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Total Roto-Translational Variation

Antonin Chambolle∗, and Thomas Pock†
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Abstract

We consider curvature depending variational models for image regularization, such as Eu-

ler’s elastica. These models are known to provide strong priors for the continuity of edges

and hence have important applications in shape- and image processing. We consider a lifted

convex representation of these models in the roto-translation space: In this space, curvature

depending variational energies are represented by means of a convex functional defined on di-

vergence free vector fields. The line energies are then easily extended to any scalar function.

It yields a natural generalization of the total variation to the roto-translation space. As our

main result, we show that the proposed convex representation is tight for characteristic func-

tions of smooth shapes. We also discuss cases where this representation fails. For numerical

solution, we propose a staggered grid discretization based on an averaged Raviart-Thomas

finite elements approximation. This discretization is consistent, up to minor details, with

the underlying continuous model. The resulting non-smooth convex optimization problem is

solved using a first-order primal-dual algorithm. We illustrate the results of our numerical

algorithm on various problems from shape- and image processing.

Keywords: Image processing, shape processing, image inpainting, curvature, Elastica, roto-

translations, convex relaxation, total variation.

AMS MSC (2010): 53A04 49Q20 26A45 35J35 53A40 65K10

1 Introduction

It was observed at least since [58] that line energies such as Euler’s “Elastica” (here for a smooth

curve γ): ∫
γ

[1+] κ2ds

could be natural regularizers for the completion of missing contours in images. This idea was based

in particular on observations of G. Kanizsa [46, 47] about the way our perception can “invent”

apparent contours. The model in [58] (see also [40, 39] for interesting attempts to solve it with

phase-field methods) was variational in nature and since then, many attempts have been proposed

to study and address the minimization of such line energies, both theoretically and numerically.

From the theoretical point of view, the lower-semicontinuity of these energies already is a

challenge, which has been studied in many papers (in connexion to the applications to computer
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vision) since at least the 90s [12, 13, 16, 14, 17, 15, 30]. It is shown already in [12] that the boundary

of many sets with cusps can be approximated by sets with smooth boundaries of bounded energy,

showing that the relaxation of the Elastica for boundaries of sets is already far from trivial.

The study of this lower semi-continuity of course enters the long history of the study of general

curvature dependent energies of manifolds and in particular the Willmore energy [77].

Quite early, it has been suggested to lift the manifold in a larger space where a variable

represents its direction or orientation, by means in particular (for co-dimension one manifolds)

of the Gauss map (x, ν(x)), ν(x) being the normal to the manifold at x [5, 6]. Such approach

allows to study very general curvature energies and has been successfully used for establishing

lower-semicontinuity and existence results [6, 7, 32, 31], and in particular to lines energies such as

ours in higher codimension [2, 1] or in dimension 2 [31]. We must mention also in this class an

older approach based on “curvature varifolds” (which is very natural since varifolds are defined on

the cross product of spatial and directional variables) which has allowed to show existence results

since the 80s [45], see also [50].

Interestingly, it was understood much earlier [44] that (cats’) vision was functioning in a

similar way (eg., using a sort of “Gauss map”), thanks to neurons sensitive to particular directions

which were found to be stacked inside the visual cortex into ordered columns, making us sensitive

to changes of orientations (and thus curvature intensity). These findings (which might explain

some of Kanizsa’s experiments) inspired some mathematical models quite early [48], however they

were formalized into a consistent geometric interpretation later on [59, 66, 65, 29, 57, 33]. The

idea of these authors is to lift 2D curves in the “Roto-translation” space (which is the group of

rotations and translations, however what is more important here is less its group structure than

the associated sub-Riemanian metrics) which can be identified, for our purposes, with Ω × S1

where Ω ⊂ R2 is the spatial domain where the image is defined and S1 parameterizes the local

orientation.

The natural metric in that space prevents from moving spatially in a direction other than

the local orientation, which makes it singular (hence “sub”-Riemanian). Diffusion and mean

curvature flow in this particular metrics were successfully used as efficient methods for image

“inpainting”, which is the task of filling in a gap in an image [41, 19, 61, 72]. Indeed, such

diffusion naturally extends missing level sets into smooth curves, and even allows for crossing,

since curves with different directions “live” in different locations in the Roto-translation space.

This seems to improve in difficult situations (eg., crossings) upon more classical diffusion models for

inpainting [27, 18] (or Weickert’s “EED” [75, 76, 67] which can propagate directional information

quite smoothly accross inpainted regions).

In computer science, similar ideas were successfully implemented in discrete graphs (with nodes

representing a spatial point and orientation) in order to minimize curvature-dependent contour

energies [68, 37, 36, 70, 49, 69, 71, 38]. Our current work is closer to these approaches, although

set up in the continuous setting, as we want to represent and solve variational models involving

curvature terms, were the unknown are scalar (grey-level) functions. A continuous approach

similar to these discrete ones proposes to compute minimal paths in the Roto-translational metric

by solving the corresponding eikonal equations [55, 56, 28] (the goal being more here to find

paths on an image than to complete boundaries). This is strongly connected to geometric control

problems (such as parking a car), and these connections have led to the study many interesting

metrics in these settings, with impressive applications to imaging problems such as the extraction

of networks of vessels and fibers in 2D and 3D medical images via fast, globally optimal sub-

2



Riemannian and sub-Finslerian geodesic tracking in the roto-translation group [11, 34].

As said, we wish to extend these variational methods to level sets representations. The family

of problems we are interested in is introduced in a paper by Masnou and Morel [52] (see also [53]),

which addresses the problem of image inpainting. Their initial idea is to minimize, in the inpainting

domain D, an energy of the form ∫
D

(
1 +

∣∣∣∣div
Du

|Du|

∣∣∣∣p) |Du|
for some p ≥ 1, where u is a bounded variation function and appropriate boundary conditions

are given. A theoretical study of this energy, which in general is not lower-semicontinuous (lsc),

is found in [4], in particular it is shown that if p > 1 (in dimension 2), it is lsc on C2 functions.

Interestingly, also this study relies on a space/direction representation (and more precisely on

varifolds). An interesting co-area formula for the relaxed envelope is also shown in [51].

There have been many attempts to numerically solve Masnou and Morel’s model, which is very

difficult to tackle, being highly non convex. Most of the authors introduce auxiliary variables [9,

26, 10], for instance representing the orientation, which is already close to the idea of the Gauss

map or Roto-translational representation. Recent techniques based on Augmented Lagrangian

methods (for coupling the auxiliary variables) [74, 80, 78, 79, 43, 42, 8] have shown to be quite

efficient, despite the lack of convexity and hence convergence guaranties.

What we propose here is to rather introduce a functional which may be sees as a convex

relaxation of Masnou and Morel’s. The method we propose is based on two ingredients: A lifting

in the Roto-translation space of curves which allows to write the Elastica energy (or any convex

function of the curvature) as a convex function, as in classical Gauss map based approaches, and

(formally) a decomposition of functions as sum of characteristic functions of sets with finite energy.

This allows to define a convex functional which is defined on grey-level functions and penalises

the curvature of the level lines. It is however easy to check that it is in general strictly below

Masnou and Morel’s functional, in particular a function of finite energy needs not have its level

sets regular (in practice, they could be intersections of regular sets, in addition to having possible

cusps, for the same reasons as in [12]), see for example Figures 5 and 9(e). The only theoretical

result which we can show is that C2 curves are tightly represented by our convex relaxation.

There is a close relationship between our approach and the functionals in [22] (“TVX”) and [23],

based on similar representations (but [22] omits to preserve the boundary of the lifted current).

In fact, the functional we build is, as we show further on, a new expression of the previous convex

relaxation of the Elastica energy (and variants) proposed in [23]. This stems from the identity of

the corresponding dual problems. Although it boils down to the same energy, it is introduced in

a much simpler way, as the primal expression in [23] requires to work in a space where the point,

the tangent and the curvature are lifted as independent variables. As a consequence, we also can

provide a simpler discretization, and the tightness of the relaxation for C2 sets was unnoticed

in [23]. Eventually, we should mention that part of what we propose here could be generalized to

arbitrary dimension or co-dimension, following the techniques in [6]. However, computationally,

our construction for 1D curves in the plane already needs to work in a 3D space, and more complex

models seem at this moment intractable. Our future research will rather focus on improving the

discretization and the optimization of the bidimensional case.

The paper is organised as follows: In Section 2 we describe the lifting and introduce our

functional. We state our main result, which shows that characteristic functions of C2 sets are well
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represented by our convex relaxation (Theorem 1). In the next Section 3 we show an approximation

result with smooth functions, and compute a dual representation of the functional (which shows

it is identical to [23]). Then, in Section 4, we describe how the functional is discretized and

show a few experimental results. The last Section 5 is devoted to the proof if Theorem 1. Some

technical tools are found in the Appendix, in particular, Appendix A shows, up to (hopefully

minor) transformations, the consistency of our implementation in Section 4.

2 The functional

We consider Ω a bounded open domain in the plane, and E ⊂ Ω a set with C2 (and to sim-

plify, connected) boundary. Assume that this boundary ∂E is given by a parameterized curve

(x1(t), x2(t)) with parameter t ∈ [0, 1]. The (extrinsic) curvature κE of ∂E is classically defined

as the ratio between the variation of the tangential angle θ and the variation of its arc length s,

that is

κE =
dθ

ds
=

dθ
dt
ds
dt

dθ
dt√(

dx1

dt

)2
+
(
dx2

dt

)2 .
The main idea of the lifting is now to consider a higher dimensional representation of the parametric

curve in the 3D roto-translation (RT) space, which is obtained by adding the tangential angle θ

as an additional dimension to Ω. In this space, we now consider a parameterized 3D curve

(x1(t), x2(t), θ(t)) which lifts the boundary ∂E to the roto-translational space. Figure 1 shows an

example where we lift the boundary of a disk (which is a circle) to the RT space. Observe that

the lifted boundary is represented by a 3D helix.

Now, we define for all t ∈ [0, 1] the tangential vector p(t) = (px(t), pθ(t)) with

px(t) =

(
dx1(t)

dt
,
dx2(t)

dt

)
, pθ(t) =

dθ(t)

dt
, |px(t)| =

√(
dx1(t)

dt

)2

+

(
dx2(t)

dt

)2

.

The curvature is therefore given by

κE(t) =
pθ(t)

|px(t)|
,

In this work we consider f : R → [0,+∞] a convex, lsc function and want to define a convex

lsc extension (to grey-level valued functions) of energies of the type

E 7→
∫
∂E

f(κE)dH1

where E ⊂ Ω is a set with C2 boundary, and κE is the curvature of the set. Using our tangential

vector p(t), it is easy to see that the energy can be (formally) written as∫
∂E

f(κE)dH1 =

∫ 1

0

f(pθ/|px|)|px|dt =

∫
Ω×S1

f(τθ/|τx|)|τx|dH1 ΓE

where ΓE = (x, θ)([0, 1]) is the lifted curve and τ(x, θ) its normalized tangential vector, given by

τ(x(t), θ(t)) = p(t)/|p(t)| for all t ∈ [0, 1]. A precise definition of the energy will be given below.

Let us briefly discuss three instances of energies that will typically appear in applications.

In all cases α > 0 will be a tuning parameter that can be used to balance the influence of the

curvature term with respect to the length.
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Figure 1: The gray line is the lifting of the boundary ∂E of the disk E to the roto-translational

space Ω × S1.

1. f1(t) = 1 + α|t|. This energy penalizes the arclength plus the absolute curvature, hence we

might expect that this type of energy will allow also for corners. This type of energy has

been studied with a different approach in [22]. The energy is given by:∫
Ω×S1

f1(τθ/|τx|)|τx|dH1 ΓE =

∫
Ω×S1

|τx|+ α|τθ|dH1 ΓE .

2. f2(t) =
√

1 + α2|t|2. This energy penalizes the arclength of the lifted curve in the RT space

which, in some sense, corresponds to the “Total Roto-translational Variation”. It yields the

energy: ∫
Ω×S1

f2(τθ/|τx|)|τx|dH1 ΓE =

∫
Ω×S1

√
|τx|2 + α2|τθ|2dH1 ΓE

which is nothing but the length of the lifted curve ΓE in a Riemanian metric. This functional

was considered for perceptional completion problems probably first in [65]. It coincides with

sub-Riemannian [65, 33, 20, 11] and more precisely the sub-Finslerian models in [34] (with

the constraint of positive direction on the velocity).

3. f3(t) = 1 + α2|t|2. This is the classical Eulers’s Elastica energy studied for example in [58,

12, 53, 68, 23] and many other works already mentioned in our introduction.∫
Ω×S1

f3(τθ/|τx|)|τx|dH1 ΓE =

∫
Ω×S1

|τx|+ α2 |τθ|2

|τx|
dH1 ΓE .

Observe that the second term in the energy is a “quadratic over linear” function which is

still convex, provided τx is constrained in a half space or a half line (which of course will

depend on the θ variable).

In all these examples, we find that the energy which we are interested in ends up represented

possibly as a convex function of the measure σ = τH1 ΓE . Moreover, this σ is not an arbitrary
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measure. In particular, it satisfies two important constraints: first, by construction, it is a circu-

lation and has zero divergence in Ω × S1 (it can have source terms on ∂Ω × S1): indeed, given any

smooth function ψ,
∫
∇ψ · σ =

∫
ΓE
∂τψdH1 vanishes if ΓE is a closed curve, or if it ends on the

boundary and ψ has compact support. Second, its marginals in Ω × S1, which we can formally

denote
∫
S1 σ (and which are also divergence free), coincide with a 90◦-rotation of the measure

DχE . We will show now how to generalize this construction to arbitrary sets or functions (with

bounded variation).

