2.
The following proposition holds.
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Figure 9. Draining of a tank: free surface every 0.5s from initial time, for parameters set to
α = 5, t1 = 0, t1 = 1 and L = 10.

Proposition 7. For some α ∈ R+, (t0, γ, δ) ∈ R3, t1 ∈ R∗+, θ ∈]0, 2π[/{π} let us
consider the functions h, u, v, w, p defined for t > t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = f(t) (x cos θ + y sin θ) + γz + δ,

v(t, x, y, z) = f(t) (x cos θ + y sin θ) tan
θ

2
+

cos θ − 1

sin θ
γz − δ

tan θ
,

w(t, x, y, z) = f(t) (zb − z) ,
p(t, x, y, z) = pa,0(t) + g(h− (z − zb)) +

(
h2 − (z − zb)2

)
f(t)2,

where f(t) = 1/(t−t0+t1) and with a flat bottom zb(x, y) = zb,0 = cst, h0 = h(t0, x, y) =
α/t1 and pa,0(t) a given function.

Then h, u, v, w, p as defined previously satisfy the 3d Euler system (2.8)-(2.9) completed
with the boundary conditions (2.4),(2.5) and (2.10). The appropriate boundary conditions
for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2} are also determined by the expressions of
h, u, v, w, p given above.

Proof. The proof relies on very simple computations since it is enough to verify that
these solutions are solutions of the equations of Euler given in paragraph 2.3.

We can observe that the velocity has only components of the first degree in x, y or z.
The stress tensor (2.3) is then equal to zero and the solution is also the solution of the
Navier-Stokes equations. On the computational point of view, it is an interesting test
since simulating such a solution of the Navier-Stokes system, all the components of the
stress tensor Σ defined by (2.3) have to remain zero.

For θ = 0 the flow is only in the direction of x and we can consider only a two
dimensional version of the solution in (x, z) coordinates. Nevertheless, the angle θ does
not represent the direction of the flow in the (x, y) plane.
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Figure 10. Draining of a tank: non-hydrostatic pressure (left, x < 0) and hydrostatic pressure
(right x > 0), at t = 0, 0.5 and 1 s, in (x,y=0,z) plane with parameters set to µ = 0, θ = 0,
α = 5, t0 = 1, t1 = 1, pa = 0, zb = 0 and L = 10. Dashed line represents pressure profile

In Figure 10 we present a vertical profile of the analytical solution. With the given
data, h(t) = 5/(t + 1), we have at initial time, h(0) = 5 and at t = 1, h(1) = 5

2 . For
x > 0 (right part of the figure), the pressure is hydrostatic and increases linearly with the
depth whereas for x < 0 (left part of the figure), the pressure includes a non hydrostatic
component (quadratic in z − zb).

5.3. Non hydrostatic Euler equations with passive tracer

Considering the Euler system given in Section 2.1 by equations (2.8)-(2.9) including
the tracer equation (2.11) and formulated in a tank such that (x, y) ∈ [−L/2, L/2]2, the
following proposition holds.

Proposition 8. For some α ∈ R+, t0 ∈ R, t1 ∈ R∗+, φ0 ∈ R, θ ∈ [0, 2π]/{π} let us
consider the functions h, u, v, w, p, φ defined for t > t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = f(t) (x cos θ + y sin θ) ,

v(t, x, y, z) = f(t) (x cos θ + y sin θ) tan
θ

2
,

w(t, x, y, z) = f(t) (zb − z) ,
p(t, x, y, z) = pa,0(t) + g(h− (z − zb)) +

(
h2 − (z − zb)2

)
f(t)2,

φ(t, x, y, z) =
φ0
L

(x cos θ + y sin θ)
z − zb
h0

,

where f(t) = 1/(t−t0+t1) and with a flat bottom zb(x, y) = zb,0 = cst, h0 = h(t0, x, y) =
α/t1 and pa,0(t) a given function.

Then h, u, v, w, p and φ satisfy the 3d Euler system (2.8)-(2.9) completed with the
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Figure 11. Draining of a tank (non-hydrostatic case): velocity norm and streamlines at
t = 0, 0.5, 1.0s, in (x, y = 0, z) slice plane for parameters set to θ = 0, α = 5, t1 = 1, pa = 0,
zb = 0 and L = 10.
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Figure 12. Draining of a tank (non-hydrostatic case): velocity norm and vectors at initial
time in (x, y, z = h0/2) slice plane with α = 5, t1 = 1, pa = 0, zb = 0 and L = 10.

boundary conditions (2.4),(2.5),(2.10) and the tracer equation (2.11). The appropriate
boundary conditions for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2} are also determined by
the expressions of h, u, v, w, p given above.

