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An Interval Observer for Discrete-Time SEIR Epidemic Models

Kwassi H. Degue and Jerome Le Ny

Abstract— This paper focuses on designing a state estimator
for a discrete-time SEIR epidemic model of an influenza-
like illness. It is assumed that only sets of admissible values
are known for the model’s disturbances, uncertainties and
parameters, except for the time-varying transmission rate
from the ‘“‘susceptible” to the “exposed” stage, whose bounding
values are unavailable. An interval observer is designed
to estimate the set of possible values of the state, and a
sufficient condition guaranteeing the asymptotic stability of
the proposed estimator is formulated in terms of a linear
matrix inequality. The performance of the proposed approach
is demonstrated by numerical simulations.

I. INTRODUCTION

Seasonal influenza epidemics usually cause three to five
million cases of severe illness and result in about 250,000
to 500,000 deaths worldwide every year, according to the
World Health Organization [1]. Infectious disease surveil-
lance plays a major role in analyzing epidemics’ causes,
dynamics and spread. Public Health Services (PHS) rely on
surveillance data collected by agencies such as the Centers
for Disease Control and Prevention in the United States to
estimate these infectious diseases’ activity levels, prepare
intervention strategies and design policy recommendations.

Mathematical modelling of epidemics has become an
essential part in the sentinel role played by public health re-
sponse planning and early outbreak detection systems [2]—
[6]. Kermack and McKendrick proposed the first modern
mathematical epidemiology models in [7]: a Susceptible-
Infectious-Recovered (SIR) model was used to model the
plague (London 1665-1666, Bombay 1906) and cholera
(London 1865) epidemics. The basic SIR model assumes
that a fixed population, at any time, can be divided into
three compartments: susceptible people (those who are
not infected but could become infected), infectious people
(those who have the disease and are able to infect others),
and recovered people (those who were infected by the
disease and are now immune). It is assumed that the total
number of people, N, is constant. Homogeneous mixing is
also assumed by these models. That is, each individual is
equally likely to come in contact with any other [3].
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In the case of influenza, one needs to extend the standard
SIR model and introduce a fourth compartment correspond-
ing to the disease’s latency period, when a person is infected
but not yet able to infect others. This extension is called
the Susceptible-Exposed-Infected-Recovered (SEIR) model
[8]. Several estimators have been previously designed for
SEIR models [3], [9], [10]. In the existing literature, strong
assumptions on the disturbances or uncertain parameters in
these models can enable the design of estimators converging
to the true state values. However, the problem of observer
design for SEIR models becomes very challenging when
one has to take into account the presence of disturbances
or uncertain parameters whose values are only known
to belong to an interval or polytope. Such issues can
be addressed by an interval estimation approach [11]—
[15]. Using input-output measurements, an observer has to
estimate the set of admissible values (interval) for the state
at each instant of time [16]. A major advantage of interval
estimation is that it allows many types of uncertainties to
be taken into account in the system [17].

This paper presents an interval estimator for a discrete-
time SEIR epidemic model of an Influenza-Like Illness
(ILI). We are interested in estimating the four compartment
states, to support the prediction of epidemic outbreaks. An
interval observer design was proposed for the first time
for an epidemic model in [18]. However, it applies to SIR
rather than SEIR models, and so it does not consider the
fourth compartment of the population that corresponds to
the incubation stage for diseases such as influenza. Fur-
thermore, it assumes continuous-time dynamics, whereas
we focus on discrete-time epidemic models, which have
gained substantial importance during the last decade [19],
[20]. We also assume that the PHS have only access to
noisy measurements, whereas [18] considered that perfect
measurements were available. Importantly, [18] assumed
that the time-varying transmission rate 3(t) from the “sus-
ceptible” to the “exposed” stage is bounded by two func-
tions 3(¢) and B(t), available to the PHS in real-time. The
time-varying observer proposed in [18] provided accurate
results in simulated models, but the transmission rate 3(t)
is a highly uncertain parameter that cannot be estimated
by biological considerations [21], [22] and its bounds are
generally unknown in epidemiology models [12]. Here, we
assume that neither the value of A(t) nor its bounding