In the whole paper, we assume that there exists γ > 0 such that

f(t) ≥ γ
√

1 + t2, ∀ t ∈ R. (1)

We also introduce the recession function

f∞(t) = lim
s→+∞

1

s
f(st)

which is a convex, one-homogeneous function possibly infinite on (−∞, 0) or/and (0,+∞). It is

easy to check that it is the support function of dom f∗, the domain of the convex conjugate f∗ of

f :

f∞(t) = sup
y∈dom f∗

ty. (2)

Indeed, for y ∈ dom f∗, s > 0,

ty =
1

s
(st)y ≤ 1

s
f(st) +

1

s
f∗(y)

s→∞−→ f∞(t)

as s→∞; on the other hand, as f∗ ≥ −γ thanks to (1), for s > 0 one has

1

s
f(st) = sup

y∈dom f∗
ty − 1

s
f∗(y) ≤ sup

y∈dom f∗
ty +

γ

s

showing that f∞(t) ≤ supy∈dom f∗ ty.

We let then, for p = (px, pθ) ∈ R3 with px 6= 0,

h(θ, p) =


|px|f(pθ/|px|) if px ∈ R+θ, p

x 6= 0,

f∞(pθ) if px = 0,

+∞ else.

(3)

Here, θ denotes the unit planar vector (cos θ, sin θ)T (by a slight abuse of notation, we will also

denote in this way the vector (cos θ, sin θ, 0)T ∈ R3). It is then classical [64, § 13] and easily follows

from (2) that one has

h(θ, p) = sup
{
ξ · p : ξx · θ ≤ −f∗(ξθ)

}
, (4)

that is, the one-homogeneous function h is the support function of the convex set in the right-hand

side of (4). Indeed, first of all, the sup in (4) is ∞ if px is not λθ, λ ≥ 0. While if it is of this

form, then (taking the suprema over the ξ’s which satisfy ξx · θ ≤ −f∗(ξθ))

sup
ξ : ξx·θ≤−f∗(ξθ)

ξx · θλ+ ξθpθ = sup
ξθ

ξθpθ − λf∗(ξθ) =

λf(pθ/λ) if λ > 0

f∞(pθ) else.

Observe that (1) yields that for all p ∈ R3,

h(θ, p) ≥ γ|p| (5)
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We now introduce the functional

F (u) = inf

{∫
Ω×S1

h(θ, σ)dxdθ : divσ = 0,

∫
S1

σxdθ = Du⊥
}
. (6)

Here x⊥ = (x2,−x1) is a 90◦ rotation in the plane. The last condition is understood as follows:

for all ϕ ∈ C1
c (Ω;R2) ⊂ C1

c (Ω × S1;R2), one has∫
Ω×S1

ϕ⊥ · σx =

∫
Ω

ϕ ·Du = −
∫

Ω

udivϕdx. (7)

In particular in general the fields σ appearing in (6) are free-divergence bounded Radon measures

in Ω × S1 with values in R3 (we denote M1(Ω × S1;R3) the space of such measures) and the

proper way to write the integral is rather∫
Ω×S1

h(θ, σ) =

∫
Ω×S1

h

(
θ,

σ

|σ|

)
d|σ|

where σ/|σ| is the Radon-Besicovitch derivative of σ w.r. its total variation |σ|. Notice that for

any u and any admissible σ, thanks to (5),

F (u) ≥
∫

Ω×S1

h(θ, σ) ≥ γ
∫

Ω×S1

|σ| ≥ γ
∫

Ω

|Du|

because of (7), taking the supremum with respect to the test function ϕ with |ϕ(x)| ≤ 1 every-

where. This shows that F (u) bounds the BV seminorm.

We denote by K(θ) the closed convex set of R3 whose support function is h(θ, ·), as already

seen it is given by

K(θ) =
{
ξ ∈ R3 : ξx · θ ≤ −f∗(ξθ)

}
.

Remark that (1) implies that f∗(s) ≤ −
√
γ2 − s2 for |s| ≤ γ, implying in particular that 0 is in

the interior of K(θ).

We then let (following for instance [21, 63])

K =
{
ϕ ∈ C0

c (Ω × S1;R3) : ϕ(x, θ) ∈ K(θ) ∀(x, θ) ∈ Ω × S1
}
.

Then, we claim that for any measure σ ∈M1(Ω × S1;R3)∫
Ω×S1

h(θ, σ) = sup
ϕ∈K

∫
Ω×S1

ϕ · σ, (8)

showing in particular that this integral is a lower-semicontinuous function of σ (for the weak-∗
convergence). To prove this claim (which is standard), first observe that if ϕ ∈ K, then for all

ψ− ∈ C0
c (Ω × S1;R+) and ψ ∈ C0

c (Ω × S1), also ϕ − ψ−θ + ψθ⊥ ∈ K. One deduces easily that

the supremum in (8) is infinite if one of the measures (θ · σx)− or θ⊥ · σx does not vanish. If

both vanish, it means that σ = (λθ, σθ) for some nonnegative measure λ. Hence the supremum

becomes

sup
ϕ∈K

∫
Ω×S1

(ϕx · θ)λ+ ϕθσθ = sup
ψ+f∗(ϕθ)≤0

∫
Ω×S1

ψλ+ ϕθσθ = sup
ϕθ

∫
Ω×S1

ϕθσθ − f∗(ϕθ)λ,

and (8) is then deduced in a standard way (with a Besicovitch covering of Ω × S1 with respect to

the measure |σ| by balls where λ, σθ are “almost constant”, and choosing then for ϕ the “right
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function” in each ball of the covering—the fact that zero is in the interior of K, which allows to

multiply functions in K by a cut-off, is important here).

We can deduce that also F is lower semicontinuous: consider a sequence (un) with F (un) ≤
c <∞. Then un is bounded in BV and converges (up to a constant and a subsequence) to some

u in L1(Ω).

If σn reaches the value of F (un) up to 1/n, one has that∫
Ω×S1

|σn| ≤ c <∞

so that σn
∗
⇀ σ (up to a subsequence), as measures, and obviously divσ = 0. Clearly, also (7)

passes to the limit. Hence, by lower semicontinuity,

F (u) ≤
∫

Ω×S1

h(θ, σ) ≤ lim inf
n

∫
Ω×S1

h(θ, σn) = lim inf
n

F (un).

This shows that F defines a convex, lower semicontinuous functional on BV (Ω). Our main the-

oretical result is the following theorem, which shows that if the argument u is the characteristic

function of a smooth enough set, then F (u) coincides, as expected, with a curvature-dependent

energy of the boundary of the set {u = 1}. The proof of this result is postponed to Section 5.

Theorem 1. Let E ⊂ Ω be a set with C2 boundary. Then

F (χE) =

∫
∂E∩Ω

f(κE(x))dH1(x). (9)

Remark 2.1. One could hope that F coincides with the lower semicontinuous envelope of its

restriction to C2 sets, with respect to the L1 convergence. However, simple examples show that

it is not the case. Many examples where it fails are found in [23]. In general, we expect the

relaxation F to be strictly below the relaxations found in the literature since [12], based on the

(L1) approximation of sets with smooths sets. In particular, in the case of [12, Fig. 4.2], our

relaxation will certainly be below twice the energy reached by the pattern in [12, Fig. 1.2], while

the energy reached in [12, Fig. 4.2] is strictly larger.

Remark 2.2. If f has growth one and is even, one expects that the same result holds for piecewise

C2 sets.

Remark 2.3. We believe that the proof below could be extended to show that if u ∈ BV (Ω) is a

function with C2 level sets, and such that there exists a continuous function κ(x) which coincides

with the curvature of ∂{u > s} for all level s ∈ R, then one should have

F (u) =

∫
R

∫
∂{u>s}

f(κ∂{u>s}(x))dH1(x) =

∫
Ω

f(κ(x))d|Du|(x). (10)

Hence in that case our functional would coincide with Masnou and Morel’s [53]. A typical example

of a function u for which such a function κ(x) exists is (in a convex domain Ω, see [54]) a solution

of the so-called “Rudin-Osher-Fatemi” functional

min
u

∫
Ω

|Du|+ λ

2

∫
Ω

(u(x)− f(x))2dx (11)

for some λ > 0, in case f is continuous. Then, also u is continuous and κ(x) is given by λ(u−f). In

that case, in addition, κ(x) is also the curvature of the level sets of u′ = h(u) for any nondecreasing

function h such that h(u) is still in BV (Ω).
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3 Some properties of the functional

3.1 Approximation by smooth functions

Proposition 3.1. Assume Ω is a bounded convex set. Then for any u ∈ L1(Ω) with F (u) < ∞,

there exists (un)n a sequence of functions with un ∈ C∞(Ω), which converge to u in L1(Ω), and

such that

lim
n→∞

F (un) = F (u).

Remark 3.2. We believe that, upon replacing C∞(Ω) with C∞(Ω), the result should be true in

any domain.

Proof. We assume, without loss of generality, that 0 is in the interior of Ω. It follows that for any

t < 1, tΩ ⊂⊂ Ω.

Consider ρ a rotationally symmetric mollifier in R2 (ρ ∈ C∞c (B2
1 ;R+),

∫
ρ = 1, and we let

ρε = (1/ε2)ρ(x/ε), where here Bd1 is the unit d-dimensional ball). For ε > 0, we consider the

largest tε < 1 such that {x ∈ Ω : dist (x, ∂Ω) > ε} ⊇ tεΩ. We then define σε as the measure on

Ω × S1 given by ∫
Ω×S1

ψ · σε =

∫
Ω×S1

ψ ∗ ρε(tεx, θ)dσ(x),

where the convolution is only in the x-variable:

ψ ∗ ρε(x, θ) =

∫
B2

1

ψ(x− εz, θ)ρ(z)dz

and is well defined for x ∈ tεΩ. It is clear that σε still has free divergence, moreover, if ϕ ∈
Cc(Ω;R2),∫

Ω×S1

ϕ⊥ · σxε =

∫
Ω×S1

ρε ∗ ϕ⊥(tεx) · σxε (x) =

∫
Ω

ρε ∗ ϕ(tεx) ·Du

= −
∫

Ω

∫
B2

1

tεu(x)ρ(z)divϕ(tεx− εz)dzdx

= − 1

tε

∫
Ω

∫
B2

1

u((y + εz)/tε)ρ(z)divϕ(y)dzdy = − 1

tε

∫
Ω

(ρε/tε ∗ u)(y/tε)divϕ(y)dy.

Hence, σε is admissible for the function uε : y 7→ ρε/tε ∗ u(y/tε)/tε, which clearly goes to u in

L1(Ω) (or BV (Ω) weakly-∗) as ε → 0. Moreover, uε ∈ C∞(Ω) for all ε > 0. Eventually, one has

that for any ϕ ∈ K,∫
Ω×S1

ϕ · σε =

∫
Ω×S1

ϕ ∗ ρε(tεx, θ) · σ ≤
∫

Ω×S1

h(θ, σ) = F (u)

by observing that since the convolution is only in the x variable, ϕ∗ρε(tεx, θ) ∈ K(θ) for all (x, θ)

when ϕ ∈ K. Thanks to (8), it follows that∫
Ω×S1

h(θ, σε) ≤ F (u).

Hence F (uε) ≤ F (u), and the proposition is proved.
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3.2 Dual representation

We can show the following representation for F , which in particular establishes that F coincides

exactly with the (more complicated) relaxation R∗∗el defined in [23].

Proposition 3.3. Assume ∂Ω is connected. Then the functional (6) can also be represented in

the following form

F (u) = sup

{∫
Ω

ψ ·Du⊥ : ψ ∈ C0
c (Ω;R2),

∃ϕ ∈ C1
c (Ω × S1), θ · (∇xϕ+ ψ) + f∗(∂θϕ) ≤ 0

}
. (12)

If ∂Ω is not connected, then same formula holds, however the functions ϕ should be in C1(Ω × S1),

with ∇ϕ ∈ C0
c (Ω × S1).

Corollary 3.4. The functional F (u) coincides with the relaxation of the Elastica energy R∗∗el (u)

defined in [23].

Indeed, formula (12) is the same as (35) in [23, Theorem 13]. The primal formulation (6) we

introduce here is quite simpler as the original formulation in [23], though, as the “κ” variable is

implicit in our formulation (it comes naturally as the derivative of the orientation) and does not

need to be lifted.

Proof of Prop. 3.3. We use the standard perturbation approach to duality [35], in the duality

(C0
0 (Ω × S1;R3),M1(Ω × S1;R3)), where C0

0 denotes the L∞-closure of the functions with com-

pact support (hence, the functions which vanish on the boundary) and M1 the totally bounded

vector-valued Radon measures. Defining, for p ∈M1(Ω × S1;R3), the function

G(p) = inf

{∫
Ω×S1

h(θ, σ + p) : divσ = 0,

∫
S1

σx = Du⊥
}

(13)

so that F (u) = G(0), we observe that G is lower semicontinuous. Indeed if pn
∗
⇀ p and σn is a

minimizer in the definition (13) of G(pn), as before thanks to (5), σn + pn is bounded and up to

a subsequence, converges to a measure σ + p where σ is admissible in (13). It follows that

G(p) ≤
∫

Ω×S1

h(θ, σ + p) ≤ lim inf
n

∫
Ω×S1

h(θ, σn + pn) = lim inf
n

G(pn).

In particular, we deduce that G = G∗∗ so that

F (u) = G(0) = sup
η∈C0

0 (Ω×S1;R3)

−G∗(η).

It remains to compute G∗(η), to show that (12) follows:

G∗(η) = sup
p,σ

∫
Ω×S1

η · p− h(θ, σ + p) = sup
σ
−
∫

Ω×S1

η · σ + sup
p
η · (σ + p)− h(θ, σ + p)

and we find that G∗(η) is infinite unless θ · ηx + f∗(ηθ) ≤ 0 everywhere in Ω × S1. In this case,

we let now ψ(x) = 1
2π

∫
S1 η

x(x, θ)dθ. Recalling that the sup is over the σ admissible, we find that

G∗(η) = sup
σ
−
∫

Ω×S1

(η − ψ) · σ −
∫

Ω

ψ ·Du⊥. (14)
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Now, given any σ′ with divσ′ = 0, we can define u′ such that
∫
S1 σ

′ = Du′
⊥

and let σ =

σ′ + 1
2πD(u− u′)⊥ ⊗ dθ, in which case∫

Ω×S1

(η − ψ) · σ =

∫
Ω×S1

(η − ψ) · σ′ + 1

2π

∫
S1

∫
Ω

(η(x, θ)− ψ(x)) ·D(u− u′)⊥dθ

=

∫
Ω×S1

(η − ψ) · σ′,

hence the first supremum in (14) is the same as the sup over all σ′ with vanishing divergence.

