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July 6, 2018

Abstract

In this paper, we propose several time dependent analytical solutions
for the incompressible Euler and Navier-Stokes systems with free sur-
face. The given analytical solutions concerns the hydrostatic and non-
hydrostatic Euler and Navier-Stokes systems.

1 Introduction

Models arising in fluid dynamics are often based on the Euler or Navier-Stokes
equations and are generally difficult to analyze both at the mathematical or
numerical level. As a consequence the derivation of simplified models is im-
portant, however the design of efficient/validated numerical schemes for such
models remains complex. Presence of the free surface complicates the digital
study of the models. It is then possible to show only very few properties on
the digital plans and often not the convergence of these. A way to circumvent
this difficulty is to have access to analytical solutions of the considered problem.
Indeed, analytical solutions allow

• to have access to a complete behavior of the variables of a model in a given
situation,
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• to find closure relations for unknown quantities during the derivation pro-
cess of models simpler than the Navier-Stokes equations (e.g. shallow
water type models),

• to confront the simulated solutions with reference solutions. And it makes
possible the study of the convergence order of a simulated solution towards
the reference one.

Many of the analytical solutions which we find in the literature concern two-
dimensional shalow water type models, few have solutions distributed on the
vertical line. One of the most famous is the paper of Thacker [16]. We spread
these works to the three-dimensional case, to the variable density and to several
tracers. Our analytical solutions can also treat the case where the wet/dry
interface is moving.

This paper is organized as follows. In section 2 we present the notations and
the various variants of the Euler and Navier-Stokes system studied in this paper.
Then we present our analytical solutions of the Euler and Navier-Stokes systems
for non hydrostatic or hydrostatic cases, with a time variable topography or with
a variable density. In each case, we give illustrations of the typical situations
depicted by the proposed analytical solutions. In the last part, we present an
analytical solution for propagative waves in an linearized Euler system and a
full Euler system where the free surface is not necessary on the sinusoidal form.

2 The Euler and Navier-Stokes systems

We consider the three-dimensional Navier-Stokes system [11] describing a free
surface gravitational flow moving over a bottom topography zb(x, y).

∇.U = 0, (1)

∂U

∂t
+∇.(U⊗U) = g +

1

ρ0
∇.ΣT, (2)

where U(t, x, y, z) = (u, v, w)T is the velocity, p is the fluid pressure, ρ0 is the
density, g = (0, 0,−g)T represents the gravity forces and ρ0 a constant density.

The quantity ∇ denotes ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
. We assume a Newtonian fluid, µ

is the viscosity coefficient. The viscosity stress tensor Σ is given by

Σ = µ
(
∇U + (∇U)T

)
.

We define the total stress tensor ΣT by

ΣT = −pId + Σ.

We consider a free surface flow (see Fig. 1, therefore we assume

zb(x, y) ≤ z ≤ η(t, x, y) := h(t, x, y) + zb(x, y)
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Figure 1: Flow domain with water height h(t, x, y), free surface η(t, x, y) and
bottom zb(x, y).

with zb(x, y) the bottom elevation and h(t, x, y) the water depth.
In Eqs. (1)-(2), the fluid density is supposed constant ρ(t, x, y, z) = ρ0 = 1

and we consider the fluid contains a tracer φ(t, x, y, z). The tracer φ is governed
by a transport-diffusion equation

∂φ

∂t
+ U.∇φ = µφ∆φ, (3)

where µφ is the tracer diffusivity and ∆ is the classical laplacian operator.

2.1 Boundary conditions

At the free surface, the kinematic boundary condition is

∂η

∂t
+ us

∂η

∂x
+ vs

∂η

∂y
− ws = 0, (4)

whereas at the bottom we have the non-penetration condition

ub
∂zb
∂x

+ vb
∂zb
∂y
− wb = 0, (5)

where the subscript s (resp. b) denotes the value of the considered quantity at
the free surface (resp. at the bottom).

Let nb and ns be the unit outward normals at the bottom and at the free
surface respectively defined by

nb =
1√

1 + |∇x,yzb|2

(
∇x,yzb
−1

)
, and ns =

1√
1 + |∇x,yη|2

(
−∇x,yη

1

)
,

where ∇x,y corresponds to the projection of ∇ on the horizontal plane i.e.