Proof. The proof relies on very simple computations since it is enough to verify that
these solutions are solutions of the equations of Euler given in paragraph 2.3.

Corollary 3. The analytical solution depicted in prop. 8 is also solution of the Euler
system with a passive tracer – having a concentration φ – governed by a transport diffusion
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equation

∂φ

∂t
+ U · ∇φ− µφ∆φ = 0. (5.1)

In this case, we need to consider additional boundary conditions given by

µφ ∇φ|s .ns = µφφ0(x cos θ + y sin θ)/(Lh0), (5.2)

and

µφ ∇φ|b .nb = −µφφ0(x cos θ + y sin θ)/(Lh0). (5.3)

where subscript s (resp. b) refers to the free surface (resp. bottom).

6. Hydrostatic Euler system with variable density

In this section we consider a fluid where the density is a function of the tracer
concentration φ i.e. ρ = ρ(φ) (typically, φ can represent the temperature or the salinity
of the fluid). ρ(φ) being a given function, the hydrostatic Euler system with variable
density writes

∇.U = 0, (6.1)

∂ρ

∂t
+∇.(ρU) = 0, (6.2)

∂ρŨ

∂t
+∇.(ρŨ⊗U) +∇p = ρg, (6.3)

with Ũ = (u, v, 0) and the system (6.1)-(6.3) is completed with the boundary condi-
tions (2.4),(2.5),(2.10).

In the general case we consider that the tracer φ(t, x, y, z) (unit: kg m3) is governed
by a transport equation (2.11).

An intermediate approach is to use the Boussinesq approximation that consists in
considering

ρ = ρ0 + f(T ),

with ρ0 = cst and f(T ) � ρ0 and in neglecting the density variations except in the
gravity terms. Then the system (6.1)-(6.3) is replaced by

∇.U = 0, (6.4)

∂ρ

∂t
+∇.(ρU) = 0, (6.5)

ρ0
∂Ũ

∂t
+ ρ0∇.(Ũ⊗U) +∇p = ρg. (6.6)

In many situations the Boussinesq approximation is justified and many numerical codes
use it. We do not know how to describe an analytical solution in this case, but we
can obtain a large number of analytical solutions for the stationary case. They are
good candidates to test the semi-discretization in space of the hydrostatic Euler system.
Classically, these solutions correspond to a stable stratification of the fluid if ∂ρ

∂z 6 0.
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6.1. Stationnary solutions of Euler Boussinesq equations

We restrict here to the 2d (x, z) case. The stationary solutions of the system (6.4)-(6.6)
are characterized (after simple computations) by

∂

∂x

∫ η

zb

udz = 0, (6.7)

w = − ∂

∂x

∫ z

zb

udz, (6.8)

u
∂ρ

∂x
+ w

∂ρ

∂z
= 0, (6.9)

ρ0

(
u
∂u

∂x
+ w

∂u

∂z

)
+

∂

∂x

∫ η

z

ρgdz = 0. (6.10)

p(x, z) = pa +

∫ η

z

ρ(x, ξ)dξ. (6.11)

Considering the stationary hydrostatic Euler system with a free surface and a varying
density (6.7)-(6.10) completed with the boundary conditions (2.4), (2.5) in an open
channel such that x ∈ [0, L], the following proposition holds.

Proposition 9. For some (ρ0, α, t0) ∈ R3
+, C0 ∈ R for any non-negative function

h(x), let us consider the functions u,w, ρ defined for t > t0 by

u(x, z) = f1(x) +
gα

2ρ0
z2,

w(x, z) = −f ′1(x)(z − zb(x)) + f1(x)z′b(x) +
αg

2ρ0
z2b (x)z′b(x),

ρ(x, z) = ρ0 − αf1(x)(z − zb(x))− α2g

6ρ0
(z3 − z3b (x)),

with the function f1(x) defined by

f1(x) =
αg

2ρ0
(h2(x)− z2b (x))− 1√

3ρ0

√
(α2g2h3(x)− 6ρ20g)(h(x) + zb(x))− 6C0

and the bottom topography zb(x) given by

zb(x) =
2

3

−α2gh3(x) + 3K0αρ0 − 6ρ20
h2(x)α2g

± 2
√

6

√
K0α3gρ0h3(x)− α2gρ20h

3(x)− 6K0αρ30 − 3C0α2h2(x) + 6ρ40
3α2gh2(x)

. (6.12)

Then h, u, w and ρ satisfy the 2d stationary hydrostatic Euler system with free surface,
Boussineq hypothesis and varying density (6.7)-(6.11) completed with the boundary condi-
tions (2.4),(2.5). The appropriate boundary conditions for x ∈ {0, L} are also determined
by the expressions of h, u, w, ρ given above.