Hence, it is zero or +∞, depending on whether η − ψ is a gradient or not. We find eventually

G∗(η) is finite only when there exists ϕ ∈ C1(Ω × S1) with ∇ϕ = 0 on ∂Ω × S1, such that

η = ψ +∇ϕ. The proposition follows.

Remark 3.5. Consider (ψ,ϕ) compactly supported continuous functions as in (12). If t ∈ (0, 1),

observe that (ψt, ϕt) := (tψ, tϕ) satisfies

θ · (∇xϕt + ψt) + f∗(∂θϕt) ≤ t (θ · (∇xϕ+ ψ) + f∗(∂θϕ)) + (1− t)f∗(0) ≤ −(1− t)γ < 0.

Let ρ ∈ C∞c (B3
1) be a smooth mollifier, ρε(x, θ) = ε−3ρ(x/ε, θ/ε) and

ψεt = ψt ∗ ρε =

∫
B3

1

ψt(x− εz)ρ(z, θ)dzdθ, ϕεt = ϕt ∗ ρε.

This is well defined if ε is small enough, as the functions have compact support. We have that, for

(x, θ) ∈ Ω × S1, thanks to the convexity of f∗, and denoting as before η = ψ +∇ϕ and ηt = tη,

θ · (∇xϕεt + ψεt ) + f∗(∂θϕ
ε
t )

≤ ρε ∗ (θ · ηt + f∗(∂θϕt)) + θ · ρε ∗ ηt − ρε ∗ (θ · ηt)

≤ −(1− t)γ +

∫
B3

1

ρ(z, θ′)((θ − (θ − εθ′)) · ηt(x− εz, θ − εθ′)).

Observing that ‖θ−(θ − εθ′)‖ ≤ ε|θ′|, we deduce that the above is less than −(1−t)γ+tε‖η‖∞ < 0

as soon as ε is small enough. It follows that the functions ψ,ϕ in (12) can be assumed to be in

C∞c .

4 Numerical Experiments

For numerical solution of the proposed model, we need to discretize both the 2D image domain as

well as the 3D domain of the roto-translation space. Due to the high anisotropy of the energy, one

has to be extremely careful in the choice of the discretization scheme in order to preserve a maximal

degree of rotational invariance while keeping the numerical diffusion as low as possible. It turns

out that a 2D-3D staggered grid version of an averaged first-order Raviart-Thomas divergence

conforming discretization [62] yields the best results. More elaborate discretizations using for

example adaptive grids or higher-order approximations will be subject for future study.

4.1 Staggered averaged Raviart-Thomas discretization

Figure 2 shows a visualization of our combined 2D-3D staggered grid approach. The first grid is

given by a 2D grid of pixels discretizing the image domain Ω. The second grid is given by a 3D

11



(i, j) (i+ 1
2 , j + 1

2 )

(i+ 1, j)

(i, j + 1)

Si,j

(i, j, k)

Vi,j,k

Figure 2: Spatial discretization of the image domain Ω and the domain of the RT space Ω × S1.

The bottom grid represents the 2D image, and the image intensities u are stored at the vertices

of the squares Si,j . The gray arrows indicate differences between the pixels. The volume Vi,j,k

represents one element of the corresponding discretization of the RT space. The black arrows

through the faces of the volume represent the 3D vector field σ.

grid of volumes which discretize the roto-translation space Ω × S1. In the visualization we show a

few image pixels of the 2D grid (gray nodes) and one cube of the corresponding 3D grid.

First, we start by describing the discretization of the image domain. We assume here that Ω

is a square or rectangle, or in general a convex domain, which we will discretize at a scale δx > 0.

We will restrict ourselves to the case of a rectangle to simplify the notation. Then, we let Ωδx
denote the discretized image domain which is given by

Ωδx = int
(⋃{

Si,j : (i, j) ∈ Z2, Si,j ⊂ Ω
})

,

where

Si,j =
[
(i− 1

2 )δx, (i+ 1
2 )δx)

)
×
[
(j − 1

2 )δx, (j + 1
2 )δx

)
, (15)

denotes the square centered around the index i = (i, j). The intensity values of the discrete image

are stored at the vertices half-grid points (such as the four vertices of Si,j), and for notational

simplicity we introduce the following index set:

I =
{

(i− 1
2 , j −

1
2 ) : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2

}
,

with N1, N2 > 0. Hence, the discrete image u ∈ RI consists of N1×N2 discrete pixels with values

(ui)i∈I . We will later also need the following index sets:

I1 =
{

(i− 1
2 , j) : 1 ≤ i ≤ N1, 1 ≤ j < N2

}
,

I2 =
{

(i, j − 1
2 ) : 1 < i ≤ N1, 1 ≤ j ≤ N2

}
,

which index the middle points of the edges between two adjacent pixels along the first and second

spatial dimensions.

Next, we let δθ > 0 be the discretization step for the angular variable. We must assume that

δθ = 2π/Nθ with Nθ > 0. Hence S1 is discretized by Nθ intervals [(k − 1
2 )δθ, (k + 1

2 )δθ) for
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1 ≤ k ≤ Nθ. We then denote by Γδ with δ = (δx, δθ) the discretized 3D roto-translation space. It

is given by

Γδ = int
(⋃{

Vi,j,k : (i, j, k) ∈ Z3, Vi,j,k ⊂ Ω × S1
})

,

where

Vi,j,k = Si,j ×
[
(k − 1

2 )δθ, (k + 1
2 )δθ

)
(16)

denotes the volume centered around the 3D index j = (i, j, k). We associate an index set J of

center locations of the volumes Vi,j,k:

J = {(i, j, k) : 1 ≤ i < N1, 1 ≤ j < N2, 1 ≤ k ≤ Nθ} . (17)

We shall also introduce the following three index sets:

J 1 ={(i− 1
2 , j, k) : 1 ≤ i ≤ N1, 1 ≤ j < N2, 1 ≤ k ≤ Nθ},

J 2 ={(i, j − 1
2 , k) : 1 ≤ i < N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ Nθ},

J θ ={(i, j, k − 1
2 ) : 1 ≤ i < N1, 1 ≤ j < N2, 1 ≤ k ≤ Nθ},

which we will use to index the facets of the volumes. Observe that the 3D points ((i− 1
2 )δx, jδx, kδθ)

for all (i− 1
2 , j, k) ∈ J 1 correspond to the middle points of the facets

F 1
(i− 1

2 ,j,k) = {(i− 1
2 )δx} × [(j − 1

2 )δx, (j + 1
2 )δx)× [(k − 1

2 )δθ, (k + 1
2 )δθ), (18)

which are orthogonal to the first spatial dimension. Similarly, the 3D points (iδx, (j − 1
2 )δx, kδθ)

for all (i, j − 1
2 , k) ∈ J 2 correspond to the middle points of the facets

F 2
(i,j− 1

2 ,k) = [(i− 1
2 )δx, (i+ 1

2 )δx)× {(j − 1
2 )δx} × [(k − 1

2 )δθ, (k + 1
2 )δθ), (19)

which are orthogonal to the second spatial dimension. Finally, the 3D points (iδx, jδx, (k − 1
2 )δθ)

for all (i, j, k − 1
2 ) ∈ J θ correspond to the middle points of the facets

F θ
(i,j,k− 1

2 ) = [(i− 1
2 )δx, (i+ 1

2 )δx)× [(j − 1
2 )δx, (j + 1

2 )δx)× {(k − 1
2 )δθ}, (20)

which are orthogonal to the angular dimension.

Now, we consider a discrete vector field σ = (σ1, σ2, σθ) with σ1 ∈ RJ 1

, σ2 ∈ RJ 2

, and

σθ ∈ RJ θ . The values (σ1
j )j∈J 1 , (σ2

j )j∈J 2 , (σθj )j∈J θ define the average fluxes through the facets

(F 1
j )j∈J 1 , (F 2

j )j∈J 2 and (F θ
j )j∈J θ , respectively.

The discrete vector field σ can also be seen as a Raviart-Thomas vector field [62], defined

everywhere in Γδx,δθ . It is obtained by an affine extension:

σRT (x1, x2, θ) =

 ∑
j=(i− 1

2 ,j,k)∈J 1

σ1
j ∆

(
x1 − (i− 1

2 )δx

δx

)
,

∑
j=(i,j− 1

2 ,k)∈J 2

σ2
j ∆

(
x2 − (j − 1

2 )δx

δx

)
,

∑
j=(i,j,k− 1

2 )∈J θ
σθj ∆

(
θ − (k − 1

2 )δθ

δθ

) , (21)

where ∆(t) = max(0, 1− |t|) is the usual linear interpolation kernel.

It is well know that such a Raviart-Thomas field has a divergence (defined everywhere in the

distributional sense) which is obtained in each volume by summing the finite differences of the
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average fluxes through each pair of opposite facets. In our model, the discrete field σ is constrained

to be divergence free, hence for each volume Vj, we must impose that:

σ1
i+ 1

2 ,j,k
− σ1

i− 1
2 ,j,k

δx
+
σ2
i,j+ 1

2 ,k
− σ2

i,j− 1
2 ,k

δx
+
σθ
i,j,k+ 1

2

− σθ
i,j,k− 1

2

δθ
= 0. (22)

The roto-translation space is periodic in the θ direction and hence, whenever k = Nθ, we identify

the index Nθ + 1
2 with the index 1

2 in the computation of the last term of the discrete divergence.

To simplify our presentation, we introduce a discrete divergence operator D : RJ 1∪J 1∪J θ →
RJ , so that the divergence free constraint (22) can be compactly written as

Dσ = 0.

Next, to implement a discrete version of the consistency condition we observe that averaging (in

the direction of θ) the first two components of the field σ yields a rotated (by π/2) gradient which

should locally coincide with the finite differences of the discrete image u. This yields the following

discrete consistency condition:
δθ
∑
k σ

1
i+ 1

2 ,j,k
= 1

δx

(
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j−
1
2

)
δθ
∑
k σ

2
i,j+ 1

2 ,k
= − 1

δx

(
ui+ 1

2 ,j+
1
2
− ui− 1

2 ,j+
1
2

)
.

(23)

We introduce a projection operator P : RJ 1∪J 2 → RI1∪I2

and a discrete (rotated) gradient

operator G : RI → RI1∪I2

such that we can write the above discrete compatibility condition as

Pσ = Gu.

In order to approximate the continuous energy (6) with our discrete Raviart-Thomas field σRT

we can use different types of quadrature rules. After various attempts, we found out that simply

summing the values at the center points of the volumes Vi,j,k provides the highest flexibility for

the discrete field σ to concentrate on thin lines, and, in turn, yields the most faithful numerical

results.

Letting thus σi,j,k = σRT (iδx, jδx, kδθ), we have that this discrete field is obtained by the

following formula:

σ̂i,j,k = (σ̂1
i,j,k, σ̂

2
i,j,k, σ̂

θ
i,j,k) =

1

2
(σ1
i+ 1

2 ,j,k
+ σ1

i− 1
2 ,j,k

, σ2
i,j+ 1

2 ,k
+ σ2

i,j− 1
2 ,k
, σθi,j,k+ 1

2
+ σθi,j,k− 1

2
). (24)

We again introduce an operator A : RJ 1∪J 2∪J θ → (R3)J such that the above averaging operation

can be written

σ̂ = Aσ.

Now, using the volume centered quadrature rule, the discrete energy is

Fδ(u) = min
σ

δ2
xδθ

∑
j=(i,j,k)∈J

h(kδθ, (Aσ)j) : Dσ = 0, Pσ − Gu = 0

 . (25)

The consistency of this energy, as δ := (δx, δθ) → 0, with the continuous energy F defined in (6)

is studied in Appendix A.
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The regularization function h(θ, p), where θ ∈ S1 and p = (px, pθ) ∈ R3 is defined as in (3), and

the function f(t), which appears in its definition will be one of the following classical examples of

convex functions:

f1(t) = 1 + α|t|, (TAC)

f2(t) =
√

1 + α2|t|2, (TRV)

f3(t) = 1 + α2|t|2. (TSC)

In all examples, the regularizing function is a combination of length and curvature regularization

and the parameter α > 0 can be used to adjust the influence of the curvature regularization.

The first function, f1 is the sum of length and absolute curvature, hence we call the corre-

sponding regularizer “total absolute curvature” (TAC). One of its main features is that it allows

for sharp corners in the level sets of the image. Interestingly, since integrating the absolute curva-

ture along the boundary of a shape is constantly 2π for all convex shapes (and in general, is scale

independent) then the main effect of the curvature term in this energy is to penalize non-convex

shapes, regardless of their size.

The function f2 combines length and curvature through an Euclidean metric and hence, it

corresponds to the total variation of the lifted curve in the RT space, hence we consequently

denote this regularizer “total roto-translational variation” (TRV). For relatively small curvature,

it favors smooth shapes, but it also allows sharp discontinuities.

Function f3 penalizes squared curvature plus length and hence is equivalent to the Elastica

energy. We call this regularizer “total squared curvature” (TSC). It is well-known that while

length regularization favors smaller shapes, quadratic curvature favors larger shapes. Hence, the

interplay between length and curvature regularization removes the shrinkage bias and leads to

smooth shapes.

Based on the “basis” functions fl, l = 1, 2, 3, we obtain the following convex regularization

functions in the RT space.

(TAC) h1(θ, p) =

|px|+ α|pθ| if px = θs, s ≥ 0

+∞ else,
(26)

(TRV) h2(θ, p) =


√
|px|2 + α2|pθ|2 if px = θs, s ≥ 0

+∞ else,
(27)

(TSC) h3(θ, p) =

|px|+ α2 |pθ|2
|px| if px = θs, s > 0

+∞ else.
(28)

Observe in particular, that the above definitions already properly take into account the correct

values of the function hl, l = 1, 2, 3 for px = 0.