∇x,y =
(
∂
∂x ,

∂
∂y

)T
.
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At the bottom we prescribe a friction condition given e.g. by a Navier law

(ΣT .nb).t
i
b = −κ Ub.t

i
b, (6)

with κ = κ(h, ub) ≥ 0 a Navier coefficient and tib, i = 1, 2 are two tangential
vectors (nb.t

i
b = 0).

On the free surface, we impose the condition

ΣT .ns = −pa(t, x, y)ns + τw(t, x, y)ts, (7)

where pa(t, x, y), τw(t, x, y) are two given quantities, pa (resp. τw) mimicks the
effects of the atmospheric pressure (resp. the wind blowing at the free surface),
ts a tangential vector satisfying ns.ts = 0. The boundary conditions associated
with Eq. (3) are given by

µφ ∇φ|s .ns = Fφs , (8)

and
µφ ∇φ|b .nb = Fφb . (9)

where Fφs (rest. Fφb ) are the flux of tracer φ at the surface (resp. the bottom).

Remark 1 The system (1)-(9) has to be completed with initial and boundary
conditions on lateral boundary (inflow, outflow or wall type) that are not detailed
here.

2.2 The Euler system

The Euler system consists in considering an idealized fluid for which the stress
tensor ΣT reduces to the pressure part. It writes

∇.U = 0, (10)

∂U

∂t
+∇.(U⊗U) +

1

ρ0
∇p = g, (11)

and it is completed with the two kinematic boundary conditions (4),(5). The
dynamic boundary condition at the free surface reduces to

ps = p(t, x, y, η) = pa(t, x, y). (12)

The tracer φ remains governed by Eq. (3) with possibly µφ = 0.

2.3 Hydrostatic models

Hydrostatic models consist in neglecting the vertical acceleration of the fluid
i.e.

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
≈ 0.

These models are very often used for the study of geophysical flows, see [2, 8,
13, 3] for justifications of such models.
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The hydrostatic version of the Navier-Stokes system (1)-(2) writes

∇.U = 0, (13)

∂Ũ

∂t
+∇.(Ũ⊗U) +

1

ρ0
∇p = g +

1

ρ0
∇.Σ̃, (14)

with Ũ = (u, v, 0), Σ̃ = (Σx,Σy, 0) and it is completed with the boundary con-
ditions (4)-(7). The hydrostatic Euler system consists in neglecting the viscous
terms in (13)-(14) and is given by

∇.U = 0, (15)

∂Ũ

∂t
+∇.(Ũ⊗U) +

1

ρ0
∇p = g, (16)

completed with the boundary conditions (4),(5),(12).
In the hydrostatic Navier-Stokes system (13)-(14) but also in the hydro-

static Euler model (15)-(16), the tracer φ remains governed by Eq. (3) with the
boundary conditions (8)-(9).

2.4 The hydrostatic Euler system with variable density

When the fluid density is a function of the tracer concentration φ i.e. ρ = ρ(φ),
ρ(φ) being a given function then the hydrostatic Euler system with variable
density writes

∇.U = 0, (17)

∂ρ

∂t
+∇.(ρU) = 0, (18)

∂ρŨ

∂t
+∇.(ρŨ⊗U) +∇p = ρg, (19)

with Ũ = (u, v, 0) and the system (17)-(19) is completed with the boundary
conditions (4),(5),(12).

2.5 The linearized Euler system

Assuming the velocities u and w are such that u = u0 + O(ε), v = v0 + O(ε),
w = O(ε) with ε� 1 and u0 = cst,v0 = cst the approximation in O(ε2) of the
Euler system (10)-(11) gives

∇.U = 0, (20)

∂U

∂t
+∇.(U0 ⊗U) +

∇p
ρ0

= −g, (21)

with U0 = (u0, v0, 0)T . And the system (20)-(21) is completed with the bound-
ary conditions (4),(5),(12). It is important to notice that whereas in most cases
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the linearized Euler system does not admit any energy balance, when the quan-
tity

es,b =
|U|2s

2

∂η

∂t
+
|U|2s

2
U0.∇η − |U|

2
b

2
Ub.∇zb,

can be written under the conservative form

es,b = ∇x,yαs,b,

with α = α(h,U0,Us) then the linearized Euler system admits an energy bal-
ance under the form

∂

∂t

∫ η

zb

(E + pa) dz +∇x,y.
[∫ η

zb

(
U0E + U(p+ gz)

)
dz + αsb

]
= h

∂pa

∂t
, (22)

with E defined by

E =
u2 + w2

2
+ gz.

