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Abstract-This paper focuses on designing a state estimator for a discrete-time SEIR epidemic model of an influenzalike illness. It is assumed that only sets of admissible values are known for the model's disturbances, uncertainties and parameters, except for the time-varying transmission rate from the "susceptible" to the "exposed" stage, whose bounding values are unavailable. An interval observer is designed to estimate the set of possible values of the state, and a sufficient condition guaranteeing the asymptotic stability of the proposed estimator is formulated in terms of a linear matrix inequality. The performance of the proposed approach is demonstrated by numerical simulations.

I. INTRODUCTION

Seasonal influenza epidemics usually cause three to five million cases of severe illness and result in about 250,000 to 500,000 deaths worldwide every year, according to the World Health Organization [START_REF] Vaillant | Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009[END_REF]. Infectious disease surveillance plays a major role in analyzing epidemics' causes, dynamics and spread. Public Health Services (PHS) rely on surveillance data collected by agencies such as the Centers for Disease Control and Prevention in the United States to estimate these infectious diseases' activity levels, prepare intervention strategies and design policy recommendations.

Mathematical modelling of epidemics has become an essential part in the sentinel role played by public health response planning and early outbreak detection systems [START_REF] Fallas-Monge | Combinatorial metaheuristics applied to infectious disease models[END_REF]- [START_REF] Kaplan | Emergency response to a smallpox attack: The case for mass vaccination[END_REF]. Kermack and McKendrick proposed the first modern mathematical epidemiology models in [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]: a Susceptible-Infectious-Recovered (SIR) model was used to model the plague (London 1665-1666, Bombay 1906) and cholera (London 1865) epidemics. The basic SIR model assumes that a fixed population, at any time, can be divided into three compartments: susceptible people (those who are not infected but could become infected), infectious people (those who have the disease and are able to infect others), and recovered people (those who were infected by the disease and are now immune). It is assumed that the total number of people, N , is constant. Homogeneous mixing is also assumed by these models. That is, each individual is equally likely to come in contact with any other [START_REF] Dukic | Tracking epidemics with google flu trends data and a state-space SEIR model[END_REF].
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In the case of influenza, one needs to extend the standard SIR model and introduce a fourth compartment corresponding to the disease's latency period, when a person is infected but not yet able to infect others. This extension is called the Susceptible-Exposed-Infected-Recovered (SEIR) model [START_REF] Hethcote | The mathematics of infectious diseases[END_REF]. Several estimators have been previously designed for SEIR models [START_REF] Dukic | Tracking epidemics with google flu trends data and a state-space SEIR model[END_REF], [START_REF] Ibeas | Observer design for seir discrete-time epidemic models[END_REF], [START_REF] Alonso-Quesada | An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems[END_REF]. In the existing literature, strong assumptions on the disturbances or uncertain parameters in these models can enable the design of estimators converging to the true state values. However, the problem of observer design for SEIR models becomes very challenging when one has to take into account the presence of disturbances or uncertain parameters whose values are only known to belong to an interval or polytope. Such issues can be addressed by an interval estimation approach [START_REF] Efimov | Control of nonlinear and LPV systems: interval observer-based framework[END_REF]- [START_REF] Efimov | On interval observer design for time-invariant discrete-time systems[END_REF]. Using input-output measurements, an observer has to estimate the set of admissible values (interval) for the state at each instant of time [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF]. A major advantage of interval estimation is that it allows many types of uncertainties to be taken into account in the system [START_REF] Efimov | Design of interval observers for uncertain dynamical systems[END_REF].