In the following sections we will apply the proposed curvature based regularization functions

to a variety of image- and shape processing problems. For this, we consider generic optimization

problems of the form

min
u
Fδ(u) +G(u), (29)

where G(u) is a convex, lsc. function defining an image-based convex data fidelity term, possibly

dependent on the pixel location.

15



4.2 Primal-dual optimization

In this section, we show how to compute a minimizer of the non-smooth convex optimization

problem (29). For notational simplicity, we first divide the whole objective function (29) by δ2
xδθ

and assume that the remaining factors are absorbed by the data fitting term.

In order to solve the constrained optimization problem (29), we consider its Lagrangian (saddle-

point) formulation:

min
u,σ

max
φ,ψ,ξ

∑
j∈J

(Aσ)j · ξj −
∑

j=(i,j,k)∈J

h∗(kδθ, ξj) +G(u) +

∑
j∈J

(Dσ)jφj +
∑

i∈I1∪I2

((Pσ)i − (Gu)i)ψi, (30)

where φ ∈ RJ , ξ = (ξ1, ξ2, ξθ) ∈ (R3)J and ψ = (ψ1, ψ2) ∈ RI1∪I2

with ψ1 ∈ RI1

and ψ2 ∈ RI2

are the dual variables (Lagrange multipliers or discrete test functions). The function h∗ denotes

the convex conjugate of the function h. Recall that h is the support function of the convex set

H(θ) = {ξ = (ξx, ξθ) ∈ R3 : ξx · θ ≤ −f∗(ξθ)}, θ = (cos θ, sin θ),

where f∗ denotes the convex conjugate of f . Hence, the convex conjugate h∗ is simply the indicator

function of the set H:

h∗(θ, ξ) =

0 if ξ ∈ H(θ)

∞ else.

The problem (30) is a saddle-point problem which is separable in the non-linear terms and hence

falls into the class of problems that can be solved by the first-order-primal-dual algorithm with

diagonal preconditioning and overrelaxation [24, 60, 25]. In order to make the algorithm imple-

mentable, we need efficient algorithms to compute the projection operators projH(θ) and proximity

operators proxτG. They are defined as the unique minimizers of the minimization problems:

projH(θ) (η) = arg min
ξ∈H(θ)

1

2τ
|ξ − η|2, ∀θ ∈ S1,

and,

proxτG (v) = arg min
u
G(u) +

1

2τ
‖u− v‖2,

for some τ > 0. In what follows, we will detail the projection operator for different instances of the

convex sets H (respectively regularization functions h), the proximity maps for G will be detailed

as soon as they are needed in the numerical results.

The general idea for performing the projection ξ = projH(θ)(η) of a point η = (ηx, η) onto the

set H(θ) is outlined in Figure 3. The Figure on the left hand side represents the set H in the ξx

plane, and the Figure on the right hand side shows the “profile” of the set which is obtained by

cutting along the ξxθ × ξθ plane.

We let ηxθ = ηx · θ and define (ξxθ , ξ
θ) = projP (ηxθ , η

θ) as the projection of the point (ηxθ , η
θ)

onto the “profile”

P = {(ξxθ , ξθ) ∈ R2 : ξxθ ≤ −f∗(ξθ)}. (31)

Then, using simple geometric reasoning, we see that the variable ξx can be recovered from ξθ by

ξx = ηx − θ(ηxθ − ξxθ ).

It remains to detail the projections onto different profiles P .
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ξx1

ξx2

H

ξxθ

ηx

ξx

θηxθ

θξxθ

(a) H ∩ {(ξx, ξθ) : ξx ∈ R2, ξθ = 0}

ξxθ

ξθ

P

1

(ηxθ , η
θ)

(ξxθ , ξ
θ)

(b) Profile P

Figure 3: Projection of the point (ηx, ηθ) onto the convex sets H. First, the point (ηxθ , η
θ) is

projected onto the profile P which yields (ξxθ , ξ
θ), then ξx is computed from ξxθ via the geometric

relationship ξx = ηx − θ(ηxθ − ξxθ ).

• TAC: f1(t) = 1 + α|t|: The convex conjugate of the function f1 is given by

f∗1 (s) =

−1 if |s| ≤ α

∞ else,

and in turn the profile P1 is given by

P1 = {(ξxθ , ξθ) ∈ R2 : ξxθ ≤ 1, |ξθ| ≤ α}

It is straightforward that the projection of a point (ηxθ , η
θ) onto the profile P1 can be per-

formed via simple truncation operations(
ξxθ
ξθ

)
=

(
min(1, ηxθ )

max(−α, min(α, ηθ))

)
.

• TRV: f2(t) =
√

1 + α2t2: A simple computation shows that the convex conjugate of f2(t) is

given

f∗2 (s) =

−
√

1− s2/α2 if |s| ≤ α

∞ else.

Inserting the expression of the convex conjugate into the profile (31) and squaring both sides,

we obtain

P2 = {(ξxθ , ξθ) ∈ R2 : max(0, ξxθ )2 + (ξθ/α)2 ≤ 1}.

In what follows, we assume that max(0, ηxθ )2 + (ηθ/α)2 > 1 since otherwise we do not need

to project the point. We first treat the case ηxθ ≤ 0. It is easy to see that in this case the

solution of the projected point is given by(
ξxθ
ξθ

)
=

(
ηxθ

max(−α, min(α, ηθ))

)
.
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In case ηxθ > 0, computing the projection of a point (ηxθ , η
θ) onto the boundary of P2 amounts

to solve the following equality constrained optimization problem

min
(ξxθ )2+(ξθ/α)2=1

1

2
|ξxθ − ηxθ |2 +

1

2
|ξθ − ηθ|2.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the above problem are given by

ξxθ − ηxθ + 2λ(ξxθ ) = 0,

ξθ − ηθ + 2λξθ/α2 = 0,

(ξxθ )2 + (ξθ/α)2 − 1 = 0,

where λ > 0 is the Lagrange multiplier which is positive since the point (ηxθ , η
θ) was assumed

to be outside P2. Combining the first three equations shows that the Lagrange multiplier is

computed from the roots of the fourth-order polynomial

(α+ 2λ/α)2(ηxθ )2 + (1 + 2λ)2(ηθ)2 − (1 + 2λ)2(α+ 2λ/α)2 = 0.

Let us observe that in case α = 1, the solution for λ is particularly simple, indeed

λ =
1

2
(
√

(ηxθ )2 + (ηθ)2 − 1),

such that from the first two equations we obtain for the projected point(
ξxθ
ξθ

)
=

1√
(ηxθ )2 + (ηθ)2

(
ηxθ
ηθ

)
.

In the general case α 6= 1 we compute λ by applying Newton’s algorithm to find the (correct)

root from the fourth order polynomial. In our experiments it turns out that a large enough

initial value, e.g. λ = 103 provides a good initialization for Newton’s algorithm. Usually, we

need less than 5-10 iterations of Newton’s algorithm to converge to a solution with feasibility

error less than 10−9. From the first two equations of the KKT conditions the expression of

the projected point is given by:(
ξxθ
ξθ

)
=

(
ηxθ /(1 + 2λ)

ηθ/(1 + 2λ/α2)

)
.

• TSC: f3(t) = 1 + α2t2: The convex conjugate of f3 is computed as

f∗3 (s) = (s/(2α))2 − 1,

and hence the profile P3 is given by

P3 = {(ξxθ , ξθ) ∈ R2 : ξxθ + (ξθ/(2α))2 ≤ 1}.

Following the same approach as before a point (ηxθ , η
θ) with ηxθ +(ηθ/(2α))2 > 1 is projected

onto P3 by solving the KKT optimality conditions

ξxθ − ηxθ + λ = 0,

ξθ − ηθ + λξθ/(2α2) = 0,

ξxθ + (ξθ/(2α))2 − 1 = 0.
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Combining the above equations, the Lagrange multiplier is obtained by finding the correct

root from the third-order polynomial

(2α2 + λ)2(ηxθ − 1− λ) + (αηθ)2 = 0.

We again apply Newton’s method and observe that for a large enough initial value, e.g.

λ = 103, Newton’s algorithm rapidly converges to the correct root of the polynomial. The

projected point is finally given by(
ξxθ
ξθ

)
=

(
ηxθ − λ

ηθ/(1 + λ/(2α2))

)
.

4.3 Computing a disk

In the first example, we consider the most basic numerical experiment, which is using TSC energy

to compute a disk of a given radius. The aim of this experiment is to investigate the quality

of our proposed discretization scheme, in particular when using a different number of discrete

orientations. Consider a 2D disk B(0, r) = {x ∈ R2 : |x| ≤ r} of radius r > 0 centered around the

origin. The TSC energy of the boundary of the disk B(0, r) is given by∫
∂B(0,r)

(1 + α2κ2)dH1 = 2π(r + α2/r).

Here our disk will be represented by its characteristic function χB(0,r)(x). We can force the

minimizer of the TSC energy to yield a disk using suitable boundary conditions. For example, we

can force at least one point inside the disk to be one and at least one point outside the disk to

be zero. The following simple computation shows that the minimizer of the TSC energy will be a

disk of radius r = α, indeed:∫
∂B(0,r)

(1 + α2κ2)dH1 =∫
∂B(0,r)

(
α2(κ− 1

α
)2 + 2ακ

)
dH1 =

∫
∂B(0,r)

α2(κ− 1

α
)2dH1 + 4πα,

which is minimized if κ = 1/r = 1/α everywhere.

We set up a our optimization problem using a 2D grid of N1×N2 = 40×40 pixels. We will use

a different number of discrete orientations Nθ ∈ {4, 8, 16, 32, 64} in order to investigate the quality

of the approximation depending on Nθ. In this and the subsequent experiments, the discretization

width of the spatial grid is set to δx = 1 and the discretization width of the angular dimension is

set to δθ = 2π/Nθ. The aim of this experiment is to compute a disk of radius r = 10 pixels. We

therefore define an inpainting domain D ⊆ I forming a band of 10 pixels width around a disk of

radius r = 10. In this domain we minimize the TSC energy and we use the remaining part of the

image as boundary condition. The corresponding data term in our optimization problem (29) is

given by

G(u) =
∑
i∈D

ιu0
i
(ui), (32)

where ιC denotes the indicator function of the convex set C. The proximal map for G(u) is given

by

u = proxτG(v) ⇐⇒ ui =

vi if i ∈ D

u0
i else

, ∀i ∈ I. (33)
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(a) u0

(b) Nθ = 4 (c) Nθ = 8 (d) Nθ = 16 (e) Nθ = 32 (f) Nθ = 64

Figure 4: Computing a disk by minimizing the TSC energy. We set α = 10 and hence the optimal

solution of the inpainting problem is given by a disk of radius r = 10. (a) shows the input image

f of size 40 × 40 pixels together with its inpainting domain indicated by gray pixels and (b)-(e)

show the computed solution images u for different numbers of discrete orientations Nθ. (f) shows

a “stream-line” plot of the averaged Raviart-Thomas vector field σ̂ on top of a false-color version

of the corresponding image u.

Figure 4(a) shows the input image (u0
i )i∈I and the inpainting domain D is indicated by the gray

area.

In order to quantify the approximation quality of our discretization for a varying number of

discrete orientations, we report the total variation (TV), the absolute curvature (AC) and the

squared curvature (SC). All three quantities are computed from the averaged field σ̂ = Aσ using
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Nθ HTV (2πr ≈ 62.8319) HAC (2π ≈ 6.2832) HSC (2π/r ≈ 0.6283)

4 60.1063 6.3456 1.7504

8 54.8043 6.2847 0.8930

16 58.5041 6.2874 0.7041

32 61.5257 6.2835 0.6448

64 62.9336 6.2835 0.6277

Table 1: Approximating a disk of radius r = 10. The table shows the values of the computed

total variation (TV), absolute curvature (AC), and squared curvature (SC) for a varying number

of discrete orientations Nθ. In parentheses we also give the values of the respective energies for

the true solution. Observe that the squared curvature is approximated well only when using a

quite large number of discrete orientations.

the volume-centered based discrete energy

H(σ̂) = δ2
xδθ

∑
j∈J

h(σ̂j),

where the function h is one of the three instances:

hTV(σ̂j) =
√

(σ̂1
j )2 + (σ̂2

j )2, hAC(σ̂j) = |σ̂θj |, hSC(σ̂j) =
|σ̂θj |2√

(σ̂1
j )2 + (σ̂2

j )2
.

Table 1 details the values of the discrete energies we obtained for different numbers of discrete

orientations Nθ. From the results, one can see that a higher number of discrete energies generally

leads to a better approximation of the true energy. This is particularly true for the value of the

squared curvature which seems to be well approximated only when using a quite high number

of discrete orientations. The absolute curvature, however seems to be well approximated even

when using only a small number of discrete orientations. The reason for this is that the absolute

curvature of a smooth curve is easy to approximate by means of a piecewise linear curve.

Figure 4(f) visualizes the averaged Raviart-Thomas vector field σ̂ of the disk example in case

of Nθ = 64 discrete orientations. Observe that the vector field nicely corresponds to the expected

shape of a helix, shown in Figure 1. However, due to diffusive effects of our numerical scheme, the

vector field does not perfectly concentrate on a one-dimensional structure.

4.4 Non-smooth level sets

Here we demonstrate a typical effect of our convexification which finds a low-energy solution

for an image with non-smooth level sets which should have infinite energy in more standard

relaxations [53] of the Elastica energy. Figure 5(a) shows an image of size N1 × N2 = 100 × 50

pixels of a black and a white disk in front of a gray background. Similarly to the inpainting problem

of the previous example, we fix only the four small parts of the original image (see Figure 5(b))

and minimize the TSC energy in the inpainting domain D, indicated by the gray area. In this

experiment we used Nθ = 64 discrete orientations and we set α = 17 to match the radius of the

disks. Figure 5(c) shows the computed minimizer of the TSC energy. Observe that the solution u

does not yield the expected two disks of the original image but rather drop-like shapes that form

a sharp cusp in the middle of the image. Figure 5(b) shows a stream-line representation of the
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(a) Original image (b) Input image u0 (c) Computed image u

(d) Visualization of the vector field

Figure 5: Effect of convexifying curvature depending energies in the roto-translation space. (a)

shows the original image, (b) shows the input image u0 of size 100× 50 pixels, where gray pixels

indicate the inpainting domain. (c) shows the computed solution of minimizing the TSC energy.