It is worth noticing that whereas the linearized Euler system (20)-(21) completed
with (4),(5),(12) contains only terms up to ε, the energy balance (22) necessarily
contains terms in O(ε3).

3 Analytical solutions

In this section, we give the analytical solutions for the Navier-Stokes and Euler
systems, hydrostatic or not, with constant and variable density.

3.1 Draining of a tank: non-hydrostatic case

Considering the Navier-Stokes system (1)-(3) completed with the boundary con-
ditions (4)-(9) in a tank such that (x, y) ∈ [−L/2, L/2]2. The following propo-
sition holds.

Proposition 1 For some α ∈ R+, t0 ∈ R, t1 ∈ R∗+, φ0 ∈ R, θ ∈ [0, 2π]/{π} let
us consider the functions h, u, v, w, p, φ defined for t ≥ t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = f(t) (x cos(θ) + y sin(θ)) ,

v(t, x, y, z) = f(t) tan

(
θ

2

)
(x cos(θ) + y sin(θ)) ,

w(t, x, y, z) = f(t) (zb − z) ,
p(t, x, y, z) = pa,0(t)− 2µf(t) + g(h− (z − zb)) +

(
h2 − (z − zb)2

)
f(t)2,

φ(t, x, y, z) =
φ0
L

(x cos(θ) + y sin(θ))
z − zb
h0

,

where f(t) = 1/(t − t0 + t1) and with a flat bottom zb(x, y) = zb,0 = cst,
h0 = h(t0, x, y) = α/t1 and pa,0(t) a given function.
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Figure 2: Draining of a tank: free surface every 0.5s from initial time, for
parameters set to θ = 0, α = 5, t1 = 1, pa = 0, zb = 0 and L = 10.

Then h, u, v, w, p, φ as defined previously satisfy the 3d Navier-Stokes sys-
tem (1)-(3) completed with the boundary conditions (4)-(9) where κ = 0 in (6),

τw = 0 in (7) and Fφs = −Fφb = µφφ0(x cos(θ)+y sin(θ))/(Lh0) in Eqs. (8)-(9).
The appropriate boundary conditions for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2}
are also determined by the expressions of h, u, v, w, p, φ given above.

Choosing the viscosity µ = 0, the variables h, u, v, w, p, φ become analytical
solutions of the 3d Euler system (10)-(11) completed with the boundary condi-
tions (4),(5) and the tracer equation (3) with (8)-(9).

Remark 2 The analytical solution depicted in prop. 1 can be written in the
2d case (x, z) when θ = 0. With obvious notations, the functions h, u, w, p, φ
defined for t ≥ t0 by

h(t, x) = αf(t),

u(t, x, z) = xf(t),

w(t, x, z) = (zb − z)f(t),

p(t, x, z) = pa(t, x)− 2µf(t) + g(h− (z − zb)) + (h2 − (z − zb)2)f(t)2,

φ(t, x, z) = φ0
x

L

z − zb
h0

,

with pa(t, x) = pa,0(t), h0 = h(t0, x) = α/t1 and Fφs = −Fφb = µφφ0x/(Lh0)
in (4)-(9) are solutions of the 2d incompressible Navier-Stokes system with free
surface for any x ∈ [−L/2, L/2], α ∈ R+, t1 ∈ R∗+, t0 ∈ R, φ0 ∈ R and κ = 0.

proof 3.1 (Proof of prop. 1) The proof of prop. 1 relies on very simple com-
putations since is enough to verify that these solutions are well solutions of the
equations of Euler or Navier Stokes given in paragraph 2.3. It is the same thing
for all the solutions which will be presented in these articles, we shall not detail
the calculations.
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Figure 3: Draining of a tank (non-hydrostatic case): velocity norm and stream-
lines at t = 0, 0.5, 1.0s, in (x, y = 0, z) slice plane for parameters set to θ = 0,
α = 5, t1 = 1, pa = 0, zb = 0 and L = 10.
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3.2 Draining of a tank: hydrostatic case

Considering the hydrostatic Navier-Stokes and Euler systems given in para-
graph 2.3 in a tank such that (x, y) ∈ [−L/2, L/2]2. The two following propo-
sitions hold.