This paper presents an interval estimator for a discretetime SEIR epidemic model of an Influenza-Like Illness (ILI). We are interested in estimating the four compartment states, to support the prediction of epidemic outbreaks. An interval observer design was proposed for the first time for an epidemic model in [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF]. However, it applies to SIR rather than SEIR models, and so it does not consider the fourth compartment of the population that corresponds to the incubation stage for diseases such as influenza. Furthermore, it assumes continuous-time dynamics, whereas we focus on discrete-time epidemic models, which have gained substantial importance during the last decade [START_REF] Hu | Stability analysis in a class of discrete sirs epidemic models[END_REF], [START_REF] Mickens | Numerical integration of population models satisfying conservation laws: Nsfd methods[END_REF]. We also assume that the PHS have only access to noisy measurements, whereas [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF] considered that perfect measurements were available. Importantly, [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF] assumed that the time-varying transmission rate β(t) from the "susceptible" to the "exposed" stage is bounded by two functions β(t) and β(t), available to the PHS in real-time. The time-varying observer proposed in [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF] provided accurate results in simulated models, but the transmission rate β(t) is a highly uncertain parameter that cannot be estimated by biological considerations [START_REF] Bichara | On the estimation of sequestered infected erythrocytes in plasmodium falciparum malaria patients[END_REF], [START_REF] Hooker | Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario[END_REF] and its bounds are generally unknown in epidemiology models [START_REF] Degue | Interval estimation of sequestered infected erythrocytes in malaria patients[END_REF]. Here, we assume that neither the value of β(t) nor its bounding values are available, which makes the estimation problem more complicated. Finally, [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF] assumed that the recovery rate γ t is constant, whereas in our work it is time-varying and only its interval of admissible values is available. On the other hand, one drawback of our observer is that it is not perfectly causal, namely, it produces state estimates with a delay of two periods. The interval estimation approach described in this paper can be extended to higher/lower order discrete-time epidemic models, when the model has more/less than 4 compartments, such as SEIR and SIR models with several parallel infective stages [START_REF] Korobeinikov | Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages[END_REF].

In Section II, we present the problem statement and some results from interval estimation theory. Section III describes the application of these results to design an interval observer for a discrete-time SEIR epidemic model. Input-to-state stability of the proposed interval observer is also proven in order to guarantee that it has bounded solutions for any bounded input. Finally, numerical simulations demonstrating the performance of the the observer are presented in Section IV.

Notation: The real numbers are denoted by R, the integers by

Z, R + = {τ ∈ R : τ ≥ 0} and Z + = Z ∩ R + . For a vector-valued signal u : Z + → R n , the L ∞ norm ||u|| L∞ is defined as ||u|| L∞ = sup t∈[0,+∞] u t ∞ , where u t ∞ := max i∈{1,...,n} |u t,i |. We denote by L n ∞ the set of such signals u with the property ||u|| L∞ < ∞. We denote the p -norm of a vector x ∈ R k by |x| p := ( k i=1 |x i | p ) 1/p , for p ∈ [1, ∞].
The symbols I n , Λ n×m and Λ p denote the n × n identity matrix and the matrices with all elements equal to 1 and dimensions n × m and p × 1, respectively. For two vectors x 1 , x 2 ∈ R n or matrices A 1 , A 2 ∈ R n×n , the relations x 1 ≤ x 2 and A 1 ≤ A 2 are understood elementwise. The notation P ≺ 0 (P 0) means that the matrix P ∈ R n×n is symmetric and negative (positive) definite. A matrix A ∈ R n×n is called Schur stable if all its eigenvalues have absolute value less than one. It is called nonnegative if all its elements are nonnegative, i.e., if A ≥ 0.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Fig. 1 illustrates the discrete-time SEIR epidemic model, a discretization of the classic influenza continuous-time dynamics proposed in [START_REF] Hethcote | The mathematics of infectious diseases[END_REF] 

S t+1 = (1 -µ t )S t -β t S t I t + µ t , E t+1 = (1 -α t -µ t )E t + β t S t I t , (1) 
I t+1 = (1 -γ t -µ t )I t + α t E t , R t+1 = (1 -µ t )R t + γ t I t ,
where S t , E t , I t , R t are nonnegative state variables, α : parameter β : Z + → R is highly uncertain and timevarying. Note that we achieve non-dimensionalization by setting the population size N = 1 in the model [START_REF] Vaillant | Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009[END_REF]. It is assumed that all the four compartments experience the same constant death rate, equal to the birth rate µ t . Indeed,