Proof. The main step to obtain these analytical solutions is to find some conditions on
the structure of these solutions in order to transform the considered partial differential
equations into ordinary differential equations. Here we are making arbitrary choices,
and maybe other choices would lead to other analytical solutions. For instance, here we
assume that u(x, z) = f1(x) + f2(z) where f1 and f2 are arbitrary functions.



22 M.-O. Bristeau, B. Di Martino, A. Mangeney, J. Sainte-Marie and F. Souillé
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Figure 13. Analytical stationary solutions with (a) α = 10, fg = 9.81, ρ0 = 1000, K0 = 10,
C0 = 10 and h(x) = 4(1 − 1

5
exp(−(x − 10)2/2); (a) α = 1, fg = 9.81, ρ0 = 1000, K0 = 10,

C0 = 5 and h(x) = 4 + x/5

From (6.8), we obtain

w(x, z) = −zf ′1(x) + (zb(x)f1(x))′ + zb′(x)f2(zb(x)). (6.13)

Now we assume that the function f2 is given by f2 : z 7→ az2 with a ∈ R. Then, using
equation (6.7), we have for K0 ∈ R ∫ η

zb

udz = K0

and using the previous assumption for u and f2, we find

f1(x) = −a
3

(η2(x) + zb(x)η(x) + z2b (x)) +
K0

h(x)
. (6.14)

Next, we have to find a good formulation for ρ(x, z). To simplify equation (6.9), we can
assume

ρ(x, z) = α
(a

3
(z3b (x)− z3) + f1(x)(zb(x)− z)

)
+ ρ0, (6.15)

where α is related to a by the relation a =
αg

2ρ0
.

Then, if we insert all the previous results in equation (6.10), we find a quadratic
equation in zb(x) with a solution given by (6.12).

Remark 3. Cubic terms in the density expression imply that the solution obtained
depends on the reference level of the variable z. In other words, the solution presented
cannot simply be translated vertically because it would no longer verify the equations.

Figure 13 represents two of the possible stationary solutions for the problem (6.7)-
(6.11) completed with the boundary conditions (2.4), (2.5). In Figure 13-it (a), h(x) is
given by h(x) = 4(1 − 1

5exp(−(x − 10)2/2) for x ∈ [0, 10] and the other parameters
are ρ = 1000, g = 9.81, α = 2, K0 = 10, C0 = 10. In Figure 13-it (b), h(x) is given by
h(x) = 4+x/5 and the other parameters are ρ = 1000, g = 9.81, α = 1, K0 = 10, C0 = 5.
These solutions are stable in the sense and we are able to obtain them numerically by
imposing the shape of the domain and the boundary conditions.
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Figure 14. Analytical solution of prop. 10, 3D planar surface in parabolic bowl: free surface at
t = 0 (red), t = T/4 (dark grey), t = T/2 (blue), with the period T defined by T = 2π/ω and
for parameters set to η = 0.1, h0 = 0.1, a = 1, α = 1, L = 4.

6.2. Radially-symmetrical parabolic bowl with variable density

The analytical solution proposed here is based on the analytical solution presented
by Thacker (Thacker 1981) when the free surface remains planar. The initial Thacker’s
solution is valid for the 2d Saint-Venant system and also for the 3d incompressible and
hydrostatic Euler system with constant density. Several extensions of these solutions
have already been given in Section 3. The extension proposed here gives a solution for
the hydrostatic Euler system with variable density (6.1)-(6.3). The following proposition
holds.