Proposition 2 For some t0 ∈ R, t1 ∈ R∗+, φ0 ∈ R, (α, β) ∈ R2
+ such that

αβ > L, let us consider the functions h, u, v, w, p, φ defined for t ≥ t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2(θ) + y sin2(θ)),

v(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2(θ) + y sin2(θ)),

w(t, x, y, z) = f(t)(zb − z),
p(t, x, y, z) = pa(t, x, y)− 2µf(t) + g(h− (z − zb)),

φ(t, x, y, z) =
φ0
4L

(2x cos2(θ) + 2y sin2(θ)− βα)h(t, x, y) +
βφ0α

2L
z,

where f(t) = 1/(t − t0 + t1) and with a flat bottom zb(x, y) = zb,0 = cst and
pa(t, x, y) = pa,1(t), where pa,1(t) a given function.

Then h, u, v, w, p, φ as defined previously satisfy the 3d hydrostatic Navier-
Stokes system (13)-(14),(3) completed with the kinematic boundary conditions (4)-
(5) and κ = 2µαβ

h(t,x,y)[αβ−2(x cos2(θ)+y sin2(θ))]
in (6),τw = µβ/2 with ts = 1√

2
(1, 1)t

in (7), Fφs = Fφb =
µφ
2Lφ0αβ in Eqs. (8)-(9). The appropriate boundary con-

ditions for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2} are also determined by the
expressions of h, v, u, w, φ given above.

Choosing the viscosity µ = 0, the variables h, u, v, w, p, φ become analyti-
cal solutions of the 3d hydrostatic Euler system (15)-(16) completed with the
boundary conditions (4),(5) and the tracer equation (3) with (8)-(9).

Remark 3 As in remark 2, the analytical solutions given in prop. 2 are solution
of the 2d hydrostatic Navier-Stokes and Euler systems when θ = 0.

Remark 4 Choosing β = 0 in prop. 2 gives analytical solutions with a velocity
field that does not depend on the variable z. It is easy to see that it corresponds
to analytical solutions for the classical viscous Saint-Venant system [7].

proof 3.2 (Proof of prop. 3) See proof of prop. 2.

3.3 Radially-symmetrical parabolic bowl

The Thacker’ analytical solution [16], corresponds to a periodic oscillation in a
parabolic bowl. This analytical solution for the 2d Saint-Venant system is also
an analytical solution for the 3d incompressible and hydrostatic Euler system.
We propose an extension of the Thacker’ radially-symmetrical solution to the
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situation where the velocity field depends on the vertical coordinate. This means
the proposed solution is analytical for the 3d incompressible hydrostatic Euler
system but does not correspond to a shallow water flows.

Proposition 3 For some t0 ∈ R, (α, β, γ) ∈ R3
+∗ such that γ < 1 let us consider

the functions h, u, v, w, p defined for t ≥ t0 by

h(t, x, y) = max

{
0,

1

r2
f

(
r2

γ cos(ωt)− 1

)}
,

u(t, x, y, z) = x

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)

2(1− γ cos(ωt))

)
,

v(t, x, y, z) = y

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)

2(1− γ cos(ωt))

)
,

w(t, x, y, z) = − ∂

∂x

∫ z

zb

udz − ∂

∂y

∫ z

zb

vdz,

p(t, x, y, z) = g(h+ zb − z),

with ω =
√

4αg, r =
√
x2 + y2 and with a bottom topography defined by

zb(x, y) = α
r2

2
,

and the function f given by

f(z) = −4g

β2
+

2

β2

√
4g2 + cz + β2αg(γ2 − 1)z2,

c being a negative constant such that c ≤ 4g2/(γ − 1).
Then h, u, v, w, p as defined previously satisfy the 3d hydrostatic Euler sys-

tem (15)-(16) completed with the boundary conditions (4),(5). The appropriate
boundary conditions in lateral boundary are also determined by the expressions
of h, u, v, w given above.