(d) visualizes the vector field σ̂ in the roto-translation space. Observe that the twisted ∞-shape

curve skips the strong curvature at the cusp.

minimizing vector field σ̂ in the roto-translation space. Inspecting the field, one can immediately

see the reason for this behavior. The vector field σ̂ forms a twisted ∞-shape curve which “skips”

the strong curvature of the cusp.

4.5 Shape completion

In this section we provide some qualitative results on a number of different shape completion prob-

lems. Similar to the previous two examples, we define an inpainting domain D which is indicated

by the gray area and keep the remaining image as boundary condition. Figure 6 shows various

input shapes with their inpainting domains and the solutions of minimizing different curvature

energies using different settings of the parameter α. One can see that while minimizing the TAC

energy usually leads to straight connections and sharp corners, TSC leads to a smooth continu-

ation of the boundaries. The TRV energy leads to results which are somewhere in between the

results of TAC and TSC. In the last row of Figure 6, we additionally demonstrate the behavior for

completing straight lines at different rotations by minimizing the TAC energy. It turns out that
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(a) Input image (b) TAC, α = 15 (c) TRV, α = 15 (d) TSC, α = 50

(e) Input image (f) TAC, α = 15 (g) TRV, α = 15 (h) TSC, α = 10

(i) Input image (j) TAC, α = 15 (k) TRV, α = 15 (l) TSC, α = 10

(m) Input images with rotations 0, π/8, π/4 (n) TAC, α = 15

Figure 6: Shape completion for various shapes using total absolute curvature (TAC), total roto-

translational variation (TRV) and total squared curvature (TSC). The inpainting domain is in-

dicated by the gray pixels. In the last row we provide results for completing straight lines at

different angles.

our discretization scheme performs quite well for rotations of 0, π/4, π/2, . . . but leads to more

diffusive results for rotations of π/8, 3π/8, . . .. The development of a more isotropic scheme will

be subject of future research.

In Figure 7, we show the application to shape completion from dipoles using the original data

of “Weickert’s cat” [76]. The input image u0 is of size N1 × N2 = 400 × 380 pixels and the

inpainting domain D is again indicated by the gray pixels. In this example we used Nθ = 64
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(a) Original shape (b) Dipoles (c) TSC, α = 50

Figure 7: Computation of “Weickert’s cat” [76]: (a) shows the original shape, (b) depicts the given

dipole data and (c) is the result of minimizing the TSC energy in the gray inpaiting domain.

discrete orientations and the curvature parameter was set to α = 50. In order to avoid relaxation

artifacts (self-intersections) inside the dipoles, we additionally use zero-boundary conditions for

the field σ1,2 within the constant areas of the dipoles. The results show that our numerical scheme

can successfully reconstruct the curvilinear shape of the cat from only very little information

given by the dipoles. However, we can also observe diffusion artifacts of our numerical scheme,

especially if the reconstructed boundaries are relatively long. Sharper results for this kind of

problems are usually obtained using sophisticated anisotropic diffusion schemes such as the edge

enhancing diffusion (EED) [75, 67]. It would be interesting to understand whether these schemes

also minimize an underlying variational energy.

4.6 Shape regularization

In our next experiment, we apply our curvature based energies for shape regularization. Given an

input image (u0
i )i∈I , which is the characteristic function of a given shape, our aim is to compute a

simplified (or regularized) shape which is represented by means of a (relaxed) binary image (ui)i∈I .

We make use of a simple linear fidelity term which is frequently used in image segmentation:

G(u) =
∑
i∈I

gi, gi(ui) = uiwi + ι[0,1](ui),

where w ∈ RI is a force field. For the application to shape regularization we use w = λ( 1
2 − u

0),

where λ > 0 defines the strength of the force field. The proximal map for this data term is easily

computed:

u = proxτG(v) ⇐⇒ ui = max(0,min(1, vi − τwi)), ∀i ∈ I.

In Figure 8, we apply TAC, TRV and TSC regularization to regularize the shape of Picasso’s “Bull

fight” image. In all three cases, we set α = 10 and we use different settings of the parameter λ to

obtain gradually simplified shapes. From the results one can see that TAC regularization yields

shapes with relatively straight boundaries and sharp corners. TRV regularization yields smooth

shapes but also allows for sharp corners. TSC regularization yields smooth shapes. Observe

that whenever it seems energetically preferable, the solution of TSC produces sharp cusps with

“hidden” edges to bypass locations of strong curvature, as predicted by the theory [12]. This effect

is usually less visible when minimizing the TAC or TRV energies.
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(a) Bull fight

(b) TAC, λ = 8 (c) TAC, λ = 4 (d) TAC, λ = 2

(e) TRV, λ = 8 (f) TRV, λ = 4 (g) TRV, λ = 2

(h) TSC, λ = 8 (i) TSC, λ = 4 (j) TSC, λ = 2

Figure 8: Shape regularization using curvature regularization. (a) shows the original “Bull fight”

image. (b)-(d) show the result of TAC regularization, (e-g) show the result of TRV regularization

and (h)-(j) show the result of TSC regularization.

4.7 Image inpainting

In this section, we apply our proposed curvature energies to the classical problem of image in-

painting. Similar to the previous examples, we use the data term (32) with the only difference
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(a) Einstein (b) TSC, α = 10 (c) TV, α = 0

(d) Picasso (e) TSC, α = 5 (f) TV, α = 0

Figure 9: Image inpainting using the proposed curvature-based energies. (a) shows a blend of the

original “Einstein” image with its degraded version where we have removed 80% of the lines. (d)

shows a blend of the “Picasso” with the version where we have removed 90% of the pixels. (b) is

the inpainting result of the “Einstein” and (e) is the inpainting result of the “Picasso” image. For

comparison, (c) and (f) show the result of standard TV regularization. Observe that our proposed

curvature based regularization leads to significant better inpainting results.

that the input image u0 is now a gray level image. In both examples we used Nθ = 32 discrete

orientations and the curvature parameter was set to α = 15. Figure 9 shows the results for two

different inpainting problems. In the “Einstein” image, we randomly remove 80% lines and in the

“Picasso” image we randomly remove 90% of the pixels. In case of the “Einstein” image, we use

TSC regularization with α = 10 and for the “Picasso” we set α = 5. In case of the “Einstein”

image, the gaps a much larger and hence we use a larger value of α. For comparison, we also

provide results of standard TV regularization, which is equivalent to using α = 0 in one of the

three curvature energies. From the results one can clearly see that curvature regularization leads

to significantly better inpainting results. On the downside, we can also observe some artifacts

which are caused by our convex representation in the roto-translation space.
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(a) Louvre (b) TSC, α = 10, λ = 7 (c) TV, α = 0, λ = 2

(d) Leberblümchen (e) TSC, α = 10, λ = 40 (f) TV, α = 0, λ = 10

Figure 10: Image denoising using curvature-based regularization. (a) shows the original “Louvre”

image blended with a noisy version, where we have added 25% “salt & pepper” noise. (d) shows

the clean “Leberblümchen” image together with its noisy variant where we have added zero-mean

Gaussian noise with standard deviation 0.1 (b) and (e) show the result of image denoising using

TSC regularization. For comparison we show in (c) and (f) the result when using classical total

variation (TV) regularization.

4.8 Image denoising

In our last experiments we investigate our curvature energies for the classical problem of image

denoising. We investigate two different types of noise: Zero-mean Gaussian noise and impulse

noise such as “salt & pepper” noise. For Gaussian noise, it is well-known data a quadratic `2 data

term

G(u) =
λ

2
‖u− f‖2,

where λ > 0 is a good data fidelity parameter. The proximal map is given by

u = proxτG(v) ⇐⇒ ui =
vi + τλfi

1 + τλ
, ∀i ∈ I.

In case of impulse noise, a `1 data term is more suitable:

G(u) = λ‖u− f‖1,

since it is more robust with respect to outliers. The proximal map for the `1 data term is given

by the classical soft-shrinkage formula

u = proxτG(v) ⇐⇒ ui = fi + max(0, |vi − fi| − τλ) · sgn(vi − fi), ∀i ∈ I.

27



In Figure 10 we show the results of our curvature-based regularization energies for image denoising.

In case of the “Louvre” image we generated the noisy image by adding 25% “salt & pepper”

noise. The noisy “Leberblümchen” image was generated by adding zero-mean Gaussian noise

with standard deviation 0.1. In case of Gaussian noise we use a `2 data term and in case of “salt

& pepper” noise we used the `1 fidelity term. In both cases, we use TSC regularization and the

curvature parameter was set to α = 10. For comparison, we also show the results of standard total

variation (TV) denoising, which is obtained from our models by setting α = 0. One can clearly see

that TSC regularization leads to a better preservation of image edges than TV regularization, in

particular at small and elongated structures. This effect is more visible in case of “salt & pepper”

noise since the `1 data term leads to a behavior similar to image inpainting, once an outlier is

detected.

5 Proof of Theorem 1

This section and the following are devoted to the proof of Theorem 1. We first show a preliminary

result which shows that admissible curves (of finite energy) in Ω × S1 project onto curves in Ω

with bounded energy as well.

5.1 Control of curves

Let γ : [0, L] → Ω × S1 a rectifiable curve of length L in Ω × S1, parameterized by its length

(|γ̇| = 1 a.e.). We define its energy as

E(γ) :=

∫ 1

0

h(γ(s), ˙γ(s))ds

and assume that it is finite, which in particular yields that for a.e. s,

γ̇x(s) = |γ̇x(s)|(cos γθ(s), sin γθ(s))T .

We consider the projected curve γx : [0, L]→ Ω (possibly overlapping even if γ is simple) and

wish to show that the energy E controls an energy on this curve. First we reparameterize (as

usual) the rectifiable curve γx by its length. For this we introduce the length, for s ∈ [0, L]

`(s) :=

∫ s

0

|γ̇x(t)|dt ∈ [0, L],

which is a 1-Lipschitz, nondecreasing function. Since clearly for s′ > s one has `(s) = `(s′)

if and only if γ̇x(t) = 0 a.e. in [s, s′], we also find that γx(t) = γx(s) for all t ∈ [s, s′]. This

means that (obviously) one can reparameterize γx by defining a curve γ̃ : [0, `(L)]→ Ω such that

γ̃(`(s)) = γx(s) for all s ∈ [0, L]. By definition it is clear that γ̃ is 1-Lipschitz, moreover if l = `(s)

and l′ = `(s′) > l,

γ̃(l′)− γ̃(l)

l′ − l
=

∫ s′
s
γ̇x(t)dt∫ s′

s
|γ̇x(t)|dt

l′→l→ γ̇x(s)

|γ̇x|(s)
= γθ(s)

if s is a Lebesgue point of γ̇x where γ̇x(s) 6= 0. One deduces that for a.e. l ∈ [0, `(L)], γ̃ has the

tangent vector τ(l) = (cos θ(l), sin θ(l))T given by

τ(l) = ˙̃γ(l) =

(
cos γθ(s)

cos γθ(s)

)
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where l = `(s). Observe that for any smooth ψ : (0, `(L))→ R with compact support one has

∫ `(L)

0

ψ̇(l)θ(l)dl =

∫ L

0

ψ̇(`(s))θ(`(s)) ˙̀(s)ds

=

∫ L

0

γθ(s)(ψ ◦ `)′(s)ds = −
∫ L

0

γ̇θ(s)ψ(`(s))ds ≤ L‖ψ‖C0

which shows that θ(l) is a BV function, or equivalently that γ̃ has a curvature κ = θ̇ which is a

bounded measure; in particular taking the supremum over ψ with |ψ| ≤ 1 one finds∫ `(L)

0

d|κ|(l) ≤
∫ L

0

|γ̇θ(s)|ds ≤ L.

In addition, it follows, given ψ ∈ C∞c (`(a), `(b)) with 0 ≤ a < b ≤ L that:

∫ `(b)

`(a)

(
− ψ̇(l)θ(l)− f∗(ψ(l))

)
dl =

∫ b

a

(
− (ψ ◦ `)′(s)γθ(s)− f∗(ψ(`(s)))|γ̇x(s)|

)
ds

=

∫ b

a

(
ψ(`(s))γ̇θ(s)− f∗(ψ(`(s)))|γ̇x(s)|

)
ds ≤

∫ b

a

h(γ(s), γ̇(s))ds

and taking the supremum one deduces that∫ `(b)

`(a)

f(κ) ≤
∫ b

a

h(γ(s), γ̇(s))ds

(where the left-hand side integral in on the open interval and denotes a convex function of a

measure). Now, if ϕ ∈ C0(Ω;R+) is a bounded, continuous and nonnegative function, one deduces

that∫ `(L)

0

ϕ(γ̃(l))f(κ) =

∫ ∞
0

(∫
{l:ϕ(γ̃(l))>t}

f(κ)

)
dt

≤
∫ ∞

0

(∫
{s:ϕ(γx(s))>t}

h(γ(s), γ̇(s))

)
dt

and it follows ∫ `(L)

0

ϕ(γ̃(l))f(κ) ≤
∫ L

0

ϕ(γx(s))h(γ(s), γ̇(s))ds. (34)

We now show the following lemma:

Lemma 5.1. Let Γ ⊂ Ω be a C2 (oriented) curve with tangent τΓ and curvature κΓ, ane let

and γ : [0, L] → Ω × S1 be a rectifiable curve. Define Γ+ = {x ∈ Γ : ∃s ∈ (0, L), γx(s) =

x and γ̇x(s) · τΓ ≥ 0}. Then for any bounded, nonnegative, continuous function ϕ ∈ C0(Ω;R+),∫
Γ+

ϕ(x)f(κΓ)dH1 ≤
∫ L

0

ϕ(γx(s))h(γ(s), γ̇(s))ds. (35)

Proof. We just need to show that, defining the measure κ as before,∫
Γ+

ϕ(x)f(κΓ)dH1 ≤
∫ `(L)

0

ϕ(γ̃)f(κ),

and the conclusion will follow from (34).
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A first observation is that as τ(l) defined above is BV , it has at most a countable number

of jumps and one can cover (up to the jump points) [0, `(L)] with an at most countable union

of intervals (ai, bi)i∈I on which τ(l) is continuous (hence γ̃ is a C1 curve on (ai, bi)). Moreover,

possibly dropping further a finite number of points, one may assume that |κ|(ai, bi) < π so that

γx(ai, bi) is a simple curve.