values are available, which makes the estimation problem
more complicated. Finally, [18] assumed that the recovery
rate vy is constant, whereas in our work it is time-varying
and only its interval of admissible values is available. On
the other hand, one drawback of our observer is that it is not
perfectly causal, namely, it produces state estimates with
a delay of two periods. The interval estimation approach
described in this paper can be extended to higher/lower
order discrete-time epidemic models, when the model has
more/less than 4 compartments, such as SEIR and SIR
models with several parallel infective stages [23].

In Section II, we present the problem statement and
some results from interval estimation theory. Section III
describes the application of these results to design an
interval observer for a discrete-time SEIR epidemic model.
Input-to-state stability of the proposed interval observer
is also proven in order to guarantee that it has bounded
solutions for any bounded input. Finally, numerical simu-
lations demonstrating the performance of the the observer
are presented in Section IV.

Notation: The real numbers are denoted by R, the
integers by Z, Ry = {r € R: 7 >0} and Z; =ZNR,.
For a vector-valued signal u : Z; — R”, the Lo, norm
|[ul| L. is defined as [|ul|z.. = sup;eqo,+o0] U0, Where
llu|loo := max;eqi,... ny |us,s]. We denote by L7 the set of
such signals u with the property ||u||r.. < co. We denote
the £,-norm of a vector z € R¥ by ||, := (Zle |2 [P)Y/P,
for p € [1, 00]. The symbols I,,, Ayxrm and A, denote the
n X n identity matrix and the matrices with all elements
equal to 1 and dimensions n X m and p X 1, respectively.
For two vectors x1,x2 € R™ or matrices Ay, Ay € R"*",
the relations 1 < 29 and A; < A, are understood element-
wise. The notation P < 0 (P > 0) means that the matrix
P € R™ "™ is symmetric and negative (positive) definite. A
matrix A € R™*" is called Schur stable if all its eigenvalues
have absolute value less than one. It is called nonnegative
if all its elements are nonnegative, i.e., if A > 0.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Fig. 1 illustrates the discrete-time SEIR epidemic model,
a discretization of the classic influenza continuous-time
dynamics proposed in [8]

Ser1 = (1 — pe) St — BeSely + puas

Eiyr = (1 — oy — i) By + B St Iy, (1)
Iy = (1 =y — pe) Iy + o By,

Ryp1 = (1 — pe) Ry + v 1y,

where Sy, Ey, I;, Ry are nonnegative state variables, « :
Zy — [a,@) with o > 0, v: Zy — [y,7] and p : Z4 —

[, 2] are unknown signals taking values in known intervals

(i.e., the parameters a, @,7,7, 4, # € Ry are given). The
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Fig. 1. The non-dimensionalized (N = 1) classic time-varying
Susceptible-Exposed-Infected-Recovered (SEIR) model.

parameter 5 : Z; — R is highly uncertain and time-
varying. Note that we achieve non-dimensionalization by
setting the population size N = 1 in the model (1). It is
assumed that all the four compartments experience the same
constant death rate, equal to the birth rate ;. Indeed,

Str1+ Ep1 + L1 + R =
(= pe)(St + By + It + Re) + e = (1 — pue) + e = 1.

The parameters o, B; and 7, stand for the time-varying
transition rates from one disease stage to the next, while
11 represents the time-varying natural birth and death rate.
The disease transmissions that arise from contacts between
susceptible and infectious people is described by the first
equation of (1). In the original continuous-time SEIR
model [8], the pathogen is transmitted by each infectious
individual to 8 individuals per unit time. However, a new
disease case occurs only if the contact is made with a
susceptible person, with probability S;. Hence, at time £,
people in the compartment .S migrate to the “susceptible but
not yet infectious” compartment F at the rate 8;1;. People
in compartment £ move to the infectious compartment [
at the rate oy per unit time, while infectious individuals
migrate to the recovered compartment R at the rate -, per
unit time.