Remark 5 If we note R the maximum of r(x, y) in order to have f positive,
a simple computation of the zeros of the function f for t = π/ω gives R =√
c/(β2αg(γ − 1)) with c ≤ 0

Remark 6 Integrating u and v along z, the vertical velocity component w is
obtained

w(t, x, y, z) = −β(z−zb)2+

(
βh− 2Γ− βαr2 +

β

2

(
x
∂h

∂x
+ y

∂h

∂y

))
(z−zb)−

αr2

2
(βh−2Γ)

where ∂xh = 2xF(t, x, y) and ∂yh = 2yF(t, x, y) with

F(t, x, y) = − 1

r4
f

(
r2

Λ

)
+

1

r2Λ
f ′
(
r2

Λ

)
and

Λ = γ cos(ωt)− 1, Γ = −ωγ sin(ωt)

2Λ

11



Figure 6: 3D Axisymmetrical parabolic bowl: free surface at t = 0 (red), t = T/4
(dark grey), t = T/2 (blue), with the period T defined by T = 2π/ω and for
parameters set to h0 = 1, α = 2, β = 1, γ = 0.3, c = −1, L = 1.
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Remark 7 The analytical solution depicted in prop. 3 can be written in the
2d case. With obvious notations, we choose γ ≤ 2g/(βω) and c > 0, and we
consider the functions h, u, w, p defined for t ≥ t0 by

h(t, x) = max
{

0, f
(
x− γ

ω
sin(ωt)

)}
,

u(t, x, z) = β

(
z − zb −

h

2

)
+ γ cos(ωt),

w(t, x, z) = − ∂

∂x

∫ z

zb

udz,

p(t, x, z) = g(h+ zb − z),

with a bottom topography defined by zb(x) = 2αx2, a function f given by

f(z) = −4g

β2
+

2

β2

√
4g2 − 2cβ2 − β2ω2z2;

Then h, u, w, p as defined previously satisfy the 2d hydrostatic Euler system
completed with the boundary conditions (4),(5). The appropriate boundary con-
ditions in lateral boundary are also determined by the expressions of h, u, w given
above.

Remark 8 If we note R the maximum of x in order to have f positive, a simple

computation of the zeros of the function f for t = π/2ω gives R = γ+
√
−2c
ω with

c ≤ 0.

proof 3.3 (Proof of prop. 3) See proof of prop. 1.

3.4 Planar surface in parabolic bowl with variable density

In this second Thacker’ solution, we consider the case of a planar surface rotating
in a parabolic bowl. For the hydrostatic Euler with variable density (17)-(19),
the following proposition holds.

Proposition 4 For any nonnegative function s 7→ ρ(s) and for some (a, α, η, h0) ∈
R3×R+, let us consider the functions h, u, v, w, p, φ defined for (x, y) ∈ [−L/2, L/2]2,
t ≥ t0 by

h(t, x, y) = max

{
0, h0 − α

(x− η cos(ωt))
2

+ (y − η sin(ωt))
2

2

}
,

u(t, x, y, z) = −ηω sin(ωt),

v(t, x, y, z) = ηω cos(ωt),

w(t, x, y, z) = −αηω (x sin(ωt)− y cos(ωt)) ,

p(t, x, y, z) = pa(t) +

∫ h+zb

z

ρ(φ(t, x, y, z1))dz1,

φ(t, x, y, z) = a (h+ zb − z) ,
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Figure 8: 3D Planar surface in parabolic bowl: free surface at t = 0 (red),
t = T/4 (dark grey), t = T/2 (blue), with the period T defined by T = 2π/ω
and for parameters set to η = 0.1, h0 = 0.1, a = 1, α = 1, L = 4.

with ω =
√
αg and with a bottom topography defined by

zb(x, y) = α
x2 + y2

2
,

Then h, u, v, w, p, φ as defined previously satisfy the 3d hydrostatic Euler system
with variable density (17)-(19) completed with the kinematic boundary condi-
tions (4)-(5).