Z + → [α, α] with α > 0, γ : Z + → [γ, γ]
S t+1 + E t+1 + I t+1 + R t+1 = (1 -µ t )(S t + E t + I t + R t ) + µ t = (1 -µ t ) + µ t = 1.
The parameters α t , β t and γ t stand for the time-varying transition rates from one disease stage to the next, while µ t represents the time-varying natural birth and death rate. The disease transmissions that arise from contacts between susceptible and infectious people is described by the first equation of (1). In the original continuous-time SEIR model [START_REF] Hethcote | The mathematics of infectious diseases[END_REF], the pathogen is transmitted by each infectious individual to β individuals per unit time. However, a new disease case occurs only if the contact is made with a susceptible person, with probability S t . Hence, at time t, people in the compartment S migrate to the "susceptible but not yet infectious" compartment E at the rate β t I t . People in compartment E move to the infectious compartment I at the rate α t per unit time, while infectious individuals migrate to the recovered compartment R at the rate γ t per unit time.

The measured output consists of noisy counts of ILI visits at emergency departments

y t = I t + v t , (2) 
where v ∈ L ∞ is the measurement noise, with ||v|| L∞ ≤ V for some known V > 0. The dynamics of system ( 1)-( 2) can be rewritten as follows

x t+1 = A t x t + F ζ t + Hµ t , y t = Cx t + v t , (3) 
where

x t = S t E t I t R t T ∈ R 4
+ is the state vector and ζ t := β t S t I t is an uncertain input. In contrast to [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF] and [START_REF] Robinson | Interval observer design for unknown input estimation of linear time-invariant discrete-time systems[END_REF], the matrix A t is time-varying in this paper. Moreover, it should be pointed out that only unknown inputs that have no impact on the output are considered in [START_REF] Robinson | Interval observer design for unknown input estimation of linear time-invariant discrete-time systems[END_REF]. Since the uncertain input of (3) can be rewritten as ζ t = β t S t (y t -v t ), we consider here unknown inputs that affect the output. The time-varying matrix A t and constant matrices C, F and H are defined as follows

C = 0 0 1 0 , F = -1 1 0 0 T , H = 1 0 0 0 T , A t =     1 -µ t 0 0 0 0 1 -α t -µ t 0 0 0 α t 1 -µ t -γ t 0 0 0 γ t 1 -µ t     .
For different ILIs, the values of the parameters α t , β t and γ t are different and vary with time for a patient. No given confidence interval is assumed for β t . The instant value of A t is also unavailable, but we have the the bounds

A ≤ A t ≤ A, ∀t ≥ 0, for A =     1 -µ 0 0 0 0 1 -α -µ 0 0 0 α 1 -γ -µ 0 0 0 γ 1 -µ     , A =     1 -µ 0 0 0 0 1 -α -µ 0 0 0 α 1 -γ -µ 0 0 0 γ 1 -µ     .
The goal of this paper is to design an interval observer, i.e., state signal bounds x t ≤ x t ≤ x t , which can contribute to design a decision rule for disease outbreak detection in an interval approach framework. Note that at the disease-free equilibrium (when I t = 0), the system (1) is detectable, but not observable (we refer the reader to [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF] for the definition of detectability of nonlinear systems). An advantage of interval observers is that they can be designed even if the system is only detectable. Next, we review some basic facts from the theory of interval estimation.