The measured output consists of noisy counts of ILI
visits at emergency departments

Yo = Iy + vy, 2)

where v € L is the measurement noise, with ||[v||p <V
for some known V' > 0. The dynamics of system (1)-(2)
can be rewritten as follows

Tep1 = Ay + F ¢+ Hypg,
yr = Cxy + vy, 3)

where z; = [St E, I Rt]T S R‘j_ is the state vector
and (; := [(;S¢I; is an uncertain input. In contrast to
[24] and [25], the matrix A; is time-varying in this paper.
Moreover, it should be pointed out that only unknown
inputs that have no impact on the output are considered



in [25]. Since the uncertain input of (3) can be rewritten as
¢t = B+St(ys — vi), we consider here unknown inputs that
affect the output. The time-varying matrix A; and constant
matrices C, ' and H are defined as follows

c=[ 0 1 0],
F=[-1 1 0 o],
H=[1 0 0 0],

1— 0 0 0
A, — 0 l—at—,ut 0 0
L 0 Qg 1—pe—n 0

O O Yt 1*#1»

For different ILIs, the values of the parameters oy, 8; and
v are different and vary with time for a patient. No given
confidence interval is assumed for ;. The instant value of
A; is also unavailable, but we have the the bounds

A< A <A Vt>0,

for

1—7 0 0 0

_ 0 l—-a—n 0 0
4= 0 a 1-5y-—m 0 |’
| 0 0 ol 1—n]
(11— 0 0 0

i 0 1f%fﬁ 0 0

0 1o 1—y—p 0
| 0 0 ol 1—p

The goal of this paper is to design an interval observer,
i.e., state signal bounds z, < z; < T;, which can contribute
to design a decision rule for disease outbreak detection in an
interval approach framework. Note that at the disease-free
equilibrium (when I; = 0), the system (1) is detectable, but
not observable (we refer the reader to [26] for the definition
of detectability of nonlinear systems). An advantage of
interval observers is that they can be designed even if the
system is only detectable. Next, we review some basic facts
from the theory of interval estimation.

A. Interval relations

Given a matrix A € R™*", let us define At =

max{0, A} applied elementwise, A~ = AT — A (the same
for vectors) and denote the matrix of absolute values of all
elements by |[A| = AT + A~

Lemma 1. [27] Let © € R™ be a vector with x < x < T
for some xz,T € R™. If A € R™*™ is a matrix, then

ATz — A ZT< Az < AT — A gz. 4)

B. Nonnegative discrete-time linear systems

A system

Ti41 = A,It + BCLJt7 w Z+ — RT, te Z+,
yr = Cy + Duwy,

with z; € R™,y € RP and nonnegative matrices A € R*"
and B € R}*™ is called cooperative or nonnegative [28].
Its solution is elementwise nonnegative for all ¢ € Z
provided that zg > 0 [29]. Also, the output solution y; of
such a system is nonnegative if C € RY" and D € RE*7.

Lemma 2. [30] A matrix A € R}*" is Schur stable if
and only if there exists a diagonal matrix P with positive
diagonal elements such that ATPA — P < 0.

III. INTERVAL OBSERVER DESIGN

In this section we design an interval observer for the
SEIR model (1)-(2). We assume here that neither 3; nor its
bounding values are available, which makes the estimation
problem more complicated than in [18] but more realistic
[12], [21], [22]. First, we determine upper and lower bounds
for the uncertain input (; . Next we design an interval
observer for the system (1)-(2). We prove the inclusion
relation 0 < 2y < 2y < Ty, V& > 0, and the asymptotic
stability of the error bounds. Finally, the boundedness of
the interval observer’s solutions is proven.