Remark 9 Even if the functions given in the prop. 4 are solutions of the Euler
equations with varying density, it is possible that they are unstable. It can be
the case in particular when we take an increasing density from the bottom to the
surface.

Remark 10 The analytical solution depicted in prop. 4 can be written in the
2d case. With obvious notations, the functions h, u, w, p, φ defined for t ≥ t0 by

h(t, x) = max

{
0, h0 − α

(x− η cos(ωt))
2

2

}
,

u(t, x, z) = −ηω sin(ωt),

w(t, x, z) = −αxηω sin(ωt),

p(t, x, z) = pa(t) +

∫ h+zb

z

ρ(φ(t, x, z1))dz1,

φ(t, x, z) = a (h+ zb − z) ,

15
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Figure 9: 3D Planar surface in parabolic bowl: free surface, velocity vectors and
tracer for t = 0, T/6, 2T/6, T/2, in (x, y = 0, z) slice plane with the period T
defined by T = 2π/ω and for parameters set to η = 0.1, h0 = 0.1, a = 1, α = 1,
L = 4.
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with a bottom topography defined by zb(x) = αx2/2 and with the kinematic
boundary conditions (4)-(5) satisfy the 2d hydrostatic Euler system with variable
density for any (a, α, η, h0) ∈ R3 × R+.

proof 3.4 (Proof of prop. 4) See proof of prop. 1.

3.5 Planar surface in parabolic bowl with time variable
topography

If the topography is a function of time, the non-penetration condition at the
bottom (5) must be replaced by

∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y
− wb = 0. (23)

We have then the following proposition

Proposition 5 For some t0 ∈ R, (h0, η, α, β) ∈ R4
+, let us consider the func-

tions h, u, v, w, p defined for t ≥ t0 by

h(t, x, y) = max
{

0, h0 −
α

4
(η cos(ωt)− η sin(ωt)− x+ y)

2
}
,

u(t, x, y, z) = β

(
z − zb −

h

2

)
− ηω sin(ωt),

v(t, x, y, z) = β

(
z − zb −

h

2

)
+ ηω cos(ωt),

w(t, x, y, z) =
∂zb
∂t
− ∂

∂x

∫ z

zb

udz − ∂

∂y

∫ z

zb

vdz,

p(t, x, y, z) = g(h+ zb − z),

with ω =
√
αg and with a bottom topography defined by

zb(x, y, t) = α
(x− y)2

4
+
αη

2
(x+ y)

(
cos(ωt) + sin(ωt)

)
.

Then h, u, v, w, p as defined previously satisfy the 3d hydrostatic Euler sys-
tem (15)-(16) completed with the boundary conditions (4),(12),(23).

proof 3.5 (Proof of prop. 5) See proof of prop. 1.
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Figure 10: 3D Planar surface in parabolic bowl: free surface, velocity vectors
and norm at t = 0, T/6, 2T/6, T/2, in (x, y = 0, z) slice plane with the period T
defined by T = 2π/ω and for parameters set to η = 0.1, h0 = 0.1, α = 1, β = 1,
L = 4.
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Figure 11: Evolution of the topography and free surface for the parabolic
bowl with variable density (a) and with variable topography (b) at t =
0, T/6, T/4, 2T/6, T/2, in (x, y = 0, z) slice plane with the period T defined
by T = 2π/ω and for parameters set to η = 0.1, h0 = 0.1, α = 1, β = 1, L = 4.
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3.6 Wave propagation

In this section we look for solutions of the Euler and linearized Euler system.
The analytical solutions we propose mainly concerns propagating waves and but
some results concerning standing waves are also given. Since we consider planar
waves, the analytical solutions are given in 2d in the (x, z) domain i.e. with
v = 0.

The water wave problem described by the Euler equations with a free surface
has been widely studied in the literature see e.g. [6, 14, 12, 9, 10]. The analytical
solutions we propose have connections with recent works of W. Strauss, see [4,
15] and references therein.