Assume |{l ∈ (ai, bi) : γ̃(l) ∈ Γ, ˙̃γ(l) · τΓ ≥ 0}| > 0. Choose such an l ∈ (ai, bi), with

x = γ̃(l) ∈ Γ+, and such that γ̃ is differentiable in l. We assume in addition that x is a point of

(H1-)density one in γ̃(ai, bi)∩Γ+, that l is a Lebesgue point of κa, the absolutely continuous part

(w.r. the Lebesgue measure) of κ, and that θ(l) is approximately differentiable at l: for any η > 0,

lim
ε→0

1

2ε

∣∣∣∣{s ∈ (l − ε, l + ε) :
|θ(s)− θ(l)− κa(l)(s− l)|

|s− l|
ds > η

}∣∣∣∣ = 0.

All this is true H1-a.e. in γ̃(ai, bi) ∩ Γ+, so there is no loss of generality, see for instance [3].

If ˙̃γ(l) 6= τΓ(x), then x must be an isolated point in γ̃(ai, bi) ∩ Γ+, a contradiction. Hence
˙̃γ(l) = τΓ(x). In the same way, one has that for a.e. s near l such that γ̃(s) ∈ Γ, ˙̃γ(s) = τΓ(γ̃(s)).

For such s, one therefore has that

|θ(s)− θ(l)− κa(l)(s− l)|
|s− l|

=
|θΓ(γ̃(s))− θΓ(x)− κa(l)(s− l)|

|s− l|
,

where θΓ is the angle between
(

1

0

)
and τΓ. Using that for such s,

θΓ(γ̃(s))− θΓ(x) = κΓ(x)(γ̃(s)− x) · τΓ(x) + o(|γ̃(s)− x|)

= κΓ(x) ˙̃γ(l) · τΓ(x)(s− l) + o(| ˙̃γ(s)||s− l|)

we obtain that for such s,

|θ(s)− θ(l)− κa(s− l)|
|s− l|

= |κΓ(x)− κa(l)|+ o(1)

(where o(1) goes to 0 as ε→ 0). Hence, for ε > 0 small and η > 0,{
s ∈ (l − ε, l + ε) :

|θ(s)− θ(l)− κa(l)(s− l)|
|s− l|

ds > η

}
⊇ {s ∈ (l − ε, l + ε) : γ̃(s) ∈ Γ and |κΓ(x)− κa(l)|+ o(1) > η}

In the limit, using that l is a point of density one in the set {γ̃(·) ∈ Γ}, we obtain that |κΓ(x) −
κa(l)| ≤ η and since η is arbitrary, κΓ(x) = κa(l). Since the intervals (ai, bi) cover H1-almost all of

[0, `(L)], we find that this equality holds H1-a.e. in Γ+.

The thesis of the Lemma easily follows, since∫ `(L)

0

ϕ(γ̃)f(κ) ≥
∫ `(L)

0

ϕ(γ̃)f(κa)dx

5.2 Decomposition of σ

Let u ∈ BV (Ω) with F (u) < ∞. We observe that we can decompose an admissible σ (with in

particular divσ = 0) as follows:

σ =

∫
M
λdµ(λ), |σ| =

∫
M
|λ|dµ(λ), (36)
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where µ is a nonnegative measure on the set of chargesM which is here a shorthand notation for

M(Ω × S1;R3): see Appendix B which discusses the results of Smirnov in [73].

Lemma 5.2. Assume (36) holds. Then for any g(ξ, p) nonnegative, continuous, convex and one-

homogeneous in its second argument,∫
Ω×S1

g(ξ, σ) =

∫
M

(∫
Ω×S1

g(ξ, λ)

)
dµ(λ). (37)

Proof. For ρ > 0 we define Ωρ = {x ∈ Ω : dist (x, ∂Ω) > ρ}. We let for ρ > 0, ε ∈ (0, ρ) and

ξ ∈ Ω2ρ × S1

fρ,ε(ξ) =


σ(Ω3ρ×S1∩B(ξ,ρ))
|σ|(B(ξ,ρ+ε)) if |σ|(B(ξ, ρ+ ε)) > 0 ,

0 else.

We also let fρ,ε(ξ) = 0 if ξ ∈ Ω × S1 \ Ω2ρ × S1: remark then that fρ,ε ∈ C0
c (Ω × S1;B(0, 1)) and

that

fρ(ξ) := lim
ε→0

fρ,ε(ξ) =


σ(Ω3ρ×S1∩B(ξ,ρ))

|σ|(B(ξ,ρ))
if ξ ∈ Ω2ρ × S1, |σ|(B(ξ, ρ)) > 0 ,

0 else.

By (37) we have for any ϕ ∈ C0
c (Ω × S1;R+):∫

Ω×S1

ϕ(|σ| − fρ,ε · σ) =

∫
M

(∫
Ω×S1

ϕ(|λ| − fρ,ε · λ)

)
dµ.

Observe that∫
Ω×S1

ϕ(|λ| − fρ,ε · λ)

=

∫
Ω×S1

ϕ (|λ| − fρ · λ)
|σ|(B(ξ, ρ))

|σ|(B(ξ, ρ+ ε))
+

∫
Ω×S1

ϕ
|σ|(B(ξ, ρ+ ε) \B(ξ, ρ))

|σ|(B(ξ, ρ+ ε))
|λ|

and using the monotone convergence theorem, we can send ε→ 0 and deduce that∫
Ω×S1

ϕ(|σ| − fρ · σ) =

∫
M

(∫
Ω×S1

ϕ(|λ| − fρ · λ)

)
dµ. (38)

Then, thanks to Radon-Nikodym’s derivation theorem (and Lebesgue’s convergence theorem),

lim
ρ→0

∫
Ω×S1

ϕ(|σ| − fρ · σ) = 0.

Observe that all the integrands in (38) are nonnegative. Let ϕn be a nondecreasing sequence of

compactly supported nonnegative smooth functions which converges to 1. Then one can build a

subsequence ρn ↓ 0 such that ∑
n

∫
Ω×S1

ϕn(|σ| − fρn · σ) < +∞,

so that ∫
M

(∫
Ω×S1

∑
n

ϕn(|λ| − fρn · λ)

)
dµ < +∞.

It follows that there exists a set E ⊂M with µ(E) = 0 such that if λ 6∈ E,

lim
n

∫
Ω×S1

ϕn(|λ| − fρn · λ) = 0
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and fρn · λ|λ| → 1 |λ|-a.e. in Ω × S1 (using |λ|−fρn ·λ = |λ|(1−fρn · λ|λ| ) ≥ 0). Using |fρn − λ
|λ| |

2 =

|f2
ρn |+ 1− 2fρn · λ|λ| ≤ 2(1− fρn · λ|λ| ) it follows that fρn → λ

|λ| , |λ|-a.e.

Let g : (Ω × S1)×R3 → R be a continuous, nonegative, and convex one-homogeneous function

in its second argument. Then as before for ϕ ∈ C0
c (Ω × S1;R+)∫

Ω×S1

ϕ(ξ)g(ξ, fρ,ε(ξ))|σ| =
∫
M

∫
Ω×S1

ϕ(ξ)g(ξ, fρ,ε)|λ|dµ

and since g(ξ, fρ,ε(ξ)) = (|σ|(B(ξ, ρ))/|σ|(B(ξ, ρ+ ε)))g(ξ, fρ(ξ)) ↑ g(ξ, fρ(ξ)) as ε ↓ 0, the mono-

tone convergence theorem yields that∫
Ω×S1

ϕg(ξ, fρ)|σ| =
∫
M

∫
Ω×S1

ϕg(ξ, fρ)|λ|dµ.

Using Lebesgue’s theorem, we have

lim
ρ→0

∫
Ω×S1

ϕ(ξ)g(ξ, fρ(ξ))|σ| =
∫

Ω×S1

ϕ(ξ)g(ξ, σ|σ| (ξ))|σ| =
∫

Ω×S1

ϕ(ξ)g(ξ, σ).

On the other hand, we know that if λ 6∈ E, still thanks to Lebesgue’s theorem,

lim
n

∫
Ω×S1

ϕ(ξ)g(ξ, fρn(ξ))|λ| =
∫

Ω×S1

ϕ(ξ)g(ξ, λ|λ| (ξ))|λ| =
∫

Ω×S1

ϕg(ξ, λ).

We invoke one last time Lebesgue’s theorem to deduce that (for all nonnegative test function ϕ)

lim
n

∫
M

(∫
Ω×S1

ϕ(ξ)g(ξ, fρn(ξ))|λ|
)
dµ =

∫
M

(∫
Ω×S1

ϕg(ξ, λ)

)
dµ.

We deduce (37).

Corollary 5.3. Let σ be admissible for problem (6), and assume it is decomposed as in (36).

Then µ-a.e. measure λ satisfies

λ

|λ|
· θ ≥ 0 ,

λ

|λ|
· θ⊥ = 0 a.e. in Ω × S1

Proof. Apply the Lemma with g(ξ, p) = (θ · p)− and then with g(ξ, p) = |θ⊥ · p|.

Corollary 5.4. Let σ be admissible for problem (6), and assume it is decomposed as in (36). Let

h be defined as in (3), and ϕ ∈ C0
c (Ω) a nonnegative test function. Then∫

Ω×S1

ϕ(x)h(θ, σ) =

∫
M

(∫
Ω×S1

ϕ(x)h(θ, λ)

)
dµ(λ). (39)

Proof. This is a consequence of Lemma 5.2, however now h can take the value +∞. We simply

observe that if we let, for ε > 0,

hε(θ, p) := min
q∈R3

h(θ, q) +
1

ε
|p− q|

then hε is (1/ε)-Lipschitz, convex, one-homogeneous in the second variable, and continuous (and

hence also (ξ, p) = ((x, θ), p) 7→ ϕ(x)hε(θ, p)). Hence (37) yields∫
Ω×S1

ϕ(x)hε(θ, σ) =

∫
M

(∫
Ω×S1

ϕ(x)hε(θ, λ)

)
dµ(λ).

The results follows from the monotone convergence theorem.
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5.3 Conclusion: proof of Theorem 1

We can now complete the proof of Theorem 1. We consider E a C2 set. First, if γ(t) : [0, 1]→ Ω

is an oriented parameterization of (the closure of) ∂E ∩ Ω, (assuming it is connected, otherwise

one needs to introduce a curve for each connected component), one can define in Ω × S1 the

curve λ(t) = (γ(t), θ(t)) where θ(t) is defined by λ(t) = |γ′(t)|(cos θ(t), sin θ(t))T . We then let

Γ = λ([0, 1]) ∩ Ω × S1 and σ = τΓH1 Γ. Then, σ is admissible for (6) with u = χE , and one

finds that

F (χE) ≤
∫

Ω×S1

h(θ, σ) =

∫
∂E∩Ω

f(κE)dH1.

We need therefore to prove the reverse inequality. Let σ be admissible for (6). Thanks to [73,

Theorem A] (cf Appendix B, eq. (59)), one can decompose σ as

σ =

∫
C1

λdµ(λ), |σ| =
∫
C1

|λ|dµ(λ),

where λ are of the form

λγ = τγH1 γ

for rectifiable (possibly closed) curves γ ⊂ Ω × S1 of length at most one.

Equation (39) is valid for this decomposition and shows that for any ϕ ∈ C0
c (Ω; [0, 1]),∫

Ω×S1

ϕ(x)h(θ, σ) =

∫
C1

(∫
γ

ϕ(x)h(θ, τγ)dH1

)
dµ(λγ). (40)

Now, for any ψ ∈ C0
c (Ω;R2), one has∫

Ω×S1

(ψ, 0)T · σ =

∫
Ω

ψ ·Du⊥ =

∫
∂Ω

ψ · τEdH1 (41)

where τE is a tangent vector to ∂E (oriented with E on the left-hand side and Ec on the right-hand

side1).

Let us introduce the signed distance function dE(x) = dist (x,Ω \E)− dist (x,E) which is C2

in a neighborhood of ∂E and is such that ∇dE = νE (the inner normal) on ∂Ω and ∆dE = −κE
(we assume the curvature is nonnegative where the set is convex). If we consider, for ε > 0, a test

function of the form

ψ(x) = (∇dE(x))⊥
(

1− |dE(x)|
ε

)+

ϕ(x),

with ϕ ∈ C0
c (Ω), (41) yields∫

∂E

ϕ(x)dH1 =

∫
Ω×S1

(ψ, 0)T · σ

=

∫
C1

(∫
γ

ϕ(x)

(
1− |dE(x)|

ε

)+

((∇dE(x))⊥, 0)T · τγ(x, θ)dH1

)
dµ(λγ).

Sending ε→ 0 we find that∫
∂E

ϕ(x)dH1 =

∫
C1

(∫
γ∩(∂E×S1)

ϕ (τE , 0)T · τγdH1

)
dµ(λγ).

1This just depends on the choice of the 90◦ rotation x 7→ x⊥.
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Now, we can choose ϕ of the form ϕ(x)f(κE(x)), with ϕ ∈ C0
c (Ω; [0, 1]), assuming f is finite-valued.