Using equation (3), one can write

Yir2 = CTyqo + Viga,

= CAt+1AtSCt + CAt+1F§t + CF<t+1
+ CAlH_lH/At + OH/J,H_l + Uiy,

so that we have
CAt+1FCt = - CAt+1AtCCt - CFCtJrl - CHMt+1
— CAv 1 Hpy — viqo + Yego.
The structure of the model (1)-(2) implies that CF = 0,
CAsy1H =0 and CA4 1 F = apy1. Hence, we have
041G = Y2 — CAp 1 Ayzy — g,

Suppose 0 < z; < x; < Ty, Vt > 0, for some x4, Ty € R
Notice that At+1At - At+1At Z 0, At+1At - At+1At 2 0
with A; 1A, = A? and A4y = Z2. Hence using the
inequality (4) of Lemma 1, we get the following relations
forallt >0

and
—2



We then obtain the following relations

Q S Ct S aa
for all ¢ > 0, where
__ —2. 4 —2
G=a "(yp2 =V — (CA ) T + (CA") "),
G=0o "2+ V — (CA*) T2y + (CA?) T).
An interval estimator’s equations for (3) takes the form
X1 = A+ F'G—F G+ Hpe
+L(y: — Cxt) = L'V,
Ner1i = AGHFG-F G+Hm ()
+L(y: — Cx0) + L'V,
z; = max{0,xs},
Ty = maX{Oa %}a

where z, € R* and 7, € R* are respectively the lower and
the upper interval estimates for the state x;, x Xy X, € R* is
the state of (5), L and L are some matrices, L* = = |L|Apx1
and " = = |L|Apx1.

Assumption 1. There exist matrices L € R**!, L € R**!
such that the matrices (A — LC) and (A — LC) are

nonnegative.

Assumption 2. The state x(t) is bounded (i.e., x € L))
for z(0) € [z(0),Z(0)], and z(0),z(0) € R* are given
constants.

We take matrices L and L satisfying Assumption 1 in
order to enforce the positivity of the interval observer’s
error dynamics. Assumption 2 is common in the interval
observer design literature and is satisfied here since the
state components belong to [0, 1].

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then
the estimates x, and T, given by (5) yield the relations

0<z, <o <7 VE>0, (6)

provided that 0 < zy < zg < Tp.

Proof. Notice that x; > 0 for all ¢ > 0 and z; is also
bounded since it represents population proportions. We can
rewrite the equation (3) as follows

zpp = (A'—LC)ay+ (A — A"y + F G+ H py + Ly, — Loy

for A’ equal to A or A and L’ equal to L or L. Hence, the
interval observer’s errors e; = Ty — X, € = Xt — Tt satisfy
the equations

€1 = (A—LCO)e + ¢, (7)

where
¢ = (A= Az + F¢ — F*Q—k F~¢
—Lvy + L*V,
& = (A—A)zm+FY{ —F §— F¢
+Lv, + L'V,

Under the introduced conditions, it can be inferred from
Lemma 1 that (;5 >0 and ¢, > 0, V¢t > 0. Therefore one
deduces from Assumptlon 1 that e; > 0 and &; > 0 since
eg > 0 and eg > 0 (the system (7) is cooperative). This
implies that the order relation x . < x; <X, is satisfied for
all ¢ > 0. Hence the inequality (6) is true by construction
of 2,7 and due to the non-negativity of x. O

To state the next theorem, we introduce the notation

J = B; ﬁi] , where
Ji =a 'FH(CAY) T + o ' P (CAY)*T,
Jiz = —a LFH(CA) — a7 P (CAY)”
Jo1 = —a " FH(CA2Y —a P (CA)~

Jos = a 'FH(CA%) ™ + Fa ' (CA)*.
and let n = ||J||2, the induced 2-norm of J.
Theorem 2. Let Assumptions 1 and 2 be satisfied. Suppose
there exists a diagonal matrix P € R3*® with positive

diagonal entries, two symmetric positive definite matrices
Q, K € R®*8, and a constant v > 0 such that

ATPA—P+ Q4+ i’y AP AP
== PA P—~Is P |=o,
PA P P—-K
(8)
for
_ | A-LO) 0
A= 0 (A-IC)