3.6.1 The LambertW function

In the following paragraphs, we will use the LambertW functions [5]. The
LambertW functions have many applications in pure and applied mathematics
but also in physics. It is a set of functions, namely the branches of the inverse
relation of the function f(z) = zez where z is any complex number. In other
words, the LambertW function satisfies

LambertW(x)eLambertW(x) = x.

As the equation
zez = x, (24)

has an infinite number of solutions z for each non-zero value of x, LambertW has
an infinite number of branches. Exactly one of these branches is analytic at 0.
In the following, this branch is referred to as the principal branch of LambertW,
and is denoted by LambertW(x). The other branches all have a branch point at
0, and these branches are often denoted in the litterature by LambertW(k, x),
where k is any non-zero integer. The results presented hereafter are valid for
all the branches but for the sake of simplicity, we focus on the principal branch
i.e. LambertW(0, x) = LambertW(x).

Notice that Eq. (24) admits an unique real solution for x ≥ −1/e. For
x < −1/e, all the solutions of Eq. (24) are complex.

3.6.2 Propagating waves for the linearized Euler system

We consider the linearized Euler system (20)-(21) completed by the boundary
conditions (4),(12) and (5). Then we have the following result.

Proposition 6 Let (a, b, h0, k, n) ∈ R2 × R3
+ such that |a| < 1/e and h0k/n >

LambertW(−|a|). Let f the function defined by

f : x 7→ −n
k

LambertW
(
a cos

(x
n

+ b
))
, (25)

Let pa(t) be any given function.
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Up to terms in O(e−
h0k
n ), the functions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt), (26)

u(t, x, z) = −ωa
k
e
k
n (z−h0) cos

(kx− ωt
n

+ b
)
, (27)

w(t, x, z) = −n
k

∂u

∂x
, (28)

p(t, x, z) = pa(t) + g(h0 − z)−
gn

k
e
k
n (z−h0) cos

(kx− ωt
n

+ b
)
, (29)

are analytical solutions of the linearized Euler system (20)-(21) completed by the
boundary conditions (4),(12) and (5) iff the dispersion relation

ω

k
=

√
gn

k
, (30)

holds.

proof 3.6 (Proof of prop. 6) First, Eq. (28) is obtained using an integration
along the vertical axis of the divergence free condition (20) and neglecting the

term in O(e−
h0k
n ) corresponding to the vertical velocity at the bottom. Then the

proof relies on very simple computations by inserting the expressions (26)-(29)
in Eqs. (20)-(21),(4),(12) and (5).

Remark 11 The solutions proposed in prop. 6 for the linearized Euler sys-
tem are not exactly analytical solutions in the sense that additional terms in

O(e−
h0k
n ) appear. But it is important to notice that when h0k � 1, considering

e.g. h0 = 100 m k = 0.2 m−1 and n = 1 gives e−
h0k
n ≈ 10−9 � 1.

Remark 12 The solutions proposed in prop. 6 satisfy the energy balance (22)
with

αs,b = −gω
4k

n2LambertW
(
a cos

(
x
n + b

))2
k2 cos

(
x
n + b

)2 .

3.6.3 Propagating waves for the Euler system

We consider the Euler system (10)-(11) completed by the boundary condi-
tions (4), (5) and (12). Then we have the following result.

Proposition 7 Let (a, b, h0, k, n) ∈ R2 × R3
+ such that |a| < 1/e and h0k/n >

LambertW(−|a|). Let f the function defined by

f(x) = −n
k

LambertW
(
a cos

(x
n

+ b
))
.
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Up to terms in O(e−
h0k
n ), the functions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt),

u(t, x, z) =
ωa

n
e
k
n (z−h0) cos

(kx− ωt
n

+ b
)
,

w(t, x, z) = −n
k

∂u

∂x
,

p(t, x, z) = g(h0 − z)−
ga2n

2k
e

2k
n (z−h0) − gn

k
e
k
n (z−h0) cos

(kx− ωt
n

+ b
)

+ g
a2n

2k
,

are analytical solutions of the Euler system (10)-(11) completed by the boundary
conditions (4) and (5) iff the dispersion relation (30) holds. At the free surface,
the pressure p is such that ps = p(t, x, h(t, x)) = pa(t, x) with

pa(t, x) =
ga2n

2k

(
1− e 2k

n (h(t,x)−h0)
)
. (31)

proof 3.7 (Proof of prop. 7) The proof is similar to the one given in prop. 6
and is not detailed here.