We obtain that ∫
∂E

ϕf(κE)dH1 =

∫
C1

(∫
γ∩(∂E×S1)

ϕf(κE)τE · τxγ dH1

)
dµ(λγ). (42)

Given the rectifiable curve γ, one has that∫
γ∩(∂E×S1)

ϕf(κE)τE · τxγ dH1 ≤
∫

Π(γ)∩∂E
ϕf(κE)(τE · τΠ(γ))

+dH1

≤
∫

Ω×S1

ϕ(x)h(θ, λγ) (43)

thanks to (35) in Lemma 5.1. Then, (40), (42) and (43) yield∫
∂E

ϕ(x)f(κE)dH1 ≤
∫

Ω×S1

ϕ(x)h(θ, σ)

and Theorem 1 is easily deduced. In case f takes the value +∞, then we first approximates f

with a finite-valued function from below (replacing f with mint′ f(t′) + |t− t′|/ε for ε > 0 small),

and once the inequality is established for this function we send ε→ 0, so that (9) also holds.
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[54] Gwenaël Mercier. Continuity results for TV-minimizers. Indiana University Mathematics

Journal, 2017.

[55] Jean-Marie Mirebeau. Anisotropic fast-marching on Cartesian grids using lattice basis reduc-

tion. SIAM J. Numer. Anal., 52(4):1573–1599, 2014.

[56] Jean-Marie Mirebeau. Fast Marching methods for Curvature Penalized Shortest Paths.

preprint hal-01538482, June 2017.

[57] Igor Moiseev and Yuri L. Sachkov. Maxwell strata in sub-Riemannian problem on the group

of motions of a plane. ESAIM Control Optim. Calc. Var., 16(2):380–399, 2010.

[58] M. Nitzberg, D. Mumford, and T. Shiota. Filtering, segmentation and depth, volume 662 of

Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1993.

[59] Jean Petitot and Yannick Tondut. Vers une neurogéométrie. Fibrations corticales, structures
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A Consistency of the discretization

In this appendix, we study the consistency of the discrete approximation of the problem which is

used in Section 4.

A.1 Preliminary results

Let us introduce, for (s, t) ∈ R2,

h̄(s, t) =


sf(t/s) if s > 0,

f∞(t) if s = 0,

+∞ else,

which is such that

h̄(s, t) = sup
a+f∗(b)≤0

as+ bt.

Observe that if the convex function f is differentiable, then for s > 0, ∂sh̄(s, t) = f(t/s) −
(t/s)f ′(t/s) ≤ f(0).

Consider a vector-valued measurable function σ(θ) = (λ(θ)θ, µ(θ)) where λ ≥ 0. Let then

θ̄ ∈ S1, δθ > 0 and

σ̄ =
1

δθ

∫ θ̄+
δθ
2

θ̄− δθ2
σ(θ)dθ.

We first observe that

σ̄ · θ̄ =
1

δθ

∫ θ̄+
δθ
2

θ̄− δθ2
λ(θ)θ · θ̄dθ ∈

[
λ̄ cos δθ2 , λ̄

]
where

λ̄ =
1

δθ

∫ θ̄+
δθ
2

θ̄− δθ2
λ(θ)dθ.

Assuming f is smooth, it follows that

h̄
(

σ̄·θ̄
cos

δθ
2

, σ̄θ
)

= h̄(λ̄, σ̄θ) +

∫ 1

0

∂sh̄
(
λ̄+ s

(
σ̄·θ̄

cos
δθ
2

− λ̄
)
, σ̄θ
)(

σ̄·θ̄
cos

δθ
2

− λ̄
)
ds

≤ h̄(λ̄, σ̄θ) + f(0)λ̄
1− cos δθ2

cos δθ2
.

Using that h̄ is 1-homogeneous and that h̄(s, t) ≥ γ
√
s2 + t2, it follows

h̄
(
σ̄ · θ̄, cos δθ2 σ̄

θ
)
≤ cos δθ2 h̄(λ̄, σ̄θ) +

(
1− cos δθ2

)f(0)

γ
h̄(λ̄, σ̄θ)

≤
(

1 +
δ2
θ

4
(f(0)/γ − 1)

)
h̄(λ̄, σ̄θ)

if δθ is small enough. Observe that if f is not smooth, this still holds by approximation. It follows,

thanks to Jensen’s inequality and the fact that h(θ, σ) = h̄(λ, σθ) for all θ, that provided δθ is

small enough (not depending on anything)

h̄
(
σ̄ · θ̄, cos δθ2 σ̄

θ
)
≤ (1 + Cδ2

θ)
1

δθ

∫ θ̄+
δθ
2

θ̄− δθ2
h(θ, σ(θ))dθ, (44)

where the constant C = (f(0)/γ − 1)/4 only depends on the function f .
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Remark A.1. If σ is a bounded measure such that
∫
h(θ, σ) < +∞, then (44) still holds with

now all integrals and averages replaced with integrals over [θ̄ − δθ/2, θ̄ + δθ/2). Indeed, in this

case, approximating σ with smooth measures by convolution one easily deduces that it holds for

almost all θ̄ (whenever |σ|({θ̄ − δθ/2, θ̄ + δθ/2}) = 0). Then, for the other values, it is enough to

find a sequence εn > 0 with εn ↓ 0 such that the result holds for θ̄ − εn and use the fact that for

any bounded measure µ,

lim
n→∞

µ([θ̄ − εn − δθ
2 , θ̄ − εn + δθ

2 )) = µ([θ̄ − δθ
2 , θ̄ + δθ

2 ))

as µ([θ − εn, θ))→ 0 as n→∞ for any θ ∈ S1.

We can now show the following lemma:

Lemma A.2. Let δx, δθ > 0 small enough, σ ∈ M1(Ω × S1;R3) with divσ = 0 and such that∫
Ω×S1 h(θ, σ) <∞. Define, for (x̄, θ̄) ∈ Ω × S1,

S =
[
x̄1 − δx

2 , x̄1 + δx
2

)
×
[
x̄2 − δx

2 , x̄2 + δx
2

)
and

σ̄ =
1

δ2
xδθ

σ(S × [θ̄ − δθ
2 , θ̄ + δθ

2 )).

Then,

h̄(σ̄ · θ̄, cos δθ2 σ̄
θ) ≤ 1 + Cδ2

θ

δ2
xδθ

∫
S×[θ̄− δθ2 ,θ̄+

δθ
2 )

h(θ, σ) (45)

where C depends only on f . Moreover, σ̄x/|σ̄| lies in the cone R+(θ − δθ/2) + R+(θ + δθ/2).

Proof. If we introduce the (averaged) marginal σ′ ∈ M1(S1; θ) defined by
∫
S1 ψσ

′ = 1
δ2
x

∫
S×S1 ψσ

for all ψ ∈ C0(S1), then one observes that

σ̄ =
1

δθ
σ′([θ̄ − δθ

2 , θ̄ + δθ
2 ))

and ∫
[θ̄− δθ2 ,θ̄+

δθ
2 )

h(θ, σ′) ≤
∫
S×[θ̄− δθ2 ,θ̄+

δθ
2 )

h(θ, σ).

This follows by a disintegration argument and using Jensen’s inequality in each “slice” correspond-

ing to a fixed value of θ. The result then follows from (44), together with Remark A.1.

The last statement comes from the fact that σx is the average of measures all contained in the

cone, which is convex.

Consider now a measure σ admissible for some function u, and assume that σ is “smooth”

in x: we assume for instance that it is the result of a convolution ρε ∗ σ′ for some σ′ admissible

(possibly extended in a larger domain), with ρε(x) a rotationally symmetric mollifier, as in the

proof of Proposition 3.1. In this case, x 7→ σ can be seen as aM1(S1;R3)-valued smooth function.

Consider (x̄, θ̄) ∈ Ω × S1, δx, δθ small, and define in the volume V = S × [θ̄ − δθ/2, θ̄ + δθ/2)

the average σ̄ as before and the “Raviart-Thomas” approximation of σ defined by the average

fluxes through the 6 facets of V (linearly extended inside the volume, as in eq. 21). There are

several ways to define this properly, at least for all θ̄ but a countable number. In our case, one
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can disintegrate the measure in Ω × S1 as σ = σθdµ where µ is a bounded positive measure in S1

and for all θ, σθ ∈ C∞(Ω). Then

τ1
± =

1

δxδθ

∫
[θ̄−δθ/2,θ̄+δθ/2)

(∫ x̄2+ δx
2

x̄2− δx2
σ1
θ(x̄1 ± δx

2 , x2, θ)dx2

)
µ,

τ2
± =

1

δxδθ

∫
[θ̄−δθ/2,θ̄+δθ/2)

(∫ x̄1+ δx
2

x̄1− δx2
σ1
θ(x1, x̄2 ± δx

2 , θ)dx1

)
µ.

To define the vertical fluxes τθ± we assume in addition that µ({θ̄ ± δθ/2}) = 0 (which is true for

all values but a countable number). In this case, observe that if φ ∈ C1
c (S̊ × {θ = −δθ/2}), it can

be extended into a C1 function in V vanishing near the 5 other boundaries, and then∫
V

∇φ · σ

defines a measure τ̃θ− on S̊ × {θ = −δθ/2}. Then one simply let τθ− = τ̃θ−(S̊ × {θ = −δθ/2})/δ2
x.

The value τθ+ is defined in the same way. The assumption that µ({θ̄− δθ/2}) = 0 guarantees that

the same construction from below will build the same measure and the same value, and that one

actually has (τ1
+ − τ1

− + τ2
+ − τ2

−)/δx + (τθ+ − τθ−)/δθ = 0.

We can show the following lemma.

Lemma A.3. Let τ = (τ1
a , τ

2
b , τ

θ
c )T for any (a, b, c) ∈ {−,+}3. Then, for all θ̄ but a countable

number,

δ2
xδθ|τ − σ̄| ≤

√
δ2
x + δ2

θ

∫
V

|∂1σ
1|+ |∂2σ

2|. (46)

Proof. We prove the result for (a, b, c) = (−,−,−), the proof in the other cases being identical.

We first assume that σ is also C1 in θ (which can be achieved by convolution). In this case, one

has for all (x1, x2, θ) ∈ V ,

σ1(x̄1 − δx
2 , x2, θ) = σ1(x1, x2, θ)−

∫ x1

x̄1− δx2
∂1σ

1(s, x2, θ)ds

so that

δxσ
1(x̄1 − δx

2 , x2, θ) =

∫ x̄1+ δx
2

x̄1− δx2
σ1(x1, x2, θ)−

∫ x̄1+ δx
2

x̄1− δx2
(x̄1 + δx

2 − s)∂1σ
1(s, x2, θ)ds

Averaging over x2, θ, we deduce that

τ1
− = σ̄1 − 1

δ2
xδθ

∫
V

(x̄1 + δx
2 − x1)∂1σ

1dx1dx2dθ.

In the same way,

τ2
− = σ̄2 − 1

δ2
xδθ

∫
V

(x̄2 + δx
2 − x2)∂2σ

2dx1dx2dθ,

τθ− = σ̄θ − 1

δ2
xδθ

∫
V

(θ̄ + δθ
2 − θ)∂θσ

θdx1dx2dθ.

Using that divσ = 0, the latter can be rewritten

τθ− = σ̄θ +
1

δ2
xδθ

∫
V

(θ̄ + δθ
2 − θ)div xσ

xdx1dx2dθ.

The estimate (46) follows. If σ is not C1 in θ, as before we can smooth σ, then in the limit we

will obtain (46) for all θ̄ such that µ({θ̄ ± δθ/2}) = 0.
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Corollary A.4. Let τ(x, θ) be the Raviart-Thomas extension of the fluxes τ•± in V : then it holds∫
V

|τ − σ̄|dxdθ ≤
√
δ2
x + δ2

θ

∫
V

|∂1σ
1|+ |∂2σ

2| (47)

(for the same values of θ̄).

This is proven in the same way, as inside V , τ•(x, θ) is a convex combination of the two fluxes

τ•±. Moreover, by construction since divσ = 0, it is easy to check that one also has div τ = 0. The

following is also immediate:

Corollary A.5. Let τ(x, θ) be the Raviart-Thomas extension of the fluxes τ•± in V and τ̄ the

value in the middle of the cell (in other words,

τ̄ =


τ1
−+τ1

+

2
τ2
−+τ2

+

2
τθ−+τθ+

2


is given by the average of the fluxes through the facets of V ). Then

|V ||τ̄ − σ̄| ≤
√
δ2
x + δ2

θ

∫
V

|∂1σ
1|+ |∂2σ

2|. (48)

A.2 Consistent discretization of the energy F

We now are in a position to define almost consistent approximations of F . We will build a discrete

approximation which enjoys a sort of discrete-to-continuum Γ-convergence property to the limiting

functional F .

Assume to simplify Ω is a convex set2, and even a rectangle [0, a]× [0, b], a, b > 0, which further

simplifies our notation.

Let u ∈ BV (Ω) and σu be admissible for u, such that F (u) =
∫

Ω×S1 h(θ, σu) < ∞ and first,

for ε > 0 fixed, σε by convolution as in the proof of Proposition 3.1. In particular,∫
Ω×S1

|∂1σ
1
ε |+ |∂2σ

2
ε | ≤

c

ε

∫
Ω×S1

|σ1
u|+ |σ2

u|

where c = 2π
∫
B1
|∇ρ|dx depends only on the convolution kernel ρ. Fix δx, δθ small enough, assume

δθ = 2π/Nθ for some integer Nθ, and consider all the volumes Vi,j,k, defined in (16) (with Si,j

defined by (15)), and which are inside Ω × S1, for (i, j, k) ∈ J (17). We define a Raviart-Thomas

vector field from the (averaged) fluxes of σε through the facets of the volumes: σ1
i− 1

2 ,j,k
through

the facets F 1
i− 1

2 ,j,k
, σ2

i,j− 1
2 ,k

through the facets F 2
i,j− 1

2 ,k
, and σθ

i,j,k− 1
2

through F θ
i,j,k− 1

2

, see (18),

(19), (20). The latter flux is well-defined up to an infinitesimal vertical translation of the origin of

the discretization in θ (without loss of generality we thus assume it is well defined). The Raviart-

Thomas field inside the cube is defined then as in (21). We also define σ̄i,j,k = (δ−2
x δ−1

θ )
∫
Vi,j,k

σε

as the average of σε in Vi,j,k, and let σ̂i,j,k be defined by (24), which corresponds to averaging the

fluxes of the facets, or equivalently to consider the value of the Raviart-Thomas extension in the

middle of the volume Vi,j,k.