A. Interval relations

Given a matrix A ∈ R m×n , let us define A + = max{0, A} applied elementwise, A -= A + -A (the same for vectors) and denote the matrix of absolute values of all elements by |A| = A + + A -. Lemma 1. [START_REF] Efimov | Interval estimation for LPV systems applying high order sliding mode techniques[END_REF] Let x ∈ R n be a vector with x ≤ x ≤ x for some x, x ∈ R n . If A ∈ R m×n is a matrix, then

A + x -A -x ≤ Ax ≤ A + x -A -x. (4) 

B. Nonnegative discrete-time linear systems

A system

x t+1 = Ax t + Bω t , ω : Z + → R m + , t ∈ Z + , y t = Cx t + Dω t , with x t ∈ R n , y ∈ R p and nonnegative matrices A ∈ R n×n + and B ∈ R n×m +
is called cooperative or nonnegative [START_REF] Hirsch | Systems of differential equations that are competitive or cooperative II: Convergence almost everywhere[END_REF]. Its solution is elementwise nonnegative for all t ∈ Z + provided that x 0 ≥ 0 [START_REF] Hirsch | Monotone maps: a review[END_REF]. Also, the output solution y t of such a system is nonnegative if

C ∈ R p×n + and D ∈ R p×q + . Lemma 2. [30] A matrix A ∈ R n×n +
is Schur stable if and only if there exists a diagonal matrix P with positive diagonal elements such that A T P A -P ≺ 0.

III. INTERVAL OBSERVER DESIGN

In this section we design an interval observer for the SEIR model ( 1)-( 2). We assume here that neither β t nor its bounding values are available, which makes the estimation problem more complicated than in [START_REF] Bliman | Interval observer for SIR epidemic model subject to uncertain seasonality[END_REF] but more realistic [START_REF] Degue | Interval estimation of sequestered infected erythrocytes in malaria patients[END_REF], [START_REF] Bichara | On the estimation of sequestered infected erythrocytes in plasmodium falciparum malaria patients[END_REF], [START_REF] Hooker | Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario[END_REF]. First, we determine upper and lower bounds for the uncertain input ζ t . Next we design an interval observer for the system (1)-( 2). We prove the inclusion relation 0 ≤ x t ≤ x t ≤ x t , ∀t ≥ 0, and the asymptotic stability of the error bounds. Finally, the boundedness of the interval observer's solutions is proven.

Using equation ( 3), one can write

y t+2 = Cx t+2 + v t+2 , = CA t+1 A t x t + CA t+1 F ζ t + CF ζ t+1 + CA t+1 Hµ t + CHµ t+1 + v t+2 ,
so that we have

CA t+1 F ζ t = -CA t+1 A t x t -CF ζ t+1 -CHµ t+1 -CA t+1 Hµ t -v t+2 + y t+2 .
The structure of the model ( 1)-( 2) implies that CF = 0, CA t+1 H = 0 and CA t+1 F = α t+1 . Hence, we have

α t+1 ζ t = y t+2 -CA t+1 A t x t -v t+2 . Suppose 0 ≤ x t ≤ x t ≤ x t , ∀t ≥ 0, for some x t , x t ∈ R 4 . Notice that A t+1 A t -A t+1 A t ≥ 0, A t+1 A t -A t+1 A t ≥ 0 with A t+1 A t = A 2 and A t+1 A t = A 2 .
Hence using the inequality (4) of Lemma 1, we get the following relations for all t ≥ 0

(A 2 ) + x t -(A 2 ) -x t ≤ A 2 x t ≤ A t+1 A t x t and A t+1 A t x t ≤ A 2 x t ≤ (A 2 ) + x t -(A 2 ) -x t .
We then obtain the following relations

ζ t ≤ ζ t ≤ ζ t ,
for all t ≥ 0, where

ζ t = α -1 (y t+2 -V -(CA 2 ) + x t + (CA 2 ) -x t ), ζ t = α -1 (y t+2 + V -(CA 2 ) + x t + (CA 2 ) -x t ).
An interval estimator's equations for (3) takes the form

χ t+1 = Aχ t + F + ζ t -F -ζ t + Hµ t +L(y t -Cχ t ) -L V, χ t+1 = Aχ t + F + ζ t -F -ζ t + Hµ t (5) 
+L(y t -Cχ t ) + L V,

x t = max{0, χ t },

x t = max{0, χ t },
where x t ∈ R 4 and x t ∈ R 4 are respectively the lower and the upper interval estimates for the state x t , χ t , χ t ∈ R 4 is the state of ( 5), L and L are some matrices, L = |L|Λ p×1 and L = |L|Λ p×1 .