Remark 13 When the parameter a is small, surface elevation is close to a
sinusoidal function. When |a| is near to 1/e, the top of the wave is narrower
than its bottom. This property is presented in figure 12 (the same structure
appear in cnoidal waves). For |a| = 1/e, the function f are not differentiable in
(2m+ 1)π, ∀m ∈ Z.

Remark 14 In [1], C. J. Amick proved that for any irrotational wave, the angle
of inclination with respect to the horizontal must be less than 31.15˚. In these
analytical solutions, the flow is irrotational and the angle of inclination is less or
equal to 45˚. But we have here an additional source term given by the pressure
at the surface 31 that can justify this inclination.

3.7 Standing waves

Now we consider the situation of standing waves. Such a situation can occur
when two progressive waves of same amplitude travel in opposite direction.
Namely, assuming the free surface can be written under the form

h(t, x) = a cos
(kx− ωt

n

)
+ a cos

(kx+ ωt

n

)
+O(a2),

we have a standing wave given by

h(t, x) = 2a cos
(2kx

n

)
cos
(2ωt

n

)
+O(a2).

The results depicted in this paragraph are based on the following remark:
for small values of the parameter a, one has the Taylor expansion

LambertW
(
a cos

(kx− ωt
n

))
= a cos

(kx− ωt
n

)
− a2 cos2

(kx− ωt
n

)
+O(a3).
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Figure 12: Free surface given by the function f : x 7→ −LambertW(a cos(x)) for
three value of the parameter a : 0.10 (dot line), 0.30 (dash-dot line), 1/e (dash
line), and comparison with function −1/e cos(x) (solid line).

Proposition 8 Let f the function defined by

f(x) = −n
k

LambertW
(
a cos

(x
n

))
,

where a, k > 0 and n > 0 are constants.

Up to terms in O
(
e−

h0k
n , a2

)
, the functions h, u, w and p defined by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt), (32)

u(t, x, z) =
ω

n
e
k
n (z−h(t,x))

(
f(kx− ωt) + f(kx+ ωt)

)
, (33)

w(t, x, z) = −n
k

∂u

∂x
, (34)

p(t, x, z) = pa(t) + g(h− z) +

∫ h(t,x)

z

∂w

∂t
dz, (35)

are analytical solutions of the linearized Euler system (20)-(21) completed by the
boundary conditions (4), (5) and (12) iff the dispersion relation (30) holds.

Since a Taylor expansion of Eq. (32) gives

h(t, x) = h0 −
2n

k
cos
(kx
n

)
cos
(ωt
n

)
+O

(a2
k

)
,

the proposed solution corresponds, up to terms in O
(
a2

k

)
, to a standing wave.

Corollary 1 Considering a slightly modified version of the solution proposed in
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prop. 8 where (32)-(35) is replaced by

h(t, x) = h0 + f(kx− ωt) + f(kx+ ωt) + 2
a2n

k
cos2

(kx
n

)
,

u(t, x, z) =
ω

n
e
k
n (z−h(t,x))

(
f(kx− ωt) + f(kx+ ωt) + 2

a2n

k
cos2

(kx
n

))
,

w(t, x, z) = −n
k

∂u

∂x
,

p(t, x, z) = pa(t) + g(h− z) +

∫ h(t,x)

z

∂w

∂t
dz,

up to terms in O
(
e−

h0k
n , a3

)
, the functions h, u, w and p are analytical solu-

tions of the linearized Euler system (20)-(21) completed by the boundary condi-
tions (4), (5) and (12) iff the dispersion relation (30) holds.

proof 3.8 (Proof of prop. 8) The proof relies on very simple computations
similar to those performed in the proof of props. 6,7.

Proposition 8 and corollary 1, valid for the linearized Euler system, can be
easily extend to the Euler system (10)-(11) completed by the boundary condi-
tions (4), (5) and (12).
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