2This is not really important, as one could approximate σ by smooth function only inside Ω and then let the

corresponding set invade Ω in the limit.
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From Corollary A.5, letting

ei,j,k = σ̂i,j,k − σ̄i,j,k,

one has

δ2
xδθ

∑
i,j,k

|ei,j,k| ≤ c
√
δ2
x + δ2

θ

ε

∫
Ω×S1

|σxu|.

Moreover by Lemma A.2, one has (we denote, for every k, θk = kδθ and θk+ 1
2

= (k + 1
2 )δθ)

δ2
xδθ

∑
i,j,k

h̄(σ̄i,j,k · θk, cos δθ2 σ̄
θ
i,j,k) ≤ (1 + Cδ2

θ)

∫
Ω×S1

h(θ, σu)

(using that
∫

Ω×S1 h(θ, σε) ≤
∫

Ω×S1 h(θ, σu), cf the proof of Prop. 3.1).

Eventually, letting now

e′i,j,k = ei,j,k + (1− cos δθ2 )σ̄θi,j,k,

which is such that

δ2
xδθ

∑
i,j,k

|e′i,j,k| ≤ c
√
δ2
x + δ2

θ

ε

∫
Ω×S1

|σxu|+ δ2
θ

∫
Ω×S1

|σθu|

≤ c
√
δ2
x + δ2

θ

ε

∫
Ω×S1

|σu| ≤ c
√
δ2
x + δ2

θ

γε
F (u). (49)

We deduce that we can find an center-averaged Raviart-Thomas field σ̂ and an error term e′

such that (49) holds and∑
i,j,k

h̄((σ̂i,j,k − e′i,j,k) · θk, (σ̂i,j,k − e′i,j,k)θ) ≤ (1 + Cδ2
θ)F (u)

where θδθ =
∑
k θkχ{kδθ,(k+1)δθ}. In particular if we introduce, for δ = (δx, δt) small, the inf-

convolution

h̄δ(s, t) = min
s′,t′

h̄(s− s′, t− t′) +
γ

(δ2
x + δ2

θ)1/4

√
s′2 + t′2 (50)

we find that

δ2
xδθ

∑
i,j,k

h̄δ(σ̂i,j,k · θk, σ̂θi,j,k) ≤ (1 + Cδ2
θ + c

ε (δ2
x + δ2

θ)1/4)F (u).

Moreover, one easily sees that

σ̂xi,j,k ∈ R+θk− 1
2

+ R+θk+ 1
2
. (51)

Remark A.6. If h̄ is L-Lipschitz (as it is the case when f as growth one, for instance if f(t) =

γ
√

1 + t2), then the inf-convolution step is not necessary. One directly obtains

δ2
xδθ

∑
i,j,k

h̄(σ̂i,j,k · θk, σ̂θi,j,k) ≤
(

1 + Cδ2
θ + cL

γε

√
δ2
x + δ2

θ

)
F (u).

Now, we check the consistency between σ̂ and u.. By construction, δxδθ
∑
k σ

1
i+ 1

2 ,j,k
is the flux

of Du⊥ through the edge {i + 1
2δx} × [(j − 1

2 )δx, (j + 1
2 )δx] in Ω, hence it is equal to the value

u((i + 1
2 )δx, (j + 1

2 )δx) − u((i + 1
2 )δx, (j − 1

2 )δx). Accordingly, if we let, for all i, j, uδ
i+ 1

2 ,j+
1
2

:=

u((i+ 1
2 )δx, (j + 1

2 )δx), we obtain that (23) holds (with u replaced with uδ).

Eventually we observe that the free divergence condition simply translates as (22) for all

admissible i, j, k, as this is the global flux of σε across the boundaries of Vi,j,k.

It is now easy to deduce the following upper approximation result:
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Proposition A.7. Let u ∈ BV (Ω), σ be admissible for u and such that

F (u) =

∫
Ω×S1

h(θ, σ) <∞.

Then for δ = (δx, δθ) → 0 one can find a discrete field (σ1
i+ 1

2 ,j,k
, σ2
i,j+ 1

2 ,k
, σθ
i,j,k+ 1

2

) and a discrete

image uδ
i+ 1

2 ,j+
1
2

with ∑
i,j

uδi+ 1
2 ,j+

1
2
χ[iδx,(i+1)δx)×[jδx,(j+1)δx) → u (52)

(strongly in L2(Ω)) and such that for all i, j, (23) holds, for all i, j, k, (51) and (22) hold, and:

lim sup
δ→0

δ2
xδθ

∑
i,j,k

h̄δ(σ̂i,j,k · θk, σ̂θi,j,k) ≤ F (u) (53)

where σ̂ is defined by (24), and where h̄δ is defined in (50) (or is h̄ in case it is Lipschitz).

To show that the discretization is consistent, we must now show a similar lower bound: namely

that given any u and uδ, σ, σ̂ which satisfy (24), (51), (23), and (52) (weakly, for instance as

distributions), then one has

lim inf
δ→0

δ2
xδθ

∑
i,j,k

h̄δ(σ̂i,j,k · θk, σ̂θi,j,k) ≥ F (u). (54)

A first obvious remark is that the field

σ̂δ :=
∑
i,j,k

σ̂i,j,kχVi,j,k

is bounded in measure, and hence, up to subsequences, converges (weakly-∗) to a measure σ. It is

then easy to deduce from (51) and the convexity of h̄ that∫
Ω×S1

h(θ, u) ≤ lim inf
δ→0

lim inf
δ→0

δ2
xδθ

∑
i,j,k

h̄δ(σ̂i,j,k · θk+ 1
2
, σ̂θi,j,k).

One can also check that divσ = 0 by passing to the limit in (22) (after a suitable integration

against a smooth test function, exactly as in (55) below). Hence it is enough to show that the

limiting σ is compatible with u.

But this is quite obvious from (23), which one can integrate against a smooth test function,

then “integrate by part” before passing to the limit. More precisely, for ϕ ∈ C∞c (Ω), one has

(dropping the superscripts δ and denoting ϕi,j = (1/δ2
x)
∫
Si,j

ϕ(x)dx):∫
Ω×S1

ϕ(x)σ̂1dxdθ =
∑
i,j,k

σ̂1
i,j,k

∫
Vi,j,k

ϕ(x)dxdθ

= δ2
xδθ
∑
i,j

ϕi,j
∑
k

δθ
σ1
i+ 1

2 ,j,k
+ σ1

i− 1
2 ,j,k

2

=
δ2
xδθ
2

∑
i,j

ϕi,j

(
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j−
1
2

δx
+
ui− 1

2 ,j+
1
2
− ui− 1

2 ,j−
1
2

δx

)

= −δ2
xδθ
∑
i,j

ui+ 1
2 ,j+

1
2

+ ui− 1
2 ,j+

1
2

2

ϕi,j+1 − ϕi,j
δx

→ −
∫

Ω

u(x)∂2ϕ(x)dx (55)
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as δ → 0.

Eventually, we need to show a compactness property, which is that if

sup
δ
δ2
xδθ

∑
i,j,k

h̄(σ̂i,j,k · θk, σ̂θi,j,k) < +∞ (56)

the discrete image uδ which is recovered from (23) (up to a constant) converges to a u(x), x ∈ Ω

(in a weak sense which will be made clear). The point here is that a priori, from (56) and (1), one

has only

sup
δ
δ2
x

∑
i,j

((
uδ
i+ 1

2 ,j+
1
2

− uδ
i+ 1

2 ,j−
1
2

δx
+
uδ
i− 1

2 ,j+
1
2

− uδ
i− 1

2 ,j−
1
2

δx

)2

+

(
uδ
i+ 1

2 ,j−
1
2

− uδ
i− 1

2 ,j−
1
2

δx
+
uδ
i+ 1

2 ,j+
1
2

− uδ
i− 1

2 ,j+
1
2

δx

)2) 1
2

< +∞ (57)

so that the discrete total variation of uδ is a priori not well controlled. However, one can easily

check that the kernel of the operator which appears in the energy (57) is two-dimensional, and

made of the oscillating discrete images

vδi− 1
2 ,j−

1
2

= α+ β(−1)i+j , (58)

α, β ∈ R2. Hence it is possible to show that one can decompose uδ as a sum of a non-oscillating

function with zero average ūδ and an oscillation vδ, and obtain a strong control on the discrete

total variation of ūδ. Therefore one easily deduce that any suitably built continuous extension of

ūδ will converge to some u strongly in Lp(Ω), for any p < 2 (as BV (Ω) is compactly embedded in

such spaces), and weakly in L2(Ω).

In addition, any control on the average of uδ and on its oscillation (which cannot be given

by (57) and has to come from other terms in the energy, such as a boundary condition or a

penalization: note that it is enough to control two adjacent pixels) will ensure in addition that

vδ remains bounded and converges (only weakly in Lp(Ω), if the control is only on the Lp norm,

however in this case it is obvious that the oscillating term in (58) goes to zero and vδ can only go

to a constant).

To sum up, we have shown the following.

Proposition A.8. For δ → 0, assume we are given σδ, uδ and σ̂δ with (24), (23), which in

addition satisfy (51) and (22), and (56). Then, up to an oscillating function vδ of the form (58),

there is u ∈ BV (Ω) such that uδ → u, and (54) holds.

Remark A.9. In practice, we did not use the inf-convolutions h̄δ (only h̄) in our discrete scheme.

Also, we replaced the constraint (51) with the stronger constraint σ̂xi,j,k ∈ R+θk, after having

experimentally observed that there was no qualitative difference in the output. It seems the

results we compute are still consistent with what is expected from the energy.

B Smirnov’s theorem in Ω × S1

In this whole paper Ω ⊂ R2 is assumed to be a Lipschitz set. In particular, locally its boundary

can be represented as the subgraph {(x, y) : y < h(x)} of a Lipschitz function h. Consider a ball
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B where this representation holds and assume first h is C1, then one can extend in B a bounded

Radon measure σ with divσ = 0 into σ̃ defined (for ψ ∈ C0
c (B;R2))∫

B

σ̃ · ψ :=

∫
B∩Ω

σ ·

(
ψ(x, y)−

(
1 2h′(x)

0 −1

)
ψ(x, 2h(x)− y)

)
.

Then, it is standard that div σ̃ = 0 in B, indeed, if ϕ ∈ C1
c (B), one has that∫

B

σ̃ · ∇ϕ =

∫
B∩Ω

σ · ∇ [ϕ(x, y)− ϕ(x, 2h(x)− y)] .

The function ϕs(x, y) := ϕ(x, y)−ϕ(x, 2h(x)− y) is C1 and vanishes on ∂Ω, hence this expression

is zero: Indeed if for τ > 0 one lets ϕsτ (x, y) = Sτ (ϕs(x, y)) where Sτ ∈ C∞(R) is a smooth

approximation of a “shrinkage operator”:

Sτ (t) =


t− τ if t ≥ 3

2τ ,

0 if |t| < 1
2τ ,

t+ τ if t ≤ − 3
2τ ,

with smooth and 1-Lipschitz interpolation in ±[τ/2, 3τ/2], then ϕsτ ∈ C1
c (B ∩ Ω) so that∫

B∩Ω

σ · ∇ϕsτ = 0

and, using ∇ϕsτ = S′τ (ϕs)∇ϕs∫
B∩Ω

σ · (∇ϕs −∇ϕsτ ) ≤ C|σ|(B ∩ Ω ∩ {0 < |ϕs| < 3τ/2})→ 0

as τ → 0, showing our claim. Hence div σ̃ = 0. If h is not C1 but just Lipschitz, one can

approximate it from below by smooth functions hn, build in such a way a sequence σn of extensions

of σ|{y<hn(x)} and pass to the limit to deduce that the extension still exists.

Using cut-off functions, one can therefore assume that σ can be extended into a field σ̃ which

is a measure in R2 with free divergence in a neighborhood of Ω.

A similar construction would allow to extend a field σ ∈ M(Ω × R2;R4) to M(R4;R4) with

free divergence (either in a neighborhood or Ω× R4, or even everywhere). This remark allows to

localize Smirnov’s theorems in [73].

Consider indeed now a free divergence field σ ∈M(Ω × S1;R3). It can be seen, after extension,

as a field in M(R2 × R2;R4) with sptσ ⊆ R2 × S1.

As in Smirnov’s paper [73], for l > 0 we introduce Cl the set of oriented curves γ in R4 with

length l, with the topology corresponding to the weak convergence of the measures τγH1 γ.

Then, thanks to [73, Theorem A], σ can be decomposed as

σ =

∫
Cl

λdµ(λ), |σ| =
∫
Cl

|λ|dµ(λ),

for some measure µ on Cl. Moreover thanks to Remark 5 in [73], µ-a.e. curve in the decomposition

lies in R2 × S1.

For this work, it is enough to consider l = 1. Moreover, if we restrict then all these measures to

Ω × S1 (and take for µ the corresponding marginal), we get a decomposition on curves of length
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less or equal to 1 (possibly entering/exiting the domain). By a slight abuse of notation we still

denote C1 such a set of curves. One finds that

σ =

∫
C1

λdµ(λ), |σ| =
∫
C1

|λ|dµ(λ), (59)

with now λ ∈ C1, the curves of length at most one in Ω × S1.

Remark B.1. Theorem B in [73] is a more precise statement. It shows that one can obtain a

similar decomposition with now curves λ with divλ = 0 a.e.: being either finite curves entering

and exiting the domain, or “elementary solenoids”, which are objects of the form

λ =M− lim
k→∞

1

2k
f]
−−−−→
[−k, k] Ω × S1

Lip(f) ≤ 1

var(λ) = 1

f(R) ⊂ spt(λ),

(in particular one should have |f ′(t)| = 1 a.e.), meaning that for any ϕ ∈ C1
c (Ω × S1),

λ(ϕ) = lim
s→∞

1

2s

∫ s

−s
〈f ′(t), ϕ(f(t))〉dt. (60)

This expresses that either λ is defined by the closed curve f(R) (if f is periodic), or λ is a limit

of curves which densify and do not loose mass in the limit. We do not need such a precise result

for our construction.
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