Assumption 1. There exist matrices L ∈ R 4×1 , L ∈ R 4×1 such that the matrices (A -LC) and (A -LC) are nonnegative.

Assumption 2. The state x(t) is bounded (i.e., x ∈ L 4 ∞ ) for x(0) ∈ [x(0), x(0)], and x(0), x(0) ∈ R 4 are given constants.

We take matrices L and L satisfying Assumption 1 in order to enforce the positivity of the interval observer's error dynamics. Assumption 2 is common in the interval observer design literature and is satisfied here since the state components belong to [0, 1]. Theorem 1. Let Assumptions 1 and 2 be satisfied. Then the estimates x t and x t given by (5) yield the relations

0 ≤ x t ≤ x t ≤ x t ∀t ≥ 0, (6) 
provided that 0 ≤ x 0 ≤ x 0 ≤ x 0 .
Proof. Notice that x t ≥ 0 for all t ≥ 0 and x t is also bounded since it represents population proportions. We can rewrite the equation (3) as follows

x t+1 = (A -LC)x t +(A t -A )x t +F ζ t +Hµ t +Ly t -Lv t
for A equal to A or A and L equal to L or L. Hence, the interval observer's errors e t = x t -χ t , e t = χ t -x t satisfy the equations

e t+1 = (A -LC)e t + φ t , e t+1 = (A -LC)e t + φ t , (7) 
where

φ t = (A t -A)x t + F ζ t -F + ζ t + F -ζ t -Lv t + L V, φ t = (A -A t )x t + F + ζ t -F -ζ t -F ζ t +Lv t + L V.
Under the introduced conditions, it can be inferred from Lemma 1 that φ t ≥ 0 and φ t ≥ 0, ∀t ≥ 0. Therefore one deduces from Assumption 1 that e t ≥ 0 and e t ≥ 0 since e 0 ≥ 0 and e 0 ≥ 0 (the system ( 7) is cooperative). This implies that the order relation χ t ≤ x t ≤ χ t is satisfied for all t ≥ 0. Hence the inequality ( 6) is true by construction of x, x and due to the non-negativity of x.

To state the next theorem, we introduce the notation

J = J 11 J 12 J 21 J 22
, where

J 11 = α -1 F + (CA 2 ) -+ α -1 F -(CA 2 ) + , J 12 = -α -1 F + (CA 2 ) + -α -1 F -(CA 2 ) -, J 21 = -α -1 F + (CA 2 ) + -α -1 F -(CA 2 ) -, J 22 = α -1 F + (CA 2 ) -+ F -α -1 (CA 2 ) + .
and let η = J 2 , the induced 2-norm of J.

Theorem 2. Let Assumptions 1 and 2 be satisfied. Suppose there exists a diagonal matrix P ∈ R 8×8 with positive diagonal entries, two symmetric positive definite matrices Q, K ∈ R 8×8 , and a constant γ > 0 such that

Ξ =   A T P A -P + Q + γη 2 I 8 A T P A T P P A P -γI 8 P P A P P -K   0, (8) for 
A = (A -LC) 0 0 (A -LC) .
Then χ, χ ∈ L 4 ∞ and so x, x ∈ L 4 ∞ . Proof. Let us define

χ t = [χ t T χ t T ] T , t = [ t T t T ] T , t = α -1 F + (y t+2 -V ) -α -1 F -(y t+2 + V ) + Hµ + Ly t -L V, t = α -1 F + (y t+2 + V ) -α -1 F -(y t+2 -V ) + Hµ + Ly t + L V.
The dynamics of the interval observer can be rewritten as