Then x,X € LY and so x,7 € LY

Proof. Let us define
Xt = [Xt XtT]T, € = [QT ET]T7
G@=a 'Fr(yrpo—V)—a 'F (yrya+ V) + Hp
+ Lyt - L*Va
G=a 'F'(y2+V)—a 'F (y2 = V) + Hp
+ Ly + L'V
The dynamics of the interval observer can be rewritten as

Xt+1 = Axe + J max{0, x+} + €, 9



where the matrix A is defined in the theorem. Consider a
Lyapunov function V(x;) = xi Px: (By using Lemma 2,
the matrix P can be chosen diagonal since the matrix A is
non-negative), and let 7 = V(x¢+1) — V(xt). We have

7 =x; (A"PA = P)x; + x] ATPJ max{0, x;}

+ max{0, x;} JTPAx; + max{0, x¢}'J* PJ max{0, x;}
+ 2XF AT Pe; + 2ef PJ max{0, x;} + €] Pe;.

Taking into account that |J max{0, x:}2 < n|xt|2, we get

T <Xt (A"PA — P)x; + XtT.ATPJ max{0, x¢

+ max{0, x;} T JTPAx; + max{0, x; }*JT P.J max{0, x; }

+ 2XT AT Pe; + 2ef PJ max{0, x;} + e} (P — K)e;
+ etTKet + 'ynQXtTXt — ymax{0, Xt}TJTJ max{0, x:}
+ XtTQXt - XtTQXta

T
Xt Xt

< [Jmax{0,x:}| Z |Jmax{0,x:}| — XIQXt
€t €t

+ el Key,
< —X; Qxt + €/ Key,

because of (8). This inequality shows that the system (9) is
input-to-state stable from e to x [31], [32], hence from y
to x. Since € € L3 by construction, x and  stay bounded
for all ¢ > 0. B O

In this paper, we select the observer gains L, L man-
ually. However, because of the diagonal structure of P,
one can in fact also optimize the observer gains L, L
using semidefinite-programming to improve the observer’s
accuracy, following the approach of [32] to reformulate the
matrix inequality (8).

IV. SIMULATIONS

In this section, we illustrate the performance of the
proposed interval observer. Consider a scenario where

e = pro 4 0.05 sin(%t),at =0.240.1 sinz(%t),
)

with pg = 0.4/year, 79 = 0.4/year, 3y = 0.5/year and the
degree of seasonality x = 0.4. The output measurements
y¢ are corrupted by noise such that v; = V cos(5t) with

m ™
Y = + 0.1 sin(zt),ﬁt = Bo(1+ /-icos(zt

= —1%010. The state’s initial conditions are Sy = %,
— 1200 _ 5 923
Eo = 15055 Lo = 1500 and Ro = {505 We select

L=(1-9[00100]",
L=(1+¢)[00100],

with [ = %. Assumption 1 holds for these choices of L
and L and all conditions of Theorem 1 are satisfied. Fig.2

Exposed

Infected

olel v T TTT—
1 2 3 4 5 6 7 8 9 10 11 12
time(weeks)

Recovered
o
o
R
.

time(weeks)

Fig. 2. Evolution of the actual state and the observed bounds.

shows the results of the interval estimation for o = %,
where the solid lines represent the states xy, k =1,2,3,4
and the dash lines are used for the interval estimates xj
and Ty. Notice that the dynamics of S; and its estimates
can be deduced from Fig.2 by using the relation S; = 1 —
Ey — I, — Ry.

V. CONCLUSION

The problem of state-observer design for a discrete-time
SEIR epidemic model of ILI has been considered in this
paper. The proposed approach only requires sets of admissi-



ble values for the model’s disturbances or uncertainties and
parameters, and no information about the bounding values
of the time-varying transmission rate from the “susceptible”
to the “infected” stage. A new approach for the estimation
of the the four compartments’ state is proposed, where an
interval observer is used instead of a point-wise one. Its
performance is illustrated in simulation. Future work can
focus on performance evaluation for real data collected by
the Public health services.
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