Proposition 10. For any nonnegative function ρ : s 7→ ρ(s) and for some
(α, η, a, h0) ∈ R2 × R2

+, let us consider the functions h, u, v, w, p, φ defined for
(x, y) ∈ [−L/2, L/2]2, t > t0 by

h(t, x, y) = max

{
0, h0 − α

(x− η cos(ωt))
2

+ (y − η sin(ωt))
2

2

}
,

u(t, x, y, z) = −ηω sin(ωt),

v(t, x, y, z) = ηω cos(ωt),

w(t, x, y, z) = −αηω (x sin(ωt)− y cos(ωt)) ,

p(t, x, y, z) = pa(t) +

∫ h+zb

z

ρ(φ(t, x, y, z1))dz1,

φ(t, x, y, z) = a (h+ zb − z) ,

with ω =
√
αg and with a bottom topography defined by

zb(x, y) = α
x2 + y2

2
.

Then h, u, v, w, p, φ as defined previously satisfy the 3d hydrostatic Euler system with
variable density (6.1)-(6.3) completed with the kinematic boundary conditions (2.4)-(2.5).

In the Figure 15 we can observe that the density isovalue lines remain parallel to the
planar surface.
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Figure 15. Analytical solution of prop. 10, 3D planar surface in parabolic bowl: free surface,
velocity vectors and tracer for t = 0, T/6, 2T/6, T/2, in (x, y = 0, z) slice plane with the period
T defined by T = 2π/ω and for parameters set to η = 0.1, h0 = 0.1, a = 1, α = 1, L = 4.

Situations where ∂ρ
∂z > 0 can be encountered in practice (upwellings, Rayleigh-Bénard

instabilities,. . . ). The analytical solutions given in prop. 10 exhibit situations where ∂ρ
∂z

remains nonnegative along the time, of course, such solutions are unstable in the sense
that they cannot be reproduced neither by laboratory experiments nor captured at the
discrete level.

Proof. Considering the Thacker’s solution with constant density, we have only to verify
that the chosen density ρ(t, x, y, z) = a(η(t, x, y)− z) does not disturb this solution. We
have ∂zp = −ρ(t, x, y, z)g due to the hydrostatic hypothesis. If we note η(t, x, y) =
h(t, x, y) + zb(x, y), ρ(t, x, y, z) = φ(η(t, x, y)− z) and p(η(t, x, y)) = 0, for φ ∈ C1(R) we
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have:

∇p = g∇
∫ η(t,x,y)

z

ρ(t, x, y, ξ)dξ

= g∇
∫ η(t,x,y)

z

φ(η(t, x, y)− ξ)dξ

= g

∫ η(t,x,y)

z

∇φ(η(t, x, y)− ξ)dξ + g∇η(t, x, y)φ(0)

= g

∫ η(t,x,y)

z

φ′(η(t, x, y)− ξ)∇η(t, x, y)dξ + g∇η(t, x, y)φ(0)

= g∇η(t, x, y)

∫ 0

η(t,x,t)−z
φ′(s)ds+ g∇η(t, x, y)φ(0) with s = η(t, x, y)− ξ

= gφ(η(t, x, y)− z)∇η(t, x, y)

= gρ(t, x, y, z)∇η(t, x, y).

If we consider the momentum equation (6.3), using the previous evaluation of the pressure
term, we can conclude that u is solution of equation (2.14) that corresponds to the
momentum equation with constant density.

But generally, this expression of the density does not verify the conservation equa-
tion (6.2)

∂tρ+∇ · (ρu) = 0.

In the proposed analytical solution, since u and w are not dependent of x and z, then
we have

∂tρ+ u∇ρ+ w∂zρ = φ′(η − z)∂tη + φ′(η − z)u∇η − φ′(η − z)w
= φ′(η − z)(∂tη + u∇η − w) = 0

since at the free surface the kinematic boundary condition gives ∂tη + u∇η − w = 0.

The analytical solution depicted in prop. 10 can be written in the 2d case.

Corollary 4. With obvious notations, the functions h, u, w, p, φ defined for t > t0 by

h(t, x) = max

{
0, h0 − α

(x− η cos(ωt))
2

2

}
,

u(t, x, z) = −ηω sin(ωt),

w(t, x, z) = −αxηω sin(ωt),

p(t, x, z) = pa(t) +

∫ h+zb

z

ρ(φ(t, x, z1))dz1,

φ(t, x, z) = a (h+ zb − z) ,

with a bottom topography defined by zb(x) = αx2/2 and with the kinematic boundary
conditions (2.4)-(2.5) satisfy the 2d hydrostatic Euler system with variable density for
any (a, α, η, h0) ∈ R3 × R+.
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