χ t+1 = Aχ t + J max{0, χ t } + t , (9) 
where the matrix A is defined in the theorem. Consider a Lyapunov function V(χ t ) = χ T t P χ t (By using Lemma 2, the matrix P can be chosen diagonal since the matrix A is non-negative), and let τ = V(χ t+1 ) -V(χ t ). We have [START_REF] Hethcote | The mathematics of infectious diseases[END_REF]. This inequality shows that the system ( 9) is input-to-state stable from to χ [START_REF] Khalil | Nonlinear Systems[END_REF], [START_REF] Efimov | Design of interval observers for estimation and stabilization of discretetime LPV systems[END_REF], hence from y to χ. Since ∈ L 8

τ = χ T t (A T P A -P )χ t + χ T t A T P J max{0, χ t } + max{0, χ t } T J T P Aχ t + max{0, χ t } T J T P J max{0, χ t } + 2χ T t A T P t + 2 T t P J max{0, χ t } + T t P t . Taking into account that |J max{0, χ t }| 2 ≤ η|χ t | 2 , we get τ ≤ χ T t (A T P A -P )χ t + χ T t A T P J max{0, χ t } + max{0, χ t } T J T P Aχ t + max{0, χ t } T J T P J max{0, χ t } + 2χ T t A T P t + 2 T t P J max{0, χ t } + T t (P -K) t + T t K t + γη 2 χ T t χ t -γ max{0, χ t } T J T J max{0, χ t } + χ T t Qχ t -χ T t Qχ t , ≤   χ t J max{0, χ t } t   T Ξ   χ t J max{0, χ t } t   -χ T t Qχ t + T t K t , ≤ -χ T t Qχ t + T t K t , because of
∞ by construction, χ and χ stay bounded for all t ≥ 0.

In this paper, we select the observer gains L, L manually. However, because of the diagonal structure of P , one can in fact also optimize the observer gains L, L using semidefinite-programming to improve the observer's accuracy, following the approach of [START_REF] Efimov | Design of interval observers for estimation and stabilization of discretetime LPV systems[END_REF] to reformulate the matrix inequality [START_REF] Hethcote | The mathematics of infectious diseases[END_REF].

IV. SIMULATIONS

In this section, we illustrate the performance of the proposed interval observer. Consider a scenario where shows the results of the interval estimation for = 1 10 , where the solid lines represent the states x k , k = 1, 2, 3, 4 and the dash lines are used for the interval estimates x k and x k . Notice that the dynamics of S t and its estimates can be deduced from Fig. 2 by using the relation S t = 1 -E t -I t -R t .

µ t = µ 0 + 0.05 sin( π 4 t),α t = 0.2 + 0.1 sin 2 ( π 4 t), γ t = γ 0 + 0.1 sin( π 4 t),β t = β 0 (1 + κ cos( π 4 

V. CONCLUSION

The problem of state-observer design for a discrete-time SEIR epidemic model of ILI has been considered in this paper. The proposed approach only requires sets of admissi-ble values for the model's disturbances or uncertainties and parameters, and no information about the bounding values of the time-varying transmission rate from the "susceptible" to the "infected" stage. A new approach for the estimation of the the four compartments' state is proposed, where an interval observer is used instead of a point-wise one. Its performance is illustrated in simulation. Future work can focus on performance evaluation for real data collected by the Public health services.
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 1 Fig. 1. The non-dimensionalized (N = 1) classic time-varying Susceptible-Exposed-Infected-Recovered (SEIR) model.

  t)), with µ 0 = 0.4/year, γ 0 = 0.4/year, β 0 = 0.5/year and the degree of seasonality κ = 0.4. The output measurements y t are corrupted by noise such that v t = V cos( π 4 t) with V = 0.1 1000 . The state's initial conditions are S 0 = 852 1000 , E 0 = 120 1000 , I 0 = 5 1000 and R 0 = 23 1000 . We selectL = (1 -) [0 0 l 0 0] T , L = (1 + ) [0 0 l 0 0] T , with l = 1 20. Assumption 1 holds for these choices of L and L and all conditions of Theorem 1 are satisfied.
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 2 Fig. 2. Evolution of the actual state and the observed bounds.